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Electron energy loss for isolated cylinders
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Abstract

The interaction of STEM electrons with cylindrical surfaces is investigated within the framework of the self-energy formalism.
The energy loss is studied as a function of the impact parameter and for the case of broad beam geometries. An expression for the
effective inverse longitudinal dielectric function of isolated cylinders is derived, and applications of this theory are reviewed.
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1. Intreduction

Since the original paper by Ritchie [1], surface
plasmons have been the subject of continuing
interest. In particular, electron energy-loss spectro-
scopy in scanning transmission electron micro-
scopy (STEM) has become a powerful tool for
investigating the properties of these surface collec-
tive excitations. In a typical STEM configuration
a well-focused probe of electrons is used to yield
electron energy-loss spectra, and both the energy
position and the strength of the energy-loss peaks
provide information on the characteristic bulk and
surface plasmons of the solid. Energy-loss spectra
have been calculated for electrons moving at fixed
impact parameters from given planar interfaces
[2], spheres [3], cylinders [4-6] and more complex
geometries [7-9].

In the case of electrons incident on inhomogen-
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eous media which pass at random distances from
the particles, effective medium theories have been
used, and the concept of the effective dielectric
response has been introduced. The ¢=0 limit of
this average dielectric function for a system of
spherical particles was first derived by Maxwell-
Garnett [10], within a mean field approximation
valid for small values of the volume occupied by
the spheres. Fujimoto and Komaki [11] included
all multipoles to derive, within the hydrodynamic
approximation for a free-electron gas, the energy
loss of a broad beam of fast electrons incident on
an isolated sphere. This result for the energy loss
was later generalized to obtain, in the frame of
both classical [12] and quantal [13] theories, an
expression that is valid for any local dielectric
function inside the sphere. Recently, an expression
for the effective longitudinal dielectric function of
a random system of identical spherical particles
has been derived, within a mean field approxima-
tion [14].
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For cylindrical interfaces all previous works
focused on probes traveling on a definite trajectory,
and only very recently has a broad beam geometry
been considered to investigate the experimental
valence loss spectra from zeolites [15]. The discov-
ery of tubular fullerenes [16], a few years ago, has
opened a new focus of interest for the application
of these theories [17].

In this paper we investigate the interaction of
STEM electrons with isolated cylindrical inter-
faces, within the framework of the self-energy
formalism [13]. The energy loss is first studied as
a function of the impact parameter. Then, the case
of a broad beam geometry is considered, and a
momentum-dependent effective inverse longitudi-
nal dielectric function is derived by equating the
energy-loss probability of electrons passing
through the composite with the bulk energy-loss
probability. Finally, a spectral representation of
the effective inverse dielectric function is given,
and surface mode strengths and positions are
analyzed.

2. Theory

We consider a swift electron interacting with an
inhomogeneous medium. Target excitations
together with the reaction of the probe to these
excitations can be described by the self-energy of
the probe. For an incoming particle in a state
¢o(r) of energy E, one writes [18]:

Zo= Jd% Jd3r’¢§(V)E(r,r’,Eo)fbo(r’), (1)

where X(r,r',E,) represents the non-local self-
energy. In the so-called GW approximation
[(19,20]:

i (dE
2(rr' Ey)= p JZ— Grr' Ey—EYW(rr E), (2)
n

G(r,r',E) and W(rr' ,E) being the Green function
for the probe and the time-ordered screened inter-
action, respectively. In applying this formula we
replace G(r,r',E) by the zero order approximation.
For STEM electrons moving with velocities that

are large with respect to the velocities of target
electrons the effect of the Pauli restriction can be
neglected, and one writes:

G(rr' E)=hY, 9719,

: 3
T E—E;+i6 )

where the sum is extended over a complete set of
final states ¢ (r) of energy E, and ¢ is a positive
infinitesimal.

The damping rate, v, experienced by the particle
as a consequence of the interaction with real
excitations of the target, is directly related to the
imaginary part of X:

2
",v':—%lm):o. (4)

Thus, introduction of Eq. (1) into Eq. (4) gives,
after some rearrangement:

}.:J dow P, (5)
o]

where P, represents the so-called energy-loss prob-
ability for the probe to transfer energy #w to the
medium;

P,=-2}) Jdr Jdr’ PP ()5 (r)
s

x Im W (rr' w)S[ho —(Ey — Ep)], (6)

Wind(r ' ) being the retarded induced screened
interaction.

