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bstract

The anisotropy in the thermal diffusivity of uniaxial ferroelectric Sn2P2S6 has been measured as a function of temperature using ac photopy-
oelectric calorimetry. The second-order ferroelectric transition has been studied in order to ascertain the mechanisms which could explain the
nomaly in specific heat through the study of the inverse of the thermal diffusivity. Landau model, as well as critical models considering the

ifferent roles of fluctuations of the order parameter and crystalline defects, are considered. Though in the ferroelectric phase the Landau model
an mainly explain the anomaly in the physical properties, the fittings for the paraelectric phase show that it is necessary to take into account the
nfluence of both fluctuations and defects to account for the results.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Ferroelectric phase transitions in proper uniaxial ferro-
lectrics Sn2P2(SexS1−x)6 have received considerable attention
egarding their structural, dynamical and thermodynamic
roperties. The concentration versus temperature phase dia-
ram [1] exhibits the Lifshitz point for Sn2P2(SexS1−x)6
= 0.28 and a virtual tricritical point at x = 0.60; these char-
cteristics are generally thought to be the reason why the
ritical behaviour does not agree with the mean-field model
2].

Actually, the presence of a Lifsthiz point enhances the fluc-
uations in the order parameter which will substantially deviate
he critical exponents from the mean-field values, and this would
ead to the change of the critical exponent of specific heat

p from α = 0 to α = 1/4 in systems with short range interac-

ions. On the other hand, fluctuations are strongly suppressed
n ferroelectrics with strong dipolar interactions (as it is the
ase in this family of materials), and these are expressed as
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ritical exponent α = 1/6 [3]. Another situation in which fluc-
uations are reduced takes place in the presence of a tricritical
oint; following this line, theoretical results from renormaliza-
ion group analysis for uniaxial ferroelectrics in the vicinity of
he tricritical Lifshitz point show that the critical exponent for
pecific heat must be α = 0.5 with small logarithmic corrections
3–5].

It is important to realize that fluctuations of the order param-
ter are not the only justification to deviations from mean-field
alues in order to describe the critical behaviour of this second-
rder transition; these deviations can also be produced by the
resence of point defects in the matrix, as has been shown in the
ase of structural and ferroelectric phase transitions. It has been
heoretically demonstrated that point defects can contribute to
he anomalies of various physical properties near ferroelectric
hase transitions because they can induce long-range perturba-
ions of the order parameter [6–8].

Critical behaviour of the ferroelectric to paraelectric tran-
ition has been previously studied for this family by means of

ifferent physical quantities: specific heat, optical birefringence,
ielectric constant, ultrasonic velocity measurements [2,9–11].
he ferroelectric phase is generally well described by Lan-
au theory but, on the other hand, it has indeed been found

mailto:alberto.oleaga@ehu.es
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Z-cut. The results for thermal diffusivity as a function of temper-
ature for the three orientations are shown in Fig. 1; in all cases we
obtain a dip at 336.0 K signalling the presence of the ferroelec-
tric to paraelectric transition. The curves for X-cut samples and
4 A. Oleaga et al. / Thermoc

hat the critical exponents which describe the critical behaviour
f the ferroelectric to paraelectric transition do not fit in the
ramework of the mean-field approximation in the case of the
araelectric phase; besides, there is a certain level of agreement
etween the renormalization group analysis and some of the
xperimental results which has led to interpret that the vicin-
ty of the Lifshitz point at x = 0.28 to the tricritical Lifshitz
oint on the phase diagram is the key point for that behaviour
2,11]. But still the description of the critical behaviour of
hese second-order phase transitions in this family is far from
ettled.

In this work, thermal diffusivity is measured with a high-
recision technique in order to establish the validity of the
ifferent models regarding critical behaviour of Sn2P2S6 sin-
le crystals in the direct ferroelectric to paraelectric transition.
his technique has been successfully used for the study of crit-

cal behaviour in different kind of materials with second-order
hase transitions [12–14].

Single crystals cut in different orientations have been used
or this study in order to check thermal anisotropy and all the
amples have been used for the critical behaviour analysis. It
s worth remembering that Sn2P2S6 has a ferroelectric mono-
linic structure with point group m below 336 K, while in the
araelectric phase the point group is monoclinic 2/m [15]. In the
sual standard notation, the translation vectors of the monoclinic
tructure are a = 9.375 Å, b = 7.488 Å and c = 6.513 Å and the β

ngle between a and c is β = 91.15◦. In the ferroelectric phase,
he polarization vector lies in the a–c plane, deviating from the
-axis by 13◦.

