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Context

Physics:
• Astrophysics.
• Dynamical systems with noise.
• Fluid dynamics in the presence of random forces and

turbulence.

Mathematics and finance:
• Probability theory.
• Prediction in finance models and time series.
• Traffic models and non-deterministic interaction between

particles.
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Applications

Applications:
• Stability analysis of the solutions of equations under

stochastic interactions.
• Exploration of the boundary values in predictive models for

different scenarios.
• Resistance conditions of structures under stochastic forces.
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Motivation

Motivation by an example:
• Lets consider a particle leaving initially from the origin,

x(0) = 0 and moving over the time, x(t).
• Each time interval ∆t the particle moves to the left xi = 0 or

to the right xi = 1, both with probability 1/2.
• The step length is ∆x and the movements xi are independent.

The question is to estimate the probability of being at time t at
each possible position.

Random variable:
The random dynamics explained above can be expressed by a
random variable xi ∈ {0, 1} with probabilities p(0) = p(1) = 1/2,
mean 〈xi〉 = 1/2 and variance var(xi) = (1/2)2.
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Motivation

Random walk:
The position of the particle at any time t = tn = n∆t can be
expressed by the sum of individual steps Sn = ∑n

i=1 xi:

x(t) = Sn∆x− (n− Sn)∆x = (2Sn − n)∆x.

The itinerary of x along the time is a random walk.
Due to the independence between xi, the mean and variance are

E(x(t)) = E

(
n

∑
i=1

(2xi − 1)∆x

)
=

n

∑
i=1

(2
1
2
− 1)∆x = 0,

Var(x(t)) = E

(
n

∑
i=1

(2xi − 1)2∆x2

)
= n∆x2
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Motivation

Density function for the position of the particle:

Assuming ∆x2

∆t = C constant, then Var(x(t)) = Ct and ∆x =
√

Ct
n .

The random variable associated to the position x(t) reaches

x(t) = (2Sn − n)∆x =
(2Sn − n)

√
Ct√

n
=

(Sn − n/2)√
n/4

√
Ct

Taking into account that 〈Sn〉 = n/2 and σx =
√

n/4, the
probability function for x(t) is calculated by the Central Limit Th.

P(a ≤ x(t) ≤ b) =
1√
2π

∫ b/
√

Ct

a/
√

Ct
e−

x2
2 dx =

1√
2πCt

∫ b

a
e−

x2
2Ct dx
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Motivation

Central Limit Theorem:
Let {X1, . . . , Xn} be a random sample of size n of identical and
independent random variables with mean µ and variance σ2, then
the limit for n→ ∞ of arithmetic mean of the sample,
Sn = 1

n ∑n
i=1 Xi, converges in distribution to a standard normal

distribution in the following way:

lim
n→∞

Sn − µ

σ/
√

n
d−→ N (0, 1).

Observation:
For the validity of this theorem only the independence between the
events governed by identically distributed random variables is
crucial, no matter the random variables (uniformly distributed,
exponential, Gamma, binomial, Poisson, chi square,...).
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Example 1

Example 1. Central limit theorem:
The phenomenon explained by the central limit theorem can by
observed for some statistical distribution like the χ2
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Exercise 1

Exercise 1. Central limit theorem:
Verify experimentally the assertion given by the central limit
theorem for some of the statistical distributions given by
octave/matlab in the pdf (probability density function) mode:
https://octave.org/doc/v4.2.0/Distributions.html

Octave/matlab functions used:
• Standard normal distribution: stdnormal pdf(x)
• Graphics combination: hold on ... hold off
• Plotting histogram: hist(vector,interv,norm);

C. Gorria Bilbao, 2020
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Example 2

Example 2. Random walk:
Let’s be a random walk that for each time instant from 0 to 10,
ti = i, i = 0, . . . , 10it is given a step of length ∆x = 1 either right
or left with probability p = 0.5 each. We can implement a program
in any language as octave/matlab in order to get a series of
itineraries obtained for different simulations.

