
Performance HPC Linux
Bull Echirolles

Software Development
Environment

(Part two)

C.Berthelot
Christophe.Berthelot@bull.net

2008
Copyright (c©) Bull S.A.S. 2008

1/28
c©Bull 2008

file:Christophe.Berthelot@bull.net

Intel: IDB
GNU: gdb
Etnus: Totalview
Allinea: DDT

Debuggers

Process : pplace

Place

Memory : numactl

time
top/iostat
perfware
perfmond/pfbd
pfmon/pfb

Measurements

MODIFY

Eclipse for C++Traditional editors

COMPILE

Compilers

OpenSource
FFTW
SuperLU
BlockSolve95

Libraries

PROFILE

MEASURE
RUN

mprun
prun

Launchers

Communications

Hots Spots Gprof

srun

PAPI

Intel C,C++,Fortran

Intel MKL, IPP

GNU C/C++

VTune

mpiprofilecomm

Compiler option for OpenMP
Intel Trace Tools

BULL (MPI2)

2/28
c©Bull 2008

� Introduction

� Tools

� How to run with Torque

� How to measure

3/28
c©Bull 2008

Data placement policy

First touch
I First processor to touch a page of memory causes it to be

allocated from its local memory

I Works well for fully parallelized programs, but serial
initialization cause non-local accesses and bottlenecks on
memory bandwidth.

4/28
c©Bull 2008

Memory placement

CPU0-3 CPU4-7

MEM0-3 MEM4-7

CPU0-3 CPU4-7

MEM0-3 MEM4-7

CPU0-3 CPU4-7

MEM0-3 MEM4-7

5/28
c©Bull 2008

� Introduction

� Tools
CPU placement
Memory placement

� How to run with Torque

� How to measure

6/28
c©Bull 2008

Process placement: Taskset

I taskset is used to set or retrieve the CPU affinity of a
running process given its PID or to launch a new COMMAND
with a given CPU affinity

Example
I To run inside on the first 4 cores

taskset -c 0-3 ./a.out

7/28
c©Bull 2008

� Introduction

� Tools
CPU placement
Memory placement

� How to run with Torque

� How to measure

8/28
c©Bull 2008

Memory placement : Numactl
Numactl runs processes with a specific NUMA scheduling or
memory placement policy. The policy is set for command and
inherited by all of its children. Policy settings are:

I Memory will be allocated using round robin on nodes.

I Allocates only memory from nodes.

I Does always local allocation on the current node.

Node 0 Node 1

9/28
c©Bull 2008

On NovaScale
I A node is a NDC

I Option –hardware shows inventory of available nodes on the
system
available: 2 nodes (0-1)

node 0 size: 16166 MB

node 0 free: 11246 MB

node 1 size: 16384 MB

node 1 free: 13846 MB

I Option –show shows NUMA policy settings of the current
process
policy: default

preferred node: current

cpubind: 0 1

membind: 0 1

10/28
c©Bull 2008

Commands
I --interleave=nodes, -i nodes: Set an memory interleave

policy.

I --membind=nodes, -m nodes : Only allocate memory from
nodes.

I --localalloc, -l : Do always local allocation on the
current node

I --cpubind=nodes, -c nodes : Only execute process on the
CPUs of nodes

11/28
c©Bull 2008

� Introduction

� Tools

� How to run with Torque

� How to measure

12/28
c©Bull 2008

TORQUE

I A Server
• Receives batch jobs
• Invokes the scheduler
• Instructs moms to execute jobs

I A scheduler
• Contains the job scheduling policy
• Communicates with ”moms” to learn about state of

system
• Communicates with ”server” to learn the jobs

availability

I Mom(s) (Machine Oriented Miniserver)
• Places jobs into execution
• Takes instruction from ”server”

Commands

Server

Scheduler

Jobs
Mom

Tasks

SERVER CLIENT

13/28
c©Bull 2008

Software Architecture on the Cluster

Server

Scheduler

Jobs

Commands
PBS

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

SERVER

Torque Server

Torque Mom

Torque

Appli 1
Appli 2

Communications:

14/28
c©Bull 2008

Job session scheme
Structure:

I There is one Server

I There is one Scheduler

I One Mom for each compute node

1- User specifies resource requirements and
submits his job (qsub command)
2- Server places the job into a queue
(the queue choice depends on the resource requests)

and initiates the scheduling cycle
3- Scheduler asks moms to determine
available resources
4- Scheduler eventually allocates resources
for the job
(when required resources become available)

5- Server dispatches tasks to moms
deamons
6- When task is finished, Mom sends result
to the Server

