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INTRODUCTION 

Interest of the study. Phase transitions in ferroelectric crystals is a quite 

interesting phenomenon, which has been actively studied along the previous decades, as 

the mechanisms responsible for these transitions are of great importance from the solid 

state physics point of view. So far, more than thousand ferroelectric crystal compounds 

are known. The most extensively studied among them are several representatives of 

perovskite ferroelectrics (Lead Titanate, Lithium Tantalate, Lithium Niobate, Barium 

Strontium Titanat...), triglycine sulphate TGS and chalcogenide crystals 

Sn(Pb)2P2S(Se)6. The description of their different physical properties and some 

practical applications can be found in different monographs [1-3]. The ferroelectric 

materials are attractive for application in microwave technology [4]. In present time, the 

special attention is also paid for studying the properties of the nanoscale ferroelectrics 

[5, 6]. Thermodynamic properties stand out among the rest as they play a fundamental 

role because they give a wide spectrum of data needed to describe phonon-phonon 

processes taking place in the crystal lattice. For example, the temperature evolution of 

the specific heat provides information about the harmonic lattice vibration processes 

while, on the other hand, data about thermal expansion and thermal conductivity is 

useful to interpret anharmonic processes. Thermal diffusivity, in general, reflects the 

group velocity of the short-waves phonons while phase velocity can be characterized by 

acoustic data. Thus, the study of the temperature evolution of the thermal properties 

gives a quite complete picture about the phonon-phonon interactions inside the crystal 

and about heat propagation phenomena. Thus, this kind of studies gives a better 

understanding of the dynamics of the crystal lattice vibrations and defines their role at 

the phase transition.  

(Sn1-yPby)2P2(S1-xSex)6-like crystals are a quite interesting and complex system, 

providing a continuous stable series of these solid ferroelectrics with attractive physical 

properties. The origin of the ferroelectricity in these materials is related to an 

spontaneous polarization appearance caused by intrinsic electronic properties. One of 

the most important features of this ferroelectric family is that the isovalent atom 

substitution of Sn by Pb in the cation sublattice or S by Se in the anion one has a strong 
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effect on the ferroelectric properties, shifting the temperature of the phase transition 

along the state diagram. Moreover, such replacing complicates the aforementioned 

diagram provoking the appearance of a modulated incommensurate phase and different 

multicritical points (Lifshitz point, Tricritical point, Lifshitz Tricritical point) as well as 

altering other physical properties of the crystals. A very important aspect is that 

multicritical points can be easily reached on the phase diagram. This allows to perform 

a comprehensive study under relatively simple experimental conditions, which cannot 

be achieved with any other materials. Also, these ferroelectrics can be used as a model 

example for different theoretical predictions developed for this type of materials, in 

order to properly describe the nature of the physical phenomena which take place in 

them. In particular, critical behavior theory is a very powerful tool to discriminate 

among the different possible physical mechanisms responsible for continuous phase 

transitions; either from the classical point of view of Landau mean field model or from 

the more powerful insight of renormalization group theory, the comparison of the 

experimental curves with the theoretical models and universality classes (with their 

different critical exponents) provides a means to go deeply into the physics of the 

transitions and their characterization. 

Sn2P2S6 crystals also possess a promising combination of electrooptical, 

acoustooptical and photorefractive parameters, which could find application in the 

nonlinear optical field. Another feature which makes these chalcogenide semiconductor 

crystals attractive for researchers comes from the possibility of changing their 

electrooptical, thermal and other properties by introducing isovalent alien dopants into 

the crystal lattice. This ability has a practical value, which allows obtaining crystals 

with predetermined characteristics. The impact of dopants on the ferroelectricity of the 

crystals is another field of interest as they can improve or worsen it, introducing 

changes in the position and shape of the transitions.  

All the facts aforementioned have defined the interest of the study. Thus, the 

scope of this thesis is the thermal characterization of Sn(Pb)2P2S(Se)6 mixed 

ferroelectric family in a wide temperature range and the study of  the critical behavior of 

the second order phase transitions in the phase diagram, for which a detailed study of 
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the corresponding temperature regions must be performed. The technique used is high 

resolution ac photopyroelectric calorimetry with which thermal diffusivity 

measurements will be carried out. The critical behavior analysis of the inverse of this 

physical variable will allow us to analyze in depth the physical mechanisms playing a 

predominant role at the phase transitions. The first point of interest is how the 

replacement of Sn by Pb or the introduction of other kind of dopants (Ge, Te, Sb) 

affects the thermal properties and especially the critical behavior in (Sn1-yPby)2P2(S1-

xSex)6 series. What is more relevant at the transition: long-range dipolar interactions, 

fluctuations of the order parameter, influence of the charged defects or closeness of the 

system to a certain multicritical point (Lifshitz, Tricritical, Tricritical Lifshitz)? When is 

it necessary to take into account one or two-components of the order parameter to 

properly describe the dynamics of the system? Which universality class is appropriate 

for a particular phase transition and thus which is the correct physical description? To 

answer these questions we have considered, depending on the situations, the classical 

Landau theory based on the mean-field approach together with several corrections 

accounting for the fluctuations of the order parameter, or the universality classes 

predicted by renormalization group theory. In this way, many different physical 

scenarios have been contemplated: the importance of fluctuations of the order 

parameter, their possible attenuation due to strong dipolar forces, possible contribution 

of charged defects, the closeness to a Lifshitz point… At the same time, the evolution of 

the stereoactivity of the doped crystals will be interpreted. 

Lastly, a very intriguing question is related to the possible location of a unique 

Lifshitz Tricritical point on the temperature-concentration phase diagram in (Sn1-

yPby)2P2(S1-xSex)6 taking into account simultaneous changes of x and y. This subject is 

also covered in this report. 

Relationship with academic programs, plans, themes 

This thesis has been performed in a frame of a special cotutelle PhD agreement 

between Spain (The University of the Basque Country, Bilbao) and Ukraine (Uzhgorod 

National University, Uzhgorod). The European Union, through the ERASMUS 

MUNDUS ACTIVE programme, has provided a generous grant to cover the 2-year stay 
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of the PhD candidate at Bilbao (Spain). The research study has been supported by 

different Spanish funding programmes: Ministerio de Ciencia e Innovación with 

FEDER support (MAT2011-23811), Gobierno Vasco (IT619-13), and UPV/EHU 

(UFI11/55). 

 

Purpose and objectives of the study 

Object: Family of the mixed ferroelectric crystals Sn(Pb)2P2S(Se)6. 

Subject: Thermal properties and critical behavior of the Sn(Pb)2P2S(Se)6 mixed 

ferroelectrics. 

Purpose: Investigate the temperature evolution of the thermal properties of 

Sn(Pb)2P2S(Se)6 covering a wide temperature range and study the critical behavior of 

the second order phase transitions in the phase diagram, mainly focusing on the study of 

the influence of Sn by Pb substitution in (Sn1-yPby)2P2S6 and (Sn1-yPby)2P2Se6 solid 

solutions. Investigate the influence of dopants (Ge, Sb, Te) on the ferroelectric and 

thermal properties of the uniaxial Sn2P2S6 crystal, studying possible changes in the 

critical behavior. And, lastly, analyze the influence of Pb and Ge dopants in the crystal 

with a Lifshitz point Sn2P2(S0.72Se0.28)6, in order to define the possible location of the 

Lifshitz tricritical point. In agreement with these purposes, the following tasks were 

formulated: 

• Experimentally measure the thermal diffusivity in (Sn1-yPby)2P2S6 mixed crystal 

in a wide temperature range, studying the influence of Pb atoms on the character of the 

phase transition. Perform a critical behavior study of the anomalies considering a 

classical mean-field theory, possible deviation from a classical behavior taking into 

account fluctuation of the order parameter, possible attenuation due to strong dipolar 

forces or possible contribution of charged defects and consider the appropriateness of 

different universality classes. Investigate the thermal anisotropy in Pb2P2S6 monoclinic 

paraelectric crystal. 

• Investigate the thermal diffusivity in (Sn1-yPby)2P2Se6 ferroelectrics in a wide 

temperature range, studying the influence of Pb atoms on the position and shape of the 

first and second order phase transition. Perform theoretical data treatment of the 
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paraelectric-incommensurate transition in order to check the possible appropriateness of 

a particular universality class predicted by renormalization group theory. 

• Investigate the influence of Ge, Sb and Te dopants on the ferroelectric and 

thermal properties of the uniaxial Sn2P2S6 crystal measuring thermal diffusivity around 

a critical point. Use all the theoretical approaches mentioned above to understand the 

role of each dopant in the critical behavior of the transition. 

• Study the influence of Pb and Ge isovalent dopants in the Sn2P2(S0.72Se0.28)6 

ferroelectric, which is considered a Lifshitz point. Consider the possible appearance of a 

Lifshitz tricritical point on the state diagram, studying the evolution of the critical 

behavior, from a non tricritical universality class to a tricritical one, comparing the 

experimental data with the theoretical predictions.  

• Perform a general analysis of the thermal properties in a wide temperature range 

and consider the role of phonons in the heat propagation taking into account all the 

experimental data obtained for Sn(Pb)2P2S(Se)6 solid solutions during the research. 

Methods: Photopyroelectric calorimeter has been employed to investigate 

ferroelectric crystals studied. Data treatment of the experimental results has been carried 

out by using the appropriate critical behavior analysis. 

Scientific novelty of the results 

• Thermal diffusivity has been measured for the first time for Sn2P2S6, Sn2P2Se6, 

Pb2P2S6 and Pb2P2Se6 parent compounds as well for their solid solutions (Sn1-

yPby)2P2S(Se)6 covering a wide temperature range (30-350K). This has provided a 

unique opportunity to carry out a great quality critical behavior study for the complete 

system (Sn1-yPby)2P2S(Se)6 across the different types of the continuous phase transition.  

• Up to now, nobody had done a complex critical analysis study for Sn2P2S6 

doped with Ge, Sb and Te, where each dopant takes the place of a particular atom in a 

crystal lattice. Thus, Ge, Sb and Te atoms substitute Sn, P and S, respectively.  

• So far, there are no published works in literature where a Lifshitz Tricritical 

point has been experimentally confirmed. We are the first who found it in the family 

(Sn1-yPby)2P2(S1-xSex)6 with coordinates T = 259.12 K, x = 0.28, y =0.05. 
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• Also, a complete analysis of the thermal conductivity dependencies in a wide 

temperature range has been undertaken for Sn(Pb)2P2S(Se)6 and correlated with the 

features occurring on their state diagram. 

Practical interest of the study 

The whole set of experimental results together with the theoretical data treatment 

give a clear picture about the influence of isovalent atom substitutions in 

Sn(Pb)2P2S(Se), which can serve as a basement for further theoretical developments. In 

particular, thermal diffusivity measurements for Sn2P2S6, Sn2P2Se6, Pb2P2S6 and 

Pb2P2Se6 extreme compounds can help to understand the heat propagation phenomena 

in uniaxial ferroelectrics. Also, such a study can give a new impulse and a possibility to 

properly describe the variety of the physical phenomena which take place in these 

ferroelectric materials. 

On the other hand, studying the influence of the different types of dopants can be 

used at a crystal manufacturing stage, in order to obtain samples with predetermined 

properties, which is important for both practical and theoretical standpoints. This has 

been the case when foreseeing the possible location of the Lifshitz tricritical point on 

the phase diagram of the (Sn1-yPby)2P2(S1-xSex)6 chemical compounds. 

Contribution of the PhD candidate 

The full experimental work concerning thermal diffusivity measurements has 

been performed by PhD candidate personally in the Photothermal Techniques 

Laboratory of the Department of Applied Physics I at the University of the Basque 

Country (Bilbao, Spain). The PhD candidate has also been working on the sample 

preparation (cutting, polishing). All the crystals have been grown in the Institute for 

Solid State Physics and Chemistry of the Uzhgorod National University. The author 

participated in the formulation of research tasks, novelty of the study, discussions and 

interpretations of the results. Also, the PhD student has performed a complete critical 

behavior analysis of the all experimental data and formulated the conclusions of the 

thesis. 
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Structure of the thesis 

The PhD thesis includes an introduction, nine chapters, general conclusions, 

bibliography, where 228 references are listed summary written in Spanish. The total 

volume is 206 pages; the thesis contains 88 figures and 14 tables. 

The first chapter is devoted to a general theoretical review of heat transfer 

phenomena and related heat exchange processes. In the first place, we explain which the 

heat transfer mechanisms are and how heat is transmitted in homogeneous, isotropic or 

anisotropic materials. Secondly, the mathematical description of the heat propagation 

will be shown through the parabolic and hyperbolic heat diffusion equations. Also the 

description of the heat carriers in solid semiconductors (the materials studied in this 

work) will be considered. In the end of the chapter a brief view of the main 

thermophysical properties (specific heat, thermal diffusivity, thermal effusivity and 

thermal conductivity) is given, in order to distinguish the fundamental differences 

among them. 

The second chapter contains general information about the ac photopyroelectric 

(PPE) calorimetry technique, its physical background and the advantages of this 

technique in respect to other ones. The chapter contains a mathematical description of 

the Back-detection configuration setup BPPE, which serve as the foundations for our 

further experimental investigations. This model is one of the most widely used in PPE 

calorimetry and allows extracting directly the thermal diffusivity of the sample studied. 

This method accompanied together with a cryostat is a powerful tool while monitoring 

transport thermal properties of the solid semiconductor materials. Descriptions of the 

cryostats used and the relevant thermal properties of the LiTaO3 sensor are also 

presented in the chapter. Also, a new development of the PPE technique is presented. 

This method allows measuring thermal effusivity of solids at a fixed temperature as well 

as in a continuous temperature run using a photopyroelectric calorimetry in a front-

configuration setup. 

The third chapter is completely devoted to the description of the 

Sn(Pb)2P2S(Se)6 mixed ferroelectrics considering their different physical properties. In 

the first place, the crystal structure of four parent compounds will be described in detail. 
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After that, step by step, a general review of the phase diagram of Sn2P2(S1-xSex)6, 

(PbySn1−y)2P2S6 and (PbySn1−y)2P2Se6 will be considered highlighting the features that 

appears when Se substitutes S. In this case, the most interesting aspect is a true Lifshitz 

point location on the state diagram and the existence of a modulated incommensurate 

phase. We further discuss the influence of Pb atoms on the phase transition temperature 

position and on the critical anomalies shape in the Sn2P2S6 and Sn2P2Se6 compounds. 

Lastly, according to the scope of the thesis we will introduce a brief survey about the 

thermal properties of Sn(Pb)2P2S(Se)6 that have been done before. 

According to the general aim of the thesis the relevant theoretical models related 

to critical behavior are collected in chapter four. In the first place, a classical Landau 

theory based on a mean-field approach is considered. After that, different physical 

mechanisms (fluctuations of the order parameter, attenuation of the order parameter 

fluctuations due to a long-range interaction, influence of the charged defect), which can 

provoke a deviation from the mean-field behavior are considered. Additionally, we 

present renormalization group theory developments and give information about the 

different universality classes which can appear while studying (Sn1-yPby)2P2(S1-xSex)6 

ferroelectric family. Besides, due to the physical properties of the material studied in 

this work, the critical behavior of a special commensurate-incommensurate phase 

transition will be described. At the end of the chapter a review of the experimental 

results related to the critical behavior analysis of Sn(Pb)2P2S(Se)6 will be presented. 

The next four chapters are fully devoted to the interpretation of the data obtained 

in this work. Thus, in chapter five we study the influence of the Pb atoms on the 

thermal properties and critical behavior of the continuous para-ferroelectric transition in 

uniaxial (PbySn1−y)2P2S6 crystals at y=0.1 0.2, 0.3, 0.45, 0.8 and 1. We show that Pb 

atoms provoke a crossover from a clear non-mean-field model at y=0.1 (where the first-

order fluctuations as well as the presence of defects must be taken into account) to a 

mean-field one at Pb content of y=0.3. 

In chapter six a similar study is performed for (PbySn1−y)2P2Se6 mixed 

ferroelectrics for y=0, 0.05, 0.1, 0.2, 0.47, 0.8 and 1. This system reveals two phase 

transitions at y=0: the continuous one from the paraelectric to the incommensurate 
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phase and a discontinuous one from the incommensurate to the ferroelectric phase. The 

results of thermal diffusivity measurements as well as the critical behavior study are 

presented. The analysis of the second order transitions has been carried out within the 

frame of renormalization group theory, seeking the model which can properly describe 

the dynamics of the system at the critical point. 

The influence of Ge, Sb, Te atoms on the ferroelectricity and thermal properties 

of Sn2P2S6 is studied in chapter seven. We discuss how the chemical substitution alters 

the total electronic levels hybridization of the material affecting the ferroelectric 

properties. Additionally, we perform a full theoretical data treatment of the continuous 

para-ferroelectric phase transition, considering all the critical models described in the 

thesis, in order to distinguish the predominant physical mechanism contributing to the 

critical anomaly. 

In chapter eight a complete research on the crystal with a Lifshitz point 

Sn2P2(S0.72Se0.28)6 independently doped with Pb and Ge is presented. The chapter 

contains high-resolution thermal hysteresis curves and a detailed critical behavior study 

performed within the frame of renormalization group theory. Special attention has been 

devoted to testing the different universality classes, where Tricritical behavior takes 

place. It has been performed in order to ascertain what kind of tricritical point appears 

there. The results obtained have been compared with the proposed Blue-Emery-Griffiths 

BEG model with random field influence. All these manipulations have been undertaken 

in order to explain a possible location of a Lifshitz tricritical point on the temperature-

concentration state diagram of (Sn1-yPby)2P2(S1-xSex)6 solid solutions. 

Chapter nine contains experimental data of the thermal conductivity obtained for 

Sn(Pb)2P2S(Se)6 system. An analysis of k(T) evolution is discussed in detail taking into 

account the features of the phase diagram. The origin of ultra-low thermal conductivity 

in phosphorous chalcogenide crystals is discussed considering the influence of several 

possible mechanisms (strong optic and acoustic phonon branches interaction, 

fluctuation of mass in the crystal lattice, electron lone pair relaxations) that can lead to 

the growth of the lattice anharmonicity in the investigated materials. 
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CHAPTER 1 

Heat transfer phenomena and thermal properties 

In solid state physics the thermal properties play аn important role. It is a 

powerful tool, which lets understand better the nature of a high number of intrinsic 

phenomena in a medium, ranging from a general temperature characterization of a 

whole medium up to nano-scale effects compared with the crystal lattice size.  

This chapter is devoted to a general theoretical review of the heat transfer 

phenomena and the related heat exchange processes. In the first place, we will explain 

which the heat transfer mechanisms are, and how heat is transmitted in homogeneous, 

isotropic or anisotropic materials. Secondly, the mathematical description of the heat 

propagation will be shown through the parabolic and hyperbolic heat diffusion 

equations. Also the description of the heat carriers in solid semiconductors (the 

materials studied in this work) will be considered. 

The chapter concludes with a general, brief view of the main thermophysical 

properties (specific heat, thermal diffusivity, thermal effusivity and thermal 

conductivity). 

 

1.1. Heat transfer phenomena: conduction, convection and radiation  

The presence of any temperature difference in a medium or between bodies 

provides heat transfer. Heat can be transferred by several mechanisms: conduction, 

convection and radiation (fig 1.1). In most real processes the above three mechanisms 

are present in varying degrees. In all cases there is a quantitative relation between the 

heat flow q  and the temperature gradient T∇


. 

1.1.1. Conduction is the mechanism by which heat is exchanged between bodies 

in direct contact in the presence of a temperature gradient; different particles can be 

responsible for this exchange: electrons, molecules, phonons ... The basic law that gives 

the relationship between the heat flow and the temperature gradient is generally named 

Fourier’s law. For a homogeneous, isotropic solid body (material in which thermal 

conductivity is independent of direction) it is given in the form [7]  
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 conq K T= − ∇


 , (1.1) 

where conq  is heat flow, K the heat conductive coefficient (thermal conductivity). K is an 

intrinsic characteristic of the material and is temperature dependent. In this case the 

conductivity is presented as a scalar and indicates the ability of material to conduct heat. 

The heat transfer is proportional to the temperature gradient and the sign “−” in 

equation (1.1) implies that heat flows in the direction of decreasing temperature. 

1.1.2. Convection. This process mainly takes place in gases and liquids or in the 

case when a surface of a solid body is surrounded by a fluid. Here, heat exchange occurs 

due to the motion of the medium particles. The appropriate equation which describes 

convective heat flow is known as Newton's cooling law and is written below in the form 

[7]: 

 ( )conv sq h T T∞= − . (1.2) 

From equation (1.2) we can see that convq  (heat flow), is proportional to the temperature 

gradient between a body surface sT  and a fluidT∞ . The constant h (known as the 

convection coefficient of heat transfer), depends in its turn on the flow velocity and the 

sample properties. 

1.1.3. Thermal radiation occurs in all bodies without exceptions, due to its non-

zero temperature. In this case, the thermal energy is transported by photons 

(electromagnetic waves) and the process requires no conduction medium in contrast to 

the two mechanisms above mentioned. The maximum heat flux that a perfect black 

body can emit is expressed by the well known Stefan-Boltzmann’s law: 

 4
rad SB Sq Tσ= , (1.3) 

where 8 2 45,67·10SB Wm Kσ − − −=  is the Stefan-Boltzmann’s constant. For real bodies the 

emitted heat flow from its surface changes slightly from (1.3) and writes  

 4
rad SB Sq Tεσ= , (1.4) 

where ε  is the emissivity, which characterizes the radiative features of the body surface. 

In general it is difficult to compute the energy exchange produced by radiation between 

two bodies. Nevertheless, to simplify this situation one can consider the case in which 

heat is exchanged by radiation between two close surfaces which satisfy the condition 
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1S ≪ 2S , which is the most frequent case in practice. To calculate a radiative heat 

transfer in this case, the equation below is of application [7] 

 4 4
1 1 2( )rad SBq S T Tεσ= − , (1.5) 

1S being the area of the body surface, 1T  the surface temperature and 2T  the temperature 

of the surrounding, respectively. 

It is important to emphasize that we will only take into account in what follows 

the heat transported by conduction, due to the experimental conditions we will be 

working with and which will be described in Chapter 2. The main reason is that the 

convection and radiation mechanisms are negligible in comparison with conduction in 

our experimental systems, because the temperature gradients we are producing are very 

small (see chapter 2). 

 
Fig. 1.1. Illustration of the heat transport mechanisms. 

 

1.2. Heat conduction equation for the homogeneous isotropic and anisotropic 

cases 

1.2.1. Differential heat conduction equation 

One of the most important aims in an analysis of photothermal phenomena is to 

find a temperature distribution field in a medium. Let’s pay attention to the Fourier’s 

law in more detail. The spatial and temporal distribution of a temperature can be 

determined by applying the proper boundary conditions for the energy conversation 

principle to the heat flux, which flows into or out of a homogeneous differential element 



Chapter 1. Heat transfer phenomena and thermal properties                                                                                       21 

of a body volume of thermal conductivity k, specific heat c and density ρ. The equation 

we use is as follows [8]: 

 in g out stQ Q Q Q+ − = , (1.6) 

where in x y zQ q q q= + +  contains the heat fluxes entering a volume dV; gQ g dxdydz
•

=   the 

energy generated in dV; out x dx y dy z dzQ q q q+ + += + +   the heat fluxes exiting the volume dV. 

stQ  is the rate of energy storage in the differential volume st
TQ c dxdydz
t

ρ ∂
=

∂
.  

 The heat fluxes entering the volume qx , qy , qz  can be evaluated using Eq (1.1).  

 x
x

Tq k dydz
x

∂
= −

∂
, y

y

Tq k dxdz
y

∂
= −

∂
, z

z

Tq k dxdy
z

∂
= −

∂
. 

And the heat fluxes exiting it via a Taylor expansion  

 x
x dx x

qq q dx
x+

∂
= +

∂
, y

y dy y

q
q q dy

y+

∂
= +

∂
, z

z dz z
qq q dz
z+

∂
= +

∂
. 