Octave/matlab functions used:
• Vectors: zeros(nrow,ncol)
• Statistics: binornd(n,p), hist(endpoint, 10, 1.0)
• Numerical: min(v), max(v)
• Graphics and evaluation: plot(), subplot(), eval()
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Example 2
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Exercise 2

Exercise 2. Random walk:
Let’s be a random walk that in each time instant
ti = i, i = 0, . . . , 10 goes a step ∆x either left or right with
probability p = 0.5.

a) Build a code for calculating 100 different simulations of the
random walk and store in a matrix by columns

b) Keep in a matrix with 3 columns the boundaries of the
random walks: 1st column for the instant t = t0, t1, . . ., 2nd
column for the minimum value of every random walk and 3rd
column for the maximum value of every random walk.

c) Draw a histogram of the final positions of the random walks
(the frequencies corresponding to each position

In the following slide is a graphic with a sample of the results that
have to be obtained.
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Exercise 2
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Brownian motion

Definition:
A Brownian motion or Wiener process is a random variable W(t)
defined for each time t characterized by{

〈W(t)〉 = 0,
Var(W(t)) = t,

and the following conditions have to be reached:
• W(0) = 0,
• W(t)−W(s) ∈ N (0, t− s), t ≥ s ≥ 0,
• The following random variables are independent for any

choose of 0 ≤ t1 ≤ t2 . . . ≤ tn:

{W(t2)−W(t1), W(t3)−W(t2), . . . , W(tn)−W(tn−1)}

C. Gorria Bilbao, 2020
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Brownian motion

Several positions at different times:
When a particle dynamics follow Brownian motion, the probability
of being at different times in certain positions is calculated by a
multiple integral of conditional probability density functions,

P(a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2, . . . , an ≤ xn ≤ bn)

=
∫ b1

a1
· · ·
∫ bn

an
g(x1, t1|0) · g(x2, t2 − t1|x1) · · ·

g(xn, tn − tn−1|xn−1)dxn · · ·dx1.

Correlation:
It can be proven that the correlation between two measurements of
the Brownian taken at different times is

〈W(t)W(s)〉 = t ∧ s = min{s, t}.
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White noise

Concept of white noise:
The white noise can be defined as an occasional impulse which has
influence over the behavior of some magnitude. It emerges in
different contests. The motion dynamics of particles in the
presence of white noise are expressed by stochastic differential
equations.

Definition (heuristic):
Although the differentiation for a Wiener process is not formally
defined, this heuristic definition of the white noise can be accepted,

Ẇ(t) =
dW(t)

dt
= ξ(t), where 〈ξ(t)ξ(s)〉 = δ0(s− t).

C. Gorria Bilbao, 2020
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White noise

Autocorrelation function:
X : [0, ∞]×R→ Rn stochastic process with 〈X2(t)〉 < ∞ then
r(s, t) = 〈X(t)X(s)〉 is the autocorrelation function. When
r(s, t) = c(s− t) the stochastic process is called stationary. For
example the white noise ξ(t) is stationary with c(·) = δ0.

Spectral density:
The Fourier transform of the autocorrelation function is known as
the “spectral density”. It gives a measure of the periodicity in time
with which the stochastic process repeats a pattern.

f (λ) =
1

2π

∫ ∞

−∞
c(t)e−iλtdt.
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White noise

Brownian motion by random Fourier series:
Let be {ϕn(t)} ⊂ L2(0, 1) orthonormal function space and{

ξ(t) = ∑∞
n=1 An ϕn(t),

An =
∫ 1

0 ξ(t)ϕn(t)dt, random variables,

then 〈An, Am〉 = δnm and the Brownian motion can be defined as

W(t) =
∫ t

0
ξ(s)ds =

∞

∑
n=1

An

∫ t

0
ϕn(s)ds.
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Stochastic integrals

Stochastic differential Equation:
A stochastic differential Equation is composed by an deterministic
component ~b(~x, t) and a stochastic component ~B(~x, t){

d~X =~b(~X, t)dt + ~B(~X, t)d~W,
~X(0) = ~X0,

The evolution of ~X magnitude is governed by the integral formula

~X(t) = ~X0 +
∫ t

0
~b(~X, s)ds +

∫ t

0
~B(~X, s)d~W.