. Samples and experimental techniques

Single crystals of Sn2P2S6 were obtained by the Bridge-
ann method and thin slabs were cut in three orientations, with

heir faces perpendicular to (1 0 0), (0 1 0) and (0 0 1) directions.
hese samples will be called X-cut, Y-cut and Z-cut, respectively,
ll along the paper.

Thermal diffusivity (D) measurements have been performed
y a high-resolution ac photopyroelectric calorimeter in the stan-
ard back detection configuration [16,17]. A modulated He–Ne
aser beam of 5 mW illuminates the upper surface of the sam-
le under study. Its rear surface is in thermal contact with a
50 �m thick LiTaO3 pyroelectric detector with Ni–Cr elec-
rodes on both faces, by using an extremely thin layer of a
igh heat-conductive silicone grease (Dow Corning, 340 Heat
ink Compound). The photopyroelectric signal is processed by a

ock-in amplifier in the current mode. Both sample and detector
re placed inside a nitrogen bath cryostat that allows measure-
ents in the temperature range from 77 to 500 K, at rates that

ary from 100 mK/min for measurements on a wide tempera-
ure range to 10 mK/min for high-resolution runs close to the
hase transitions. If the sample is opaque and thermally thick
i.e. its thickness � is higher than the thermal diffusion length

= √

D/πf , f being the modulation frequency) the natural log-
rithm and the phase of the normalized photopyroelectric current
t a fixed temperature have a linear dependence on

√
f , with the

ame slope m, from which the thermal diffusivity of the sample
F
t

a Acta 459 (2007) 73–79

an be measured [16,17]:

= �2π

m2 (1)

Once the thermal diffusivity has been measured at a cer-
ain reference temperature (Dref), the temperature is changed
hile recording the phase of the PPE signal. Defining the phase
ifference as �(T), the temperature dependence of the thermal
iffusivity is given by [18,19]

(T ) =
[

1√
Dref

− �(T )

�
√

πf

]−2

(2)

This technique is specially suited for the measurement of the
hrough-thickness thermal diffusivity around phase transitions,
ince small temperature gradients in the sample produce a good
ignal-to-noise ratio, letting thermal diffusivity be measured
ith high accuracy.
Thermal diffusivity has been measured for all the samples as

function of temperature after performing an annealing at high
emperature (450 K) in order to stabilize the matrix; the cooling
ate was reduced as much as possible until a fixed temperature for
he transition was obtained. The thicknesses of the samples were
n the range 375–450 �m. The modulation frequency chosed
or the measurements was 2 Hz, after having checked that the
onditions for using Eqs. (1) and (2) were fulfilled in the whole
emperature range at that frequency. In particular, the linearity
f the dependence of the natural logarithmic of the amplitude
nd phase on

√
f was well maintained in a region centered

round 2 Hz. Checks at frequencies around that value gave also
onsistent results.

. Experimental results and fitting procedures

Room temperature (T = 300 K) thermal diffusivity mea-
urements for the three samples give the following results:
.39 mm2/s for X-cut, 0.25 mm2/s for Y-cut and 0.33 mm2/s for
ig. 1. Thermal diffusivity as a function of temperature for the samples cut in
he three orientations.



himic

Z
d
Y
s
T
t
r
i
t
T
r

h
r
d

D

(
m
o
c
t
a
c
o
p
l
s
o

fi
i
u
d

F

F
i

w
t
r
l
i
i

w
t
p
f

C

w

β

A

a

�

T
t
q

�

p
s

A. Oleaga et al. / Thermoc

-cut samples are quite similar in shape to each other, though
iffusivity is a bit higher for the first orientation. For the case of
-cut samples, the diffusivity is lower, and with a general aspect
imilar to the other ones, but with a certain change in the slopes.
hese results point to a strong thermal anisotropy, especially in

he direction perpendicular to the XZ plane. There is some small
ounding in the experimental curves, as usual. This rounding is
nherent to the intrinsic characteristics of the samples and not to
he technique, as previous results in other materials show [20].
he use of single crystals is essential in order to reduce that

ounding as much as possible.
In order to study the critical behaviour of the transition, we

ave obtained very well defined curves over a wide temperature
ange. As the relation between specific heat Cp and thermal
iffusivity D is:

= K

ρCp

(3)

where K is the thermal conductivity and ρ is the density of the
aterial), the critical behaviour of specific heat and the inverse

f thermal diffusivity is the same provided that neither thermal
onductivity nor density have significant changes at the transi-
ion, which is the case in this material, as our own measurements
nd those from [21] show. Fig. 2 shows, as an example, thermal
onductivity in the vicinity of the transition temperature for one
f the samples, obtained from the combination of amplitude and
hase of the photopyroelectric signal [16,17]; there is no singu-
arity but a smooth decrease with temperature. The vertical axis
cale has been chosen to be in an equivalent proportion to that
f Fig. 1.

To start with, we approached the problem through the mean-
eld analysis in terms of Landau theory where we are taking

nto account the possible coupling of polarization to strain in a
niaxial ferroelectric and so Landau thermodynamical potential

ensity reads:

= F0 + α

2
P2 + β

2
P4 + γ

2
P6 + 1

2
cu2 + ruP2 (4)

ig. 2. Thermal conductivity for the Z-cut sample as a function of temperature
n the vicinity of the transition temperature.
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here F0 is the value in the paralectric phase, α = at (being
= T − T0 with T0 the transition temperature and a = ∂α/∂t is
elated to the Curie–Weiss constant), β and � are phenomeno-
ogical coefficients which do not depend on temperature, c = cijkl
s elastic module matrix, u = uij is deformation tensor and r = rijkl
s the electrostriction coefficient [22].

We follow the usual procedure of minimizing the free energy
ith respect to both polarization P and strain u, in order to obtain

he equilibrium value of the order parameter in the ferroelectric
hase, so that we can obtain for the isobaric specific heat in the
erroelectric phase:

p = −T

(
∂2F

∂T 2

)
P

= C0
p + a2

2β′
T√

1 − 4At
(5)

here C0
p is the specific heat in the paraelectric phase,

′ = β − 2r

c2 (6a)

= γa

β′2 (6b)

So the anomalous part of the specific heat can be expressed
s

Cp = a2

2β′
T√

1 − 4At
(7)

aking into account Eq. (3), the following relationship between
he anomalous part of the specific heat and the corresponding
uantity for the inverse of thermal diffusivity can be used,

Cp = K

ρ
�

(
1

D

)
(8)

rovided that neither thermal conductivity nor density have
ignificant changes at the transition, which is the case in this
aterial.
So the equation which will express the anomalous part of the

nverse of thermal diffusivity due to the transition reads,(
1

D

)
= p1

T√
1 − 4p2(T − T0)

(9)

here p1 and p2 are the adjustable parameters readily related to
he different parameters in Landau expansion using Eqs. (6)–(8).
n the fitting procedure, a linear background has been subtracted
o the experimental curves using experimental points at temper-
tures high above the transition (around 370 K), where there is
linear relationship between 1/D and T.

In Fig. 3 we can see the experimental results and the fittings
or the three samples using Eq. (9); Table 1 contains the relevant
arameters of the fitting, where the coefficient of determination
2 expresses the quality of the fitting.

In order to check the appropriateness of using the renormal-

zation group theory to explain the critical behaviour of the
erroelectric to paraelectric transition, we have performed fit-
ings of the paraelectric experimental curves in the near vicinity
f the transition temperature using the functions which corre-
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Fig. 3. Experimental (circles) and fitted (line) curves for the inverse of thermal
diffusivity as a function of temperature using the Landau mean-field model (Eq.
(9)) in the ferroelectric phase, for the three samples.
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Table 1
Results of the fitting of the inverse of thermal diffusivity using the Landau model (Eq

X-cut

p1 (mm2/s) 2566.73 ± 1.63
p2 (K−1) 0.0785 ± .0002
Range adjusted 3.2 × 10−2–2 × 10−3

R2 0.99905

The columns show the adjustable parameters p1 and p2, the range adjusted in reduc
coefficient of determination R2.
a Acta 459 (2007) 73–79

pond to the different models [2,4,9,10], the first one being,(
1

D

)
= A1

(
T − T0

T0

)−α

(10)

here α = 0.5 corresponds to the square root power law theory
btained when taking into account first-order fluctuations and
0 is the critical temperature.