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Server

Scheduler

Commands
PBS

Server Host

15/28
c©Bull 2008

Job session scheme
1- User specifies resource requirements

and submits his job (qsub command)

2- Server places the job into a queue
(the queue choice depends on the resource requests)

and initiates the scheduling cycle
3- Scheduler asks moms to determine
available resources
4- Scheduler eventually allocates resources
for the job
(when required resources become available)

5- Server dispatches tasks to moms
deamons
6- When task is finished, Mom sends result
to the Server

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Server

Scheduler

Commands
PBS

Server Host

Jobs

15/28
c©Bull 2008

Job session scheme
1- User specifies resource requirements

and submits his job (qsub command)
2- Server places the job into a queue
(the queue choice depends on the resource requests)

and initiates the scheduling cycle

3- Scheduler asks moms to determine
available resources
4- Scheduler eventually allocates resources
for the job
(when required resources become available)

5- Server dispatches tasks to moms
deamons
6- When task is finished, Mom sends result
to the Server

Commands

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Scheduler

Server Host

Server

PBS

Jobs

15/28
c©Bull 2008

Job session scheme
1- User specifies resource requirements

and submits his job (qsub command)
2- Server places the job into a queue
(the queue choice depends on the resource requests)

and initiates the scheduling cycle
3- Scheduler asks moms to determine
available resources

4- Scheduler eventually allocates resources
for the job
(when required resources become available)

5- Server dispatches tasks to moms
deamons
6- When task is finished, Mom sends result
to the Server

Commands

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Scheduler

Server Host

Server

PBS

Jobs

15/28
c©Bull 2008

Job session scheme
1- User specifies resource requirements

and submits his job (qsub command)
2- Server places the job into a queue
(the queue choice depends on the resource requests)

and initiates the scheduling cycle
3- Scheduler asks moms to determine
available resources
4- Scheduler eventually allocates resources
for the job
(when required resources become available)

5- Server dispatches tasks to moms
deamons
6- When task is finished, Mom sends result
to the Server

Commands

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Scheduler

Server Host

Server

PBS

Jobs

15/28
c©Bull 2008

Job session scheme
1- User specifies resource requirements

and submits his job (qsub command)
2- Server places the job into a queue
(the queue choice depends on the resource requests)

and initiates the scheduling cycle
3- Scheduler asks moms to determine
available resources
4- Scheduler eventually allocates resources
for the job
(when required resources become available)

5- Server dispatches tasks to moms
deamons

6- When task is finished, Mom sends result
to the Server

Commands

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Scheduler

Server Host

Server

PBS

Jobs

15/28
c©Bull 2008

Job session scheme
1- User specifies resource requirements

and submits his job (qsub command)
2- Server places the job into a queue
(the queue choice depends on the resource requests)

and initiates the scheduling cycle
3- Scheduler asks moms to determine
available resources
4- Scheduler eventually allocates resources
for the job
(when required resources become available)

5- Server dispatches tasks to moms
deamons
6- When task is finished, Mom sends result
to the Server

Commands

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Mom

Execution Host

Scheduler

Server Host

Server

PBS

Jobs

15/28
c©Bull 2008

Essential commands

I Submitting a job:
• > qsub myjob
• options:

I Monitoring
• > qstat -an
• > pbsnodes -a

I killing a job
• > qdel myjobID

16/28
c©Bull 2008

Torque: on the user side

Submission command: qsub

Interactive submission
I Example 1:

→ qsub -I

→ cat $PBS NODEFILE (this variable

gives the allocated nodes description file)

→ exit

I Example 2:

→ qsub -I -lnodes=2:bigmem

I Example 3:

→ qsub -I

-lnodes=1:bigmem+2:lowmem

Batch submission
I User script:

→ #PBS -lnodes=2

→ uname -a

→ cat $PBS NODEFILE

I MPI script:

→ #PBS -lnodes=2

→ cd ${PBS O WORKDIR}
→ mpirun -np N -machinefile

${PBS NODEFILE} test prog

17/28
c©Bull 2008

Torque: on the user side

Batch script example (sequential prog)

#!/bin/sh

#PBS -N test

#PBS -r n

#PBS -e test.err

#PBS -o test.log

#PBS -m ae

#PBS -q long

#PBS -l nodes=1:bigmem

echo Working directory is $PBS O WORKDIR

cd $PBS O WORKDIR

echo Running on host ‘hostname‘

echo Time is ‘date‘

echo Directory is ‘pwd‘

a.out

→ Job name

→ Declare job non-rerunable

→ Output files

→ Mail to user

→ Queue name (small, medium,...)