Introducing all this into equation (1.6), we obtain 

 
.

yx z
qq q Tdx dy dz g dxdydz c dxdydz

x y z t
ρ

∂∂ ∂ ∂
− − − + =
∂ ∂ ∂ ∂

. (1.7) 

Which leads to: 
.T T T Tk dydz dx k dxdz dy k dydx dz g dxdydz c dxdydz

x x y y z z t
ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂    
. (1.8) 

This is the general form of the heat diffusion equation in cartesian coordinates. By 

solving equation (1.8) we can compute a distribution of temperature as a function of 

time. Its physical interpretation is as follows: at any point in a medium the sum of heat 

conduction rate into a volume and the rate of heat generation within the volume must be 

equal to the rate of change of the thermal energy stored at the same point.  

In practice it is a complex task to find a solution for (1.8); it can be simplified by 

assuming that the thermal conductivity of the material is isotropic and introducing a 

new thermophysical parameter, the thermal diffusivity /D k Cρ=  (m2/s). It is an 

important thermophysical coefficient whose physical meaning is: it indicates the rate at 

which heat is distributed in a material. Therefore, we can write these special cases: 
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a) Non-steady state with the presence of an internal heat source 

 
.

2 2 2

2 2 2

1T T T g T
x y z k D t

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
, (1.9) 

or in a shortened form                     
.

2 1g TT
k D t

∂
∇ + =

∂
 

b) Non-steady state without internal generation of heat 

 
2 2 2

2 2 2

1T T T T
x y z D t

∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
, 2 1 TT

D t
∂

∇ =
∂

 (1.10) 

c) Steady-state with internal heat generation 

 ( )
.

2 2 2

2 2 2

, ,
0

g x y zT T T
x y z k

∂ ∂ ∂
+ + + =

∂ ∂ ∂
, 2 0gT

k
∇ + =  (1.11) 

d) Steady-state without internal generation of heat 

 
2 2 2

2 2 2 0T T T
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
, 2 0T∇ =  (1.12) 

which is the Laplace equation 

 

1.2.2. Anisotropic cases 

In order to take into account crystalline anisotropic media, we can rewrite the 

general equations (1.6)-(1.8) in the form [9]: 

 ( ) ( ) ( ). ,
, ,

T r t
q r t g r t c

t
ρ

∂
−∇⋅ + =

∂
 . (1.13) 

And the thermal conductivity as a tensor of second rank  

 
11 12 13

21 22 23

31 32 33

k k k
k k k k

k k k

 
 =  
 
 

;    ijk , i, j = 1,2,3 (1.14) 

so that the components of the heat flux will read: 

 

11 12 13

21 22 23

31 32 33

;

;

;

x

x

z

T T Tq k k k
x x x
T T Tq k k k
y y y
T T Tq k k k
z z z

∂ ∂ ∂ = − + + ∂ ∂ ∂ 
 ∂ ∂ ∂

= − + + ∂ ∂ ∂ 
∂ ∂ ∂ = − + + ∂ ∂ ∂ 

 (1.15) 
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Introducing (1.14) and (1.15) in eq (1.13) and assuming the common situation in which 

there are no internal heat sources, we obtain: 
2 2 2 2 2 2

11 22 33 12 13 232 2 2 2 2 2T T T T T T Tk k k k k k ρ c
x y z x y x z y z t

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
, (1.16) 

having taken into account that ij jik k= , ( i j≠ ) by the reciprocity relation. This equation 

can also be written as a function of the thermal diffusivity tensor of second rank 
2 2 2 2 2 2

11 22 33 12 13 232 2 2 2 2 2T T T T T T TD D D D D D
x y z x y x z y z t

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
. (1.17) 

As thermal conductivity and thermal diffusivity tensors are symmetric and the 

elements in the diagonal are positive, we can always find a reference system (X, Y, Z) 

in which they can be written as  

 
0 0

0 0
0 0

x

y

z

k
k k

k

 
 =  
 
 

, 
0 0

0 0
0 0

x

y

z

D
D D

D

 
 =  
 
 

, (1.18) 

where the components in the tensors are known as the main conductivities and 

diffusivities.  

Let’s imagine that we have a sheet of an anisotropic material whose thickness l is 

much smaller than its surface dimension x≪ ,z y , and whose faces are cut 

perpendicularly to a major axis (for example ⊥  to X). In this situation the temperature 

gradient between the opposite faces depends only on X, implying that: 

 0T T
z y

∂ ∂
= =

∂ ∂
. (1.19) 

Taking into account (1.19), the equation of heat flux is given as a one-dimensional 

problem instead of a 3-Dimensional 

 x x
dTq k
dx

= − . (1.20) 

The problem in (1.20) is equal to the one that we have in the case of an isotropic 

medium, when q  is expressed through only one thermal conductivity component. 

Hence, knowing the thermal gradient /dT dx  and the component of heat flow xq  it is 

easy to obtain the thermal conductivity in the same direction. Repeating this procedure 

with the different cuts of a material, and complying the size condition (y ≪ x, z; z ≪ x, 
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y), it is possible to calculate the two others conductivity components yk  and zk , 

respectively. Or the thermal diffusivities. 

 

1.2.3. Conductivity matrix for crystal systems  

With symmetry considerations, the anisotropic crystals can be grouped into the 

seven distinct systems identified as triclinic, monoclinic, orthorhombic, hexagonal, 

tetragonal, trigonal, and cubic systems. Regarding the symmetry groups the thermal 

conductivity tensors can be summarized as follow: 

● Triclinic. The system with a lowest symmetry ( a b c≠ ≠ , α β γ≠ ≠ ), hence all 

nine components of ijk  can be nonzero, and we have 

 
11 12 13

21 22 23

31 32 33

k k k
k k k k

k k k

 
 =  
 
 

. (1.21) 

● Monoclinic. Some of the components become zero with symmetry 

considerations ( a b c≠ ≠ , 090α γ β= = ≠ ). 

 
11 12

21 22

33

0
0

0 0

k k
k k k

k

 
 =  
 
 

. (1.22) 

● Orthorhombic. The thermal conductivity coefficients ( a b c≠ ≠ , 090α β γ= = = ) 

are given by 

 
11

22

33

0 0
0 0
0 0

k
k k

k

 
 =  
 
 

. (1.23) 

● Cubic. In this system all the main conductivities are equal 11 22 33k k k= =  ( a b c= = , 
090α β γ= = = ) 

 
11

11

11

0 0
0 0
0 0

k
k k

k

 
 =  
 
 

. (1.24) 

● Hexagonal ( a b c= ≠ , 0 090 120α β γ= = = ), Tetragonal ( a b c= ≠ , 090α β γ= = = ) 

and Trigonal ( a b c= = , 090α β γ= = ≠ ) 
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11 12

12 11

33

0
0

0 0

k k
k k k

k

 
 = − 
 
 

. (1.25) 

Taking into account ij jik k= , ( i j≠ ),the maximum number of components will be 6 for 

the triclinic system while the minimum will be 1 for the cubic one; in the hexagonal, 

trigonal and tetragonal systems, this implies that k12=0. All these considerations are also 

applicable to the thermal diffusivity tensor.  

1.3. Heat propagation in a medium. Thermal waves  

Huge theoretical efforts have been done along the years by the different research 

groups which work in the physics of photothermal phenomena. Due to this a lot of 

papers have been published in order to explain the propagation of thermal energy in a 

medium, making it impossible to account for all of them in this work; nevertheless, they 

have the same physical background [10-17]. In the following, we are going to discuss 

how heat propagation in a medium can be described, including the consideration of heat 

waves. 

1.3.1. Parabolic heat diffusion equation. To explain this phenomenon and to 

understand the physical sense of the term “thermal wave”, we will show the 

mathematical description for the parabolic and hyperbolic heat diffusion equations. To 

do this, we refer in the first place to the well established classical approach [8], whose 

physical meaning can be interpreted as follows: whenever there is a temperature 

gradient T∇


 in a solid material or in a stationary liquid, the heat flow q  occurs from the 

warmer part to the colder one, this is known as the Fourier’s law (1.1). Secondly, we 

apply the energy conversation law as proposed in [7]. Together they lead to  

 2 1 ( , )( , ) 0T r tT r t
D t
∂

∇ − =
∂



 , (1.26) 

Where D is the thermal diffusivity of the material. Again it must be pointed out that the 

relation between the thermal conductivity and diffusivity is expressed though an 

equation /D k cρ= , where ρ  is the density and c is the heat capacity of the material. The 

expression (1.26) written above is called the parabolic heat diffusion equation, which 

contains the spatial r  and temporal t  parts. Note that (1.26) assumes no internal heat 
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sources. It is one of the four special cases described in the section 1.1.2, in particular 

equation (1.10). 

Let’s consider a material, which is isotropic, homogeneous and semi-infinite 

along its x-axis, and whose surface is uniformly illuminated by a light beam as a 

harmonic heat source with the modulated intensity ( ) [ ]( )00
1 exp

1 cos( ) Re
2 2

I i tII t
ω

ω
 +

= + =  
  

, where I0 is the source intensity, 2 fω π=  is the angular modulation frequency (fig.1.2). 

The symbol “Re” means real part [11]. 

 
Fig. 1.2. The opaque, semi-infinite material illuminated by a modulated light beam. 

As this is a one-dimensional problem, equation (1.26) reduces to 

 
2

2

1 0T T
x D t

∂ ∂
− =

∂ ∂
, with         0, 0x t> >  (1.27) 

The temperature distribution at any point of the material is then given by 

 ( , ) ( ) ( , )amb dc acT x t T T x T x t= + + , (1.28) 

where ambT  is the ambient temperature, dcT  is a time-independent increase above ambT , acT  

is a periodic thermal oscillation which has the same frequency as the light beam. We are 

interested in the time-dependent component of acT , which can be written as the real part 

of 

 ( ) ( ), i t
ac acT x t T x e ω= . (1.29) 

Substituting (1.29) into (1.27), the spatial component of acT  satisfies Helmholtz’s 

equation. 
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 ( )2
2

2 T ( ) 0; / Dac
ac

d T x
x i

dx
σ σ ω− = = , (1.30) 

whose general solution has the form  

 ( ) [ ] [ ]exp expacT x A x B xσ σ= − + , (1.31) 

where A and B are constant. In our case when x→∞, ( )T x  must be finite, hence, B=0. 

Constant A can be evaluated by applying the flux continuity boundary conditions, when 

x=0 

 0
0

0 2
σ xac

x
x

dT Ik k σ  Ae
dx

−

=
=

− = = , (1.32) 

from (1.32) we obtain 0 / 2A I kσ= , thus, the full solution of (1.29) is 

 [ ] [ ]0 exp exp
2
I x i t
k

σ ω
σ

− , (1.33) 

whose real part is  

 ( ) [ ]0, exp / cos / 4
2ac

I xT x t x tµ ω π
µε ω
 

= − − + 
 

. (1.34) 

The equation (1.34) represents a highly damped planar harmonic wave propagating 

along x-axis, with the same frequency f as the modulated heat source. Here /k Dε =  is 

the thermal effusivity of the material (also known as e but we don’t use this form here in 

order not to mistake it for the exponentials). 2 /Dµ ω=  is the thermal diffusion length, 

the parameter whose physical meaning is as follows: it shows the penetration depth 

travelled by the wave at which the amplitude of the temperature is reduced by a factor e 

(fig. 1.3). This thermal wave approximation is found to be convenient in the description 

of the majority of the photothermal experiments [1, 11, 12]. 
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Fig.1.3. The normalized phase and amplitude of the time-dependent component Tac  as a function of 

the reduced depth x/ µ . 

1.3.2. Hyperbolic heat diffusion equation. 

Even though the parabolic heat diffusion equation is a powerful tool in 

photothermal science, it cannot be a fundamental description of heat transport because it 

does not account for a propagation speed [5]. Let´s introduce in (1.1) a new parameter τ

, a delay between the heat flux and the temperature gradient, as it has been done in [12]; 

therefore, (1.26) becomes 

 2 1 ( , ) ( , )( , ) 0T r t T r tT r t
D t D t

τ∂ ∂
∇ − − =

∂ ∂

 

 , (1.35) 

Where it is obvious that if 0τ = , (1.35) becomes (1.27). Following with same procedure 

as in 1.3.1, the Helmholtz equation will be  

 ( ) ( )
2 2

2
2 T ( ) 0; 1ac

ac

d T x i ix i
dx D D D

ω τω ωσ σ ωτ
′

′ ′ ′− = = − = + . (1.36) 

The real part of the time-dependent component acT ′  has a solution of the form 

 
( ) ( )

( )
( )

( ) ( )

2
20 4 2

2

1
, exp 1

2 2

cos 1 / 4
2 2

ac
IT x t x

e D

arctg
x

D

ωττ ω ωτ ωτ
ωτ

ωτω ωτ ωτ ωτ π

 +
′ = − + − ×  

 

 
× + − − − +  

 

. (1.37) 

Consider two regimes for (1.37): the low and high frequencies: 

● If ωτ≪1, therefore we have that (1.37) becomes (1.34). Then, both solutions 

for the parabolic and the hyperbolic cases coincide. 
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● If ωτ≫1, equation (1.37) can be modified to: 

 ( ) 0, exp cos
2 2ac

IT x t x x t
e D D
τ ω τ ω ω

τ
   

′ = − −      
   

. (1.38) 

Which means that this hyperbolic description is appropriate or not depending on 

the time scale. The upper limit of this time delay is small enough and can be observed 

only in a high frequency regime so as not to have any influence in measurements 

performed under our experimental conditions. 

 

1.3.3. Physical analysis of the thermal wave 

Analyzing the solutions of the time-dependent component of the temperature 

distribution (1.34) and (1.37), several facts can be established. 

● Mathematically they are described as ordinary electromagnetic waves, with the 

important difference that the thermal waves do not transport energy [11].  

● Thermal waves have an oscillatory spatial dependence [ ]exp ikx , whose wave 

vector is written Re( ) 1/ / 2Dσ µ ω= = , were µ  is the thermal diffusion length. 

● If lµ < , where l is the thickness, a material is thermally thick while it is 

considered thermally thin when lµ > . 

● Thermal waves are heavily damped with a decay constant equal toµ . Thermal 

waves will propagate deeper into a solid if it has high diffusivity or if the 

frequency of the thermal wave is low. 

● Thermal waves are highly dispersive 2Dυ ωµ ω= = . 

● At the surface when x=0, there is a phase lag between the excitation and the 

surface temperature equal to 450, as this phase lag is in general 
4

x πϕ
µ

= − − . 

● Similarly to the electrical impedance, thermal wave impedance is defined as 

1 1 1Z
k i ck iσ ωρ ε ω

= = = , were ε  is the thermal effusivity and determines the 

magnitude of the thermal wave at the sample surface. If the value of effusivity is 

low it leads to a high value of the surface temperature [7]. 
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Another interesting detail that can be pointed out from (1.35) is that thermal 

waves have an intrinsic diffusive character, because D appears in both derivatives; as a 

consequence the thermal diffusivity controls both the damping and the wave velocity at 

the same time. 

 

1.3.4. Reflection and refraction of thermal waves 

Similarly to the electromagnetic and acoustic waves the thermal waves can also 

be reflected and refracted. As consequence, they can be used to obtain the reflection and 

transmission coefficients at a thermal boundary. Suppose we have media 1 and media 2, 

separated by a boundary plane at x=0 (fig.1.4), where iθ , rθ  and tθ are the angles for the 

incidence iT , the reflected rT  and the transmitted tT  thermal waves, respectively. Let the 

expression for these three waves has the form [7] 

 
1 1

1 1

2 2

exp( cos );
exp( cos );

exp( cos );

i i i

r r r

t t t

T A x ysin i  t
T AR x ysin i  t
T AT x ysin i  t

σ θ σ θ ω
σ θ σ θ ω
σ θ σ θ ω

= − − +
= − +
= − − +

 (1.39) 

where A is the amplitude of the incident wave, R and T, accordingly, are the reflection 

and transmission coefficients at x=0 and y=0. 

Considering the continuity of temperature at interface (X=0) we can determinate 

the values of these coefficients: 

 1 1 2exp( ) exp( ) exp( )i r tA ysin AR ysin AT ysinσ θ σ θ σ θ− + − = − , (1.40 a) 

or using / 2Dσ ω=  

 
1 1 2

exp( ) exp( ) exp( )
2 2 2i r tA ysin AR ysin AT ysin

D D D
ω ω ωθ θ θ− + − = − , (1.40 b) 

 
Fig. 1.4. Reflection and refraction of the thermal waves at interfaces. 
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For all y position across x=0 this condition must be maintained, hence, in (1.40 a) the 

exponents must be equal. In turn, we can rewrite it in the form 

 1 1 2i r tysin ysin ysinσ θ σ θ σ θ= = , (1.41) 

From (1.41) the reflection and refraction laws follow 

i rθ θ=   the reflection law;                    ( ) ( )1 2sin sini tσ θ σ θ=   the refraction law. 

In case of continuity of flux at x=0, by differentiating the equation (1.40 a) we will 

obtain 

 1 1 1 1 2 2cos( ) cos( ) cos( )i i tk Rk Tkσ θ σ θ σ θ− = , (1.42) 

applying the condition written above i rθ θ=  and 1T R= + at 0y = , from (1.40a) the 

coefficients R and T can be found as 

 cos( ) cos( )
cos( ) cos( )

i t

i t

bR
b

θ θ
θ θ

−
=

+
,    and    2cos( )

cos( ) cos( )
i

i t

T
b
θ

θ θ
=

+
, (1.43) 

here, 2 2 22 2 2

1 1 11 1 1

k ck eb
k ek c

ρσ
σ ρ

= = = , where e k cρ=  is the thermal effusivity. As it can be seen, 

b is the effusivity ratio of the two media, thus it provides a measure of the thermal 

mismatch between them. 

For a normal incidence beam 0i rθ θ= = , therefore, the equations (1.43) are reduced to 

 1 2

1 2

1
1

e ebR
b e e

−−
= =

+ +
,    and    1

1 2

22
1

eT
b e e

= =
+ +

. (1.44) 

Both coefficients R and T depend on the thermal effusivity. To explain the role which 

plays the thermal effusivity, suppose we have medium 1 and medium 2 with effusivities 

e1 and e2, respectively, in perfect thermal contact (see figure 1.5). A thermal waves 

propagates along medium 1 from left to right and arrives at the interface of both media 

at x=0. Let’s consider two cases in which the thermal effusivities and conductivities are 

very different: 

a) 1 2e e>> , 1 2T T>  and 1 2k k>> . Under these conditions, b ~0. Substituting it into (1.44) 

gives us R ~1 and T ~2. Introducing these values in equation (1.39) gives that 0tT ≠  

meaning that the thermal wave propagates into medium 2, fig. 1.5 a. 
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b) 1 2e e<< , 1 2T T>  and 1 2k k<< . In this case b~∞ that, in turn, modifies the reflection and 

transition coefficients R ~-1, T ~0. Substituting these R and T into the equation (1.39) 

gives tT ~0, which means that the thermal wave does not propagate along medium 2 

[19]. It is important to emphasize one detail here, the phase of the reflected wave is 

shifted on 1800 in respect to incidence one (fig.1.5 b). This effect is known as a thermal 

mirror. 

 

Fig.1.5. Thermal wave propagation through the two media. 

Let’s compare this situation with what happens in a steady situation and a thermal 

gradient is maintained between both media which are characterized by the same extreme 

conditions.  

c) 1 2e e>> , 1 2T T>  and 1 2k k>> . As the thermal conductivity of the second medium 

is so low compared to the first one, nearly no heat will be transferred from medium1 to 

medium 2 (Fig. 1.5 c). 

d) 1 2e e<< , 1 2T T>  and 1 2k k<< . Heat will be efficiently transferred to medium 2 

(Fig. 1.5 d).  

This might be considered as a paradox (in one case thermal wave is transmitted 

but no heat is transferred while in the other one it is just the opposite) but it is not. Two 

different regimes are being taken into account: non-steady and steady. In the first case, 

thermal effusivity governs what happens in the interface, while in the steady case 
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thermal conductivity tells us what will happen. This is related to the fact that thermal 

waves lack an important wave-like feature: they do not transport energy, as already 

mentioned in the previous section. This is why both thermal magnitudes are equally 

important when dealing with the physics of thermal sciences. 

 

1.4. Heat carriers in solid semiconductors 

1.4.1. Phonons as heat carriers. In a solid system a thermal resistance is caused 

by the anharmonicity of the lattice vibrations known as phonons. The consideration of 

these vibrations only through a harmonic approximation leads to the absence of thermal 

resistance [20]. This statement is a quite obvious: for the harmonic waves a linear 

superposition principle is of application. As a consequence the phonons do not interact, 

hence, the thermal resistance tends to 0, because the heat flux propagates with the 

velocity of sound. 

This situation can be overcome by introducing the terms of power three for the 

displacement of atoms into an expansion of the potential energy [20]. Therefore, it 

makes possible to imagine the collision process for three phonons (fig 1.6).  

 
Fig.1.6. Illustration of the phonon-phonon interactions: a – two phonons converted into one; b – one 

phonon splits into two [20]. 

The probability of those processes is nonzero if two conditions are satisfied: 

 
1 2 3q q qω ω ω+ =   , (1.45) 

 1 2 3 gq q q T+ = +


  

   , (1.46) 

where 1 1 2 2 3 3gT g b g b g b= + +
  



 is the reciprocal vector of the crystal lattice. 

The phonon-phonon interactions can be separated into two groups: the normal 

process or “N-process” when 0gT =


, and the Umklapp process “U-process” if 0gT =


 

(fig. 1.7). Let’s mark the difference between them. Thermal energy propagates in the 
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direction of the phonon group velocity. In the case of a “N-process” the direction of the 

energy flow with wave vector 3q  coincides with the direction in which the thermal 

energy is transmitted by the addition of the modes whose wave vectors are 1q  and 2q , 

respectively (fig. 1.7, a). In contrast, for a “U-process” the direction of a wave vector 3q  

is different with respect to the direction obtained by adding 1q  and 2q . The fact that “U-

processes” involve a non perfect conservation of crystal momentum leads to a quick 

recovery of the equilibrium phonons distribution in a medium, and as a consequence, 

the thermal conductivity will have a finite value. 

 
Fig. 1.7. The scheme illustrates the difference between “N” and “U” processes [20]. 

According to the classical kinetic theory of the gases, the thermal conductivity of the 

phonons in a solid material is expressed as 

 21 1 ( ) ,
3 3ph V ph ph V phk c cυ λ υ τ= =  (1.47) 

where Vc  is the heat capacity of a unit volume; phυ  the average phonons velocity in a 

crystal; phλ  the phonon mean free path, an average distance travelled by a phonon 

between the two scattering acts, and depends heavily on temperature; /ph phτ λ υ=  is the 

effective relaxation time of phonons, whose inverse magnitude 1τ −  corresponds to the 

frequency of the phonons collisions. 

Let´s briefly consider the temperature dependence of equation (1.47), were Vc  

and phλ  mainly determine the temperature behavior of kph. 

• High temperature region DebayT θ> . At these temperatures Vc  obeys the Dulong 

and Petit’s law ( 3V Bc Nk= , Bk being the Boltzmann constant) and leads to a saturation 
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value; therefore, the temperature dependence of phk  is mainly determined by phλ . The 

probability of the “U-processes” taking place grows with the number of phonons, which 

increase with temperature. As a consequence, the frequency of collisions 1τ −  will rise 

in proportion to T. If we account that the phonon mean free path is inversely 

proportional to temperature, then for the thermal conductivity by phonons we can write: 

 1
phk T −
 . (1.48) 

• Low temperature region DebayT θ< . The probability of “U – processes” decreases 

exponentially, and only the phonons with energy higher than / 2ph B Dkω θ>  are able to 

participate in them. It leads to an exponential increasing of the phonon mean free path 

phλ ~ exp( / 2 )D Tθ . On the other hand, the specific heat in a Debye model decreases as T3 

while lowering the temperature. In spite of this fact, the thermal conductivity will 

continue rising, due to the strong exponential term.  

