
Performance HPC Linux
Bull Echirolles

Software Development
Environment

(Part One)

C.Berthelot
Christophe.Berthelot@bull.net

Copyright (c©) Bull S.A.S. 2008

1/57
c©Bull 2008

file:Christophe.Berthelot@bull.net

Intel: IDB
GNU: gdb
Etnus: Totalview
Allinea: DDT

Debuggers

Process : pplace

Place

Memory : numactl

time
top/iostat
perfware
perfmond/pfbd
pfmon/pfb

Measurements

Eclipse for C++Traditional editors

Compilers

OpenSource
FFTW
SuperLU
BlockSolve95

Libraries

mprun

Launchers

Communications

Hots Spots Gprof

srun

PAPI

Intel C,C++,Fortran

Intel MKL, IPP

GNU C/C++

VTune

mpiprofilecomm

Compiler option for OpenMP
Intel Trace Tools

BULL (MPI2)

COMPILE

MODIFY

PROFILE

MEASURE
RUN

HPCToolkit

2/57
c©Bull 2008

� Introduction

� About Intel Compilers

� Help to port

� Optimization

� MPIBull2

3/57
c©Bull 2008

� Introduction
IA32 vs IA64
Glossary
Loop optimization

� About Intel Compilers

� Help to port

� Optimization

� MPIBull2

4/57
c©Bull 2008

IA32 vs IA64

5/57
c©Bull 2008

� Introduction
IA32 vs IA64
Glossary
Loop optimization

� About Intel Compilers

� Help to port

� Optimization

� MPIBull2

6/57
c©Bull 2008

Dead Code Elimination
Code that is unreachable or that does not affect the program (e.g.
dead stores) can be eliminated.

I Example: In the example below, the value assigned to i is
never used, and the dead store can be eliminated. The first
assignment to global is dead, and the third assignment to
global is unreachable; both can be eliminated.
int global;

void f ()

{ int i;

i = 1; /* dead store */

global = 1; /* dead store */

global = 2;

return;

global = 3; /* unreachable */}

Below is the code fragment after dead code elimination.
int global;

void f ()

{ global = 2;

return;}

7/57
c©Bull 2008

Loop Unrolling

Loop overhead can be reduced by reducing the number of
iterations and replicating the body of the loop.

I Example: In the code fragment below, the body of the loop
can be replicated once and the number of iterations can be
reduced from 100 to 50.
for (i = 0; i < 100; i++)
g ();

Below is the code fragment after loop unrolling.

for (i = 0; i < 100; i += 2)
{ g (); g ();}

8/57
c©Bull 2008

Function Inlining

The overhead associated with calling and returning from a function
can be eliminated by expanding the body of the function inline, and
additional opportunities for optimization may be exposed as well.

I Example: In the code fragment below, the function add() can
be expanded inline at the call site in the function sub().

int add (int x, int y)
{return x + y;}
int sub (int x, int y)
{ return add (x, -y);}

Expanding add() at the call site in sub() yields:

int sub (int x, int y)
{ return x + -y;}

9/57
c©Bull 2008

Loop Fusion
Some adjacent loops can be fused into one loop to reduce loop
overhead and improve run-time performance.

I Example: The two adjacent loops on the code fragment below
can be fused into on loop.

for (i = 0; i < 300; i++)
a[i] = a[i] + 3;

for (i = 0; i < 300; i++)
b[i] = b[i] + 4;

Below is the code fragment after loop fusion.

for (i = 0; i < 300; i++)
{
a[i] = a[i] + 3;
b[i] = b[i] + 4;

}

10/57
c©Bull 2008

Aliasing

Two variables are aliased if they can refer to the same storage
location.

11/57
c©Bull 2008

Pipelining

Load

Calcul

Write

T
IM

E

Without Software Pipelining

T
IM

E

With Software Pipelining

12/57
c©Bull 2008

� Introduction
IA32 vs IA64
Glossary
Loop optimization

� About Intel Compilers

� Help to port

� Optimization

� MPIBull2

13/57
c©Bull 2008

Switching

Switching, if possible, within loops is useful to align the access to
arrays with their position in memory.

do i = 1, N
do j = 1, N

A(i,j) = 1/B(i,j)
end do

end do

real 73.13s

do j = 1, N
do i = 1, N

A(i,j) = 1/B(i,j)
end do

end do

real 39.09s

14/57
c©Bull 2008

Loop tiling or loop blocking
The partitioning of loops allows their granularity to be adapted to
the memory hierarchy. The computation is done by blocs which are
not necessarily aligned. This works well when all the loops may be
switched.