The second fitting expression is,(
1

D

)
= A2

(
T − T0

T0

)−0.5∣∣∣∣ln
(

T − T0

T0

)∣∣∣∣
b

(11)

here a logarithmic correction has been introduced, which con-
iders the possibility of the attenuation of fluctuations in the
rder parameter; this effect would have reduced in Eq. (10) the
ritical value α if it were present.

Lastly we have also taken into account the possible super-
osition of fluctuation effects and the contribution of defects
6,7].(

1

D

)
= A3

(
T − T0

T0

)−0.5

+ B

(
T − T0

T0

)−1.5

(12)

In the three cases a linear background has been considered
nd subtracted as it was done for the case of the Landau-potential
tting. The conditions of the fittings and the parameters obtained
or all cases are shown in Table 2. The experimental and fitted
urves for the three samples and for Eqs. (10) and (12) are shown
n Figs. 4 and 5, respectively.

. Discussion

From the thermal diffusivity results obtained at room temper-
ture, thermal conductivity values can be obtained through Eq.
3) using the specific heat data shown in [9]. So, thermal conduc-
ivity at 300 K gives the following values: 0.68 W/mK for X-cut,
.44 W/mK for Y-cut, and 0.58 W/mK for Z-cut. These room
emperature values are quite low meaning that they are not good
hermal conductors and they are very similar to other found, for
xample, in TGS, which is another ferroelectric material with
onoclinic symmetry (see Fig. 979 in [23]). There is a ratio of

.5 between the higher and the lower values in Sn2P2S6 while
n TGS it is about 1.3, so the anisotropy is stronger but not too
ifferent. From Fig. 1 we can see that the behaviour as a func-

ion of temperature is quite similar in each direction but heat is
ransferred more easily in the XZ plane (where polarization vec-
or lies) than in the direction perpendicular to it, giving rise to
hermal anisotropy. This reduction is surely due to the increment

. (9))

Y-cut Z-cut

4258.26 ± 7.11 3321.83 ± 4.12
.0615 ± .0003 0.0512 ± 0.0002
3.2 × 10−2–2 × 10−3 3.2 × 10−2–2 × 10−3

0.98846 0.99218

ed temperature units t = (T − T0)/T0 and the quality of the fitting through the
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Table 2
Results of the fitting of the inverse of thermal diffusivity using Eqs. (10)–(12) for the three samples

X-cut Y-cut Z-cut

Eq. (10) A1 (mm2/s) 3.438 × 10−5 ± 1.0 × 10−7 3.913 × 10−4 ± 8.6 × 10−6 9 × 10−5 ± 3.2 × 10−6

α 1.355 ± .003 1.047 ± .003 1.278 ± .005
Range adjusted 6.8 × 10−4–2.7 × 10−2 5 × 10−4–2.7 × 10−2 6.8 × 10−4–2.7 × 10−2

R2 0.992 0.991 0.986

Eq. (11) A2 (mm2/s) 2.11 × 10−7 ± 1.1 × 10−9 1.019 × 10−5 ± 4.3 × 10−7 8.42 × 10−7 ± 5.3 × 10−8

β 5.69 ± .02 3.80 ± .02 5.18 ± .03
Range adjusted 6.8 × 10−4–2.7 × 10−2 5 × 10−4–2.7 × 10−2 6.8 × 10−4–2.7 × 10−2

R2 0.994 0.993 0.989

Eq. (12) A3 (mm2/s) 1.40 × 10−3 ± 5 × 10−5 8.42 × 10−3 ± 6 × 10−5 3.25 × 10−3 ± 6 × 10−5

B (mm2/s) 1.148 × 10−5 ± 5 × 10−8 9.51 × 10−6 ± 8 × 10−8 1.62 × 10−5 ± 1 × 10−7

Range adjusted 6.8 × 10−4–2.7 × 10−2 5 × 10−4–2.7 × 10−2 6.8 × 10−4–2.7 × 10−2

R2 0.990 0.983 0.981
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n each case the two corresponding adjustable parameters are shown together w
he fitting through the coefficient of determination R2.

f scattering mechanisms which reduce the mean free path of
honons in (0 1 0) direction.