 3 exp( / 2 ).ph Dk T Tθ  (1.49) 

• Temperatures close to 0K. The probability of the “U–processes” is very small; 

in turn, the phonon mean free path becomes comparable with the sample size and does 

not depend on temperature. In this case the thermal conductivity of phonons is 

determined by the heat capacity and behaves as  

 3.phk T  (1.50) 

Nevertheless, these regions are not perfectly isolated. In practice, thermal 

conductivity curves present a maximum for whose description it is necessary to take 

into account several scattering mechanisms (“U-processes”, presence of doping, point 

defects in a crystal lattice, etc.).  

 
Fig. 1.8. The temperature dependence of the phonon thermal conduction [20]. 
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Regarding the thermal conductivity in crystalline semiconductors is important to 

emphasize there are several other sources of anharmonicity, which can heavily alter a 

general shape of the dependence presented above (fig. 1.8). In some particular cases, the 

thermal conductivity as well a “phonon hump” can be effectively suppressed due to the 

strong interaction (coupling) between the soft optic and the acoustic phonon branches 

[21, 22], relaxation of lone pair electrons [23, 24], resonant chemical bounding [25, 26], 

Jahn-Teller instability of the electronic structure [27] and a complex crystal lattice [28]. 

Besides, the atomic mass fluctuation in mixed crystals may create additional centers 

which can favor the phonon scattering processes [29, 30] reducing even more the lattice 

thermal conductivity. In a last chapter of the thesis we will show the effect of almost all 

those mechanisms on the thermal conductivity of Sn(Pb)2P2S(Se)6-like semiconductor 

ferroelectrics having summarized a whole set of experimental data obtained in this 

work. 

1.4.2. Electrons as heat carriers. In semiconductors, the contribution of phonons 

to the thermal conductivity phk  is usually much higher than the electrons contribution 

.elk  However, in cases when the number of the free electrons (or holes) is relatively 

large (about 1018 – 1020cm-3), phk  and elk  could be the same order of magnitude.  

To describe the electronic contribution to the thermal conductivity in 

semiconductors we refer to the kinetic Boltzmann equation for the electrons and to the 

theoretical analysis performed in [31, 32]. In a semiconductor with monopolar 

electronic conductivity we get an expression for the thermal energy flow as follows: 

 
22 .B

el
k TQ n T
e

µ
 

= − ∇ 
 



 (1.51) 

The term before T∇


 in (1.51) plays the role of the thermal conductivity coefficient. 

Therefore, we can write 

 ( )
2

22 2 / ,B
el el B el

k Tk n k e T
e

µ σ
 

= = 
 

 (1.52) 

where elµ  is the mobility of electrons, elσ  is the electronic conductivity. Accordingly, 

the thermal conduction caused by the free electrons is determined by the temperature of 



Chapter 1. Heat transfer phenomena and thermal properties                                                                                       37 

a material and its electronic conductivity. The appropriate equation that describes this 

situation is written below.  

 
2

2 .el B

el

k k T
eσ

 =  
 

 (1.53) 

1.5. Thermal properties of homogeneous materials 

In this section we are revising several concepts which have been introduced in the 

previous sections but whose importance in the development of this work justifies 

analyzing them as a whole and as a summary of the chapter. 

There are four thermal properties which fully characterize a material: specific 

heat, thermal conductivity, thermal diffusivity and thermal effusivity. If we are in a 

static situation (the temperature does not depend on position and time) specific heat c 

will be enough to fully describe it. In the analysis of a steady one (temperature does not 

vary over time but vary over position), thermal conductivity (k) characterizes the 

problem. Concerning the most general situation when temperature varies over position 

and time, both the thermal diffusivity (D) and effusivity (e) must be taken into 

description of the heat propagation in a material [33]. The brief review of these physical 

properties is written below. 

• Heat capacity. In a thermally isolated material with mass m, the relationship 

between the heat deposition and the temperature rise is given by equation  

 Q mc T ,∆ = ∆  (1.54) 

where Q∆  is an amount of energy (heat) that should be added to a body of mass m to 

produce the intrinsic temperature gradient equal 1K. The specific heat is an ability of 

the material to store internal energy (thermal energy). 

• Thermal conductivity. Whenever a temperature gradient is applied to material, a 

heat flow occurs in it. The appropriate equation has already been shown and is called 

the Fourier’s law  

 q k T .= − ∇


  (1.55) 

This quantity characterizes the amount of thermal energy transported through a unit area 

per unit time, in a material with unit thickness, whose opposite surfaces have the 
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temperature gradient equal to 1K. The thermal conductivity (W/m·K) is the ability of a 

material to extract heat from a thermal energy source.  

• Thermal diffusivity. The physical meaning of the thermal diffusivity is 

associated with the velocity of heat propagation, and characterizes how rapidly a 

material reaches the thermal equilibrium state. It measures the temperature change 

created in the unit volume of a material produced by a heat flow transported through a 

unit area per unit time, in a material with unit thickness, whose opposite surfaces have 

the temperature gradient equal to 1K.  

 2 1 ( , )( , ) 0.T r tT r t
D t
∂

∇ − =
∂



  (1.56) 

Thermal diffusivity D (m/s2) defines the rate at which heat is being distributed in a 

material. This magnitude depends not only on the thermal conductivity of the material, 

but also on the rate at which the energy can be stored. The conductivity k and diffusivity 

D are bounded through a constituent relation /D k cρ= , ρ  being the density of a 

material. 

 
Fig. 1.9. Relation between thermal conductivity and diffusivity in solids and gases [19]. 

The k / D  ratio is the heat capacity per unit volume. For condensed materials this 

value is practically constant and varies between 61 10×  and 64 10×  (Table 1.1). However, 

the relation that the good (bad) conductor is good (bad) diffuser is not an exact rule. 

Let’s take from the table 1.1 two metals, for instance, Ni and Pb. As seen, nickel is a 

better heat conductor than lead, hence, we could say that Ni is getting warmer faster in 
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comparison with Pb, but the reverse situation occurs in their values for thermal 

diffusivity, heat is being distributed quicker through lead. 

It is interesting to point out that gases, due to its low conductivity, extract a small 

amount of thermal energy from a heat source, but the absorbed energy is rapidly 

diffused through it. 

• Thermal effusivity. The last property we describe characterizes the thermal 

impedance of a material. Effusivity is the ability to exchange thermal energy with the 

environment. 

 .e ρck k / D ρc D= = =  (1.57) 

To understand the physical sense of it we again refer to table 1.1. Let’s consider the 

materials whose thermal conductivity values are almost the same but whose effusivities 

are different: Co and K. In steady mode both materials extract from a reservoir the same 

amount of thermal energy. Nevertheless, under transient condition, Co extracts 2.5 

times more heat than K for the same time interval due to its higher effusivity value [33]. 

Table 1.1.  

Thermophysical properties of the some selected materials [33]. 

Material ρc, 
(×106 Jm-3K-1) 

K, 
(Wm-1K-1) 

D, 
(×10-6 m2 s-1) 

e, 
(Wm-2K-1s-1/2) 

Al 2.5 238 93.38 24642 
Cr 3.2 93.7 29.15 17356 
Cu 3.4 401 116.60 37136 
Au 2.5 317 127.32 25093 
Ag 2.5 429 173.86 32535 
Ni 4.0 90.7 22.95 18931 
Ti 2.4 21.9 9.32 7172 
K 0.65 102 158 8150 
Pb 1.5 35.3 24.13 7186 
Co 4.05 100 24.6 20150 

Diamond 1.8 2300 1291.05 64011 
Silicon 1.7 148 89.21 15669 

Quartz glass 1.6 1.4 0.87 1502 
Air 0.0012 0.026 22.26 5.51 
He 0.0011 0.15 137 12.8 

Water 4.18 0.598 0.14 1582 
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CHAPTER 2 

Photopyroelectric calorimetry and experimental devices 

2.1. Photopyroelectric calorimetry and Pyroelectricity 

2.1.1. Photopyroelectric calorimetry. Calorimetry is a fundamental tool to study 

the critical evolution of different thermophysical properties in the vicinity of phase 

transitions. At an around the critical temperature (the one at which the phase transition 

takes place) many of those physical quantities usually present strong anomalies. To 

identify such changes in a physical system it is necessary to use a high temperature 

resolution technique with a high signal to noise ratio. Nowadays several techniques 

have been developed for monitoring critical behavior in different kind of materials 

crossing the phase transitions temperatures. The most widely used among them are: 

Adiabatic Scanning Calorimetry (ASC) [34], Nonadiabatic Scanning Calorimetry 

(NAS) [35], and several ac-Calorimetry [36, 37, 38, 39]. The main experimental 

requirement for all of them is the possibility to properly work with a small as possible 

temperature gradient created in the material under study and be of application for a wide 

temperature range. Due to some limitations not all the techniques can be used 

complying with the experimental conditions mentioned above. In respect to this, ac-

Photopyroelectric calorimetry (PPE) [40] in several setup configurations has been 

proved to be effective in the study of materials with the phase transitions owing to its 

following advantages [41]: 

● it enables to cover a wide temperature range using different sensors; 

● high temperature resolution; 

● PPE technique is sensitive even to small temperature variations (~mK); 

● the possibility to work with a small amount of sample, as a consequence, the 

thermal equilibrium state in the vicinity of the critical temperature can be achieved more 

easily; 

● simultaneous determination of the parameters are achieved for the thermal 

transport variables  (diffusivity, conductivity, effusivity) as well as for the equilibrium 

state (heat capacity) by measuring at a fixed frequency. 
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● it enables to detect the presence of latent hear over first order transition; 

● the frequency range used can be almost 6 decades; 

● simple setup design and possibility to perform simultaneous studies in 

combination with other measurements (light scattering, polarization microscopy 

imaging…). 

2.1.2. Pyroelectricity. The physical phenomena underlying the PPE technique is 

the pyroelectric effect. Pyroelectricity appears when a spontaneous polarization Ps is 

induced as a result of a temperature change in a noncentrosymmetric, piezoelectric 

crystal. The equation for pyroelectric coefficient p can be written as 

 sdP
p

dT
 . (2.1) 

The explanation of this effect is given as follows. The crystalline structure of such 

kind of materials is divided in sections called domains whose dipolar moment always 

differ from 0 and are polarized in one distinct direction within each domain. If a 

temperature field is not applied to a whole material, the total polarization is equal to 0, 

due to the self-compensated processes caused by the chaotical orientation of domains. 

To produce polarization in a material we have to align them. In pyroelectric materials 

this is enabled by applying thermal energy.  

Suppose we have a slab of pyroelectric transducer whose permanent orientation is 

oriented perpendicularly to the surfaces of the sensor. The polarization charges are in an 

electrical balance due to distribution of opposite free charges in the electrodes (fig.2.1 

a) and if we connect cables to the electrodes to close a circuit, no current will be 

flowing. If a small temperature gradient is applied to its faces, it causes the appearance 

of spontaneous polarization in the slab, consequently the number of free charges 

decrease. Hence, the redistribution of free charges on the electrodes, to achieve an 

electrical equilibrium state, leads to a current flow in a connected circuit. (fig. 2.1 b). 
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Fig. 2.1. Schematic illustration a nature of pyroelectricity. 

The main requirements that make a pyroelectric detector be suitable for practical 

applications are pointed out below: 

● low heat capacity to be able to achieve larger temperature differences between 

the surfaces of the sensor; 

● high pyroelectric coefficient p and small dielectric constant p , which leads to a 

high value of the figure of merit given by the ratio / pp  ; 

● large Curie temperature value. 

Nowadays, among others sensors, in photopyroelectric investigations the most 

adopted materials are lithium tantalate (LiTaO3), and lithium niobate (LiNbO3). Their 

main parameters are listed in table 2.1. Due to its higher pyroelectric coefficient, 

LiTaO3 produces a higher PPE signal than LiNbO3.  

As seen, also, they possess a relatively high value of Curie temperature, which 

allows to use them in a wide temperature range, in contrast to other well known 

pyroelectric detector β-polyvinylidene (β-PVDF), whose Curie temperature is about 

130
0
C ,which restricts its operating diapason below 100

0
C [42]. 

Table 2.1. 

Some properties of lithium tantalate (LiTaO3) and lithium niobate (LiNbO3)  

 LiTaO3 LiNbO3 

Symmetry Trigonal Trigonal 

Point group 3m 3m 

Curie temperature (
0
C) 604 1133 

Melting temperature (
0
C) 1650 1253 

Pyroelectric coefficient (Cm
-2

/
0
C) 2.3×10

-4 
0.4×10

-4
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In practice the detector for PPE technique has a form of slim slab to provide 1-

Dimentional experimental conditions. The slab surfaces are coated by an electrical 

conductive material (depending on the technique configuration the electrodes can be 

opaque or transparent) and connected to a lock-in amplifier. The sample is placed on the 

sensor, and to provide a good thermal contact between them a thermal grease is 

generally used for solid materials, which is not necessary if we deal with fluids. A 

temperature oscillation is maintained on the sample by illuminating the sensor or the 

sample with a modulated light beam (in what is called the front or back configurations), 

propagates to the sensor and creates the pyroelectric signal. Simultaneous detecting of 

its phase and amplitude allows to retrieve the thermal properties of the sample under 

study. 

 

2.2. Multilayer system resolution 

At present, several setups of the PPE technique have been developed, which can 

be separated in two big groups depending on the position of the incident light beam: 

back detection (BPPE) if the sample is illuminated and front detection (FPPE) if it is the 

sensor. Moreover, the sensors used in them can be: opaque or transparent, thermally 

thick or thermally thin, the detail description of the different photopyroelectric methods 

for optical and thermal investigation have been considered in [40, 41, 43, 44]. In this 

chapter we consider the two PPE setups that we have used in our investigations: 

● back-detection configuration (with the added conditions that both sample and sensor 

are thermally thick and opaque); 

● front-detection configuration (with the added conditions that both sample and sensor 

are thermally thick and opaque). 

2.2.1. Back-detection configuration BPPE 

Let’s consider the multilayer system depicted on fig. 2.2. It consists of a gas (g), 

the opaque sample (s), a coupling fluid (f), the pyroelectric detector (p) and a backing 

environment. A solid sample is illuminated by a monochromatic modulated light beam 

with an angular frequency ω, intensity I0 (W/m
2
) and wavelength λ. A thin layer of 
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grease (f) is used to assure the thermal contact between the sensor (p) and the sample 

(s). All thicknesses are taken into account. 

 

Fig. 2.2. Geometry of the PPE in back–detection configuration with opaque sample. 

The light absorbed by the sample is converted into heat. This heat wave 

propagating from the sample to the pyroelectric detector creates a temperature field 

distribution in the sensor of the form 

 
p p

(ls lf lp)

p (ls lf)

1
T T (x) dx

l

  

 

  . (2.2) 

This temperature field produces a potential difference V between the sensor surfaces, 

and a electrical current in a circuit connected to a lock-in amplifier. Considering the 

sensor as an equivalent resistance-capacitance circuit connected in parallel with the 

current source, and taking into account the relation between the pyroelectric signal and 

the temperature field, the pyroelectric output voltage can be expressed by this equation 

[43] 

 p

p
T

pli
V



 
 , (2.3) 

where   is the electrical time constant,  p the pyroelectric coefficient and 0 r    the 

dielectric constant of the pyroelectric. 

As seen from (2.3) to find a photoelectric signal it is necessary to solve the one-

dimensional problem of the temperature distribution in a multilayer system (5 layers in 

this case). To do this we use the heat diffusion equation and solve it for each layer 
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1
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T T
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 
, (2.4) 
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where i = g (gas), s (sample), f (fluid), p (pyroelectric sensor), b (backing environment), 

Di the thermal diffusivity of a particular layer corresponding to i. Each of them is 

characterized by their own spatial range, therefore the general solution for this system is 

written in the form: 

- gas expg gT A x    ; 0x  ; 

- sample    exp exps s sT B x C x    ; 0sl x   ; 

- fluid    exp expf f s f sT D x l E x l            ; ( )s f sl l x l     ; (2.5) 

- pyro    exp expp p s f p s fT F x l l G x l l          
   

; ( ) ( )p f s s fl l l x l l       ; 

- backing  expb b p f sT H x l l l    
 

; ( )s f px l l l    . 

In the system of equations (2.5) A, B, C, D, E, F, G, H are constants. To find them out, 

we apply the continuity of temperature and of heat flux crossing the boundary between 

the layers. The illumination with intensity I0 is completely absorbed by the sample and 

transformed into heat. This imply an energy input at the sample surface (x=0) which 

will be incorporated to the continuity of heat flux as a term I0/2; thus, the boundary 

conditions of temperature continuity are given in the form: 
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 ; (2.6) 

and for the heat flux 
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Substituting (2.6) and (2.7) into (2.2) we get the expression for the temperature 

distribution 
p

T  
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where    1 / 1ij ij ijR b b   , and /ij i jb e e  are the thermal effusivities ratio of layers, i, j = 

g, s, f, p, b; Rs is the reflection coefficient of the sample. The constants Λ  and Σ  are 

defined as  
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Now we introduce equation (2.8) into (2.3) to obtain the photopyroelectric signal V 

produced in the sensor 
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To avoid the electronic influence in the final result, a normalization procedure is 

proposed, which consists of dividing the signal obtained by equation (2.10) by the 

signal of a bare pyroelectric. To do this, it is necessary to find out the temperature field 

in a sensor without a sample p bare
T . When a detector is directly irradiated, we have 

 exp s sl ~  exp s sl ~1. Therefore, the denominator in the square brackets of the 

equation (2.8) is reduced, hence we have 
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The photopyroelectric signal in this case is 
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By dividing (2.10) over (2.12) the normalized PPE signal will have the following form 
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So far, this expression is valid both for thermally thick or thin sensor, we are now going 

to particularize it to our particular experimental setup. As was mentioned above, we are 

going to work with thermally thick detectors, so we can assume p pl
e

 ~0. Secondly, the 

backing environment and the gas are the same thus b=g. In the third place, it is well 

known that the gases possess low effusivity values so we can consider gpR ~ gsR ~ 1  and 

   1 / 1pg sgb b  ~ /p se e . Taking into account these approximations, after mathematical 

manipulations (2.13) is modified to give  
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Let’s now study nV  as a function of the illumination frequency for the case study of Ni 

as sample and LiTaO3 as sensor, for which Ds=22 mm
2
/s, es=19000 Wm

-2
K

-1
s

1/2
, ep=3750 

Wm
-2

K
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s
1/2

, ls=1 mm, Rs=Rp=0, eliminating the fluid layer for simplicity (lf=0, 

1~~ ffff ll
ee


), and let’s represent equation (2.14) as a function of the square root of 

the modulation frequency (see fig.2.3) [19]. As it is a complex number, we will 

represent both the natural logarithmic of the amplitude and the phase. 

 

Fig. 2.3. Phase and natural logarithm of PPE signal versus square root of frequency.  

As seen from fig. 2.3 three different zones can be distinguished: 

● a first one at low frequencies, where the sample is not thermally thick, and there 

is neither linearity nor parallelism. This is a useless zone. 

● the second zone is an intermediate one. The parallelism is being observed 

between phase and natural logarithm which signals a transition from thermally thin to 

thermally thick mode, but there is still not a complete linearity and parallelism. It 

produces a significant error in extracting information on the sample properties; 

● the third and last one is known as the linear zone whose main feature is the 

presence of a large linear region with good parallelism between both variables (better 

than 99%), which produces a more than acceptable error in calculating the thermal 

properties of a sample. To achieve this region, the sample must be thermally thick. 
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The analytical expression of a normalized PPE voltage (2.14) in the third zone (

s sle
 ~0, the sample is thermally thick) can be obtained in the following form, assuming 

that the gas contribution can be neglected and that the thickness of the coupling grease 

fl  is neglectable,  

 2 exp[ ]
p

n s s

p s

e
V l

e e
 


, (2.15) 

From which the natural logarithm of the amplitude and the phase can be extracted to get 
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 (2.16) 

As expected, both are linearly depending on f  with the same slope m, from which the 

thermal diffusivity D of the sample can be retrieved 

 /2

s sm  l D , (2.17) 

moreover, the thermal effusivity es can be calculated from the vertical shift d between 

the two lines on fig. 2.3 using the formula below 
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s pe e
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. (2.18) 

This is a basic step in thermal characterization of solids – the standard frequency scan at 

a fixed temperature. Nevertheless some details should be emphasized. Here it was 

assumed that we do not have thermal grease and our multilayer problem has been 

reduced to a two-layer (sample-sensor). If instead of taking 0fl  , in (2.14) we 

introduce nonzero thickness for the fluid, we will see that slope on figure 2.3 increases, 

as consequence, the thermal diffusivity of sample will be underestimated [45]. To 

overcome this underestimation caused by the coupling grease it has been proposed the 

use of a transparent pyroelectric sensor and a transparent fluid in combination with a 

self-normalization procedure. The detailed description of this method is presented in 

reference [46]. Other effects which might affect the linearity and parallelism of the 

curves or introduce underestimations/overestimations of the thermal diffusivity have 

already been studied in detailed: the backing material, possible parasitic light, the 
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electronic noise, the piezoelectric contribution of the sensor [19]. Our experimental 

systems are designed to work under conditions in which these effects are minimized.  

Measurements as a function of temperature. Since the frequency scan has been 

performed at a reference temperature Tref and the values of diffusivity and effusivity are 

extracted using a linear fitting of the experimental data using equations (2.17, 2.18), the 

second step is to perform a temperature run at a fixed frequency, whose value belongs to 

the linear region. The appropriative equations which describe a temperature evolution of 

diffusivity and effusivity under these conditions are written below [47, 48] 
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where )()()( refTTT    is the phase difference; )(ln)(ln)( refTVTVT   is the amplitude 

difference; )()()( TTT   . Once we have the information about thermal diffusivity 

and effusivity it is possible to retrieve the temperature behavior of heat capacity cp(T) 

and thermal conductivity k(T), using the constituent relationship among them 
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      k T e T D T . (2.21) 

where  is the density of the sample under study. As seen from these four formulas the 

diffusivity depends solely on the phase of the PPE signal while the three other quantities 

conductivity, effusivity and specific heat are obtained by using both the amplitude and 

the phase of the pyroelectric signal. This is an important advantage, because the 

performance of a continuous temperature run enables to obtain the temperature 

evolution of all thermal parameters. In spite of this possibility, at the same time two 

undesirable problems can appear. From the experimental point of view the phase is 

always more stable in time than the amplitude of the signal due to laser instabilities or 

electronic problems; thus, in general, the thermal diffusivity curves are less noisy than 

the others. A second problem which sometimes arises has to do with the use of 

equations (2.20 and 2.21) to extract the thermal parameters of a phase transition of a 

particular material, around a critical point. It might happen that the combination of 



CHAPTER 2. Photopyroelectric calorimetry and experimental devices                                                              50 

amplitude and phase to obtain specific heat and thermal conductivity gives some 

artifacts in the shape of these last variables in the critical region, making it impossible to 

retrieve reliable curves of ( )e T , ( )pc T ,  k T . In these cases the physics of the transition 

is more complicated than the model used and, so far, there is no theory developed to 

cover those cases. 

2.2.2. Front-detection configuration FPPE 

The theory of PPE technique in front configuration, which is also known as 

inverse pyroelectric configuration, was developed by Dadarlat and coworkers [44]. In 

this setup the sensor in thermal contact with a sample is directly illuminated by the light 

beam and is mainly used to work with fluids, which do not need an additional thermal 

contact layer. Depending on the electrodes used as coating conductive layer for the 

pyroelectric sensor the FPPE configuration can be separated in two groups: FPPE with 

transparent electrodes and FPPE with opaque electrodes [41]. Moreover a theory for 

several working regimes has been developed for thermally thin/thick pyroelectric 

detector and sample [41, 49, 50]. Let’s briefly consider the situation depicted on fig.2.4. 