do jj = 1, N, sj
do ii = 1, N, si

do j = jj, jj+sj-1
do i = ii,ii+si-1

A(i,j) = 1/B(i,j)
end do

end do
end do

end do

real 41.68

15/57
c©Bull 2008

Loop Peeling

Loop splitting (or loop peeling) is a compiler optimization
technique. It attempts to simplify a loop or eliminate dependencies
by breaking it into multiple loops which have the same bodies but
iterate over different contiguous portions of the index range.

do i = 1, N
A(i) = A(1) + B(i);

end do

A(1) = A(1) + B(1);
do i = 2, N

A(i) = A(1) + B(i);
end do

16/57
c©Bull 2008

� Introduction

� About Intel Compilers
Default configuration
KMP variables

� Help to port

� Optimization

� MPIBull2

17/57
c©Bull 2008

Intel Compilers

Compilers play an essential role
in exploiting the full potential of
Itaniumr2 processors. The main
features of this compiler are:

I Optimization of throughput of floating point instructions

I Optimization of inter-process calls

I Data preloading

I Conditional instruction prediction

I Speculative loading

I Optimization of the software pipeline

I Support OpenMP

I Compatible with GNU products.

18/57
c©Bull 2008

Default configuration

Option by default

The configuration file to use instead of the default configuration
file:

I Variable IFORTCFG for fortran

I Variable ICCCFG for C

I Variable ICPCCFG for C++

Version

To use C/C++ and Fortran you must have the same Build :

Intel(R) Fortran IA-64 Compiler for applications running on IA-64, Version 10.0

Build 20080312 Package ID: l_fc_p_10.1.015

Copyright (C) 1985-2007 Intel Corporation. All rights reserved.

Intel(R) C IA-64 Compiler for applications running on IA-64, Version 10.0

Build 20080312 Package ID: l_cc_p_10.1.015

Copyright (C) 1985-2007 Intel Corporation. All rights reserved.

19/57
c©Bull 2008

KMP variables: OpenMP impact

I KMP LIBRARY=a,
• a can be serial,turnaround, throughput indicating the execution

mode

I KMP STACKSIZE Sets the number of bytes to allocate for
each parallel thread to use as its private stack (the default
onItanium(R)-based systems is 4m).

I KMP AFFINITY (with 10.0 compiler)
• granularity=fine,compact: Specifying compact binds the

OpenMP thread <n>+1 on a free thread context as close as
possible to the thread context where the <n> OpenMP thread
was bound.

• granularity=fine,scatter: Specifying scatter distributes the
threads as evenly as possible across the entire system.

20/57
c©Bull 2008

� Introduction

� About Intel Compilers

� Help to port
Option to port
Option to report
Memory problems

� Optimization

� MPIBull2

21/57
c©Bull 2008

Options to port 1/2

Fortran
I -warn all Enables all warning messages (compile time).

I -warn errors Change all warning-level messages into
error-level messages

I -check all Enables all check options (Runtime)

I -fpe 0 This setting provides full IEEE support.

C/C++

I -O0 Disables all optimizations

I -w2 Enables all warning messages.

I -Werror Change all warning-level messages into error-level
messages

I -Wp64 Enables 64-bit porting specific warnings

22/57
c©Bull 2008

Options to port 2/2

Both
I -fmath-errno Tells the compiler to assume that the program

tests errno after calls to math library functions

I -mp Maintain floating-point precision

I -dryrun Tells the driver that tool commands should be shown
but not executed.

23/57
c©Bull 2008

Example with Wp64

int main() {

long anumber = 5;

int number;

number = anumber;

return 1;}

Use icc -Wp64
test2.cpp(8): warning #810: conversion from "long" to "int" may

lose significant bits

number = anumber;

^

24/57
c©Bull 2008

Options to report

I -opt_report : Tells the compiler to generate an optimization
report to stderr.

I -opt_report_filefile.txt : Specifies the name for an
optimization report

I -opt_report_level{min|med|max} : Specifies the detail
level of the optimization report.

I -opt_report_phasephase : Specifies the optimizer phase to
use when reports are generated.

• ecg_swp Code Generator/software pipelining
• hlo High Level Optimizer
• ipo Interprocedural Optimizer

I -opt_report_help : Displays the optimizer phases available
for report generation.