Concerning the critical behaviour, results shown in Fig. 3
how that the application of Landau theory fits the ferroelectric
hase to some extent, though for the Z-cut sample the agreement
s not so good. The observed overshoot of experimental points
ver calculated mean field curves near the phase transition
ay be determined by some contributions of order parameter
uctuations and defects. Defects are usually responsible for
rounding in the physical properties anomalies at phase

ransitions, but Isaverdiev et al. [8] have demonstrated that,
n the case of charge defects in ferroelectrics, they can give
ise to stronger anomalies. In order to check the validity of
he parameters obtained in the fitting of the inverse of the
hermal diffusivity, we have worked out the parameter β′ which
ppears in the specific heat Eq. (7) and which contains the
henomenological Landau parameter β as well as the coupling
arameters which are sensitive to the orientation of the sample
see Eq. (6a)). β′ is related to the fitted parameter p1 through
he expression p1 = a2/2β′K where ‘a’ is the phenomenological
onstant related to the Curie–Weiss constant in the Landau
xpansion and K is thermal conductivity. We have used for this
alculation the ‘a’ value obtained by Khoma from dielectric per-
itivity measurements [22], and is a = 1.6 × 106 J m K−1 C−2.
he results are β′ = 8.5 × 108 J m5 C−4 for X-cut sam-
le, β′ = 6.4 × 108 J m5 C−4 for Y-cut sample and
’ = 6.1 × 108 J m5 C−4 for Z-cut sample, so the mean
alue is 7.0 × 108 J m5 C−4 which is quite close to previous
esults obtained for different authors [11,22] measuring other
hysical quantities. The difference in the three values for the
amples in different orientations is not significant enough so as
o obtain any definite conclusions about anisotropic properties.

oreover, the value of the phenomenological parameter γ in
he Landau expansion that we can obtain from parameters p2
nd β′ through the expression p2 = γa/β′2 has a mean value

f 2.3 × 1010 J m9 C−6 which is quite close to the value of
.5 × 1010 J m9 C−6 obtained by Vysochanskii and Grabar [24].

This means that, indeed, the Landau theory is of applica-
ion for the ferroelectric phase and the order of magnitude of

s
s
v
a

e range adjusted in reduced temperature units t = (T − T0)/T0 and the quality of

he results coincide quite well with previous results obtained
hrough other physical quantities.

We turned our attention to the paraelectric phase. The fittings
btained by means of Eqs. (10)–(12) confirm that the critical
ehaviour does not agree with the mean-field model, because in
he three cases we could obtain a good fitting with different sets
f parameters which do not correspond to that model.

Starting with Eq. (10), if the first fluctuations correction (or
aussian critical behaviour) is the main cause of that deviation,
e should have obtained a good fitting with parameter α = 0.5,
ut in Table 2 we see that the best fittings were obtained with
= 1.35 for X-cut, α = 1.05 for Y-cut and α = 1.27 for Z-cut, val-
es extremely far from the theoretical value. All the fittings are
f quite a good quality, what can be confirmed by the coefficient
f determination R2, which is quite close to unity. Fig. 4 shows
he experimental and fitted curve in this case. In the insets of
hat figure, (1/D)–(1/D)background is represented as a function of
he reduced temperature t = (T − T0)/T0, in a logarithmic scale,
o that we can see that, even if the fitting is good, Eq. (10) can
ot follow the curvature of the experimental curve.

Logarithmic corrections are meaningful when the fitted α

alue is less than 0.5 because the fluctuations are lessened by
ifferent effects, such as strong dipole forces and being close
o a tricritical point. With the high values we have obtained for

it would not make any sense if we could fit the experimental
urves to Eq. (11). To prove that point we have performed those
ttings and the results are also presented in Table 2. We can
btain a very good fitting to Eq. (11) but with an exponent b for
ogarithmic correction extremely high, devoid of any physical

eaning: 6.2 for X-cut, 3.81 for Y-cut, and 4.65 for Z-cut. Theo-
etical calculations give a range 0.1 < b < 0.33 if the logarithmic
orrection were applicable [3,4].