2.1. Definite trajectories

In the case of electrons moving on a definite
trajectory along the z axis at a given impact
parameter b, the initial and final states can be
described by taking a & function in the transverse
direction and plane waves in the direction of
motion. Introduction of these states, ¢,(#) and
¢r), into Eq. (6) and neglect of the electron recoil
gives:

1 . ,
nhvl

x 8(p —b)o(p’ — b) Im W (rr";m), (7
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L being the normalization length, v, the velocity
of the electron, and p and p’, components of r and
¥ in a plane perpendicular to the z axis.

Our system consists of an infinite cylinder of
radius ¢ and local dielectric function €, centered
in a box of dielectric function €, and volume
Q—o0, the axis of the cylinder being parallel to
the trajectory of the electron, along the z axis. The
induced interaction, W™(r=>br'=b;w), is easily
obtained by imposing the boundary conditions at
p=a, and Eq. (7) gives [6]:

wa wa wb
€K | — | K\ — | I0 | —
v v v
+
wa wa wa wa
v v v v

()

for inside trajectories, and

2

Pa):——lm (ea_)l—e()_l) Z Hon
nhy m=0

()% (%)
e (%) (2) e () ()
9

for outside trajectories. Here, e is the charge of
the electron, J,, represents the cylindrical Bessel
function of the first kind, 7,, and K,, are modified

Bessel functions, and u,, are Neumann numbers.
The energy loss probability of Eqgs. (8) and (9) is
in agreement with previous results [4,5,7] obtained
by following a classical approach.

At this point we consider the following represen-
tation [21]:

J dx ——— 7. (ax)J,,(bx)
x2 42

o

{ I.(ac)K,,(bc), if a<b; (10)
B I.(bc)K,, (ac), otherwise
we also take advantage of the identity:

pmJ 2 (x)=1, (11)
m=0

we average Egs. (8) and (9) over impact parame-
ters and, finally, we equate the resulting energy
loss probability with that of swift electrons passing
through a homogeneous medium of non-local
dielectric function e(g,w) [22],

¢ (dq i
nJq

(12)

to obtain the following result for the momentum-
dependent effective inverse longitudinal dielectric
function of a system of independent cylinders in
an otherwise homogeneous medium:

€t (@) =€ +f(€," —€ ")
2 oc
I+ — J,
X{ 0 g oy 00
eml;n(QZa fﬂ) +60Kr,n(qza fg) } ( )
€l m(9:0)Kn(4.0) —€01(q.a)Kn(q,a) )’
where
fs:) = qzaJm(Qa)KMA 1 (qza) + Qa‘]m— 1 (Qa)Km(an)-
(14)
fg) =qzaJm(Qa)Im—1(qza)'— QaJm—l(Qa)Im(qza)'
(15)

J represents the relative part of the total volume
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occupied by the cylinder, Q is a vector located in
a plane perpendicular to the z axis, and ¢, =w/v.

2.2. Broad beam geometries
We now consider a broad beam geometry, and

we therefore use, plane waves to describe the
electron states:

1
Po(r) = V—a glto’” (16)
and

1
¢f(r)=\—/_ae“’f', (17)

where Q represents the normalization volume.
Then, introduction of Egs. (16) and (17) into
Eq. (6) leads to the following result:

P, = J Jdr Jdr e
(2m)®

x Im W™(rr';0)d[ho —(E, — E ), (18)

where ¢ represents the momentum transfer:

9=qo—4qy. (19)

Thus, equating the energy loss probability of
Eq. (18) with that of Eq. (12) gives the following
expression for the inverse longitudinal dielectric
function:

2

47e’Q

€ai (q)=(1—f)eg ' +fe,' +

< far far

where W3(r,r';) represents the contribution to the
screened interaction coming from the charge
induced at the interface. Eq. (20) does not depend
on the direction of the external beam.

The contribution W*(rs;w) to the screened
interaction is obtained after imposing the bound-
ary conditions at the surface, and we also introduce
the following expansion of a plane wave [23]:

Ce T W (eriw),  (20)

S0P = 3 1, (0p) cos mp, 1)

m=0

where Q and p represent vectors located in a plane
perpendicular to the axis of the cylinder, ¢ being
the angle between them. Then, introduction of
Eq. (21) into Eq. (20) gives Eq. (13) for the effec-
tive inverse longitudinal dielectric function.