It is a four-layer system consisting of gas (g), pyrodetector slab (p), sample (s) and 

backing surrounding (b), where opaque sensor is directly irradiated by a modulated light 

beam,  same as on fig 2.3. 

 

Fig. 2.4. Geometry of the PPE in front–detection configuration with opaque sensor. 

The pyroelectric signal for such layer system is given by the following equation [43] 
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We follow an analogue procedure to the one for the back configuration and consider an 

optically opaque sensor so that the illumination is partially absorbed by the pyroelectric 

surface (this is taken into account through the reflection coefficient R). Under these 

assumptions, the complex FPPE signal will be expressed as [49] 
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where   is defined as 
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In equation (2.24) the following notation have been used 

 1 1exp[ ]; exp[ ]; / ; /s s p p s p b sS l P l b l e b e e     . (2.25) 

where , , , ,i i ie C k i g p s b   is the effusivity;   11 ; /i i i ii D D D f      , where   is 

the thermal diffusion length, and /C c k D   − the volume heat capacity. 

Several special cases can be pointed out for the FPPE signal (2.23): 

a) sensor and sample under study are thermally thin: p pl ≪1, s sl ≪1, exp[ ] p pl

~1 p pl , exp[ ] s sl ~1 s sl . Substituting these approximations in (2.24) gives that 

 
1

/p s s pC C l l


   . It enables a direct calculation of the specific heat of the sample. 

b) the pyroelectric is thermally thin and the sample is thermally thick: p pl ≪1, 

s sl ≫1, for   we obtain  
1

1

1p p p p pC l b l 


   . As seen   depends on diffusivity and 

effusivity of the sample and, as consequence, both the phase and the amplitude of FPPE 

signal are sensitive to the thermal properties of sample.  

In a further paper, [50] the particular configuration of thermally thick sensor and 

thermally thick sample was analyzed and it was shown that thermal effusivity and 

thermal diffusivity could be obtained from the phase of the pyroelectric signal, the 

amplitude or from the combination of both, being preferable the results obtained from 

the phase due to its stability compared to the amplitude. The experiments were 

performed on fluids. 
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But the extension of these techniques to solid samples is not straightforward, as 

the frequency scan of the normalized signal is highly sensitive to the thermal effusivity 

of the backing liquid [56, 57]. And thermal contact between sensor and solid sample is 

assured by the introduction of a coupling fluid layer, which will importantly modify the 

normalized PPE signal and the thermal effusivity will not be obtained accurately. We 

will show on Section 2.5 how we have overcome this situation along the work of this 

PhD thesis. 

2.3. Description of experimental devices 

2.3.1. At room temperature. To perform the measurement as a function of the 

modulation frequency in the back-configuration BPPE we made the following. The 

sample is in thermal contact with a detector which is connected to a lock-in amplifier. 

Lithium tantalate LiTaO3 has been used as pyroelectric sensor with surfaces covered by 

metallic electrodes Ni-Cr whose thickness is about ~1µm. As an electrical conjunction 

between the amplifier and sensor, thin copper wires have been used. The wires are 

connected to the electrodes by a high conductive silver paint to provide a good electrical 

contact. The thermal contact of sample to sensor is guaranteed by a silicon grease whose 

thickness does not exceed a few microns. The setup is depicted on fig.2.5 schematically. 

 

Fig. 2.5. Scheme to perform frequency scans in BPPE configuration at room temperature. 
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An opaque sample was irradiated by a low power (5mW) modulated He-Ne laser 

beam (λ=632nm). In that way the thermal energy deposited on the sample is small and 

also the induced temperature gradient. This will help to quickly achieve thermal 

equilibrium when the temperature is changed and be able to do very slow temperature 

runs with a high signal to noise ratio. This is because the temperature oscillations in the 

sample are of the order of 1 mK, while the dc contribution is estimated at about 2 mK 

[60]. 

In case the sample is transparent for the laser wavelength, its surface is coated 

with a graphite paint in order to increase the absorption, and therefore to have more PPE 

signal. 

The lock-in amplifier realizes a double function. It controls the modulation 

frequency of illumination; on the other hand it amplifies and processes the signal from 

the detector PPE whose frequency is the same as the modulation of the laser. The 

working principle of the amplifier is based on a bandpass filter synchronized with the 

frequency of the PPE signal. This line will make the frequencies outside the bandwidth 

automatically filtered. Moreover, it provides gain, amplifying the received signal [51]. 

To eliminate the random electronic noise of the same frequency as the one of the 

collected signal, the lock-in also has a variable integration time. In addition, to minimize 

the problems associated with noise induced by currents, all components of the 

measuring system are placed into a Faraday’s cage and connected to the earth. Finally, 

the lock-in transmits the amplitude and phase of the PPE to a computer, where they are 

stored for further analysis. To eliminate possible parasitic light effects (which appear 

when some amount of radiation falls on the pyroelectric surface), a mask with a hole is 

placed over the sample so that only the latter is illuminated [19].  

In fig. 2.6 a frequency scan at room temperature is shown, for a paraelectric 

crystal Pb2P2S6 cut perpendicularly to [010] direction. As seen, the graph can be 

separated by two different zones: with linearity (a) and without it (b): 
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Fig. 2.6. Frequencies scan at room temperature for paraelectric crystal Pb2P2S6. 

a) with linearity. The typical linear dependence which occurs in a range 1~14Hz, 

can be used to accurately calculate the thermal properties of sample, it signals that our 

experimental conditions are in agreement with the theory described above; 

b) without linearity. Around 16Hz (for this thickness) the linearity is drastically 

distorted even if sample is opaque and there is no influence of a parasitic light. The 

origin of this distortion is related to the fact that both the sensor and the sample are also 

piezoelectrics. The thermal strain induced in a sample by the thermal wave is 

transmitted to the detector; consequently, the generated pyroelectric signal also has the 

contribution of a piezoelectric voltage. When this effect is very important and masks the 

linear region, a multiparametric fitting should be performed as described in [52] to 

extract the thermal diffusivity from this kind of curves. 

2.3.2. Experimental measurements between 20K and 320K 

Once we have measured the thermal diffusivity at room temperature we are 

interested in investigating the thermal properties of the samples in a wide temperature 

range, which will allow to study their behavior around phase transitions. In order to 

perform this kind of studies, the pyroelectric and the sample must be placed in cryostats. 

Depending on the temperature range of interest, two different cryostat systems have 

been used: a closed cycle He cryostat and a liquid nitrogen cryostat. 
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In the first place, we describe the experimental setup which enables to cover the 

interval 20-320K. To perform such measurements, a conventional closed cycle He 

cryostat with a vertical configuration has been modified by Janis Research Company to 

work as an ac photopyroelectric calorimeter (fig. 2.7) in collaboration with our research 

group. The closed cycle refrigerator (CCR) provides a convenient means of cooling 

samples to temperature down to about 20K. It requires no liquid refrigerant as cooling 

source. Instead, a closed loop of helium gas is compressed and expanded, based on the 

Gifford-McMahon (G-M) thermodynamic cycle. The refrigerator operates as follows: 

the sample holder is suspended from a vibration isolated stage within an exchange gas 

tube, which in turn is mounted on the refrigerator second stage. Helium exchange gas 

forms a thermal link between the refrigerator and the adsorber; the exchange gas 

transfers heat from the sample holder to the refrigerator, cooling the sample holder in 

process. The cooling system consists of: 

− Compressor: provides a supply of high-pressure helium gas to the cold head; 

− Cold Head: expands the helium gas to cool the sample holder; 

− Gas Lines: these lines are connected between the compressor and cold head 

supply and return fitting, and transfer the helium gas between the two 

components; 

− Vacuum Jacket: this is bolted to the cold head. It includes an evacuation valve, 

safety pressure relief, electrical feedthroughs, and a clamped vacuum seal for 

easy access to the sample space; 

− Radiation Shield: this bolts to the cold head first stage. It is used to intercept 

room temperature radiation before it reaches the sample, allowing the lowest 

possible sample temperature to be achieved.; 

− Temperature controller: this may be provided for use in monitoring and 

controlling the sample temperature. 

A first advantage of this system is that there is no refrigerant consumption. A 

second one is the vibration isolation system which eliminates mechanical vibrations on 

the sample holder coming from the engine located at the head of the cryostat and which 

would introduce a piezoelectric component in the PPE signal [19]. The particular 
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frequency for the measurements is selected within the linear region described in the 

previous sections and a double check is performed on the residual noise due to 

mechanical couplings to obtain a signal as noiseless as possible.   

     

Fig. 2.7. Scheme of the Closed cycle He cryostat in vertical configuration: 1 – modulated heat source; 

2 – sample; 3 – pyroelectric detector; 4 – sample holder; 5 – output tube for low-pressure He gas; 6 – 

input tube for high-pressure He gas; 7 − optical window; 8 – triple position valve for creating a 

vacuum and introducing a helium gas in an internal chamber; 9 – external chamber; 10 − internal 

chamber. Lock-in – EG & G Instruments, DSP Mod 7265. Temperature Controller: Lake Shore 332. 

After the system is adjusted it enables to perform high resolution measurements 

in the range ~20−320K, with controlled continuous heating and cooling rates down to 5-

10mK/min. In this way the system can be used to perform a thorough phase transition 

study in a particular temperature range or to measure thermal properties in a wide 

temperature interval. 

 



CHAPTER 2. Photopyroelectric calorimetry and experimental devices                                                              57 

2.3.3. Experimental measurements between 77K and 400K 

Due to the engineering limitations, the CCR cannot work with temperatures 

higher than 320K. Nevertheless, in some of our samples the phase transitions take place 

at temperatures that exceed this limit. To overcome this problem we used another 

cryostat system (fig.2.8) whose working principle is based on liquid nitrogen.  

 

Fig. 2.8. Scheme of experimental setup for measurements as a function of temperature in the range 77-

400 K. Laser, He-Ne. Temperature Controller: Oxford Instruments Mod ITC 502. Lock-in. EG & G 

Instruments, DSP Mod 7265. Cryostat: Optistat
DN

. 

The cryostat is designed in a way that the sample holder introduced in an internal 

chamber has a vertical orientation (fig. 2.9). The cooling process is performed through a 

reservoir placed on top of a central camera and filled by liquid nitrogen. The nitrogen is 

being distributed through numerous capillaries promoting heat exchange and cooling 

the sample. During the measurements it is important to optimize the flow by a 

controlling valve to obtain a smooth temperature control, for which the PID 

(proportional-integral-derivative) of the controller has been optimized. 

Thermal contact in the cryostat occurs by means of the gas which surrounds the 

sample and acts as a heat exchanger. The minimum temperature possible to achieve is 
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77K, due to the use of liquid nitrogen as a refrigerant. The temperature ramps are made 

via the temperature controller with an accuracy of ± 0.01K in temperature range 

between 77K and 200 K and ± 0.1K if we measure between 200 and 400K. The systems 

permits to work with rhythms from 100mK/min measuring in a wide temperature range 

and down to 2mK/min for a high resolution runs. To avoid heat exchange between the 

inner chamber and the environment it is necessary to make vacuum in the external 

chamber which acts as a thermal insulator and promotes the optimization of the 

temperature control. In our case, we perform a vacuum with a rotary pump, reaching 

approximately 10
-3

 mbar [19].  

 

Fig. 2.9. Scheme of a cryostat for investigations between 77-400K. 

 

2.4. Transport thermal properties of lithium tantalate LiTaO3 pyroelectric 

sensor 

2.4.1. Introduction. As it was mentioned in the beginning of the chapter, LiTaO3 

is commonly used as the sensor in many ac photopyroelectric calorimeters in the 

standard back configuration (BPPE), to obtain thermal diffusivity D(T) as well as 
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thermal effusivity e(T) of solid and liquid samples, studying their phase transitions. The 

specific heat cp(T) of those samples is thus obtained by means of the constitutive 

relation: 

 
)(

)(
)(

TD

Te
Tcp


 , (2.26) 

where   is the density. In order to measure the thermal effusivity e(T) and as part of a 

normalization procedure, it is necessary to know the thermal effusivity of the detector as 

a function of temperature ep(T). So far, this has been evaluated around room 

temperature and in the region between 80-150 K [53, 54, 55]. When used as a sensor 

along other temperature ranges, extrapolations of those results must be used, which is 

not difficult between 150 and 300 K, as it clearly does not change much, but which is 

much more difficult for temperatures lower than 80 K; besides, there are no calibrations 

above 340K. This is why a standard calibration curve is of interest in the full working 

range, which has never been published before. Our aim was to obtain ep(T) in a very 

wide temperature range (15-400 K) independently measuring the specific heat and the 

thermal diffusivity of LiTaO3 and using Eq. (2.26) to retrieve ep(T).  

2.4.2. Results and discussion. The thermal diffusivity was obtained using our ac 

photopyroelectric calorimeters in the back configuration using LiTaO3 both as sensor 

and sample. The specific heat was measured using a commercial Physical Properties 

Measurement System by Quantum design. The measured specific heat and thermal 

diffusivity are shown in fig. 2.10. For specific heat certain points were taken at 

particular temperatures to find the trend. In the case of thermal diffusivity, the line is 

made up of thousands of points. In order to obtain the thermal effusivity of the sensor, 

analytical expressions were found for the specific heat and for the thermal diffusivity 

(fitting the experimental points to polynomials of high degree) to mix them using Eq. 

(2.26) and the result is shown fig. 2.11. In that graph we have also plotted the values 

found in literature for LiTaO3 [53, 54, 55]. Regarding the values around room 

temperature, our values are just a little bit higher but this can be do due to the difference 

of the uncertainties in our measurements and in the published ones, whose relative 

standard uncertainty seems to be around 5%-6%, where error bars are shown [54, 55]. 
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There was a contradiction between Bentefour et al. [54] and Longuemart et al. [55] as 

the conclusion of the first work was that thermal effusivity increased with temperature 

while the other one said the opposite; in general, an increase of thermal effusivity with 

temperature is expected in any material (unless there is a phase transition, when some 

sort of singularity might appear) so the values in [55] where a little bit surprising. Our 

results support the fact that it is a slowly increasing function, our slope being softer than 

the one measured in [54]. Concerning the results in the region between 80-150 K, our 

results differ in the sense that the important change in slope appears at lower 

temperatures. In the three published cases, the thermal effusivity of LiTaO3 was 

measured using different photopyroelectric techniques but in all cases they relied on the 

knowledge of the thermal properties of a reference material as a function of temperature 

(GaAs in [53], ethylene glycol in [54] and ethanol in [55]) which severely limits the 

temperature range of study and introduces another factor of uncertainty. In our case we 

have obtained the thermal diffusivity by only using LiTaO3 both as sensor and sample, 

so we do not depend on the reliability of the thermal properties of other reference 

materials. This is the reason why we have been able to evaluate it in a wide temperature 

range, for the first time. The so obtained curve for LiTaO3 thermal effusivity can be 

well reproduced by a polynomial of 8
th
 degree, whose coefficients are given in Table 

2.2.  

 

Fig. 2.10. Thermal diffusivity and specific heat of LiTaO3 [56]. 
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Fig. 2.11 Comparison of the thermal effusivities of LiTaO3 obtained by different authors [56]. 

Table 2.2. 

Coefficients used for the polynomial fit which can reproduce the thermal effusivity result shown in 

Fig. 2.11. ep(T)= a0+a1*T+a2*T
2
+a3*T

3
+a4*T

4
+a5*T

5
+a6*T

6
+a7*T

7
+a8*T

8
. [56] 

Coefficient Value 

a0 -1564.287039 

a1 137.3189895 

a2 -1.945805029 

a3 0.01748334652 

a4 -1.008714294 × 10
-4

 

a5 3.695680593 × 10
-7

 

a6 -8.283364153 × 10
-10

 

a7 1.034628129 × 10
-12

 

a8 -5.514663687 × 10
-16

 

 

2.4.3. Conclusions. The thermal effusivity of the photopyroelectric sensor 

LiTaO3 has been found in the wide temperature range 15-400 K, an information which 

is extremely useful when LiTaO3 is used as a sensor in different pyroelectric devices. In 

particular, its knowledge is necessary when using it as a detector in ac photopyroelectric 

calorimeters in the back configuration to extract the specific heat of samples as a 

function of temperature. For instance, we have used that curve when obtaining the 

specific heat of the magnetic system EuCo2As2 around the paramagnetic to 

antiferromagnetic phase transition which appears when the Eu
2+

 spins order around 
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41K, having studied its critical behavior. All these results (the ones about the thermal 

effusivity of the sensor and those on the magnetic transition) have already been 

published and can be found in [56]. 

2.5. FPPE technique to measure the thermal effusivity of solids 

2.5.1. Introduction. As stated in section 2.2.2, the PPE technique in the front 

configuration provides an accurate method to measure the thermal effusivity of liquids 

in the case in which both sample and sensor are thermally thick but it can not be directly 

applied to solid samples, since the fluid layer that must be introduced to ensure the 

thermal contact between detector and sample modifies the normalized PPE signal.  

An alternative procedure to overcome this issue is to change the frequency scan 

by a thickness scan of the coupling fluid layer at a fixed frequency [61]. It is shown that 

this PPE signal is sensitive to the thermal effusivity ratio between coupling fluid and 

backing solid [62-64]. This method has been used to characterize the thermal effusivity 

of two families of semiconductors when varying the doping level [65, 66]. However, 

this method is delicate to manage since it requires the knowledge of the absolute 

thickness of the coupling fluid layer. Moreover, it is not useful to measure the 

temperature dependence of the thermal effusivity of solids, which is one of the most 

relevant applications of PPE calorimetry. 

In our research group, we have developed a procedure to measure the thermal 

effusivity of solids using the FFPE doing a frequency scan, starting with the modeling 

of the three-layer system (pyroelectric sensor, coupling fluid and test solid), applying it 

to the evaluation of the thermal effusivity of different solid materials at room 

temperature and ending with its application to the measurement as a function of 

temperature, a phase transition in particular.  

2.5.2. Resolution of the three layer system. In a three layer system consisting of 

an opaque pyroelectric slab of thickness Lp, a fluid layer of thickness Lf and a thick solid 

sample (fig. 2.12), the PPE signal (S) is proportional to the spatially averaged 

temperature of the pyroelectric slab 
pT  [43], 



CHAPTER 2. Photopyroelectric calorimetry and experimental devices                                                              63 

 
01
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p
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p

S ab T ab T z dz
L 

   ,   (2.27) 

where a is a frequency-independent factor that depends on the physical properties of the 

detector (pyroelectric coefficient, dielectric constant and permittivity) and b is a 

frequency-dependent factor that accounts for the influence of the detection electronics. 

 

Fig. 2.12. Geometry of the problem [67]. 

The temperature of the pyroelectric slab is obtained by solving the heat diffusion 

equation for the three-layer system. If we neglect heat losses at the front surface of the 

pyroelectric sensor, the temperature at each layer is given by 

 ( ) p pq z q z

pT z Ae Be


   (2.28 a) 

 
( ) ( )
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sT z Fe
 

 , (2.28 c) 

where /q i D  is the thermal wave vector. Subscripts p, f and s stand for pyroelectric 

detector, coupling fluid and sample respectively. Constants A, B, C, E and F are 

obtained from the boundary conditions at the interfaces: 

• Temperature continuity: 

p p
p fz L z L

T T
 

                                     
( )( ) p fp f

f s z L Lz L L
T T
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                            (2.29 a) 

• Heat flux continuity: 
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• Illumination at the front surface: 

 
0
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 . (2.29 c) 

 By substituting Eqs. (2.28) into Eqs. (2.29), the temperature of the pyroelectric 

slab is obtained. Then, from Eq. (2.27), the PPE signal (S) is obtained. For 

normalization purposes, i.e. to eliminate the frequency dependence of the detection 

electronics, the PPE signal obtained for the three-layer system is divided by the PPE 

signal obtained for the bare pyroelectric slab. As a consequence, the normalized PPE 

signal (Sn) is 

pthree layers three layers

n

pyro p pyro

ab TS
S

S ab T

 
  

     
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where 
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e
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e
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Note that the normalized signal depends neither on a or b, indicating that the 

frequency dependence of the detection electronics is removed. On the other hand, Eq. 

(2.30) has been written in such a way that the correlation between parameters is clearly 

seen. Accordingly, Sn depends on four parameters: /f fL D , /p pL D , es/ef and ep/ef (as 

the sample is thermally thick, Sn does not depend on Ds). Since Lp, Dp, ep and ef are 

known, only two unknown parameters remain: the fluid “thermal thickness” /f fL D  

and the effusivity ratio es/ef. Therefore, a fitting of the frequency behaviour of 

normalized PPE signal, Sn, to Eq. (2.30) allows retrieving es together with /f fL D  as a 

by-product. 

2.5.3. Experimental results 

In order to verify the validity of the method we have performed PPE 

measurements on a set of samples, covering a wide range of effusivities: polymers, 

glasses, dielectric crystals, alloys, ceramics and metals. These samples, with thicknesses 

larger than 5 mm in order to satisfy the thermally thick conditions, are placed on top of 
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a LiTaO3 pyroelectric crystal 0.32 mm thick. A very thin layer of high-conductive 

silicone grease (Heat sink compound, Dow Corning) is used to ensure the thermal 

contact. A diode laser (  = 656 nm) of 50 mW impinges on the free pyroelectric 

surface. Its intensity is modulated by a periodic current governed by the computer and 

serving as the lock-in reference. The PPE current produced by the detector has been fed 

into the digital lock-in amplifier.  

Only the phase of the normalized signal will be used in this experimental section 

to retrieve the thermal effusivity. This is due to the fact that phase of the PPE signal is 

more stable than its amplitude, since the latter is sensitive to the intensity fluctuations of 

the laser. 

 First of all, we have measured the room temperature thermal effusivity of the 

Heat sink compound that we have used as coupling fluid. We have put a 3 mm thick 

layer of this paste directly on top of the pyroelectric sensor. Fig. 2.13 shows by dots the 

frequency dependence of the phase of the normalized PPE signal for Heat sink 

compound. The continuous line is the fitting to Eq. (2.30) for a thermally thick fluid. 

The retrieved thermal effusivity for the measurement shown in fig. 2.13 is 968±3 

Ws
0.5

m
-2

K
-1

. After repeating the same measurement 5 times, the thermal effusivity of 

the Heat sink compound was found to be ef = 970±8 Ws
0.5

m
-2

K
-1

. This value will be 

used in the following fittings. 

 

Fig. 2.13. Frequency scan of the phase of the normalized PPE signal for Heat sink compound. Dots are 

the experimental data and the continuous line is the fitting to Eq. (2.27) [67]. 
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Fig. 2.14 a shows the room temperature frequency scan of the phase of the 

normalized PPE signal for three selected materials: A high effusivity sample (Cu), a low 

effusivity sample (polyimide, PI) and a sample with effusivity close to the effusivity of 

the pyroelectric sensor (KCl). The whole frequency range is shown in order to verify 

that n  converges to zero at high frequencies. However, the highest sensitivity to the 

solid effusivity is produced at low frequencies (we have checked this issue doing a 

whole set of simulations). In fact, all the fittings performed up to 155 Hz are worse that 

those performed up to 50 Hz, i.e. close to the zero-crossing frequency. Accordingly, to 

obtain the thermal effusivity of the whole set of calibrated solids only the frequency 

range 1-50 Hz has been used. Fig. 2.14 b shows the room temperature experimental 

results in such a range for most of the solids measured in this work. Dots are the 

experimental data and the continuous lines are the fits to equation 2.30. The retrieved 

values are given in table 2.3 and are in good agreement with the tabulated effusivities. 

In all measurements /f fL D  falls in the range 0.01-0.03 s
0.5

, which corresponds to 

reasonable grease thicknesses of 5-15 m .  