Questions about stochastic integrals:

How could we define the integrals
∫
~Gd~W and

∫
~Wd~W when d~W

is a vector Wiener process?
C. Gorria Bilbao, 2020
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Stochastic integrals

Stochastic integral for scalar function:
For g : [0, 1] −→ R, g ∈ C[0, 1] function it is defined∫ 1

0
g(t)dW = −

∫ 1

0
g′(t)W(t)dt

as random integral reaching the following conditions:

E
(∫ 1

0
g(t)dW

)
= 0 and E

((∫ 1

0
g(t)dW

)2
)

=
∫ 1

0
g2dt.

It can be proved that exists a function succession {gn} ⊂ C1[0, 1]
that limn→∞

∫ 1
0 (gn(t)− g(t))2dW = 0.
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Stochastic integrals

Riemann sum for Wiener process:
Let’s be Pn = {0 = tn

0 < tn
1 < · · · < tn

mn
= T} a partition of

[0, T], where |Pn| = maxk |tn
k+1 − tn

k | is the size of the net and
τk = (1− λ)tn

k + λtn
k+1, 0 ≤ λ ≤ 1 an interior point, then the

Riemann sum corresponding to
∫ T

0 W(t)dW is defined by

Rn = Rn(P, λ) =
mn−1

∑
k=0

W(τk)

≈dW(τk)︷ ︸︸ ︷
(W(tk+1)−W(tk))
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Stochastic integrals

Lemma (Stochastic integrals):
The L2 limit (by quadratic mean) of Rn when (n→ ∞) is

lim
n→∞

Rn =
W(T)2

2
+

(
λ− 1

2

)
T

Ito’s and Stratonovich’s representations:
The chose of 0 ≤ λ ≤ 1 determines the integration formula:

Ito (λ = 0):
∫ T

0
W(t)dt =

W(T)2

2
− T

2
,

Stratonovich (λ = 1/2):
∫ T

0
W(t) ◦ dt =

W(T)2

2
.

C. Gorria Bilbao, 2020
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Stochastic integrals

Lemma (Quadratic variation):
Let’s be Pn = {0 = tn

0 < tn
1 < · · · < tn

mn
= T} a partition of [0, T]

and limn→∞ |Pn| = 0, then the limit in L2 of the sum of squares of
the differentials of W is

lim
n→∞

mn−1

∑
k=0

(W(tk+1)−W(tk))
2 = (b− a) =

∫ b

a
dt.

Observation: This result is true for arbitrary interval, [t, t + ∆t].
Here ∆W =

√
∆t and the rule of the stochastic term in the

numerical integration of a SDE is much heavier than the
deterministic term, for example ∆t = 0.01⇒ ∆W = 0.1.
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Stochastic integrals

Proof:

Qn =
mn−1

∑
k=0

(
W(tn

k+1)−W(tn
k )
)2 ⇒ E

(
(Qn − (b− a))2) =

mn−1

∑
k=0

mn−1

∑
j=0

E
[(

W(tn
k+1)−W(tn

k )
)2 − (tn

k+1 − tn
k )
]

[(
W(tn

j+1)−W(tn
j )
)2
− (tn

j+1 − tn
j )

]
= (∗)

By the independence between cross uncorrelated terms and
E(
(
W(tn

k+1)−W(tn
k )
)2
) = var

(
W(tn

k+1)−W(tn
k )
)
= tn

k+1 − tn
k ,

taking yk =
W(tn

k+1)−W(tn
k )√

tn
k+1−tn

k
∼ N (0, 1), now

(∗) =
mn−1

∑
k=0

E
(
(y2

k − 1)2(tn
k+1 − tn

k )
2) ≤ c|Pn|(b− a)→ 0
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Stochastic integrals

Definitions of continuity in a probability space:
(i) With probability 1 (w.p.1):

P
(
{w ∈ Ω : lim

s→t
|X(s, w)− X(t, w)| = 0}

)
= 1.

(ii) In mean square: lims→t E (|X(s, w)− X(t, w)|)2 = 0.
(iii) In probability:

lim
s→t

P ({w ∈ Ω : |X(s, w)− X(t, w)| ≥ ε}) = 0, ∀ε > 0.