Eq. (13) was obtained in the previous subsection
by assuming that electrons move in a direction
parallel to the axis of the cylinder, the component
of the momentum transfer in this direction equal-
ling, therefore, w/v. Howsver, Eq.(13) is now
obtained for any direction of the broad beam, ¢,
being the component of the momentum transfer,
¢, in the direction of the axis of the cylinder, and
¢. does not any longer necessarily equal w/v.
Eq. (13) also coincides exactly with the result one
obtains by following a mean field theory of the
effective response [15].

3. Spectral representation for ¢ ' (¢,0)
The quantities in Eq. (13) can be simplified and
combined to find, after some algebra, the following

expression for the effective inverse longitudinal
dielectric function of isolated cylinders:

€ar (gw)=(1—feg? {Ewl+i Cn
m=0

Ay
+ ,
€wllm +€0(1 _nm)

(22)

X[(l—n;l)%l—ewl

where C,, and n,, represent surface mode strengths
and positions, respectively:

2q.,a 5 ) )
= 00 +(q.a” tin (O, (q. )] 5, (g a)
(23)
and
ny =q.al,(q.a)K,(q.a). (24)

The first and second terms in the right-hand
side of Eq. (22) represent contributions to the bulk
modes of the host and the cylinder, respectively,
coming from the charge induced in the interior of
both media. The third and fourth terms represent
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the so-called Begrenzung effect in the host and the
cylinder, i.e., the contribution to bulk modes
appearing as a consequence of the presence of the
surface. The last term gives account of the surface
modes of the system.

Now, we follow Ref.[14] to introduce a new
variable,

u=(l-€,/€)", (25)

into Eq. (22), and we find the following spectral
representation:

ee_ffl(q,w)=€0_1<l +f{(u—1)_1

+ i Cm[—(u—l)_1+(u—nm)“1]}>’

m=0
(26)

where surface mode strengths and positions are
given by Eqgs. (23) and (24), respectively.

Eq. (26) is new. The spectral representation for
the effective inverse dielectric function of a com-
posite system was first introduced by Bergman
[24] and Milton [25] in the ¢=0 limit, and it was
extended by Barrera and Fuchs [14] to finite wave-
vectors in a system of identical spheres. Eq. (26)
represents the spectral representation for the effec-
tive inverse longitudinal dielectric function of a
system of independent cylinders in an otherwise
homogeneous medium.

In particular, if the momentum transfer is paral-
lel to the axis of the cylinder, ie., Qa=0, all
surface mode strengths are zero except from Cj:

Co=2(g.a)"'I,(g.a)l5 ' (q.a), (27)
and the corresponding mode position is given by:
no =4.al,(q.a)Ky(q.4). (28)

In the local limit (g,a—0) Cy=1, and, therefore,
the Begrenzung term exactly cancels the bulk mode
inside the cylinder. On the other hand, in this
limit ny=0, so that the bulk mode of the host
dominates unless the dielectric function in the
interior of the cylinder goes to infinity.

In the case of a momentum transfer that is
located in a plane perpendicular to the axis of the
cylinder (g.2=0), the zero order mode strength is

zero, C,=0, and for m#0 one finds:
Cn=4(Qa) *mJ}(Qa), (29)

the corresponding mode positions all being equal
to the planar mode, n,.o,=1/2. In the local limit
(Qa—0) only the first order mode strength, C,, -,
contributes to the multipolar sum of Eq. (26); this
mode strength has the value 1, and the Begrenzung
term exactly cancels the bulk mode inside the
cylinder, so that the planar surface mode domi-
nates. For finite values of the momentum transfer
both planar and bulk modes contribute.

Finally, if one assumes that the radius of the
cylinder is small, i.e., Qa« 1 and q,a«]1, then an
expansion of Eq. (26) gives, in the local limit:

qiu—ne) '+ QPlu—ny) ! ]
@+ ’

€ @) =65 [H—f

(30)

where ny=0 and n,=1/2. Eq. (30) shows that in
the local limit there is no contribution from the
bulk mode inside the cylinder.

In the case of a free electron gas of dielectric
function €,=1—w?/w?, where w, is the plasma
frequency, it is straightforward from Eq. (22) or
Eq. (26) that n,,= w? /w2, where w,, represents the
eigenfrequencies for the cylindrical surface plas-
mon modes. Accordingly, the surface mode posi-
tions n,, which are independent of the material
inside and outside the cylinder, equal the square
of the modes represented in Ref. [7] as a function
of ¢g,a.