25/57
c©Bull 2008

Example on loop skewing

Before loop skewing
do i=0,N Swp report for loop at line 16 in MAIN_ in file Skewing.f90

do j=0,i+2

A(i,j)=A(i-1, j) + A(i, j-1) According to the estimate of the Modulo Scheduler, the acyclic

end do global scheduler can achieve a better schedule than software

end do pipelining. Perhaps this loop has too many IF statements, or

it has a loop-carried memory dependence=>loop not pipelined

Following are the loop-carried memory dependence edges:

Store at line 17 --> Load at line 17

After loop skewing
do t=0,2*N+2 Swp report for loop at line 16 in MAIN_ in file Skewing2.f90

do p=MAX(0,t-N) , MIN(t,t/2+1)

A(t-p, p)=A(t-p-1, p)+A(t-p, p-1) Number of stages in the software pipeline = 4

end do

end do

26/57
c©Bull 2008

Fortran check option

Check option
I Compile with -traceback -g

I -check bounds : Performs run-time checks on whether array
subscript and substring references are within declared bounds.

27/57
c©Bull 2008

Example
1 program test

2 implicit none

3 real(kind=8) ,allocatable, dimension(:) :: tab1

4 allocate(tab1(10000))

5 tab1(10001)=1.0

6 print *,"Tab(10000)=", tab1(10000)

7 end program test

With -check all

forrtl: severe (408): fort: (2):

Subscript #1 of the array TAB1 has value 10001 which is greater than the upper bound of 10000

Image PC Routine Line Source

test_elec 40000000000A9690 Unknown Unknown Unknown

test_elec 40000000000A5B20 Unknown Unknown Unknown

test_elec 40000000000463A0 Unknown Unknown Unknown

test_elec 40000000000049C0 Unknown Unknown Unknown

test_elec 4000000000004C90 Unknown Unknown Unknown

test_elec 4000000000003050 MAIN__ 5 test2.f90

test_elec 4000000000002A00 Unknown Unknown Unknown

libc.so.6.1 2000000000469430 Unknown Unknown Unknown

test_elec 4000000000002780 Unknown Unknown Unknown

28/57
c©Bull 2008

Use ElectricFence

ElectricFence
I malloc() debugger for Linux and Unix. This will stop your

program on the exact instruction that overruns or under-runs
a malloc() buffer.

I Compile with -g -traceback and link with -lefence

I Or use LD PRELOAD=/usr/lib/libefence.so (inside script)

29/57
c©Bull 2008

Example

1 program test

2 implicit none

3 real(kind=8) ,allocatable, dimension(:) :: tab1

4 allocate(tab1(10000))

5 tab1(10001)=1.0

6 print *,"Tab(10000)=", tab1(10000)

7 end program test

ElectricFence
I Compile with -g and -traceback -lefence

I Results
Electric Fence 2.2.0 Copyright (C) 1987-1999 Bruce Perens <bruce@perens.com>

forrtl: severe (174): SIGSEGV, segmentation fault occurred

Image PC Routine Line Source

test_elec 4000000000002D81 MAIN__ 5 test2.f90

30/57
c©Bull 2008

Use Dmalloc

Dmalloc
I Link with -ldmalloc
I Use DMALLOC OPTIONS

• turn on transaction and stats logging and set ’logfile’ as the
log-file DMALLOC OPTIONS=log-trans,log-stats,log=logfile

• enable ’logfile’ as the log-file, watch for address ’0x1234’, and
start checking when we see file.c line 123:
DMALLOC OPTIONS
log=logfile,addr=0x1234,start=file.c:123

31/57
c©Bull 2008

Example 2/3

1 program test

2 implicit none

3 real(kind=8) ,allocatable, dimension(:) :: tab1

4 allocate(tab1(10000))

5 tab1(10001)=1.0

6 print *,"Tab(10000)=", tab1(10000)

7 end program test

Dmalloc
I Compile with -g and -traceback -ldmalloc

32/57
c©Bull 2008

� Introduction

� About Intel Compilers

� Help to port

� Optimization
Simples options
Inlining

Unrolling
Floating Point
Pointer
Profile Guided
Interprocedural
Control memory bandwidth
OpenMP
linker

� MPIBull2

33/57
c©Bull 2008

Three levels for optimization

I -O1 Optimize for code size

I -O2 Default option enables optimizations for speed, including
global code scheduling, software pipelining, predication, and
speculation

I -O3 Advanced optimization. Enables O2 optimizations plus
more aggressive optimizations

34/57
c©Bull 2008

Control inlining

Inlining
I -ip : Enables interprocedural optimizations for single file

compilation.