 

Fig. 2.14. Experimental frequency scans of the phase of the normalized PPE signal: (a) For three 

selected materials (Cu, KCl and polyimide (PI)) in the whole frequency range and (b) for a wide set of 

solid samples at low frequencies. Dots are the experimental data and the solid lines are the fits to 

equation (2.30) [67]. 
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Fig. 2.15. Temperature dependence of the thermal effusivity of CoO around its antiferromagnetic 

phase transition [67]. 

The main application of this technique is to measure the temperature dependence 

of the thermal effusivity of solids from a single heating or cooling run. In particular, we 

are interested in the characterization of the thermal properties across phase transitions. 

We proceed as follows. First, at a fixed temperature we measure the thermal thickness 

of the grease /f fL D  from the frequency scan of the normalized phase. Then we 

choose the frequency at which the normalized phase is insensitive to the thermal 

thickness of the grease, f = 1 Hz in our setup (a LiTaO3 sensor 0.32 mm thick). By 

keeping this frequency fixed, we vary continuously the temperature while recording the 

phase of the PPE signal, once for the bare pyroelectric detector and then for the sample. 

In this way, we obtain n  as a function of the temperature. Finally, by solving equation 

(2.30) at each temperature, we retrieve es(T). This method requires knowing ep(T), Dp(T) 

and ef(T). The two first properties are known for LiTaO3 whereas the latter, as a first 

approach, is kept fixed. This assumption is not very restrictive since the characterization 

of phase transitions involve narrow temperature ranges. In Fig. 2.15 we show the 

temperature dependence of the thermal effusivity of a CoO single crystal around its 

antiferromagnetic phase transition at 288 K [68]. This result has been obtained in a 

continuous heating run at 60 mK/min in order to obtain low noise data and clearly 
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demonstrates the ability of this method to measure the thermal properties across phase 

transitions with high resolution. 

Table 2.3.  

Room temperature thermal effusivity (es) of the materials studied in a paper [67] 

Material es (Ws
0.5

m
-2

K
-1

) es literature (Ws
0.5

m
-2

K
-1

) [69-74] 

Cu 37800±1400 37150 

SiC 24300±1100 22000-26000 

Ruby 10900±400 11650 

Sn 10300±300 10510 

Pb 7040±200 7190 

CaF2 5180±150 5236 

LiTaO3 3860±80 3750 

KCl 3040±60 2998 

Glassy Carbon 2620±50 2530 

PZT 1760±50 1690 

Zerodur 1600±40 1719 

BK7 glass 1540±40 1549 

Low density PE 680±30 759 

PEEK 610±20 638 

PI (Cirlex) 520±20 513 

. 
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CHAPTER 3 

Physical properties of the ferroelectric family Sn(Pb)2P2S(Se)6 

 The structure of this chapter is aligned as follows: in the beginning a general 

description of the crystalline structure of this type of materials will be introduced. After 

that we briefly consider the phase diagrams of Sn2P2S(Se)6, Sn(Pb)2P2S6 and 

Sn(Pb)2P2Se6 mixed ferroelectrics by means of the investigation of different physical 

properties. And finally, owing to the main goal of this thesis, a review of the 

thermophysical properties such as specific heat, thermal diffusivity, thermal expansion 

and thermal conductivity for Sn(Pb)2P2S(Se)6 family will be given in a separate section. 

 3.1. Crystalline structure of Sn(Pb)2P2S(Se)6 compounds 

 Sn(Pb)2P2S(Se)6 are ion-covalent crystals. They comprise [P2S(Se)6]
4-

 anions 

combined with Sn(Pb)
2+

 cations into a three-dimensional lattice. The crystallographic 

unit cell comprises two formula units (Z=2). The anions [P2S(Se)6]
4-

 are described by 

the distorted point symmetry group ( 3m ) and include two deformed trigonal pyramids 

PS(Se)3 which in turns are interlinked by a P−P bond 2.202 Å long. The P−S bonds in 

the pyramids have different lengths in the range 2.015-2.035 Å. Tin atoms are located 

between the ions inside the polyhedron formed by 7 or 8 sulphur or selenium atoms. 

The lengths of the Sn−S ionic bounds (2.77-3.451 Å) are considerably larger than for 

P−S and P−P. The parameters for the monoclinic cell at ambient conditions for the 

Sn2P2S6 crystal are as follows: a=9.378 Å, b=7.488 Å c=6.513 Å, and the angle 

β=91.15
º
 [75, 76]. At room temperature three extreme compounds Pb2P2S6, Pb2P2Se6 

and Sn2P2Se6 posses centrosymmetric structure and they are in a paraelectric phase, 

whereas the crystal Sn2P2S6 has an acentric structure and belongs to a ferroelectric 

phase. In the paraelectric phase the crystalline structure of Sn(Pb)2P2S(Se)6may be 

described by the P21/c space group [77, 78].  

 The uniaxial ferroelectric crystal Sn2P2S6 undergoes a second order phase 

transition (PT) at T0 ≈ 337 K, having lowered its unit cell symmetry from P21/c to Pc 

[3]. As seen on figure 3.1 only the Sn atoms are shifted significantly in the [100] 

direction with respect to the locations of the metal atoms in the centrosymmetric state 
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[76]. This allows considering the Sn cation sublattice as ferroactive. At the transition 

from the ferroelectric phase to the paraelectric one, all four Sn atoms are shifted by 

nearly 0.26 Å along the [100] direction, reaching centrosymmetric state. In addition, 

two tin atoms are also displaced along [01 0 ] direction by 0.04 Å, while at the same 

time other two are shifted the same distance along [010] direction. The changes in the 

position of P and S atoms are extremely small [3]. These tin atoms migrations are the 

physical realization of the order parameter associated to the ferroelectric phase 

transition in Sn2P2S6. 

 

Fig. 3.1. The crystal structure of Sn2P2S6 ferroelectric phase [75]. The tin atoms positions in the 

paraelectric phase [79] are shown by red spheres.  

 Let’s consider the variation of the structural parameters when substituting S by Se 

and Sn by Pb. The replacement of S by Se leads to an increase in the unit cell volume 

from 456 Å
3
 for Sn2P2S6 to 505 Å

3
 for Sn2P2Se6. The same happens in lead compounds: 

the unit cell volume is changed from 462 Å
3
 to 513 Å

3
 for Pb2P2S6 and Pb2P2Se6, 

respectively. The difference in volumes for two sulphide and two selenide solid 

solutions is quite small in view of the difference in the atomic radii of octa-coordinated 

tin and lead atoms: 1.58 Å and 1.75 Å. Thus, the Sn
2+

 ions are in a less “squeezed” state, 

which is reflected in their ferroactivity, suggesting that compounds with cation radii 

bigger than that for Sn
2+

 should possess lower PT temperature [3]. 

 Sn2P2Se6 exhibits three phases; at room temperature it is paraelectric (P21/c) [76], 

at Ti ≈ 221 K  a second order transition takes place to a modulated incommensurate 
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phase, and at  Tc ≈ 193 K the crystal shows a first order transition to the ferroelectric 

phase (Pc) [80, 81]. The period of transverse wave modulation of spontaneous 

polarization in the IC phase is about 14 unit cells [82]. The structures in paraelectric and 

ferroelectric phases were accurately determined in references [83, 84]. The projection 

onto (010) plane of both low temperature (150 K) and room temperature (293 K) 

structures are depicted on fig. 3.2 a, b. In these figures the difference between them is 

not clearly seen, but if we put one on top of the other (fig.3.3), it is clear that the metal 

ions have changed their initial positions. Such a comparison between those two 

structures shows that tin ions are shifted about 0.13 Å from their individual 

centrosymmetric sites in the high-temperature phase to the corresponding tin position in 

the low-temperature phase. The shift, from the average Sn-position in the paraelectric 

phase with respect to the Sn-positions in the ferroelectric one, is about 0.30 Å and on 

average 10º off the vector a c
 

, which is displayed by arrows, thus these ions 

migrations provoke the appearance of spontaneous polarization. In additional, the 

average direction of these displacements is perpendicular to the modulation wave vector 

direction in the incommensurate phase [82, 85], showing the prime importance of such 

movements on the formation of the incommensurate phase (IC).  

 

Fig. 3.2. Crystalline structure of Sn2P2Se6 (projection onto (010)): a − paraelectric phase (293K); b – 

ferroelectric phase (150K) [83].  
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Fig. 3.3. Compared structures of Sn2P2Se6 in the paraelectric and in the ferroelectric phases. Arrows 

show the Sn
2+

 cations displacements at the transition to the ferroelectric phase [78, 84]. 

 Indeed, direct diffraction data obtained in [81] confirm the existence of a 

modulated structure for Sn2P2Se6 below 221K. Satellite reflection pairs indicating the 

appearance of a modulation are detected close to the main reflections in the oscillating 

crystal X-ray pictures obtained by rotation of the crystal around the [010] axis. The 

modulation wave vector lies in a plane perpendicular to the [010] direction. As fig. 3.4 

shows, the satellites (2 and 3) are seen as separate maxima whose intensities are 5 times 

smaller than for the central peak (1). The positions of two additional peaks in the 

crystallographic frame with their origin at the main reflection are given as 

±0.082a*±0.72c*. Note that the half-widths of the satellites and the main peak almost 

coincide. This indicates an incommensurate modulation with period about 12-14 times 

of the unit cell size in the paraelectric phase. Moreover, a smooth temperature variation 

of the modulation wave vector q (fig. 3.5) confirms the presence of a truly 

incommensurate structural modulation [3]. 
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Fig.3.4. Scattering intensity distribution in Sn2P2Se6 at 200K: 1 – is the main peak; 2 and 3 are 

satellites. Isolines represent levels (0.25; 0.50, 0.75) of the peak intensity for each reflection [3]. 

 The satellite reflections appear at Ti (221K) and their intensity increase 

monotonically below Ti signaling that the transition has a continuous character. At Tc 

(193K) the diffraction modulation effects vanish abruptly, meaning that Sn2P2Se6 

undergoes a first-order transition from IC into a polar ferroelectric phase. Such 

transformations also lead to the lowering of the symmetry down to Pc. In addition, 

reverse temperature run exhibits an opposite sequence of transitions with an observed 

hysteresis of about 0.5K for Tc and without it for Ti [3]. 

 

Fig. 3.5. Temperature behavior of the modulation wave vector for Sn2P2(S1-xSex)6 crystals [3]. 
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 Pb2P2S6 and Pb2P2Se6 crystals remain in the centrosymmetric phase (P21/c) till 0 

K [84]. Their crystalline structures are similar to the one presented above for Sn2P2S6 in 

the paraelectric phase (fig. 3.1). They differ only in the volume of the unit cell, due to 

the difference in the sizes of the ions which provoke a change in the crystal lattice 

parameters. The structures of Pb2P2S(Se)6 compounds based on data published in [85, 

86] are presented on fig.3.6. 

 

Fig. 3.6. Crystalline structure for Pb2P2S6 (on the right) and Pb2P2Se6 (on the left) crystals [87, 88]. 

 To quantitatively summarize this section, we introduce table 3.1 contained with 

main parameters which are characterize the monoclinic crystalline lattice of 

Sn(Pb)2P2S(Se)6 ferroelectric family. 

Table 3.1.  

Crystalline lattice parameters of Sn(Pb)2P2S(Se)6 ferroelectrics [3]. 

Lattice 

parameters 

Sn2P2S6 Sn2P2Se6 Pb2P2S6 Pb2P2Se6 

FerroPhase ParaPhase FerroPhase ParaPhase ParaPhase ParaPhase 

a, Å 9.378 9.362 9.616 9.626 6.612 6.910 

b, Å 7.488 7.493 7.708 7.671 7.466 7.660 

c, Å 6.513 6.550 6.805 6.815 11.349 11.819 

β, 
0 

91.15 91.17 91.03 91.01 124.09 124.38 

V, Å
3
 456 505 462 513 

  

3.2. Phase diagram study of Sn(Pb)2P2S(Se)6 mixed compounds 

 3.2.1. General shape of the phase diagram of Sn(Pb)2P2S(Se)6 ferroelectrics. 

From 1970, when Sn(Pb)2P2S(Se)6 crystals were firstly grown and their structures 

studied [89], till present days, huge efforts have been devoted to investigate the phase 

diagram of these solid compounds. Optical [90], thermal [91], elastic [92] and dielectric 
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[93] measurements indicate that Sn2P2S6 undergoes a second-order PT at 337K from the 

initial high-temperature paraelectric phase to the low-temperature ferroelectric one 

accompanied by a symmetry change P21/c → Pc. These structural modifications lead to 

the appearance of a spontaneous polarization, known as the order parameter in these 

materials.  

 Let’s discuss the general features of the “temperature-concentration” phase 

diagram of Sn(Pb)2P2S(Se)6 ferroelectrics by replacing Se ions instead of S in the anion 

sublattice and Pb instead of Sn in the cation one (fig.3.7) [91, 94]. Substituting S by Se 

in the Sn2P2(S1-xSex)6 series leads to a smooth splitting of the second order PT line 

(dashed line on fig. 3.7) into a first order (solid curves) and second order (dashed 

curves) phase transition lines. As the result, in the crystal Sn2P2Se6 two phase transitions 

occur: a second-order transition at Ti=221K and a first-order one at Tc=193K. 

 Replacing the Pb ions instead of the Sn ions in the cation sublattice of (Sn1-

yPby)2P2S6 compounds sharply reduces the temperature of the paraelectric-ferroelectric 

transition and at a lead concentration of 0.61, it reaches 4.2K. At concentrations larger 

than 0.61, PT is frozen, hence, such crystals are being paraelectric till the lowest 

temperatures. The character of the transition remains to be a continuous one [94]. 

 

Fig. 3.7. Phase diagram of Sn(Pb)2P2S(Se)6 ferroelectric crystals: The dashed lines indicate the second-

order phase transitions: from the paraelectric phase to the ferroelectric one in (PbySn1-y)2P2S6 and in 

Sn2P2(S1-xSex)6 with x<0.28, while in Sn2P2(S1-xSex)6 with x>0.28 and (PbySn1-y)P2Se6 it indicates the 

transition to an incommensurate phase. The continuous lines indicate the first order transition from the 

incommensurate to the ferroelectric phase [3]. 
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 Introducing Pb into Sn2P2Se6 has the same effect as in Sn2P2S6. Lead ions lower 

the temperatures of the transitions Ti and Tc. At the same time, replacing Pb by Sn 

increases the width of the incommensurate phase. For instance, for y=0.4 the width 

exceeds 100K. It should be pointed out that the first-order and second-order transition 

lines approach 0K at y=0.40 and y=0.61, respectively. 

 3.2.2. Phase transitions diagram of the Sn2P2(S1-xSex)6 crystals. Lifshitz point 

 Consider the shape and peculiarities of the diagram shown on fig. 3.7 in detail. To 

do this we will present the results of the different physical properties investigated by 

means of dielectric, optic, thermal, elastic and other measurements. First, we summarize 

available data about temperature-concentration phase diagram of the tin-sulfur/selenium 

compounds. Before this work, the phase transitions in Sn2P2(S1-xSex)6 have been studied 

by thermal diffusivity [60, 95], X-ray diffraction [96, 82], dielectric [97, 98], ultrasound 

[99], and specific heat [100] measurements. All these data lead to the conclusion that 

the phase transitions line starts to be splitted at x~0.28 (fig. 3.8).  

 

Fig. 3.8. Phase diagram of Sn2P2(S1-xSex)6 crystals. T0(x) at x<0.28 and Ti(x) at x>0.28 are the second 

order paraelectric-ferroelectric and paraelectric-IC transitions, respectively (dashed line). Tc(x) is the 

first-order lock-in IC-ferroelectric transition at x>0.28 (solid line) [101]. 
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 This special splitting point is known as a Lifshitz point (LP), at which the second 

order transitions line T0(x) from the paraelectric to ferroelectric states separates into the 

continuous second order transitions line Ti(x) and the line of first order transitions Tc(x). 

Between the lines the modulated incommensurate phase (IC) is observed with the same 

point symmetry as the paraelectric one. When approaching the LP concentration, if 

selenium content is changed in such a way that 1>x>xLP, the wave vector of the 

incommensurate modulations qi that appears along the Ti(x) line decreases as well as the 

temperature width of the region Ti – Tc where IC phase occurs. The concentration 

dependences of the modulation wave number qi in the IC phase and the temperature 

width Ti – Tc satisfy the next interpolations Ti – Tc ~ (x–xLP)
2
 and qi ~ (x–xLP)

0.5
. The 

dependences are depicted on fig. 3.9 [101].  

 

Fig. 3.9. The concentration dependences of the modulation wave number iq  (1) along the  iT x  line 

and the temperature width Ti – Tc (2) in Sn2P2(S1-xSex)6 ferroelectrics [101]. 

 Looking at fig. 3.8 more closely, one issue can arise: it is about the “precise” 

location of the LP on the phase diagram. Its position could be estimated from the 

evolution of the temperature dependences of the phonon spectra at certain selenium 

content in Sn2P2(S1-xSex)6 solid solution. To analyze that diagram in detail we refer to 

thermal diffusivity, ultrasound and hypersound data published in [60, 95, 99]. In 

general, the thermal diffusivity data gives information on the group velocity of the 

short-waves phonons; on the other hand, acoustic data can be used to characterize the 
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phase velocity of the ultrasound and hypersound waves. The position of the LP could be 

evaluated from the evolution of the temperature dependence of phonon spectra at 

different concentrations. According to data depicted on fig. 3.10 the thermal diffusivity 

in paraelectric phase lowers as the amount of Se is increased. Such lowering takes place 

only until x=0.22, and at higher values the concentration dependence of diffusivity in 

high symmetric phase becomes almost flat (see inset on fig. 3.10). That concentration of 

Selenium is smaller than expected in Sn2P2(S1-xSex)6 mixed ferroelectrics with LP 

composition about xLP ~ 0.28 [101]. This reduction in the thermal diffusivity could be 

associated with a softening of the acoustic phonon branches, which is expected near the 

LP (an effect already observed in Brillouin scattering and ultrasound investigations). 

This could suggest that the LP might be found at a lower concentration than x=0.28. 

Another strong fact which can confirm that xLP should be shifted a bit “to the left” 

on the phase diagram is a high resolution hysteresis study of thermal diffusivity 

published in [60]. Fig. 3.11 shows the evolution of the difference in the critical 

temperature in heating and cooling runs as a function of concentration; in x=0.15, 0.20 

and 0.22 the linear extrapolation tends to 0 indicating a lack of hysteresis in thermal 

diffusivity. While for concentrations x=0.26, 0.28 and 0.30 the extrapolations intersect 

the vertical axis between 0.1 and 0.2K showing the presence of hysteresis. Besides, the 

shapes of thermal diffusivity curves for slow heating-cooling runs are practically the 

same at concentrations without hysteresis 3.12 a, and differ for samples with hysteresis 

fig. 3.12, b.  
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Fig. 3.10. Thermal diffusivity anomalies across the phase transition point of Sn2P2(S1-xSex)6. 

ferroelectrics: 1 – x=0.30, 2 – x=0.28, 3 – x=0.26, 4 – x=0.22, 5 – x=0.20, 6 – x=0.15, 7 – x=0. Inset 

represents concentration dependences of thermal diffusivity in a paraelectric state [101]. 

 

Fig.3.11. Thermal hysteresis of ferroelectric phase transition for certain concentrations of Sn2P2(S1-

xSex)6  ferroelectric family [60]. 



CHAPTER 3. Physical properties of the ferroelectric family Sn(Pb)2P2S(Se)6                                                   80 

 

Fig.3.12. Thermal diffusivity performed at slow rate heating-cooling runs for x=0.15 (7.7mK/min) and 

x=0.26 (9.7mK/min) [60].  

 On the other hand, ultrasound and hypersound velocity data show some 

discrepancy. The temperature dependencies of longitudinal ultrasound velocity 

(fig.3.13) [99] exhibit the sharpest shape at Se concentration of x=0.26 reaching a 

minimal value of about 3100 m/s (fig.3.13 d). The deepest minimum of ultrasound 

velocity has been observed at the composition x=0.28 (fig.3.14, curve 2). Note that a 

similar behavior has also been found from thermal diffusivity measurements, the 

sharpest shape has a sample with selenium content of x=0.28 (fig.3.10, curve 2). 
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Fig. 3.13. Hypersound velocity data of Sn2P2(S1-xSex)6 obtained by Brillouin scattering. (a) − x=0, (b) 

− x=0.10, (c) − x=0.15, (d) − x=0.22, (e) − x=0.28, (f) − x=0.30. The inset illustrates the concentration 

behavior of hypersound velocity in a paraelectric phase [101]. 

 

Fig. 3.14. Temperature variation of longitudinal ultrasound velocity at the ferroelectric phase transition 

of Sn2P2(S1-xSex)6 solid solutions. 1 – x=0.40, 2 – x=0.28, 3 – x=0.15, 4 – x=0 [103]. 
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 To precisely “localize” the LP on the T−x state diagram we refer to high 

resolution dielectric data [101] which have been performed at slow cooling run for the 

tin-sulfur/selenium compounds. From the temperature anomalies of reciprocal dielectric 

susceptibility, the transitions at Ti(x) and Tc(x) are separately seen for x=0.40 indicating 

the presence of a true IC phase with temperature width of about 0.6K (fig. 3.15 c). In 

the case of a crystal with x=0.28 the intermediate state is still observed between the 

paraelectric and the ferroelectric phases. It gives a hint that the position of LP in 

Sn2P2(S1-xSex)6 mixed crystals should be placed somewhere between 0.22 0.28x  . The 

IC state is observed in an interval of about 0.2K at a cooling speed of 5mK/min, while 

at a higher rate 100mK/min the kink in the dielectric susceptibility at cT  is completely 

smeared and the curve is being similar to the one at Se concentration of x=0.22. Such a 

smearing is related to the domain wall concentration in the ferroelectric state whose size 

increases at higher cooling rates. This effect can be explained within the theory of 

Kibble-Zurek model, where in the case of the uniaxial ferroelectrics the domain walls in 

a sample could be considered as scalar topological defects [102, 103]. As was estimated 

by authors in [101], at a cooling rate of 0.1K/min, the biggest value of domain size is 

about 50nm, which is comparable to the modulation wavelength in the vicinity of LP. 

However, further high resolution investigations on LP would be desirable and helpful in 

the discussion of the phenomena which take place at such critical point. 
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Fig. 3.15. Reciprocal dielectric susceptibility for Sn2P2(S1-xSex)6 ferroelectrics performed at 5mK/min 

in a cooling regime. (a) − x=0; (b) − x=0.22; (c) − x=0.28; (d) − x=0.40; (e) − x=1; (f) − x=0.28 at 

different rates: 0.005K/min (red), 0.05K/min (grey), 0.1K/min (blue) [101]. 

 

 3.2.3. Phase transitions diagram of (Sn1-yPby)2P2S6 crystals 

 This phase diagram has been first characterized by dielectric measurements 

performed at low frequencies [82, 106, 109]. The transition temperatures according to 

those data are plotted on fig. 3.16. With an increase of Pb content in this series the PT 

temperatures decrease almost linearly from y=0 to y=0.27. Approximately from y=0.30, 
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the line bends showing an upward curvature and achieves 4.2K at concentrations y=0.61 

and y=0.66. This discrepancy corresponds to the fluctuations in concentrations of a 

particular sample. The temperature lowering is caused by the weakening of the average 

bond stiffness in a crystal lattice, when Sn ions are substituted by Pb, as was suggested 

in reference [108]. 

 

Fig. 3.16. Phase transitions temperatures of (Sn1-yPby)2P2S6 crystals as a function of the lead 

concentration; F – ferroelectric phase, P – paraelectric phase [107]. 