(iv) In distribution: lims→t Fs(x) = Ft(x), ∀x, Ft(x) continuous.

Implications: (i)⇒ (iii), (ii)⇒ (iii), (iii)⇒ (iv),

C. Gorria Bilbao, 2020
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Itô’s integral

Theorem: Properties of Itô’s integral
∀a, b ∈ R, ∀G, H ∈ L2(0, T)

(i)
∫ T

0 (aG + bH)dW = a
∫ T

0 GdW + b
∫ T

0 HdW,

(ii) E
(∫ T

0 GdW
)
= 0,

(iii) E
((∫ T

0 GdW
)2
)
= E

(∫ T
0 G2dt

)
,

(iv) E
(∫ T

0 GdW
∫ T

0 HdW
)
=
∫ T

0 GHdW,

C. Gorria Bilbao, 2020
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Itô’s formula

Definition: Itô’s formula for differentiation:
Let’s be X(·) ∈ R stochastic process that for F ∈ L1(0, T) and
G ∈ L2(0, T) it reaches X(r) = X(s) +

∫ r
s Fdt +

∫ r
s GdW, then

the stochastic differential of X is dX = Fdt + GdW.

Theorem: Itô’s formula for integration
For Y(t) = u(X(t), t), where u : R× [0, T]→ R and ∂u/∂t,
∂u/∂x and ∂2u/∂x2 exist and are continuous and
dX = Fdt + GdW, the following equalities are reached:

dY = ∂u
∂t dt + ∂u

∂X dX + 1
2

∂2u
∂X2 G2dt =(

∂u
∂t +

∂u
∂X F + 1

2
∂2u
∂X2 G2

)
dt + ∂u

∂X GdW,

Y(r) = Y(s) +
∫ r

s

[
∂u
∂t +

∂u
∂X F + 1

2
∂2u
∂X2 G2

]
dt +

∫ r
s

∂u
∂X GdW.

C. Gorria Bilbao, 2020
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Itô’s formula

Properties of Itô’s formula:
(i) d(W2) = 2WdW + dt,
(ii) d(tW) = Wdt + tdW,

(iii) ∀Fi ∈ L1(0, T), Gj ∈ L2(0, T) and
{

dX1 = F1dt + G1dW,
dX2 = F2dt + G2dW,

d(X1X2) = X2dX1 + X1dX2 + G1G2dt.

C. Gorria Bilbao, 2020
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Itô’s formula

Corollary: Generalized Itô’s formula
dX(i) = F(i)dt + G(i)dW,
F(i) ∈ L1(0, T), G(i) ∈ L2(0, T),
u : Rn × [0, T]→ R, ∂u

∂t , ∂u
∂xi

, ∂2u
∂xi∂xj

continuous,

Then

d
(
u(X(1), . . . , X(n), t)

)
=

∂u
∂t

dt +
n

∑
i=1

∂u
∂xi

dX(i) +
1
2

n

∑
i,j=1

∂2u
∂xi∂xj

G(i)G(j)dt

C. Gorria Bilbao, 2020
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Stratonovich Integral

Definition: Stratonovich Integral
For Pn = {0 = tn

0 < tn
1 < · · · < tn

mn
= T} partition of [0, T]

interval with |Pn| = max
k=1,...,mn

|tn
k − tn

k−1|, the integral of the
Brownian motion W in Stratonovich sense is∫ T

0
W ◦ dW =

lim
|Pn|→0

mn−1

∑
k=0

W
( tn

k+1 + tn
k

2

) [
W(tn

k+1)−W(tn
k )
]
=

W2(T)
2

.
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Stratonovich Integral

Definition: solution of the Stratonovich Integral

Let ~X(·) be the solution of the Stratonovich integral,

~X(t) = ~X(t) +
∫ t

0
b(~X, s)ds +

∫ t

o
~B(~X, s) ◦ d~W,

then d~X =~b(~X, t)dt + ~B(~X, t) ◦ d~W.