One easily finds from Eq. (24) that the limiting
value for g.a»1 equals, for all m, the planar
mode, n,=1/2. In the long-wavelength limit, i.e.,
q.a«1, the limiting values are n,,=1/2 for m#0
and »n,=0 for m=0, as discussed above. For
intermediate values of ¢,a they are all lower than
the planar mode. In particular, 0.41 <n,, <0.50 for
m#0 and all values of g.a, and n, is also larger
than 0.41 for g,a>3.0. Thus, for large values of
the parameter ¢.a (g,a>3.0) all surface mode posi-
tions are very close to the planar mode.

In Fig. 1 we show C, of Eq. (23) as a function
of ga, ¢ being the total momentum transfer, for
different values of g,a. When the momentum
transfer is perpendicular to the axis of the cylinder,
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de Strergths

Mg

Fig. 1. Zero-order surface mode strength, C,, of Eq.(23), as a
function of ga, for four different values of ¢,a: 1/2qa (dashed
line), V2/2ga (dashed-dotted line), V/3/2ga (dotted line), and ga
(solid line). When g,a=0, C;=0 for all values of ga.

ie., q,a=0, C, =0 for all values of ga, as noted
above. As the value of g.a increases C, also
increases for ga<3.0, and the limiting value of
Eq. (27) is found when ¢,=¢q (solid line); in this
case, Co=1 for ga=0 and it decreases as (ga)* for
small ga.

The total strength of the surface modes with
m>1, as obtained from Egq.(23), is plotted in
Fig. 2, as a function of ga, also for different values
of g,a. When the momentum transfer is perpendic-

c.g

0.6

Mode Strergths
C.a

qa

Fig. 2. Total strength of the surface modes with m=>1, 3 w_,
C,., as obtained from Egq. (23), as a function of ga, for four
different values of g,a: 0 (solid line), 1/2ga (dashed line),
\/§/2qa (dashed-dotted line), and V/3/2ga (dotted line). When
q.=q, C,=0 for all m0.

ular to the axis of the cylinder (q,a=0), Eq. (23)
can be replaced by Eq. (29) and one obtains the
result plotted in this figure by a solid line: this
curve gives the total strength of the surface modes,
it has the value 1 when ga=0, and it decreases as
(ga)* for small ga. As the value g.a increases, the
total strength of the surface modes with m>1
decreases for small values of ga. In the case of a
momentum transfer that is parallel to the axis of
the cylinder (¢,=gq), all strengths with m>1 are
equal to zero for all values of ga.

In Fig. 3 the total strength of all surface modes
is plotted, as a function of ga, for different values
of g.a. The bulk mode strength,

Co=1-Y C,, (31)
m=0

has the value 0 when ga=0, and is independent of
the direction of the momentum transfer for small
ga: introduction of Eq.(23) into Eq. (31) gives,
up to second order in Qa and g¢,a [see also
Eq. (30)]:

Cb:%qz. (32)

Fig. 3 also shows that as the value of ¢,a increases,
the bulk mode decreases and the Begrenzung effect
happens, therefore, to become more important.

0.6
——

Mode Strengtrs

0.4
e

0.2

Fig. 3. Total strength of all surface modes, > 7., C,, as a func-
tion of ga, for five different values of g,a: 0 (solid line), 1/2ga
(dashed line), V2/2ga (dashed-dotted line), V3/2ga (dotted
line), and qa (dashed-dotted-dotted-dotted line).
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4. Conclusions

In conclusion, we have used a self-energy formal-
ism to describe the interaction of STEM electrons
with cylindrical surfaces. We have derived a general
expression for the momentum-dependent effective
inverse longitudinal dielectric function of a system
of independent cylinders, and we have written this
dielectric function in the form of a spectral repre-
sentation. We have analyzed the surface mode
strengths and positions, and we have found that
in the local limit the planar mode dominates when
the momentum transfer is perpendicular to the
axis of the cylinder, while in the case of a momen-
tum transfer that is parallel to the cylinder only
the n,=0 mode contributes. This mode, however,
represents the dilute limit (f—0) of the actual
mode of a system of parallel cylinders: ny=f. The
effect of the interaction between the cylinders can
be investigated [26], in the local limit, on the basis
of photonic band structure calculations [27]. Work
in this direction is now in progress [28].