I -Qoption,f/c,-ip_ninl_min_stats=n : Sets the valid
maximum number of intermediate language statements for a
function that is expanded in line

I -Qoption,f/c,-ip_ninl_max_total_stats=n : Sets the
maximum increase in size of a function, measured in
intermediate language statements, due to inlining

35/57
c©Bull 2008

Control Unrolling

Unrolling
I -unroll0 : disable loop unrolling,

I -unroll : Enables loop unrolling,

I -unrollM : Sets the maximum number of times to unroll
loops

36/57
c©Bull 2008

Control Floating Point

I -IPF-fp-relaxed : Enables use of faster but slightly less
accurate code sequences for math functions, such as divide
and sqrt.

I -IPF-fp-speculation<mode> : Tells the compiler to speculate
on floating-point (FP) operations in one of the following

• fast - Speculate on floating-point operations. This is the
default.

• safe - Speculate on floating-point operations only when safe.
• strict - This is the same as specifying off.
• off - Disables speculation of floating-point operations.

37/57
c©Bull 2008

Pointers

I -fno-alias: all pointers are assumed not to alias

I -fno-fnalias: assume no aliasing within function (pointer
arguments are unique)

I -[no]restrict Enable [disable] the ”restrict” keyword for
disambiguating pointers

I -ipo: global analysis can disambiguate pointer

I -ivdep-parallel Tells the compiler that there is no loop-carried
memory dependency in any loop following an IVDEP directive.

38/57
c©Bull 2008

Profile Guided

Impacts
I Dynamic branch prediction, Loop, Cache utilization

I Speculation, Function splitting

Benefict with
I Consistent hot paths

I Many if statements or switches

I Nested if statements or switches

39/57
c©Bull 2008

Profile Guided: how to use

Compilation
I Compile with -prof gen → instrumented binary

I Run it → file .dpi

I Compile with -prof use + dpi file → optimized binary

Example with povray and woodbox.pov example
I Without option : 23.0s

I With PGO : 20.0s (13%)

40/57
c©Bull 2008

Interprocedural

Impacts
I Inlining

I Information propagation (Alignment)

I Whole program optimization

41/57
c©Bull 2008

Interprocedural Optimizations: how to use

Compilation
I Compile with -ipo → obj

I Link with -ipo → optimized binary

I Use xiar to create a library

I If you use ld change to xild

Example with povray and woodbox.pov example
I Without option : 23.0s

I With PGO : 19s (17%)

42/57
c©Bull 2008

Memory bandwidth

I -opt-mem-bandwidth<n> to control memory bandwidth
• 0 Enables a set of performance tuning and heuristics in

compiler optimizations that is optimal for serial code. This is
the default for serial code.

• 1 Enables a set of performance tuning and heuristics in
compiler optimizations for multithreaded code generated by
the compiler. This is the default if compiler option -parallel or
-openmp is specified

• 2 Enables a set of performance tuning and heuristics in
compiler optimizations for parallel code such as Windows
Threads, pthreads, and MPI code, besides multithreaded code
generated by the compiler.

43/57
c©Bull 2008

OpenMP

Compile
I To use openmp -openmp

I Enables analysis of OpenMP applications : -openmp_profile

Example CG from NAS

Region counts:

serial regions : 19

barrier regions : 8

parallel regions : 15

end

Program execution time (in seconds):

cpu : 0.11 sec

elapsed : 71.16 sec

serial : 0.16 sec

parallel : 71.00 sec

cpu percent : 0.16 %

end

44/57
c©Bull 2008

Directives
I Before the loop : #pragma for C/C++. [Cc*!]DIR$ for

fortran
I Directives before a loop

• [NO]SWP directive enables software pipelining
• LOOP COUNT(N) Specifies the loop count this assists the

optimizer.
• [NO]UNROLL, UNROLL(N) Tells the compiler’s optimizer how

many times to unroll a DO loop or disables the unrolling
• [NO]PREFETCH a:b:c Enables or disables a data prefetch

from memory.
• IVDEP Assists the compiler’s dependence analysis
• MEMORYTOUCH directive allows the programmer to inform the

processor that it will be reading or writing a memory range in
the future

• OPTIMIZE General Compiler Directive: Enables or disables
optimizations.

45/57
c©Bull 2008

Example: with SWP

Without directive
do i = 1, m

if (a(i) .eq. 0) then Resource II = 1

b(i) = a(i) + 1 Recurrence II = 1

else Minimum II = 1

b(i) = a(i)/c(i) Last attempted II = 1

endif Estimated GCS II = 1

enddo Modulo scheduling was successful,but there was no overlap

across iterations => loop not pipelined

With SWP directive
!DIR$ SWP

do i = 1, m Resource II = 1

if (a(i) .eq. 0) then Recurrence II = 1

b(i) = a(i) + 1 Minimum II = 1

else Scheduled II = 1

b(i) = a(i)/c(i) Estimated GCS II = 1

endif Percent of Resource II needed by arithmetic ops = 100%

enddo Percent of Resource II needed bymemory ops = 100%

Percent of Resource II needed by floating point ops = 0%

Number of stages in the software pipeline = 1

46/57
c©Bull 2008

Loop interchange

I Use -O3 -opt_report -opt_report_level max -
opt_report_phase hlo

I Problem
• Interchange not done due to function call inside
• Interchange not done due to imperfect loopnest
• Interchange not done due to data dependencies: dependencies

preventing interchange are also reported
• interchange not done when the original order was found to be

proper, but there were some close calls!