Theorem: chain rule derivative
For ~X ∈ Rn, Y(t) = u(~X(t), t) ∈ R and d~X as previous def,

dY =
∂u
∂t

dt +
n

∑
i=1

∂u
∂xi
◦ d~Xi =(

∂u
∂t

+
n

∑
i=1

∂u
∂xi

bi

)
dt +

n

∑
i=1

m

∑
k=1

∂u
∂xi

Bik ◦ dWk.

C. Gorria Bilbao, 2020
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Conversion Itô ↔ Stratonovich

Conversion Itô ↔ Stratonovich. Integral form.[∫ T

0
~B(~W, t) ◦ d~W

]i

=[∫ T

0
~B(~W, t)d~W

]i

+
1
2

∫ T

0

∂Bij

∂xj
(~W, t)dt.

C. Gorria Bilbao, 2020



Brownian motion Stochastic Integrals. Ito’s formula Numerical schemes for solving SDE Burgers equationStochastic integrals Itô’s formula Stratonovich formulation

Conversion Itô ↔ Stratonovich

Conversion Itô ↔ Stratonovich, differential form
Itô{

d~X =~b(~X, t)dt + ~B(~X, t)d~W,
~X(0) = ~X0.

Stratonovich
d~X =

[
~b(~X, t)− 1

2
~c(~X, t)

]
dt + ~B(~X, t) ◦ d~W,

~X(0) = ~X0,

ci(x, t) =
m

∑
k=1

n

∑
j=1

∂Bik

∂xj
(x, t)Bjk(x, t).
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Numerical schemes for solving SDE

Initial value problem ODE
Given an initial value problem in general case (t, x) ∈ R×Rn:{

x′ = f (t, x(t)),
x(t0) = ν

Given a discretization of the time interval 0 = t0 < · · · < tn = T,
numerical methods try to approximate the behavior of the solution
over the time xi ≈ x(ti) leaving from x0 and going ahead through
the direction of the derivative f (t, x(t)).

Explicit Euler method for ODE
The explicit Euler method is defined by the recursion formula:

xi+1 = xi + ∆t f (ti, xi), x0 = ν

C. Gorria Bilbao, 2020
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Numerical schemes for solving SDE

Explicit Euler method for ODE
A little more sophisticated technique is the implicit Euler method.
It estimates the progressing direction by using a weighted mean of
the gradient, including the end-point of each iteration. The
recursion formula is:

xi+1 = xi +
∆t
2

( f (ti, xi) + f (ti+1, xi+1)) , x0 = ν.

The toll paid by implementing this improvement is the necessity of
solving an equation (in general nonlinear) in each iteration. When
the function f (t, x) is smooth enough it is easily proved that for a
∆t small enough, a fix-point scheme is convergent for finding the
solution of the equivalent equation xi+1 = G(ti+1, xi+1).

C. Gorria Bilbao, 2020
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Numerical schemes for solving SDE

Implicit Euler method
• Scalar case:

Yn+1 = Yn + [αa(τn−1, Yn−1) + (1− α)a(τn, Yn)]∆+

b(τn, Yn)∆W, ∆ = τn−1 − τn, α ∈ [0, 1].

• Vector case for the k’th component:

Yk
n+1 = Yk

n + [αAk(τn−1, Yn−1) + (1− α)Ak(τn, Yn)]∆+

m

∑
j=1

Bkj(τn, Yn)∆W j, A = (Ak), B = (Bkj).

C. Gorria Bilbao, 2020
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Example 3

Example 3. Numerical schemes for solving ODE:
Let it be a second order differential equation with oscillatory type
solutions:

second order equation first order equation system{
x′′(t) + x(t) = 0,
x(0) = 1, x′(0) = 0.

⇔


x′(t) = y(t),
y′(t) = −x(t),
x(0) = 1, y(0) = 0.