 Till recent time the transitions from the high symmetry phase to a low symmetry 

one in these compounds were suggested to be of a second order type in the range 

0<y<0.66. In publications [107, 108] the authors have presented low-frequency 

dielectric, ultrasound, and hypersound studies performed for (Sn1-yPby)2P2S6  

ferroelectric family assessing that the temperature-concentration phase diagram is not so 

“simple” for these compounds. They showed that TCP could be reached at y>0.2 and 

that some phase coexistence takes place there. According to the dielectric data, for a Pb 

content of y=0.2 the transition “para-ferro” phase which occurs at T≈248K changes its 

character from second to first order. That can be seen from the changes of real and 

imaginary parts of dielectric susceptibility anomalies (fig. 3.17, 3.18). 
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Fig. 3.17. Real part of dielectric susceptibility at 100kHz on heating (red curves) and cooling (blue 

curves) runs for (Sn1-yPby)2P2S6 ferroelectrics: (1) – y=0; (2) – y=0.1; (3) – y=0.2; (4) – y=0.3; (5) – 

y=0.45. Inset demonstrates the temperature hysteresis for y=0.3 and y=0.45 [107]. 

 

Fig. 3.18. Imaginary part of dielectric susceptibility at 100kHz in cooling runs for (Sn1-yPby)2P2S6 

ferroelectrics: 1 – y=0; 2 – y=0.1; 3 – y=0.2; 4 – y=0.3; 5 – y=0.45 [107]. 

 As was shown by the authors in ref. [107], for the lead concentration y=0.3, the 

real and imaginary parts of dielectric susceptibility become broader and with a clearer 

presence of temperature hysteresis with respect to the anomaly at y=0.2. Moreover, they 

have shown that for y=0.45 the dielectric losses have the highest value (fig.3.17) and the 

shape of curve is also different in heating or cooling runs (see the inset on fig.3.17). 

Such features could usually be expected at a first-order transition. 
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 The reciprocal dielectric susceptibility data for the extreme compounds y=0 

demonstrates that the ratio of slopes ferroelectric/paraelectric phases has a value about 

4, which confirms it closeness to tricriticality [107]. In the case of mixed compounds 

the slopes are similar and cannot be explained simply by a continuous phase transition 

[107]. 

 

Fig. 3.19. The reciprocal real part of dielectric susceptibility at 100kHz on cooling runs for (Sn1-

yPby)2P2S6 ferroelectrics: 1 – y=0; 2 – y=0.1; 3 – y=0.2; 4 – y=0.3; 5 – y=0.45 [107]. 

 The temperature dependencies of ultrasound velocity data [107] demonstrate that 

for the sample with y=0.3 the shape of the anomaly is altered, there is an additional 

contribution on the step of sound velocity (fig.3.20). Such singularities could be 

explained as follows: a first-order transition is already occuring for y=0.3 and phase 

coexistence produces those changes and makes the anomaly more complex in shape. 

 

Fig. 3.20. Ultrasound velocity data at cooling (blue) and (heating) runs performed for (Sn0.7Pb0.3)2P2S6 

[107]. 
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 In the case of (Sn0.55Pb0.45)2P2S6, the ultrasound velocity and the attenuation 

exhibit a huge hysteresis at cooling and heating runs (fig.3.21) that could also be related 

to the first-order character of transition.  

 

Fig. 3.21. Ultrasound velocity (a) and attenuation (d) for (Sn0.55Pb0.45)2P2S6 ferroelectric performed at 

cooling (blue) and heating (red) runs [107].  

 Finally, we consider the hypersound velocity data [107] and their analysis in 

terms of the mean field model using the Landau-Khalatnikov approximation (fig.3.22). 

Phenomenological parameters obtained from this model could also give a hint about the 

order of transition (see chapter IV for a description of the Landau theory). As seen from 

the graph below, the coefficients β and γ, indeed, are reduced with the increase of Pb 

concentration in (Sn1-yPby)2P2S6 series. Such trend was also observed for Sn2P2S6 

(fig.3.15 b) and confirms that the phase transition in (Sn1-yPby)2P2S6 can also change its 

character ( is negative for a first order one). But as the values of β are positive at least 

till lead content y=0.45, the second order character of the para-ferroelectric transition in 

the concentration range from y=0 to y=0.45 is confirmed. Probably, TCP could be 

achieved for (Sn1-yPby)2P2S6 series applying an external pressure as has been 

demonstrated in a previous section for Sn2P2S6. Nevertheless, observed trend of possible 

existence TCPs on the tin/lead-sulfur temperature-concentration phase diagram is of 

particular interest, and it deserves to be studied in more detail. 
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Fig. 3.22. Concentration dependencies of coefficients β and γ in Landau thermodynamic potential. 

Solid symbols represent hypersound data analysis, open symbols – ultrasound. [107]. 

 

 3.2.4. Phase transitions diagram of the (Sn1-yPby)2P2Se6 crystals. 

 Phase transition temperatures of (Sn1-yPby)2P2Se6 ferroelectric series (fig.3.23) 

have been obtained by means of heat capacity [110], light transmition and dielectric 

measurements [94, 111]. 

 

Fig. 3.23. Phase transitions temperatures as a function of lead concentration. Solid symbols represent 

high-temperature Paraelectric-IC phase transitions (second order) and empty symbols the lock-in IC-

ferroelectric phase transitions , which are first order. Circles correspond to data [110] and triangles to 

[94].  

 According to the light transmition study [94] substitution Sn by Pb in (Sn1-

yPby)2P2Se6 series increases the width of IC phase from 28K at y=0 to 65K at y=0.3. 

Side by side with this increase, the temperature hysteresis of the first-order transition is 

also increased. For y=0 this hysteresis is 1K and for y=0.3 it is about 12K. 
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(Sn0.6Pb0.4)2P2Se6 crystal exhibits maximal width of the IC phase. It occurs in a range 

exceeding 110K. The second order transition in this case is seen as a smooth change in 

the slope of the temperature behavior of light transmition coefficient while the first-

order one corresponds to an abrupt jump with the presence of hysteresis [94].  

 As seen from fig.3.23, with increasing Pb content the transitions are shifted to 

lower temperature. Such a decrease can be interpret as follows: the ionic radius of lead 

ions is bigger than for tin ions, hence, the addition of Pb increases the space available 

for Sn in (Sn1-yPby)2P2Se6 series. As a result, the motion of the Sn becomes easier and 

ions can move with smaller thermal energy which leads to the lowering of the phase 

transition temperatures [110]. 

 Additionally to the lowering of Ti and Tc a smear of the anomalies in physical 

properties was observed. Low temperature dielectric study performed in [112] exhibits a 

smear of dielectric permittivity with an increase of Pb fraction. This well correlates with 

the concentration behavior of light transmition coefficient at Ti in this ferroelectric 

family [94]. It was also found that thermal hysteresis occurs only for concentration of 

lead below y=0.45 (fig. 3.24) [112]. 

 

Fig. 3.24. Temperature dependence of the real part of dielectric permittivity for (Sn1-yPby)2P2Se6 mixed 

ferroelectrics with different Pb content. Dashed line – cooling, solid line – heating [112].  

 The particular interest of this family is caused by the existence of a wide 

modulated incommensurate phase which gives the possibility to study some rare 
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phenomena, such as the freezing of the incommensurate modulation dynamics [113] or 

the glassy behavior of dielectric constant at ultralow temperatures (below 1K) [114], 

when Sn ions are replaced by Pb in the cation sublattice. 

 

3.2.5. Multicritical points on the (T, p, x, y) phase diagrams of (Sn1-

yPby)2P2(S1-xSex)6 

a) Tricritical point TCP in Sn2P2S6 crystal 

So far we have considered the phase diagram of (Sn1-yPby)2P2(S1-xSex)6 mixed 

ferroelectrics using concentration (x or y) as a variable, which is quite complex, as there 

are three different phases bounded by first and second order phase transition lines as 

well as a  LP. However, if we add pressure p to our variable list or a possibility to 

simultaneously change x and y in the general formula (Sn1-yPby)2P2(S1-xSex)6 the picture 

becomes even more complicated and interesting. Let’s start our discussion with the 

undoped Sn2P2S6. As known, this crystal is a uniaxial ferroelectric with a three-well 

local potential for spontaneous polarization fluctuations [115]. The Hamiltonian of such 

system could be well described within the frame of the Blue-Emery-Griffiths (BEG) 

model, where pseudospins can have three different values 0, +1 and –1 [116]. The 

interesting aspect is that this model predicts the appearance of a tricritical point (TCP) 

on the phase diagram. TCP is one of the special points on the phase diagram at which 

the second-order transitions line transforms into a line with transitions of first-order 

type. Such high order critical point can be realized as the transition temperature 

decreases in the (Sn1-yPby)2P2(S1-xSex)6 system from the value that it has for Sn2P2S6 

[107]. For these ferroelectric crystals the TCP can be achieved by changing x and y, 

which, in its turn, makes it possible the appearance of the random bonds or random field 

defects in the anion or cation sublattices. Such defects will heavily alter the phase 

diagram predicted by the BEG model. Besides, the transition temperature lowering can 

also be produced by applying an external pressure [107]. 

There are several studies published in literature which have been devoted to a 

search of a high order critical point in pure Sn2P2S6 measuring different physical 

quantities under an external pressure [117, 118 119, 120, 105, 121, 122]. There is now 
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agreement that the continuous paraelectric to ferroelectric phase transition changes its 

character to first-order at about T ≈ 250K and p ≈ 0.4GPa [107, 121]. Along the years, 

there has been some discussion about the type of the critical point, whether it is a LP or 

a TCP. Neutron diffraction measurements settled down this matter, with the conclusion 

that this critical point is a simple TCP [120]. The same result was confirmed by means 

of ultrasound velocity (fig. 3.25) [105] and birefringence [121]. Lastly, high-resolution 

X-ray diffraction measurements performed under pressure up to 1GPa [122] shown a 

lack of the incommensurate phase closing all the peculiarities about the type of a critical 

point, which takes place on the (T, p) diagram of Sn2P2S6. That point is a TCP but not a 

LP.  

 

Fig. 3.25. (a) Ultrasound velocity data for Sn2P2S6 at different pressures. 1: 0.039GPa; 2: 0.088GPa; 3: 

0.126GPa; 4: 0.171GPa; 5: 0.225GPa; 6: 0.304GPa; 7: 0.399GPa; (b) Pressure dependence of the 

phenomenological coefficient β in the Landau expansion (see chapter 4) for the same crystal [105]. 

The physical mechanism, which stays behind this phenomenon can be described 

as follows: for the undoped Sn2P2S6 the Sn
2+

 cations stereoactivity decreases when the 

external pressure is applied (fig.3.25). This effect reduces the depth of the side wells of 

the local three-well potential. Bear in mind that the intercell interaction remains almost 

unchanged. Due to the local potential surface flattening the second order phase 

transition temperature is lowered and shifted to the TCP [107]. 

 b) Tricritical Lifshitz point TCLP in Sn(Pb)2P2S(Se)6 mixed compounds 

Since the question about the existence of a TCP in Sn2P2S6 crystal has been 

settled, the researchers have turned their attention to another intriguing problem. Is it 
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possible to find any other multicritical points on the (T, p, x, y) state diagram of (Sn1-

yPby)2P2(S1-xSex)6 ferroelectric family? A very important question is how the isovalent 

atom substitution of Sn by Pb in the cation sublattice and the replacement of S by Se in 

the anion one affects the stereoactivity of these mixed compounds. If Se atoms take the 

place of S ones, then the covalence of the chemical bounds increases and the intercell 

interaction becomes weaker. At a basically similar form of the thee-well local potential 

the temperature of the phase transition is lowered [107]. On the other hand, if Pb atoms, 

which are less stereoactive and have also a larger ionic radius, substitute the Sn ones, 

then the total ionicity of the Sn-S bounds increases. In this case the intercell interaction 

becomes stronger. Both effects lead to the decrease of the phase transition [107]. 

At the substitution of S by Se the random field effects can appear. Nevertheless, 

their influence does not play a significant role, because they do not provoke any 

smearing in the critical anomaly [see for example fig. 3.10]. To properly describe this 

case the above mentioned BEG model has to be accompanied with the well known 

ANNNI (axial-next-nearest-neighbor Ising) model [107]. Such model combination 

predicts the possible existence of a TCP and also an intermediate incommensurate phase 

existence on the state diagram of Sn2P2(S1-xSex)6 at x > xLP [107, 3]. On the contrary, the 

introduction of Pb in the cation sublattice heavily alters the total electronic orbitals 

hybridization, which provokes the appearance of strong random-field defects. To 

describe such a complicated case a diluted BEG [123] model has to be considered. 

Several interesting papers have been devoted to check the theoretical predictions 

mentioned above in order to search for a tricritical Lifshitz point TCLP along the (T, p, 

x, y) state diagram of the ferroelectrics studied [104, 117, 124]. For the solid solutions 

Sn2P2(S1-xSex)6 the virtual TCLP (placed inside of the incommensurate phase) has been 

suggested to be found at x ≈ 0.6, y=0 and T ≈ 240K [117, 124, 3]. Moreover, the authors 

in [104] have theoretically estimated the appearance of a TCLP on the phase diagram of 

(Sn1-yPby)2P2(S1-xSex)6 at x = 0; y = 0.12; p ≈ 0.28GPa and T ≈ 225K (fig.3.26). One 

important conclusion which can be emphasized from this analysis is that the baric 

thermodynamic trajectory of the pure Sn2P2S6 passes close to the Tricritical point.  
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Fig. 3.26. Theoretical prediction of the tricritical Lifshitz point location for (Sn1-yPby)2P2(S1-xSex)6 

mixed ferroelectric crystals [104]. 

Unfortunately, this high order critical point has not been experimentally proven 

yet. Thus, we are in situation where we have more questions than answers. Further 

experimental investigations are needed to better understand the physical background 

related to this matter. 

 

 3.3. Thermal properties of Sn(Pb)2P2S(Se)6 ferroelectrics 

 3.3.1. Specific heat. The temperature dependence of specific heat cp for Sn2P2S6 

exhibits a λ–shape anomaly at about 337K, signaling the presence of a second order 

transition from a high symmetry state to a low symmetry one. With increasing Pb 

content the anomaly shifts to lower temperatures. At the same time its shape becomes 

more smeared and less sharp (fig. 3. 27 a). In case of Sn2P2Se6 Pb replacing also alters 

the shape of the anomalies at first and second order transitions in the same manner as 

for Sn2P2S6 (fig. 3.27 b). One can note that the temperature range of IC phase is 

enlarged. 
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Fig. 3.27. Heat capacity data for (Sn1-yPby)2P2S6 and (Sn1-yPby)2P2Se6 ferroelectrics with: (a) 1 – y=0.0, 

2 – y=0.1, 3 – y=0.2 and (b) 1 – y=0.0, 2 – y=0.1, 3 – y=0.2 [125]. 

 

 Specific heat has been also measured by others authors [100, 110] in a wide 

temperature range for Sn2P2S6, Sn2P2Se6 and Pb2P2Se6; those results are depicted on fig. 

3.28. 

 

Fig. 3.28. Specific heat data of Sn2P2S6, Sn2P2Se6 and Pb2P2Se6 crystals according to the data in [100, 

110]. 

 3.3.2. Thermal diffusivity. Some studies have been performed prior to this work 

on the thermal diffusivity of Sn2P2(S1-xSex)6 [60, 95] using ac photopyroelectric 

calorimetry, specially focusing on the critical behavior of the phase transitions; that’s 

why the regions close to the critical temperatures have been mainly studied and not in 
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the full temperature range. The results are displayed on fig.3.29. As it can be seen, the 

phase transitions are shown as dips superimposed on the monotonous background of the 

thermal diffusivity curve and are in general agreement with the phase diagrams 

suggested by other techniques, including their first or second order character. As it was 

mentioned in the first section of the chapter, this type of crystal possesses a monoclinic 

structure, thus is expected to observe an anisotropic behavior in thermal diffusivity. 

This was confirmed for Sn2P2S6, where it turned out that heat is more easily transmitted 

along the [100] direction (fig.3.29 a), in the vicinity of the transition. A full account of 

the conclusions of the critical behavior studies performed in references [60, 95] is 

presented in chapter 4, section 4. 

 

Fig.3.29. Temperature evolution of thermal diffusivity for Sn2P2S6 crystal in different crystallographic 

directions (a), and for Sn2P2(S1-xSex)6in [010] direction (b, c, d) [60, 95].  

 

 3.3.3. Thermal expansion. Another important property, which provides 

information on the accuracy of harmonic approximation for the description of atomic 

vibrations in a medium, is the thermal expansion coefficient αV(T). This thermodynamic 

quantity for Sn(Pb)2P2S(Se)6 ferroelectrics has been observed by dilatometric 

measurements [91, 128]. The temperature dependencies of αV(T). for Sn2P2S6, Sn2P2Se6 

and Pb2P2Se6 crystals are shown on fig. 3.30. For the two tin-based compounds the dips 
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are signaling the PT presence, while in the case of Pb2P2Se6 no anomaly was found; 

only a slight reduction with temperature was observed. 

 

Fig. 3.30. Temperature behavior of the volume thermal expansion coefficient: (1) − Pb2P2Se6 (2) − 

Sn2P2S6 (3) − Sn2P2Se6 [129]. 

 3.3.4. Thermal conductivity is of great importance when we deal with the 

description of lattice dynamics. Heat conduction coefficient for Sn(Pb)2P2S(Se)6 

ferroelectric family has been measured using stationary longitudinal heat flux method 

by K. Al’-shoufi, Rizak et.al [127, 130, 117]. The results performed for different 

crystallographic directions [100], [010] and [001] are presented on fig. 3.31 a, b. A 

similar general temperature behavior was found with the presence of a maximum at 

about 11K for all three directions. It should be pointed out that the values at the 

maximum strongly differ indicating the anisotropy of this thermodynamic property. The 

lowest value is observed is along the x-direction while the highest one is along z-axis. 

The small value obtained at room temperature tells us that these materials are poor 

thermal conductors.  

 Theoretical analysis performed for these results demonstrates that thermal 

conductivity of Sn2P2S6 crystal obeys Eiken’s law  ~T
-1

 in the temperature range 

12<T<200K. At temperatures above 200K λ is weakly dependent on T. For the other 

three extreme compounds (Sn2P2Se6, Pb2P2Se, Pb2P2Se6) the Eiken’s behavior has been 

confirmed in the interval 100-190K. Again above 200K, thermal conductivity becomes 

almost independent of T and deviates from the theoretically predicted evolution [127]. 
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Such behavior and the low conductivity values of Sn2P2S6-like crystals can be explained 

by a reduction of the phonon mean-free path till the lattice period dimensions at double 

of the Debye temperature D  (Sn2P2S6 ≈ 83K, Sn2P2Se6 ≈ 74K, Pb2P2S6 ≈ 85K, Pb2P2Se6 

≈ 55K [3, 129]).  

 For Sn(Pb)2P2S(Se)6-like ferroelectrics, thermal conductivity does not exhibit 

significant singularities across the phase transition temperature as thermal diffusivity or 

specific heat do. The observed behavior is a step-like behavior [3] or just only a 

monotonous variation with temperature as has been found in publication [95] (see fig. 

3.32).  

 

Fig. 3.31. (a) − thermal conduction coefficient for Sn2P2S6: 1 – [100], 2 – [010], 3 – [001]. (b) – 

thermal conductivity for Pb2P2Se6 (1), Pb2P2S6 (2) and Sn2P2Se6 (3) along crystallographic directions: 

1 – [100], 2 – [010], 3 – [001] [128].  
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Fig. 3.32. Thermal conductivity of Sn2P2S6 crystal in [001] direction [95]. 

 



CHAPTER 4. Phase transitions and critical behavior                                                                                         99 

CHAPTER 4 

Рhase transitions and critical behavior 

A complete development of the theory of phase transitions, even if we 

circumscribe it to the particular case of ferroelectrics, is outside the scope of this PhD 

Thesis. There are a good number of books, scientific papers, and excellent review 

papers which deal with this subject written by authorities in this subject [131-150]. 

Thus, in this chapter we are going to concentrate on the description of the most 

important elements from the theory which will be used in the following chapters when 

interpreting and discussing the phase transitions experimentally measured, specially 

trying to emphasize the applicability of the different models which can be found in 

literature. This means that we will be concentrating on that part of the theory or on those 

models which are pertinent when studying the family of ferroelectrics (Pb,Sn)2P2(S,Se)6. 

 

4.1. Classical Theory of Phase Transitions for ferroelectric transitions 

Landau was the first to introduce the concept of order parameter to describe phase 

transitions. The order parameter is a magnitude which will be zero above the critical 

temperature (the one at which the phase transition takes place) and different from zero 

below: polarization, for instance, in a ferroelectric transition. In a second 

order/continuous phase transition, the order parameter will change in a continuous way. 

In these transitions, as opposed to the first order ones, there will be no latent heat and no 

hysteresis in the variation of the physical variables. Landau proposed to write the 

thermodynamic potential density with a Taylor expansion series as a function of the 

order parameter.  Taking into account general requirements for stability of phases and 

state of coexistence of phases, as well as certain symmetry criteria, he proposed the 

following general form valid for second order phase transitions 

 ( )22 4 6
0 2 4 6 2

C(T T )F F P P P P ...α β γ δ−
= + + + + ∇ +



, (4.1) 

where F0 is the value in the paraelectric phase, α is related to the Curie-Weiss constant, 

TC is the transition temperature (critical temperature), β, γ and δ are phenomenological 
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coefficients which don’t depend on temperature and are positive (if β is negative this 

will indicate a first order phase transition). Some particular values of certain 

phenomenological coefficients will involve particular phase transitions. For a tricritical 

point (where three-phase coexistence terminates) α = 0 and β = 0, while for a Lifshitz 

point α = 0 and δ = 0. In ferroelectrics, a Lifshitz point separates two regions in the 

phase diagram: one with a direct second order phase transition from the paraelectric to 

the ferroelectric phase and another one in which there is a second order phase transition 

from the paraelectric phase to an incommensurate one at Ti and then a first order phase 

transition from the incommensurate phase to the ferroelectric phase at TC. Eq (4.1) 

assumes that the phase transition can be described by a one-component order parameter, 

for simplicity. 

The theory also contemplates the possibility of the coupling of the order 

parameter to some other variables, such as strain, which is useful in the case of uniaxial 

ferroelectrics, such as [151] 

 2 4 6 2 2
0

( ) 1
2 4 6 2

CT TF F P P P cu ruPα β γ−
= + + + + + , (4.2) 

where c=cijkl is the elastic module matrix, u= uij is the deformation tensor, r=rijkl is the 

electrostriction coefficient, and elements of higher order are neglected. This is a short 

version of the Landau-Khalatnikov potential which includes even more terms [152, 

153].  

 In order to obtain a measurable quantity such as specific heat, the free energy 

must be minimized with respect to the order parameters (in the first case, polarization P; 

in the latter, both polarization P and strain u), in order to obtain the equilibrium value of 

the order parameter in the ferroelectric phase, so that we can obtain for the isobaric heat 

capacity in the ferroelectric phase 

 
2

2p
P

FC T
T

 ∂
= −  ∂ 

, (4.3) 

which, applied to eq (4.2), will give 

 
2 2

0
2 2 1 4p p

P

F TC T C
T ' At

α
β

 ∂
= − = + ∂ − 

, (4.4 a) 
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where 0
pC  is the heat capacity in the paraelectric phase,  

 2

2r'
c

β β= − ,  (4.4 b) 

 2A
'

γα
β

=   (4.4 c) 

Thus, the anomalous part of the heat capacity can be expressed as 

 
2

2 1 4p
TC

' At
α
β

∆ =
−

. (4.5) 

The comparison of the experimental specific heat anomaly to this last equation by a 

Lavenberg-Marquardt method, for instance, will allow us to check the appropriateness 

of the theory extracting at the same time the phenomenological coefficients in the 

Landau expansion. 

