STATISTICS APPLIED TO BUSINESS
 ADMINISTRATION. ACADEMIC YEAR 2022-2023
 PRACTICAL EXERCISE 3 (20 MINUTES)

Date: \qquad
Complete name: \qquad ID number: \qquad

EXERCISE 1 (4 POINTS)
Let $X \in \gamma(a, r)$, with characteristic function given by $\psi_{X}(u)=(1-5 i u)^{-r}$, and $\operatorname{Var}(X)=$ 25.

1. (2 points) Find the distribution of the r.v. X and compute its mean.
2. (2 points) What is the value of $P(-10 \leq X \leq 10)$?

EXERCISE 2 (6 POINTS)

Let $X_{1}, X_{2}, X_{3}, X_{4}$ and X_{5} be five independent r.v. such that: $X_{1} \in N\left(-2, \sigma^{2}=4\right)$, $X_{2} \in N\left(0, \sigma^{2}=9\right), X_{3} \in N\left(5, \sigma^{2}=1\right), X_{4} \in \chi_{2}^{2}$ and $X_{5} \in \gamma\left(\frac{1}{2}, 4\right)$.

1. (2 points) Find the value of k such that $P\left(X_{2}^{2}>k\right)=0.10$.
2. (2 points) Let $V=\frac{X_{2}}{\sqrt{\left(\frac{X_{1}+2}{2}\right)^{2}+X_{5}}}$. Compute $P(-0.883 \leq V \leq 2.82)$.
3. $\frac{(2 \text { points })}{P(W e t ~} W=\frac{\left[\left(\frac{X_{1}+2}{2}\right)^{2}+\left(X_{3}-5\right)^{2}+X_{5}\right]}{5 X_{4}}$. Find the value of k such that $P(W>k)=0.90$.