Explicit and implicit Euler methods:

xn+1 = xn + h f (tn, xn) Explicit Euler method
xn+1 = xn +

h
2 ( f (tn, xn) + f (tn+1, xn+1)) Implicit Euler method

C. Gorria Bilbao, 2020
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Example 3
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Exercise 3

Exercise 3: Explicit and implicit Euler methods
Solve numerically by explicit and implicit Euler methods the
following ODE system corresponding to Lotka-Volterra equations:{

x′(t) = a1x(t)− a2x(t)y(t),
y′(t) = −b1y(t) + b2x(t)y(t),

a1 = 0.4, a2 = 0.018, b1 = 0.8, b2 = 0.023

x(0) = 30, y(0) = 4, tmin = 0, tmax = 20, h = 0.1

Draw the solutions in the plane (t, x) and in the phase plane (x, y).
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Example 4

Brownian motion equations:
Let X = X(t) symbolizes certain magnitude or the position of a
particle with respect to time. In the following examples we will
analyze some equations of Brownian motion of the following type:

dX = b(t, X)dt + σ(t, X)dW

We will find analytically the solutions X = f (t, W) for certain
function f by comparison with the Itô’s formula:

dX =

(
∂ f (t, W)

∂t
+

1
2

∂2 f (t, W)

∂x2

)
dt +

∂ f (t, W)

∂x
dW

In addition, we will also provide the numerical solutions given by
the Euler implicit method (trapezoidal rule).
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Example 4

Example 4: Brownian geometric motion
Let it be the stochastic equation:{

dX = µXdt + σXdW,
X(0) = x0 > 0, µ, σ > 0.

Assuming a solution of the type X = f (t, W) and comparing its
corresponding Itô’s formula with the previous equation, we obtain:{

µ f (t, W) = ft(t, W) + 1
2 fxx(t, W)

σ f (t, W) = fx(t, W)
⇒

X(t, W) = x0e
(

µ− σ2
2

)
t+σW(t).
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Exercise 4

Exercise 4: Ornstein-Uhlenbeck process
Let it be the stochastic equation proposed by Ornstein and
Uhlenbeck for modelling the variation of the velocity of a particle
under diffusion in short time interval:{

dX = −αXdt + σdW,
X(0) = x0 > 0, µ, σ > 0.

Assuming a solution of the type X = a(t)
[

x0 +
∫ t

0 b(s)dW(s)
]

and repeating the process of previous example the analytical
solution is X(t) = x0e−αt + σ

∫ t
0 e−α(t−s)dW(s)

Calculate the numerical solution of the above equation in the
interval t ∈ [0, 2] by the implicit Euler method for: α = 1, σ = 1,
x0 = 3 and dt = 0.01 and compare with the exact solution.

C. Gorria Bilbao, 2020
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Exercise 4

Exercise 5: Brownian bridge
Let it be the stochastic equation:{

dX = − X
1−t dt + dW,

X0 = 0, t ∈ [0, 1).

Assuming a solution of the type X = a(t)
[

x0 +
∫ t

0 b(s)dW(s)
]

and repeating the process of previous example the analytical
solution is X(t) = (1− t)

∫ t
0

1
1−s dW(s)

Calculate the numerical solution of the above equation in the
interval t ∈ [0, 0.99] by the implicit Euler method for dt = 0.01
and compare with the exact solution.

C. Gorria Bilbao, 2020
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Equations of Fluid Dynamics

Navier-Stokes Eq. for incompressible fluids

 ∂u(x, t)
∂t

+ u(x, t) · ∇u(x, t) = −∇p(x, t) + ν∆u(x, t),

∇ · u(x, t) = 0.

Here ν is the viscosity and the pressure p is defined by the equation

∆p(x, t) = −∇ · u(x, t) · ∇u(x, t).

Burgers equation
In absence of pressure, p = 0, and under the action of an external
force F(x, t) the expression can be reduced to the Burgers eq.

∂

∂t
u(x, t) +

1
2

∂

∂x
(
u(x, t)2) = ν

∂2

∂x2 u(x, t) + F(x, t).
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Equations of Fluid Dynamics

Hopf-Cole Transformation
In presence of viscosity, by the Hopf-Cole transformation

ϕ(x, t) = e−(1/2ν)
∫

udx ⇔ u(x, t) = −2ν
ϕx

ϕ
,

u(x, t) = − 1
2v

∂

∂x
(ln ϕ(x, t)),

the Burgers equation can be transformed in a parabolic equation

∂

∂t
ϕ(x, t) = v

∂2

∂x2 ϕ(x, t).