 This approach (with or without couplings) has been somewhat successful when 

describing the critical behavior of some ferroelectric materials but it has not happened 

the same with magnetic materials, for instance (where magnetization plays the role of 

the order parameter); as the knowledge of the physics of phase transitions increased, the 

limitations of this theory started to stand out. In a real physical system, as the critical 

temperature is approached (and the so called reduced temperature t=(T-TC)/TC tends to 

zero), fluctuations of the order parameter start to appear which are more and more 

relevant as t decreases till they dominate the transition. This is not considered by 

Landau’s theory, where it is assumed that the order parameter is homogeneous 

throughout the crystal volume, and is the main cause of the deviations from it. Defects 

also can play a considerable role in ferroelectrics phase transitions whose importance 

has been considered by some authors.  

 Theoretical work was developed to extend Landau’s approach including first-

order fluctuations of the order parameter, with the result that the singularity in specific 

heat can be written in the form 

 
2 3/2

1/2
3/2 ( )

8
B

p C
k Tc T Tα

πδ
−∆ = − ;  1/2

pc t−∆  . (4.6) 

But this has also failed to be proved experimentally in most cases in ferroelectrics. In 

the case of uniaxial ferroelectrics, the spatially inhomogeneous distributions of the order 
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parameter are necessarily associated with the appearance of a macroscopic electric field, 

which can have an influence upon fluctuations. Indeed, the presence of the dipolar-

dipolar interaction attenuates the fluctuations effects and a theoretical development 

which takes this interaction into account leads to the following heat capacity anomaly  

 
2 2

3/2 3/2
ln

2(2 )
CB

p
C

T Tk Tc
Ta

α
π δ

 −
∆ =  

 
 ; lnpc t∆  . (4.7) 

This logarithmic correction to the pure Landau theory has proved extremely successful 

for many uniaxial ferroelectric materials.  Another possibility is that the attenuation of 

fluctuations be small enough so that eq (4.6) could nearly be of application and that 

only a small logarithmic correction should be introduced; hence, eq (4.6) would turn 

into 

 1/2 ln b
pc t t−∆  , (4.8) 

with 0.1 < b< 0.33. This equation is equivalent to having in eq. (4.6) an exponent 

slightly closer to zero than -0.5. 

 Finally, the contribution of defects to the anomaly in specific heat in 

ferroelectrics has also been studied. In general, defects are simply responsible for a 

rounding of the anomalies in the phase transitions but Isarvediev et al [154-155] 

demonstrated that in the case of charged defects in ferroelectrics, they can give rise to 

stronger anomalies as they can induce long-range perturbations of the order parameter. 

The dependence of the specific heat in this case takes the form  

 3/2
pc t−∆  . (4.9) 

As we will see in section 4.4, sometimes a combination of different mechanisms is 

needed to properly describe the physics of a phase transition, such as a combination of 

first order fluctuations and defects, combining equations (4.6) and (4.9) to fit the 

anomalous part of the specific heat. 

An important question when considering the applicability of Landau’s extended 

theory is how close to the transition the fluctuations of the order parameter are 

extremely relevant so that even the first-order fluctuational correction is not enough and 

all the equations given above are not fulfilled. The so called Ginzburg’s criterium [156] 

gives the range of reduced temperature out of which the first fluctuational correction 



CHAPTER 4. Phase transitions and critical behavior                                                                                         103 

can be used and within which a new approach must be developed. This range is related 

to another important parameter called the correlation length ξ which represents how far 

fluctuations of the order parameters are sensed in the sample or, in another way, the size 

of those fluctuations. Far from the critical temperature ξ is small (and the Landau theory 

will be valid) but it grows without limit as the critical temperature is approached, either 

from above or from below, becoming of the order of the size of the sample. 

In the case of magnetic systems, the Landau approach has been extremely 

unsuccessful and that’s the main reason why a modern theory of critical behavior was 

developed from the 1980s which can also be used for the case of ferroelectrics in which 

the classical theories can not explain their critical behavior. 

 

4.2. Modern Theory of critical behavior. Fluctuations effects 

In the near vicinity of a second order phase transition, the specific heat often 

presents a singularity following the law 

C
p

C

T Tc A
T

α−

± −


; pc A t α−±
   (A- for T < TC,  A+ for T > TC) (4.10) 

But this is not the only physical magnitude with this kind of behavior. In magnetic 

systems, for instance, the spontaneous magnetization (MS), the inverse of initial 

susceptibility (χ0
−1) and the critical isotherm (Μ(Η)  at T=TC) fulfill analogous 

equations with different critical exponents. 

MS(T)    ~  |t|-β     (T < TC), (4.11) 

χ0
−1(T)  ~  |t|γ      (T > TC), (4.12) 

Μ(Η)  ~  H1/δ      (T = TC). (4.13) 

Scaling analysis theory assesses that all those critical exponents are interrelated [151]. 

 α + 2β + γ = 2; (4.14) 

 δ = 1 + γ/β. (4.15) 

Different sets of values of these exponents correspond to different models (which are 

called universality classes) which have been theoretically developed after a certain 

expression of the Hamiltonian describing the physical system and using statistical 

mechanics; the particular values of the exponents have been predicted by different 
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methods, the most important one being renormalization group theory. [157-159] 

Fluctuations of the order parameters are fully taken into account even when the 

correlation length extremely grows, which happens when 0t → . Table 4.1 shows the 

particular values of the critical exponents and parameters for a mean-field model (which 

implies long-range order interactions, equivalent to a Landau approach), an isotropic 3 

dimensional Heisenberg model, a planar 3 dimensional XY model and a uniaxial 3 

dimensional Ising model, referring to the ordering of the spins and the number of spin 

components needed to describe it. A strong theoretical effort has been developed for 

magnetic systems (as Landau theory was clearly inadequate to explain the shape of the 

transitions) but also for many other systems. A full development of all universality 

classes can be found in several review papers [141-149].  Further experimental efforts 

using different techniques have also been done from the 1980’s in order to check the 

universality classes to which many magnetic systems belong, with extraordinary 

success, which opened a new field of research on the study of the critical behavior 

which is still quite active, as the assignation of any system to a certain universality class 

gives a deep insight on the physical mechanisms responsible for the particular transition 

studied. 

Table 4.1. 

Main universality classes for magnetic systems [157-159] 

Universality class α β γ δ A+/A- 

Mean-field Model 0 0.5 1.0 3.0 - 
3D-Ising  0.11 0.3265 1.237 4.79 0.53 
3D-XY -0.014 0.34 1.30 4.82 1.06 
3D-Heisenberg -0.115 0.365 1.386 4.80 1.52 

 

Turning our attention to ferroelectrics, a certain number of researchers have also worked 

theoretically on the different universality classes which might appear depending on the 

properties of the Hamiltonian used to describe the system as a consequence of the 

physical mechanisms included in it [141, 142, 161-169]. Apart from specific heat, the 

equivalent magnitudes to study their critical behavior are the spontaneous polarization 

PS and the inverse of susceptibility χ−1. 
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pc A t α−±
   (A- for T < TC,  A+ for T > TC) (4.16) 

PS(T)    ~  |t|-β     (T < TC), (4.17) 

χ−1(T)  ~  |t|γ     (T > TC). (4.18) 

For which the scaling law  

 α + 2β + γ = 2, (4.19) 

is again fulfilled. Table 4.2 contains the universality classes found so far for 

ferroelectric systems, where the mean field model is again equivalent to the Landau 

phenomenological model. We would like to emphasize the work done by Folk and 

coworkers who developed a good part of these universality classes which are 

appropriate to study the family of uniaxial ferroelectrics (Pb,Sn)2P2(S,Se)6 with so 

complex a phase diagram. [3, 141, 142, 168, 169]. 

The particular values for the exponents in a certain universality class are 

sometimes open to debate in literature, depending on the particular mathematical 

techniques used to obtain it and the order to which the expansions are deployed. For 

instance, for the Lifshitz class L with m=1 (which is the relevant one for the materials 

studied in this thesis report), some authors have obtained values for α smaller than 0.25 

and closer to 0.2 [170, 171]. 

Actually, the presence of a Lifsthiz point enhances the fluctuations in the order 

parameter which will substantially deviate the critical exponents from the mean-field 

values, and this would lead to the change of the critical exponent of specific heat from 

α=0 to α=1/4 in systems with short range interactions (L, m=1). On the other hand, 

fluctuations are strongly suppressed in ferroelectrics with strong dipolar interactions (as 

it is the case in this family of materials), and these are expressed as a critical exponent 

α=1/6 (UL, m=1). Another situation in which fluctuations are reduced takes place in the 

presence of a tricritical point; for uniaxial ferroelectrics in the vicinity of the tricritical 

Lifshitz point, the critical exponent for specific heat will be α=0.5 with small 

logarithmic corrections (UTL, m=1).  
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Table 4.2.  

Universality classes for ferroelectric systems for 3 dimensions. S: usual critical point isotropic short-

range interaction, U with uniaxial dipolar interactions, T tricritical point, L Lifshitz point. Those 

exponents with an asterisk * have a logarithmic correction with exponent x. m is the number of 

components of the order parameter. 

Universality class α β γ x Reference 
Mean Field model 0 1/2 1  [141] 
S 1/6 1/3 1 1

6
 - [161] 

U 0* 1/2* 1* 1/3 [162, 163] 
T 1/2* 1/4* 1* 1/3 [164] 
UT 1/2 1/4 1 - [168] 
L, m=1 1/4 1/4 1 1

4
 - [165] 

L, m=2 1/3 1/6 1 1
3

 - [165] 

L, m=3 5/12 1/12 1 5
12

 - [165] 

LT, m=1 9/14 1/7 1 1
28

 - [166, 167] 

LT, m=2 31/40 3/80 1 3
40

 - [166, 167] 

UL, m=1 1/6 1/3 1 1
16

 - [168] 

UL, m=2 1/4 1/4 1 1
4

 - [168] 

ULT, m=1 1/2* 1/4* 1* 1/10 [169] 
ULT, m=2 19/48 13/48 1 1

16
 - [169] 

 

It should be mentioned that there is an equivalent table to Table 4.2 for what is 

called the Gaussian approximation [141], where fluctuations of the order parameter are 

not taken into account and where, of course, the exponents have different values to 

those in Table 4.2 (see Annex 4.1 at the end of this chapter). Any system belonging to 

those classes would imply that fluctuations are not relevant enough to force the system 

to deviate from a classical Landau description. 

In Table 4.2 the ratio of the critical amplitudes A+/A- for specific heat has not 

been included as they are mathematically very difficult to predict within the framework 

of the renormalization group theory.  But it is also important as it helps to discriminate 

among universality classes when the critical exponents are too close (compare them in 
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Table 4.1 for magnetic systems, where they have all been found), as they can be 

obtained experimentally. Nevertheless, some papers have been devoted to find them for 

particular universality classes in ferroelectrics and it has been shown that, for the L class 

(m=1) in first-order approximation, this amplitude is 0.30 and rises up to 0.35 in 

second-order approximation [172]. On the other hand, in the Gaussian approximation, at 

a Lifshitz point with long-range interactions this value is 0.25, while if they are 

neglected, it is increased to 0.42 [173]. 

Finally, it is worth including here a last comment about equation (4.16). This 

equation includes only one value for the α parameter and not two different ones (one for 

the region above the critical temperature and another one below it), as it can be found 

sometimes in literature. In fact, the full equation which is generally used to fit the 

experimental curves of specific heat is 

 ( )0.51pc B Ct A t E tα−± ±= + + + , (4.20) 

where the linear term represents the regular contribution to the specific heat, while the 

last term represents the anomalous contribution at the second order phase transition. The 

factor under parenthesis is the correction to scaling that represents a singular 

contribution to the leading power as known from experiments and theory [174, 175] but 

which must be small (sometimes there is even no need to include this factor for the 

fittings). Scaling laws require that there is a unique critical exponent α for both 

branches and rigorous application states that constant B needs also be the same [176]. 

These conditions have sometimes been relaxed in literature due to the difficulty of 

obtaining good fittings to the experimental data with those constraints, but this only 

makes the interpretation of results more complicated. Strict application of scaling theory 

must respect these rules. 

 Finally, it is worth noting that there are several other measurable quantities which 

can be used to study the critical behaviour in phase transitions as they behave as some 

of the already described physical variables. A particular case, relevant for this study, is 

thermal diffusivity D which is related to specific heat by the equation 

 ( )( )
( )p

K Tc T
D Tρ

= ; 1 ( )
( ) ( ) pc T

D T K T
ρ

= , (4.21) 
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where ρ is the density and K the thermal conductivity of the sample under study, which 

means that the specific heat and the inverse of the thermal diffusivity will have the same 

critical behavior in those cases in which thermal conductivity do not present a 

singularity at the transition, which happens in many cases. 

4.3. Critical behavior of commensurate-incommesurate phase transitions 

In chapter 3 the phase diagram of the family of ferroelectrics (Pb,Sn)2P2(S,Se)6 

has been already shown. In the particular case of Sn2P2(S1-xSex)6 for 0.28 < x < 1 and 

(PbxSn1-x)P2Se6 for 0 < x < 0.6, the high temperature phase is paraelectric, the low 

temperature one is ferroelectric and, in between, there is an intermediate phase. The 

high temperature phase transition was found to be a structural (commensurate to 

incommensurate) but continuous one, while the incommensurate to ferroelectric has a 

first order character. This type of intermediate, incommensurate phase is also present in 

many other ferroelectric materials such as NaNO2, (NH4)2BeF4, K2SeO4 ... [177, 178] or 

in general in the A2BX4 materials [179].  

The critical behavior of commensurate to incommensurate continuous phase 

transitions has been theoretically addressed from different points of view and applied to 

several practical cases. From a classical point of view, as it was clear that there were 

severe deviations from the Landau theory, Ivanov et al [181] developed a method based 

on the first fluctuational correction to account for those deviations, which is valid for a 

reduced temperature range t = (T-TC)/TC with t >>G (where G is the Ginzburg number 

expressed in terms of the coefficients of the thermodynamic potential) but not closer to 

the critical temperature; this method was successfully applied to birefringence 

measurements in Rb2ZnBr4 [182], to NMR data for Rb2ZnCl4 [183] or to heat capacity 

in SC(NH2)2 [184]. After this model, the experimental specific heat is fitted to the 

following equations 

 1/2( )p B ic c T Tλ+ + −= + −  T > Ti; (4.22) 

 1/2
p B L ic c c T Tλ −− −= + + −  T < Ti, (4.23) 

where Ti is the critical temperature of the transition, cB is the regular part of the specific 

heat, cL is the specific heat jump at Ti (according to Landau), λ+ and λ- are constants 
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whose ratio is 2 2  if the order parameter is single-component (Ising-type system) and

2 if it has two components (XY-type systems) [185]; the latter is the expected 

behaviour in structural phase transitions from normal to incommensurate phase. 

Analogous equations have been used for the first derivative of birefringence with 

respect to temperature [182].  

Renormalization group methods have also been applied to study the universality 

class to which this kind of transitions could belong, with the result that it is the three 

dimensional XY (3D-XY) [185], for which the critical exponent  is α= -0.014 and the 

ratio of the critical exponents A+/A- = 1.06 [158]. This model assumes that a two 

component order parameter is needed to describe the Hamiltonian for the system: in the 

case of this kind of transition, the order parameter associated with the irreducible 

representation of the cogroup of the modulation wave vector q is a complex variable; 

hence the two components [185, 186]. Besides, a strong theoretical effort was 

performed along the nineties to describe the nuclear-spin-lattice relaxation for 

quadrupole perturbed magnetic resonance (NMR) in structurally incommensurately 

modulated crystals, applying it successfully to the particular case of Rb2ZnCl4 [187-

189]. NMR is also a powerful technique to study the critical behaviour of a transition by 

means of obtaining the critical parameter β. 

The crux of the matter in applying or not a classical view for the commensurate to 

incommesurate phase transitions lies in the following questions: Is there a non-classical 

region in which the deviations from the mean field model can be detected? Might there 

be a crossover region marked by the Ginzburg criterion [3]? Is the non-classical region 

wide enough to clearly see the 3D-XY behavior? This has been addressed theoretically 

and also checked with several materials: Kauffmann et al [190] worked with an 

extended renormalization scheme while Wesselinova et al [180] used both a self-

consistent phonon theory and  renormalization group theory and they found that for 

A2BX4 materials there is indeed a wide enough critical region (as wide as 50-60K in 

Rb2ZnBr4, smaller in some other cases) which can be described by the 3D-XY model; 

this has been experimentally corroborated by NMR measurements.  Indeed, from the 

nineties on, the 3D-XY model has been found to be of application to a few materials 
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presenting this kind of transition such as K2SeO4, Rb2ZnCl4 [186, 191], (ClC6H4)2SO2 

[192] and betaine calcium chloride dihydrate  BCCD [193]. 

4.4. Critical behavior studies of (Pb,Sn)2P2(S,Se)6 prior to this work 

4.4.1. Sn2P2S6 

 In general, the uniaxial ferroelectrics with one-component order parameter have a 

classical mean-field critical behavior as a consequence of the strong suppression of the 

longitudinal critical fluctuations by the long-range dipolar interactions [194]. However, 

the critical behavior of Sn2P2S6 cannot be explained only by the classical mean-field 

model; instead, literature shows that different mechanisms must be taken into account 

such as first-order  fluctuations of the order parameter, the presence of charge defects, 

or the closeness of the system to a Tricritical or Lifshitz point on its phase diagram.  

 In the first place, ultrasonic investigations performed by Valevichius’s research 

group for Sn2P2S6 show that the temperature dependencies of the sound velocity in the 

ferroelectric phase are well described by the classical Landau theory in terms of mean-

field model. In the same work, the dependencies in the paraelectric state have been 

described by a logarithmic correction of the sort ∆V ~ ln(T-Tc) [195]. Further precise 

ultrasound studies carried out by Samulionis and coworkers for Sn2P2S6 single crystals 

reveal that in the high-symmetry phase the anomalous part of the ultrasound velocity in 

the vicinity of the transition is described with a critical exponent α=0.5 with a small 

(x=0.1) multiplicative logarithmic correction [196]. This result is in good agreement 

with the tricritical universality classes theorized by renormalization group theory and 

supports an idea of closeness to the Tricritical point; the authors suggest that the 

Uniaxial Lifshitz Tricritical class (ULT m=1 in table 4.2) is of application in this case. 

They also found that, in the case of the ferroelectric state, the Landau-Khalatnikov 

model (based on a classical mean-field approach, see section 4.1) is of application to 

describe the temperature dependence of the ultrasound velocity below the transition 

point [196]. Say et al. [197] studied the thermal expansion coefficient of Sn2P2S6 crystal 

and they applied equation 4.16 to the ferroelectric phase, finding that the best fitting 

gave a critical exponent α=0.5. From calorimetric investigations Vysochanskii et al 
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[198] obtained that the excessive heat capacity of Sn2P2S6 in the paraelectric phase 

could be well described by two exponential functions pC∆ ~ 0.5−t  in a temperature range 

of T>T0+1K and pC∆ ~ 1.5−t  in an interval T0<T<T0+1K, which correspond to eq.4.6 and 

eq.4.9, respectively. The first equation contains the fluctuational correction to the 

Landau approach and the second one the contribution of charged defects. Therefore, 

they interpreted the heat capacity anomaly in this crystal as defined by “random-field” 

defects in the immediate closeness to T0, while far from the transition point it can be 

explained by first-order fluctuations of the order parameter [198].  

 Critical analysis of dielectric permittivity for Sn2P2S6 single crystal exhibits a 

slight deviation from the Curie-Weiss law in the paraelectric phase, and was described 

by the multiplicative logarithmic correction with b=0.1: ( )1− =
b

t ln tχ  (related to eq.4.8), 

as suggested by Vysochanskii et al [199]. In the same publication, a temperature 

variation of the effective value of the critical index effγ  for dielectric permittivity has 

been observed (see eq.4.18). This effective value of effγ  is equal to 1 in the paraelectric 

phase far from the critical point, while approaching the transition temperature it deviates 

from the classical Curie-Weiss law. This deviation is observed at 0 10− <T T K  when 

approaching the critical temperature from above [199]. 

 From a detail analysis of the temperature evolution of the optical birefringence, 

carried out by Vysochanskii and coworkers [200], it was found that the behavior of the 

heat capacity in the paraelectric phase was well described by eq.4.8 with a small 

logarithmic correction (b=0.1). In turn, the value of critical index for polarization β  was 

observed to be close to 0.25. These findings agree quite well with the universality class 

UTL, m=1 (see table 4.2). 

 In that same paper, the temperature dependence of birefringence in the 

paraelectric state for Sn2P2S6 crystal was also analyzed taking into account the possible 

superposition of two mechanisms: fluctuations of the order parameter and charged 

defects influence, which corresponds to a combination of eq. 4.6 and eq. 4.9. The 

obtained conclusion is that the fluctuational contribution to the critical anomaly is much 
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bigger than the contribution of defects; however, in the immediate vicinity of the 

transition ( 310t −≤ ) the defect contribution becomes predominant [200].  

 From thermal diffusivity measurements of Sn2P2S6 single crystals, Oleaga et al 

found that its ferroelectric phase could be well described within the framework of the 

Landau model (equation 4.5) while this model fails to describe the temperature 

dependence of thermal diffusivity in the paraelectric phase. [95] To describe the critical 

behavior in the vicinity of the transition point in the latter phase, a model taking into 

account again the superposition of the two aforementioned effects, corresponding to 

eq.4.6 and eq.4.9, was needed (~ 0.5 1.5A t B t− −⋅ + ⋅ ).  

4.4.2. Sn2P2(S1-xSex)6 

 Owing to the presence of a Lifshitz point on the phase diagram of these 

ferroelectric compounds it is desirable to divide this section into two parts. The first one 

will include a review of the critical behavior studies for crystals with concentrations of 

Se lower than x≤0.28 (Lifshitz concentration). The second part contains the results 

obtained for the samples with an atomic percentage of Se exceeding that value. The 

main reason for this separation is that above the Lifshitz point a second order transition 

from a paraelectric phase into an incommensurate phase takes place before the 

ferroelectric one, which happens at a lower temperature (see the phase diagram in 

section 3.2), whereas for smaller concentrations the transition is directly from the 

paraelectric state into the ferroelectric one. 

a) Sn2P2(S1-xSex)6, x≤ LPx . Vysochanskii et al [200] studied the optical 

birefringence upon changing the chemical composition of Sn2P2(S1-xSex)6 ferroelectrics  

for x=0.15, 0.29 and a clear evolution of the anomalous part of the birefringence was 

observed compare to the undoped sample (x=0). The analysis of this evolution by the 

combination of two models such as shown in eq. 4.6 and 4.9 (~ 0.5 1.5− −⋅ + ⋅A t B t ) shows 

that the amplitude A of the fluctuational contribution significantly increases when S is 

replaced by Se, indicating a possible crossover of the critical behavior.  

 In another work, performing thermooptical investigations near the Lifshitz point 

(x=0.29), the authors in [198] found that the critical exponent for polarization β  to be 
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equal to 0.20±0.02, which is slightly smaller than the critical index β  for a tricritical 

behavior (0.25). In the same paper, from an analysis of the derivative of birefringence 

with respect to temperature, the critical exponent α  was found to lie within the range 

0.4-0.6, which is again close to a tricritical behavior. The authors favored the ULT 

universality class (see table 4.2) and the lower values of β  were explained by the 

proximity to the tricritical Lifshitz point and a two dimensional modulation state.  

 Renormalization group theory has been also put to test by Oleaga and coworkers 

studying thermal diffusivity in Sn2P2(S1-xSex)6 mixed ferroelectrics [60]. An analysis for 

samples with Se content of 0, 0.15, 0.20, 0.22, 0.24, 0.26, 0.28, and 0.30 has been 

performed by making use of the critical equation (4.20), having simultaneously fitted 

both low and high temperature branches. For crystals doped with 0, 0.15, and 0.2 no 

meaningful fittings were found, pointing that at those concentrations there is not a clear 

dominant effect yet (fluctuations, short or long-range dipolar interactions, charged 

defects…). Concerning the concentrations around the Lifshitz point, from 0.2 up to 

0.30, good fittings were obtained, extracting meaningful values of the critical exponent 

for heat capacity α , which falls within the range of 0.21-0.34. This result supports the 

universality class L for uniaxial ferroelectrics (see table 4.2 class “L”), indicating that 

the close presence of the Lifshitz point is more relevant when explaining critical 

behavior than other effects such as charged defects, first-order fluctuations or closeness 

to a tricritical point. Moreover, the amplitude ratio /+ −A A  was found to be in the range 

0.42-0.51. This is also close to the theoretically estimated value (0.35) for a Lifshitz 

system without taking into account strong dipolar interactions. These findings reveal 

that for selenium concentrations around the Lifshitz point, long-range dipole 

interactions do not play a significant role and that the critical parameters are close to 

those of the Lifshitz universality class L. 