The role of surface plasmon excitations in the
interaction between probes and cylindrical inter-
faces has been proved [15] to be important in the
investigation of the experimental valence-loss
spectra from zeolites [29]. Also, the existence of
tubular fullerenes opens a new field of applications
of this theory.

Acknowledgements

We thank P.M. Echenique and J.B. Pendry for
stimulating conversations. The authors also grate-
fully acknowledge the financial support of the
University of the Basque Country, the Basque
Unibertsitate eta Ikerketa Saila, the Spanish
Comision  Asesora, Cientifica y  Técnica
(CAICYT), and the British Council. One of us
(J.M.P.) acknowledges the hospitality of the
Department of Physics of Imperial College of
Science, Medicine and Technology, London, UK,
where part of this work was carried out.

References

[1] R.H. Ritchie, Phys. Rev. 106 (1957) 8§74.

[2] P.M. Echenique and J.B. Pendry, J. Phys. C 8 (1975) 2936.

[3] T.L. Ferrell and P.M. Echenique, Phys. Rev. Lett. 55
(1985) 1526;
T.L. Ferrell, R.J. Warmack, V.E. Anderson and
P.M. Echenique, Phys. Rev. B 35 (1987) 7365.

[4] C.A. Walsh, Phil. Mag. 59 (1989) 227.

[5S] N. Zabala, A. Rivacoba and P.M. Echenique, Surf. Sci.
209 (1989) 465.

[6] A. Rivacoba, P. Apell and N. Zabala, Nucl. Instrum.
Methods B 96 (1995) 465.

[7] M. Schmeits, Phys. Rev. B 39 (1989) 7567.

[8] M. Schmeits and L. Dambly, Phys. Rev. B44 (1991) 12706.

[9] A. Rivacoba, N. Zabala and P.M. Echenique, Phys. Rev.
Lett. 69 (1992) 3362.

[10] J.C. Maxwell-Garnett, Phil. Trans. R. Soc. Lond. 203
(1904) 385; 205 (1906) 237.

[11] F. Fujimoto and K. Komaki, J. Phys. Soc. Jpn. 25
(1968) 1769.

[12] D.R. Penn and P. Apell, J. Phys. C 16 (1983) 5729.

[13] P.M. Echenique, J. Bausells and A. Rivacoba, Phys. Rev.
B 35 (1987) 1521.

[14] R.G. Barrera and R. Fuchs, Phys. Rev. B 52 (1995) 3256.

[15] J.M. Pitarke, J.B. Pendry and P.M. Echenique, Phys. Rev.
B, to be published.

[16] S. Iijima, Nature 354 (1991) 56.

[17] L.A. Bursill, Pierre A. Stadelmann, J.L. Peng and Steven
Prawer, Phys. Rev. B 49 (1994) 2882.

[18] L. Hedin and S. Lundgvist, in Solid State Physics, Eds.
F. Seitz, D. Turbull and E.H. Ehrenreich (Academic Press,
New York, 1969).

[19] J.J. Quinn and R.A. Ferrell, Phys. Rev. 112 (1958) 812.

[20] R.H. Ritchie, Phys. Rev. 114 (1959) 644.

[21] I.S. Gradshteyn and .M. Ryzhik, Table of Integrals, Series
and Products (Academic Press, New York, 1980).

[22] P.M. Echenique, F. Flores and R.H. Ritchie, in: Solid State
Physics, Eds. E.H. Ehrenreich and D. Turbull (Academic
Press, New York, 1990).

[23] F. Bowman, Introduction to Bessel Functions ( Longmans
Green, London, 1938), p. 90.

[24] D. Bergman, Phys. Rep. 43 (1978) 377.

[25] G. Milton, J. Appl. Phys. 52 (1981) 5286.

[26] J.B. Pendry and L. Martin-Moreno, Phys. Rev. B 50
(1994) 5062;

L. Martin Moreno and J.B. Pendry, Nucl. Instrum.
Methods. B 96 (1995) 565.

[27] J.B. Pendry and A. MacKinnon, Phys. Rev. Lett. 69
(1992) 2772.

[28] F.J. Garcia Vidal, .M. Pitarke and J.B. Pendry, to be
published.

[29] D.W. McComb and A. Howie, Nucl. Instrum. Methods B
96 (1995) 569.