This last equation has an exact solution for each initial condition
ϕ(x, t0) = ϕ0(x) than can be evaluated by Fourier series
expansion or by an integral equation in terms of the heat-kernel.
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Equations of Fluid Dynamics

Inviscid Burgers equation
In absence of viscosity and external forces, the analysis of the
Burgers equation can be made by the characteristic method,

∂

∂t
u(x, t) +

1
2

∂

∂x
(
u(x, t)2) = 0, x ∈ R, t ≥ 0

u(x, 0) = u0(x), x ∈ R.

Now we find the trajectories along which the solutions are constant,
x(t) where u(x(t), t) = u0(x(0)). In case of being constant over
the time, the total derivatives with respect to time vanishes:

d
dt u(x(t), t) = ∂

∂t u(x(t), t) + x′(t) ∂
∂x u(x(t), t) = 0 =

∂
∂t u(x(t), t) + u(x(t), t) ∂

∂x u(x(t), t)
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Equations of Fluid Dynamics

Characteristics
The conclusion is that x′(t) = u(x(t), t) seams to be implicitly
defined. But u(x(t), t) = constant ⇒ x′(t) = u(x(t), t) = u0(x).
These trajectories are named “characteristic lines”. Thus, for any
x ∈ R then u(x, t) = u0(x0) for the value x = x0 + u0(x0)t.

Shocks
Unfortunately the previous solutions can be multivalued, this
means that shock can occur. It will happen for the first time when
for two different x1 6= x2 the following is reached

x(t) = x1 + u0(x1)t = x2 + u0(x2)t⇔ t = − 1
u0(x2)−u0(x1)

x2−x1

> 0.

This shock will happen when ∃x ∈ R : u′0(x) < 0.
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Example 5

Numerical solution of the inviscid Burgers Equation by the method
of the characteristic:
Let u(x, t) = u0(x0) be the solution of the inviscid Burgers
Equation for the value x = x0 + u0(x0)t without shocks at any
(x, t). We will represent the solution for the initial value
u0(x) = 1 + tanh x/4 in the spatial domain −20 ≤ x ≤ 20 over
the time interval 0 ≤ t ≤ 5.

Exercise 5. Shock in the inviscid Burgers Equation:
Let’s repeat the numerical simulation of the inviscid Burgers
equation for the initial condition u0(x) = e−(

x
5 )

2

in the spatial
domain −20 ≤ x ≤ 20 over the time interval 0 ≤ t ≤ 10.
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Example 5
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Burgers Equation: 0<=t<=5,  -20<=x<=20
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Example 5

Numerical solution of the inviscid Burgers Equation by the method
of the characteristic:
Let u(x, t) be the solution of the Burgers Equation with viscosity,

∂

∂t
u(x, t) +

1
2

∂

∂x
(
u(x, t)2) = ν∆u(x, t).

A technique to get an approximation un,k ≈ u(tn, xk) of the
solution of the equation in the interval [tmin, tmax]× [xmin, xmax]
over a discrete mesh (tn, xk) where tn = tmin + ndt and
xk = xmin + ndx , is to use finite differences to approximate
derivatives in space and implicit Euler method to advance in time.

∂u(tn, xk)

∂x
≈ un,k+1 − un,k−1

2dx
,

∂2u(tn, xk)

∂x2 ≈ un,k+1 − 2un,k − un,k−1

dx2

C. Gorria Bilbao, 2020
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Numerical solution of the Burgers equation with viscosity
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Burgers Equation with viscosity: 0<=t<=5,  -10<=x<=10,   nu=0.1
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Stochastic Burgers’ equation

Stochastic Burgers’ equation
The simplest way of considering a stochastic turbulent
phenomenon in the dynamics modeled by the viscous Burgers’
equation is to introduce a white noise η with intensity σ.
Equivalently an stochastic force in terms of a related is a Brownian
motion sheet W can be considered,

∂

∂t
u(x, t) +

1
2

∂

∂x
(
u(x, t)2) = ν

∂2

∂x2 u(x, t) + σ(t, x, u)
∂2W
∂t∂x

.

where (t, x) ∈ [0, T]×R and u0 is a nonrandom initial condition.

C. Gorria Bilbao, 2020
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