In the case of the fitting to Eq. (12), where the deviation from
he mean-field value is accounted both by fluctuations and by the
resence of defects, we achieved quite a good result and with a

ound physical meaning. The experimental and fitted curves are
hown in Fig. 5, where in the insets log((1/D)–(1/D)background)
ersus log((T − T0)/T0) is represented in order to follow the
ppropriateness of the fitting close to the critical temperature.
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Fig. 4. Experimental (circles) and fitted (line) curves for the inverse of thermal
diffusivity as a function of temperature using the first-fluctuational correc-
tion model (Eq. (10)) in the paraelectric phase. In every inset the vicinity of
the transition is shown with a logarithmic plot: in the vertical axis the lin-
e
(
s

I
t
o
fl
t
Z

i

Fig. 5. Experimental (circles) and fitted (line) curves for the inverse of thermal
diffusivity as a function of temperature using the model with take into accounts
both fluctuations and defects (Eq. (12)) in the paraelectric phase. In every inset
the vicinity of the transition is shown with a logarithmic plot: in the vertical
a
d
c

n
s
L

ar background has been substracted to the inverse of the thermal diffusivity,
1/D)–(1/D)background while in the horizontal axis t = (T − T0)/T0; the circles
tand for the experimental and the line for the fitted curves.

n Table 2 the coefficients A3 and B show the different contribu-
ions of fluctuations and defects. In the three cases the amplitude
f the defect contribution is much less than the amplitude of the
uctuational contribution to the critical anomaly: B/A3 is equal
o 8.2 × 10−3 for X-cut, 1.1 × 10−3 for Y-cut and 5.0 × 10−3 for
-cut.

So the contribution of defects is dominating in the near vicin-
ty of the critical transition, where we found that Eq. (10) did

i
h
b
v

xis the linear background has been substracted to the inverse of the thermal
iffusivity, (1/D)–(1/D)background while in the horizontal axis t = (T − T0)/T0; the
ircles stand for the experimental and the line for the fitted curves.

ot hold for α = 0.5. Besides, the Ginzburg criterium gives us the
cale in which we can apply the first fluctuational correction for
andau theory [25]. This number in the isostructural Sn2P2Se6

−2
s 10 [26] which means that if the reduced temperature is
igher than that value, the critical behaviour might be described
y a first fluctuational correction, but not necessarily for lower
alues.
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Up to now, the critical behaviour of uniaxial ferroelectrics
n2P2(SexS1−x)6 has been explained in terms of the nearness
f a Lifshitz point to the tricritical Lifshitz point, so that the
nhancement of fluctuations could be reduced by the presence
f the tricritical point in combination with long-range dipole-
ipole interactions, and a logarithmic correction was appropriate
or the description. But our results show that in real systems the
nfluence of point defects must be considered, which complicates
he observation of small logarithmic corrections. These point
efects are responsible for inducing long-range perturbations
f the order parameter, thus getting away from the mean-field
odel.
On the other hand, there is an interesting physical question

till to be solved in ferroelectric transitions and it has been
roved again in this case. Scaling laws should be applicable
o both ferroelectric and paraelectric phases in the near vicinity
f the second-order transition with the same critical exponents
or both phases, which means that the same universality class
hould hold at both sides. In this case, the ferroelectric phase fol-
ows reasonably well the mean-field model while the paraelectric
hase clearly deviates from this model and can be interpreted by
eans of fluctuations of the order parameter and contribution

f defects. And, for this particular case of second-order phase
ransition near the Lifshitz point and not far from the tricriti-
al point on a state diagram in uniaxial ferroelectrics, there is
o model to tell us the relative importance of the contribution of
uctuations (and also from defects) to the ferroelectric and para-
lectric phases. The consequence is that it has not been possible
o obtain a proper fitting to both phases simultaneously with
he same exponents and with physical meaning as it is usual in
he case of magnetic transitions. More theoretical development
eeds still to be done to clearly describe static critical behaviour
t this second-order ferroelectric transitions.

. Conclusions

Thermal diffusivity as a function of temperature has been
tudied in single crystals of uniaxial ferrolectric Sn2P2S6 cut in
hree orientations parallel to the unit cell vectors, showing that
eat transfer is easier in the XZ plane, where polarization vector
ies, than in a direction perpendicular to it. Critical behaviour
as been studied through the inverse of the thermal diffusivity.
he fitting to the Landau model can, to a great extent, explain the

erroelectric phase and this is strongly supported by the fact that
he phenomenological coefficients of that expansion obtained
n this work agree with those obtained studying other physical
roperties. The paraelectric phase, on the other hand, does not
gree with a mean field model. The critical behaviour can be well

xplained by a combination of fluctuations of the order param-
ter and the contribution of crystalline defects, being this last
ne especially important in the near vicinity of the ferroelectric
ransition.
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