47/57
c©Bull 2008

Example: Function Call Inside loop

void bar (int *A, int **B);

int foo (int *A, int **B, int N)

{

int i, j;

for (j=0; j<N; j++) {

for (i=0; i<N; i++) {

B[i][j] += A[j];

bar(A,B);

}

}

return 1;

}

HLO Report:

<test.c;8:8;hlo_linear_trans;foo;0>

Loop Interchange Not Done due to: User Function Inside Loop Nest

Advice: Loop Interchange, if possible, might help Loopnest at lines: 8

10

: Suggested Permutation: (1 2) --> (2 1)

48/57
c©Bull 2008

Linker option

Multiple
I To compile with multiple def: -Wl,-z,muldefs

I To have informations: -Wl,-z,muldefs,-M

49/57
c©Bull 2008

Example 1/2

File lib1.f90->inside libtest1.a

subroutine test ()

implicit none

print *, "Inside lib1"

end subroutine test

File test2.f90->inside libtest2.a

subroutine test ()

implicit none

print *, "Inside lib2"

end subroutine test

File pprincipal.f90

program pprincipal

implicit none

call test()

end program pprincipal

50/57
c©Bull 2008

Example 2/2

Compile
I Use :

ifort -Wl,-z,muldefs -Wl,-M -o pprincipal pprincipal.o -L. -ltest1 -ltest2

I We have
fonction test

./libtest1.a(lib1.o) pprincipal.o (test_)

51/57
c©Bull 2008

� Introduction

� About Intel Compilers

� Help to port

� Optimization

� MPIBull2
Environment Variables

52/57
c©Bull 2008

Mpibull2: Astlik

The Armenian goddess of love and fertility. With the sun god
Vahagn and the moon goddess Anahit she forms an astral trinity.
She is similar to the Greek Aphrodite and the Mesopotamian
Ishtar. Her name means ”little star”.

53/57
c©Bull 2008

MPIBull2
MPIBull2 is based on Argonne National Laboratory’s MPICH-2
implementation of the MPI-2 specification. It Supports MPI 1.2
and MPI 2 Standard functionality:
I Supports both MPI 1.2 and MPI 2 standard functionalities

including
• Dynamic processes (osock only)
• One-sided communications
• Extended collectives
• Thread safety (osock, oshm and elanbull2)
• Latest ROMIO including the latest patches developed by Bull

I Multi-device functionality:
• Sockets-based messaging (for Ethernet, SDP, SCI and EIP)
• Hybrid shared memory-based messaging for shared memory
• Quadrics network drivers (qxelan, elanbull2)
• InfiniBand architecture multirails driver Gen2

54/57
c©Bull 2008

Environment Variables

To compile
I MPIBULL2 PRELIBS

I MPIBULL2 POSTLIBS

To run

All variables : mpibull2-params -lall

I MPI QUIET

55/57
c©Bull 2008

(To be continued)

56/57
c©Bull 2008

57/57
c©Bull 2008

I (c) Copyright Bull. All rights reserved

4 Users Restricted Rights - Use, duplication or disclosure
restricted.

4 Any copy of these documents should keep all copyright,
logos and other proprietary notices contained herein.

4 This publication may include technical inaccuracies or
typographical errors.

4 This publication is provided ”AS IS” without any warranty
either expressed or implied including but not limited to
the implied warranties of merchantabilities or fitness of
the described product.

4 Course Material Licensing Terms : No sublicensing rights.
4 For other licensing needs, please contact Bull

57/57
c©Bull 2008

	Agenda
	Introduction
	IA32 vs IA64
	Glossary
	Loop optimization

	About Intel Compilers
	Default configuration
	KMP variables

	Help to port
	Option to port
	Option to report
	Memory problems

	Optimization
	Simples options
	Inlining
	Unrolling
	Floating Point
	Pointer
	Profile Guided
	Interprocedural
	Control memory bandwidth
	OpenMP
	linker

	MPIBull2
	Environment Variables

	
	COPYRIGHT NOTICE