→ Number of nodes (and property)

→ This job’s working directory

→ Run your executable

18/28
c©Bull 2008

Torque: on the user side
Batch script example (parallel prog)

#!/bin/sh

#PBS -N test

#PBS -r n

#PBS -e test.err

#PBS -o test.log

#PBS -m ae

#PBS -q long

#PBS -l nodes=8:bigmem

uniq $PBS NODEFILE > mpd.hosts

echo This jobs runs on the following processors:

echo ‘cat $PBS NODEFILE‘

NPROCS=‘wc -l < $PBS NODEFILE‘

np=$(wc -l < mpd.hosts)

echo This job has allocated $NPROCS nodes

mpdboot -n $np -f mpd.hosts -r ssh -v

mpiexec -n $NPROCS a.out

mpiallexit

→ Job name

→ Declare job non-rerunable

→ Output files

→ Mail to user

→ Queue name (small, medium,...)

→ Number of nodes (and property)

→ Define file with nodes names

→ Define number of processors

→ Start mpd

→ Run the parallel MPI executable

→ Stop mpd

19/28
c©Bull 2008

� Introduction

� Tools

� How to run with Torque

� How to measure
First Level
Advanced Level

20/28
c©Bull 2008

First Level

Measurement the time: time

Only User, Real and System time

Measurement IO iostat

System input/output device loading by observing the time the
devices are active

Measurement Virtual Memory Statistics vmstat

vmstat reports information about processes, memory, paging, block
IO, traps, and cpu activity.

Measurement network netstat

netstat displays the contents of various network-related data
structures.

21/28
c©Bull 2008

Advanced Level: perfmon

The pfmon tool is a simple monitoring tool which can be used to
collect simple counts or samples from unmodified binaries or an
entire system. It is using the capabilities of the IA-64 PMU

I The pfmon command can be executed on a program, taking
into account, or not, its descendants. It returns from 1 to 4
known events or counters on Madison and 12 on Montecito.

I Advantages
• Powerful with all Itanium hardware counters
• Light nothing to do inside your code

22/28
c©Bull 2008

Metrics
I MFLOPS

FP OPS RETIRED × frequence
CPU CYCLES

I IPC (maximu 6)

IA64 INST RETIRED
CPU CYCLES

I FPI (maximu 1)

FP OPS RETIRED
IA64 INST RETIRED

23/28
c©Bull 2008

How to use pfmon

I Counters
• -ecomp1,comp2,comp3,comp4,...

I Two modes (kernel and user)
• -u user
• -k kernel

I follow fork, vfork, exec, pthreads
• --follow-all

I Save results
• --outfile=xxx
• --append

24/28
c©Bull 2008

Example

With Benchmark CG from NAS
I On 4 first CPUs (KMP AFFINITY=fine,compact)

pfmon -e FP_OPS_RETIRED,IA64_INST_RETIRED,CPU_CYCLES ./cg.B

I Results pfmon
6992942034 FP_OPS_RETIRED

89796803322 IA64_INST_RETIRED

72943569333 CPU_CYCLES

I Metrics
FPI IPC GigaFlops

Maximum 1 6 6.40

DGEMM 0.79 4.83 6.14

cg 0.08 1.23 0.15

25/28
c©Bull 2008

Example

With Benchmark CG from NAS
I On 4 CPUs (2/NDC) (KMP AFFINITY=fine,scatter)

pfmon -eFP_OPS_RETIRED,IA64_INST_RETIRED,CPU_CYCLES ./cg.B

I Results pfmon
6992941814 FP_OPS_RETIRED

59184694803 IA64_INST_RETIRED

43702826105 CPU_CYCLES

I Metrics
FPI IPC GigaFlops

Maximum 1 6 6.40

DGEMM 0.79 4.83 6.14

cg 0.12 1.35 0.25

26/28
c©Bull 2008

(To be continued)

27/28
c©Bull 2008

28/28
c©Bull 2008

I (c) Copyright Bull. All rights reserved

4 Users Restricted Rights - Use, duplication or disclosure
restricted.

4 Any copy of these documents should keep all copyright,
logos and other proprietary notices contained herein.

4 This publication may include technical inaccuracies or
typographical errors.

4 This publication is provided ”AS IS” without any warranty
either expressed or implied including but not limited to
the implied warranties of merchantabilities or fitness of
the described product.

4 Course Material Licensing Terms : No sublicensing rights.
4 For other licensing needs, please contact Bull

28/28
c©Bull 2008

	Agenda
	Introduction
	Memory placement

	Tools
	CPU placement
	Memory placement

	How to run with Torque
	How to measure
	First Level
	Advanced Level

	
	COPYRIGHT NOTICE