 Finally, critical behavior has also been studied with acoustic measurements: the 

authors observed that the temperature dependence of the hypersound velocity in a 

ferroelectric phase for Sn2P2(S0.72Se0.28)6 crystal is well approximated by a Landau-

Khalatnikov approach based on the mean-field model [99]. 



CHAPTER 4. Phase transitions and critical behavior                                                                                         114 

 b) Sn2P2(S1-xSex)6, x > LPx . For the compositions with concentrations exceeding 

the Lifshitz point, renormalization group theory has predicted that the critical behavior 

of the second order paraelectric to incommensurate phase transition should correspond 

to the the 3D-XY universality class, as explained in section 4.3. Unfortunately, the 

critical study for these compounds is restricted by the physical properties of the 

incommensurate phase: at most concentrations, the temperature width of this phase is 

too narrow to allow a clear separation of this transition and the lowest one to the 

ferroelectric phase (first-order), preventing a proper analysis.  So, till present time, the 

critical behavior of the paraelectric to incommensurate phase transition has only been 

studied for the pure Sn2P2Se6 ferroelectric crystal.  

To this end, Maior et al obtained the temperature dependence of the thermal 

expansion coefficient in Sn2P2Se6 [201]; they were able to describe the paraelectric 

phase far enough from the critical point ( t > 210− ) within the framework of the Landau 

model including the fluctuational correction, using expressions equivalent to eq. 4.22 

and 4.23. But they failed to find a reasonable critical exponent in a closer region and 

could not relate it to the 3D-XY model. 

According to birefringence data published by Vysochanskii and coworkers [202], 

an analysis of the critical behavior in the incommensurate phase of Sn2P2Se6 gives a 

value of the critical exponent 0.35 0.01β = ±  and this agrees quite well with the theoretical 

value for the 3D-XY model (β=0.34, see Table 4.1). 

Neutron Magnetic Resonance measurements have also been undertaken for 

Sn2P2Se6 with an obtained value of 0.45 0.03β = ±  [203]. This value is in-between the 

mean-field model and the 3D-Heisenberg class (see Table 4.1). However, an 

unambiguous answer concerning the appropriateness of  the 3D-XY model can only  be 

given after a reliable determination of the critical exponent for specific heat α (as its 

value differs significantly from one critical model to another, see table 4.1), as well as 

using experimental data from both sides of the transition. 

 In order to obtain the critical exponent α, Rizak et al [204] used birefringence 

data. From the temperature dependence of the derivative of the birefringence in the 
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paraelectric phase within a temperature range 3 210 10− −< <t , and using a  modified form 

of equation 4.22, α was found to lie within the range  (-0.02, -0.07), which the authors 

claimed is close to the theoretically predicted value for the 3D-XY model. At 

temperatures far from the transition 210−>t  a first fluctuation correction to the Landau 

model was of application (equations 4.22, 4.23 ), while when approaching Ti for 310−<t , 

the authors suggested that there is a possible influence of defects.   

4.4.3. (Pb,Sn)2P2(S1-xSex)6 

 Concerning compounds which contain lead, unfortunately only a few results on 

critical behavior are reported. Recently, (PbySn1-y)2P2S6 mixed ferroelectrics have been 

studied by means of hypersound and ultrasound investigation [107]. Analysis of the 

temperature dependencies of hypersound velocity for concentrations y=0, 0.2, 0.3, and 

0.45 reveal that the anomalies around the second order phase transition are well 

described by the Landau-Khalatnikov model based on the mean-field approach. The 

same results have been observed when studying ultrasound velocity. Moreover, from 

the fitted parameters, the thermodynamic coefficients β  and γ  in the Landau expansion 

series (eq.4.1) were extracted. These coefficients are slightly reduced when Pb contents 

is increased; it is worth noting that all values are positive, indicating a continuous 

character in the transition in the concentration range under study [107].  

 The possible influence of defects on the critical anomaly has been tested when 

replacing Sn by Pb in the cation sublattice and S by Se in the anion sublattice in a low 

atomic percentage (0.5%), measuring birefringence and using eq.4.6 and eq.4.9 to study 

the paraelectric phase [200]. This addition has a strong influence on the amplitude of the 

defect contribution to the critical anomaly, whose value considerably increases. On the 

other hand, in the same work, the ferroelectric phase was used to extract the critical 

exponent of the order parameter β, whose value is nearly the same as that of the pure 

sample.  
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Annex 4.1 

Table.4.3.  

Mean-field exponents for different critical points. [141] S: usual critical point isotropic short-range 

interaction, U with uniaxial dipolar interactions, T tricritical point, L Lifshitz point. m is the number of 

components of the order parameter. 

Universality class α β γ 
S 0 1/2 1 
U 0 1/2 1 
T 1/2 1/4 1 
UT 1/2 1/4 1 
L, m=1 0 1/2 1 
L, m=2 0 1/2 1 
L, m=3 0 1/2 1 
LT, m=1 1/2 1/4 1 
LT, m=2 1/2 1/4 1 
LT, m=3 1/2 1/4 1 
UL, m=1 0 1/2 1 
UL, m=2 0 1/2 1 
ULT, m=1 1/4 1/4 1 
ULT, m=2 1/4 1/4 1 
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CHAPTER 5 

Experimental results and discussion on Sn(Pb)2P2S6 mixed ferroelectrics 

 5.1. Introduction 

 The research problem of this chapter is focused on the left hand side of the 

general phase diagram (fig.3.7), whose shape is depicted on fig.5.1. As it was 

previously mentioned in chapter 3, the introduction of Pb
2+

 ions in the cation sublattice 

of Sn2P2S6 crystal leads to a reduction of the critical temperature of the second order 

phase transition. This temperature lowering is suggested to be caused by the weakening 

of the average bond stiffness in the crystal lattice, when Sn ions are substituted by Pb 

[108]. The nature of this weakening can be related to the difference in atomic radii [109] 

and electronic structure of Pb and Sn ions. Such changes in crystal lattice might be also 

reflected somehow in the thermodynamic properties of the crystals, especially around 

the critical point. So, the aim of this chapter is to thermally characterize (PbxSn1-x)2P2S6 

mixed ferroelectrics in a wide temperature range and present a critical behavior study in 

the vicinity of the continuous phase transition by means of high resolution thermal 

diffusivity measurements. 

 

Fig. 5.1. Phase diagram of (PbxSn1-x)2P2S6 mixed ferroelectrics [205]. 
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 5.2. Samples and experimental procedure 

 Single crystals were grown using two well known methods. The samples with 

lead concentrations of x=0, 0.1, 0.2, 0.3, 0.45, 0.8, 1 have been grown by vapor-

transport method in a quartz tube using SnI2 as a transport reagent. Pb2P2S6 crystal was 

also grown by crystallization from melt using the Bridgman method. Note that growing 

procedures were carried out using high-purity elements Sn (99.99%), Pb (99.99%), P 

(99.999%), S (99.99%) in atomic percentage. 

 There is no information about the stoichiometric quality and difference between 

the “real” and “nominal” concentrations. However, according to XPS spectroscopy of 

Sn2P2S6 the atomic concentration on Sn might exceed up to 2% the nominal value [206]. 

For solid solutions grown by vapor-transport method the real content of Sn and Pb can 

deviate from the nominal value in less than 0.2% as was shown by atomic adsorption 

spectroscopy investigations [109].  

 The crystals were prepared in the form of thin plane-parallel slabs with thickness 

varying in a range of 300-500 µm. The samples grown by vapor-transport method were 

cut perpendicular to their (010) crystallographic direction. In the case of the 

“Bridgman” Pb2P2S6 two additional samples were prepared in (100) and (001) directions 

in order to check the possible thermal anisotropy as has been found for Sn2P2S6 [95]. 

Thermal diffusivity measurements have been carried out using a high-resolution ac 

photopyroelectric calorimeter in the standard back detection configuration using a 

closed cycle helium cryostat. A detailed description of the experimental setups used 

during these investigations can be found in chapter 2. Measurements have been 

performed in two steps: first there was a quick run with a rate of 0.1K/min in order to 

cover a wide temperature range, and a second step consisted of high-resolution 

heating/cooling runs around the critical temperature with rates as slow as 20mK/min. 

 5.3. Experimental results 

 First of all, thermal diffusivity D was measured as a function of Pb contents in the 

(010) direction at room temperature (292K). The results are displayed on fig.5.2. It can 

be seen on the graph that the values are typical for poor thermal conductor materials, 
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where heat is mainly transported by phonons. The crystal Sn2P2S6 possesses a smaller 

value of D than Pb2P2S6. A slight substitution of tin by lead reduces the thermal 

diffusivity a bit, while further doping of Pb ions increases D up to 0.432 mm
2
/s for x=1. 

This rising of D is surely due to the difference between the ionic radii of Pb
2+

 and Sn
2+

 

ions, and it is well known that lead has a larger radius than Sn. Therefore, introducing 

Pb increases the available space for tin ions in (PbxSn1-x)2P2S6 series. Such situation 

might reduce the intrinsic scattering processes in the crystal and, hence, the phonon 

mean free path would increase [95]. 

 

Fig.5.2. Thermal diffusivity of (PbxSn1-x)2P2S6 mixed ferroelectrics along (010) crystallographic 

direction as a function of Pb contents at room temperature [205]. 

 Fig.5.3 displays the temperature evolution of thermal diffusivity D covering a 

wide range from 60K up to room temperature. The experimental curves were obtained 

as a continuous run with a constant variation of temperature in time. 
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Fig. 5.3. Thermal diffusivity as a function of temperature for (PbxSn1-x)2P2S6 mixed ferroelectrics 

[205]. 

 The figure above clearly shows that the general trend is maintained for all 

samples: thermal diffusivity increases as temperature is lowered. Such behavior is 

expected to be observed in any material in which phonons are mainly responsible for 

heat transport, where phonon mean free path rapidly increases with the decrease of 

temperature. For the concentrations x=0.1, 0.2, 0.3, and 0.45 a dip in the thermal 

diffusivity curve has been found signaling the presence of the paraelectric to 

ferroelectric phase transition. Whereas from fig.5.3 it is not clearly seen, fig. 5.4 

illustrates those transitions in detail. For all cases the possible presence of hysteresis has 

been checked by repeating several times the measurement around the transition with 

rates as low as 20mK/min performed on cooling-heating regimes. No difference 

between heating and cooling curves was observed confirming the continuous character 

of the phase transition. In the case of x=0.8 and x=1 the measurements have been 

performed down to 18K and no transition was found.  
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Fig. 5.4. Paraelectric to ferroelectric phase transition temperatures for (PbxSn1-x)2P2S6 mixed 

compound (x=0.1, 0.2, 0.3, 0.45) [205]. 

 As the crystals possess a monoclinic structure, the possibility of thermal 

anisotropy has been checked measuring the thermal diffusivity of Pb2P2S6 crystals along 

the three principal crystallographic directions (100), (010) and (001), with a result 

similar to the one already reported for Sn2P2S6 [95]. Analyzing figure 5.5, it can be 

concluded that heat propagates more easily in (100) direction than along (010), while 

the (001) falls in between. The same sequence was also observed for Sn2P2S6 crystal 

[95], indicating the presence of a clear thermal anisotropy in this paraelectric phase. 
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Fig.5.5. Thermal diffusivity as a function of temperature for Pb2P2S6 crystal along its principal 

crystallographic directions [205]. 

 Moreover, due to the high resolution in fig. 5.5, it is possible to see that the 

temperature evolution of the thermal diffusivity in the (100) direction increases more 

rapidly at low temperatures compared to that for (001) and, in particular, for (010) 

directions. To better distinguish this feature and see how the anisotropy of this 

monoclinic paraelectric changes with temperature we have performed a normalization 

which consists of dividing the values of the thermal diffusivities at the same selected 

temperatures for x-cut and z-cuts over the softest evolution, which takes place for y-cut. 

As seen from fig. 5.6 in a wide region, from 295K down till about 100K, both 

normalized diffusivities are practically insensitive to temperature indicating that the 

thermal anisotropy does not change with temperature. Starting from about 100K for 

(100) and from about 85K for (001) directions the normalised thermal diffusivity 

increases. The nature of this increase could be related to the Debye’s temperature θD, 

which is about 85K for Pb2P2S6 crystal, according to reference [129]. As known from 

the solid state physics theory, at the Debye’s temperature all the possible internal crystal 

vibrations, named as phonons, are excited for all crystallographic directions. A further 

increase in temperature will only enhance their vibration amplitudes, without creating 
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new modes, thus, having practically no influence on the thermal anisotropy, which is in 

agreement with what we have on graph 5.6. The interesting situation happens below this 

specific temperature θD, when some of the modes start to be frozen. The freezing of the 

internal vibrations reduces the probability of collision processes between the phonons, 

hence, increasing the phonon mean free path and leading to a quicker increase in the 

thermal diffusivity. This might be a good reason why the thermal diffusivity along (100) 

direction rises up faster than that for (001) and (010) ones. 

 

Fig. 5.6. Normalized thermal diffusivity as a function of temperature for x-cut (blue circles) and z-cuts 

(red circles) of Pb2P2S6. 

 

 5.4. Discussion on the critical behavior study of the second order phase 

transition 

 For the critical analysis the anomalies at TC of the samples with lead content of 

x=0.1, 0.2 and 0.3 have been studied. In the case of x=0.45 the shape is too rounded, 

which makes it useless for any quantitative treatment. This type of rounding is quite 

common in heavily doped systems: as Pb ions are introduced in the compound in a high 

percentage, the disorder and the lattice defects increase noticeably smearing the shape 
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of the phase transitions. In order to study the critical behavior of the transition, very 

well defined thermal diffusivity curves have been obtained in the near vicinity of the 

critical temperatures. As it was explained in a chapter 2, the relation between the 

thermal diffusivity D and specific heat is cp: / c pD K  , where K is the thermal 

conductivity and   the density; therefore, the critical behavior of specific heat and the 

inverse of thermal diffusivity 1/D is the same, provided that neither thermal 

conductivity nor density have significant changes across the transition point, which is 

the case in these ferroelectric family [95]. To describe the critical behavior at the 

transition several critical models have been put to test. Thus, the equations used to fit 

1/D were written as follows: 

 a) General mean-field analysis in terms of Landau theory, based on the eq.4.1, for 

the ferroelectric phases: 

   1

2

1/
1 4 (T T )

   
 

c

c

T
D B C T T p

p
, (5.1) 

where 1p , 2p  are related to the phenomenological coefficients   and   in the Landau 

expansion series through the relations:  2

1 / 2p a K ,  2

2 /p a  . Here and in further 

models the linear term defined by coefficients B and C represents a regular contribution 

to the inverse of thermal diffusivity.  

 b) The modern critical theory that corresponds to eq.4.20, fitting the paraelectric 

and ferroelectric phases at the same time. It would determine the universality class to 

which the transition belongs, as has been previously done for Sn2P2(SexS1-x)6 family 

[60]. 

  0.5
1/ 1

    D B Ct A t E t


, (5.2) 

where /  c ct T T T  is the reduced temperature. 

 c) In case in which no good fittings could be found with the previous model, we 

have also studied the paraelectric phase using the following sequence of models: 

 − First fluctuational correction to the Landau approach, that corresponds to 

eq.4.6, where the critical exponent   has to be equal to 0.5: 
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 1 1 11/


  D B C t A t . (5.3) 

 − A model based on the eq.4.8, which assumes a possible attenuation of 

fluctuation effects (<0.5) in uniaxial ferroelectrics: 

 
0.5

2 2 21/ ln

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b

D B C t A t t . (5.4) 

 − A model which contains a superposition of eq. 4.6 and eq. 4.9, taking into  

account both the contribution of the fluctuation effects and charged defects: 

 
0.5 1.5

3 3 3 31/
 

   D B C t A t D t . (5.5) 

 Let’s remind that the critical analysis of acoustic properties such as ultrasound 

and hypersound velocities of (PbxSn1-x)2P2S6 mixed compounds, obtained by authors in 

reference [107], reveals that the ferroelectric phase of these crystals could be 

approximated using the Landau-Khalatnikov model, which is based on a classical mean-

field approach. It is interesting to compare the results obtained from the study of the 

acoustic dynamic properties with one obtained from the analysis of thermal properties 

such as thermal diffusivity. 

 As seen from fig.5.7, our fittings performed for samples with Pb content of x=0.1, 

0.2 and 0.3 are quite good proving that, indeed, the ferroelectric phase of (PbxSn1-

x)2P2S6 mixed crystals can be well described by a classical Landau approach in terms of 

a mean-field model. Besides, the values of the phenomenological coefficients    and 

calculated from the fittings fall within the range of already published values obtained by 

means of other techniques [107, 207]. Table 5.1 contains the relevant fitting parameters. 

When comparing our results with the data reported in reference [107], it can be said that 

due to the difference in the temperature resolution of the experimental curves, the 

results obtained from thermal diffusivity measurements have a higher level of 

confidence. Nevertheless, the general conclusion is practically the same, indicating that 

the behavior of both physical properties in the ferroelectric phase can be explained in 

terms of the classical mean-field model. 
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Fig. 5.7. Above: Experimental data for the 1/D as a function of the temperature for x=0.1; 0.2 and 0.3. 

Red line is the fit by eq.5.1 for the low symmetric phase. Below: Deviation plots corresponding to the 

fits [205]. 

Table 5.1.  

Results obtained from the fitting by eq.5.1. Here p1 and p2 are the adjustable parameters; reduced 

temperature range t; R
2
 is the fitting quality coefficient,    and   are coefficients in the Landau 

expansion eq.4.2 [205]. 

Parameters x=0.1 x=0.2 x=0.3 

p1 (s/mm
2
) 7.5×10

−4
 ±8×10

−5
 1.26×10

−4
 ±7×10

−6
 4.22×10

−3
 ±1.6×10

−4
 

p2 (K
−1

) 0.41±0.06 0.16±0.05 2.85±0.28 

Fitted range, t 4.4×10
−2

–2×10
−3

 6×10
−2

–3.8×10
−3

 4×10
−2

–3.2×10
−3

 

R
2
 0.9997 0.9992 0.9993 

   (Jm
5
C

−4
) 3.1×10

9
 1.6×10

10
 4.9×10

8
 

  (Jm
9
C

−6
) 1.6×10

12
 2.5×10

13
 4.25×10

11
 

 Taking into account both the ferroelectric and the paraelectric phases, eq.5.2 has 

been applied to the three crystals. For the sample with Pb concentration of 10% the 

fitting was possible only with huge values of E
±
, which goes against the physical 
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meaning of the correction term in eq.5.2, which must be small. Therefore, this particular 

result falls out of consideration. In the case of x=0.2, a fitting was found with a critical 

value of 0.07 0.02     and acceptable values of the rest of the parameters. For x=0.3 

the fitting was even better and the critical exponent was equal to 0.04 0.01    . These 

two results indicate a tendency to approach the mean-field value, where 0  . This 

situation means there is a clear change in the critical behavior of the transition as Pb 

concentration increases. The fits and deviation plots are displayed on the fig. 5.8 while 

table 5.2 contains the relevant fitting parameters.  

 

Fig. 5.8. Above: Experimental data for the 1/D as a function of the reduced temperature for x=0.2, 0.3. 

The lines represent the fits using eq. 5.2. Below: Deviation plots corresponding to the fits: blue crosses 

are for  cT T , red open circles for  cT T  [205]. 
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 Since (PbxSn1-x)2P2S6 mixed ferroelectrics doped with x=0.1 and x=0.2 do not 

differ much from the undoped Sn2P2S6, their paraelectric phases have also been 

analyzed checking the applicability of eq. 5.3-5.5. Starting with the sample x=0.1, the fit 

to eq.5.3 was not possible with critical index =0.5. The best fitting was obtained with 

 =0.66, which is higher than theoretically predicted for first order fluctuations. 

Moreover, this value discards even testing eq.5.4. On the other hand, the fitting of the 

experimental data to eq.5.5 gave a nice outcome, whose results together with the 

deviation plots are displayed on fig.5.9. Moreover, the analysis of fitting parameters 

reveals a ratio D3/A3=2.4×10
-4

, indicating that the contribution of charged defects to the 

critical anomaly is much smaller than the contribution of fluctuation effects. 

Nevertheless, the second term in eq.5.5 becomes dominating in the nearest 

neighborhood of the critical point stressing the importance of the defects role. Note that 

the same result was obtained by Oleaga and coworkers in publication [95] for undoped 

Sn2P2S6 crystal, which was not surprising as Pb dopant has been introduced only in a 

10% proportion.  

 Turning now our attention to the sample with x=0.2, the fitting to eq. 5.3 gave a 

critical exponent of 0.37 , which is too far away from 0.5. Such a low value cannot 

be corrected simply by a small multiplicative logarithmic correction, as theory predicts, 

using eq.5.4. That means that the intrinsic fluctuations in the sample are strongly 

suppressed. So, the next step was to fit using eq.5.5 and it provided rather a good result, 

even better than the one obtained for x=0.1 (see parameter R
2
 in a table 5.2 and 

deviation plots on fig.5.9), with ratio D3/A3=4.3×10
-4

 , indicating an increment of defect 

influence with  respect to the crystal with 10% of Pb content. When Pb is introduced in 

a higher atomic percentage, the relative influence of defects is enlarged. Note that, in a 

previously reported paper on the temperature evolution of the birefringence of Sn2P2S6 

ferroelectric crystal [200], the authors have also found that the introduction of Pb in a 

low atomic percentage (0.5%) into its crystal network increases coefficient D3 in eq. 

5.5. So, our results follow the same trend, confirming the importance of taking into 

account the charged defects contribution in the description of the critical anomaly. 
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 In spite of having obtained quite good results for sample x=0.3 using the full 

critical model (eq.5.2) for both phases, eq.5.3-5.5 have been also put to test for the 

paraelectric one. With eq.5.3 the fit was possible with exponent  (but worse 

than with eq.5.2), while the two other models (eq.5.4 and 5.5) did not give good fittings. 

 

Fig. 5.9. Above: Experimental data for the inverse of thermal diffusivity (grey circles) for (PbxSn1-

x)2P2S6 crystals together with their fits to eq.5.5 (blue lines). Below: Deviation plots corresponding to 

the fittings, presented in percentage [205].  

All these findings give a clear picture on how critical behavior changes when Pb 

ions are introduced in the cation sublattice of Sn2P2S6 ferroelectric. In all cases the 

ferroelectric phase can be well described by the classical Landau model but this might 

be due to the fact that we can not get too close to the critical temperature on that side of 
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the phase transition, so we can not see the influence of the possible fluctuations of the 

order parameter and their enhancement or attenuation by some other mechanisms. 

Table 5.2. 

Results of fitting procedure for samples x=0.1, x=0.2 and x=0.3. Only the sensible fits are included in 

the table, which contains their relevant parameters, such as critical index α, fitted range t, fitting 

quality coefficient R
2
, and adjustable fitting parameters A

± 
, A1, A3 and D3 [205]. 

Model Parameters x=0.1 x=0.2 x=0.3 

Eq.5.2 

A
+ 

(s/mm
2
) 

A
- 
(s/mm

2
) 

α 

t for T>TC 

t for T<TC 

R
2 

 

0.76±0.27 

0.77±0.28 

-0.07±0.02 

3.5×10
−2

–2.3×10
−3 

6.0×10
−2

–3.8×10
−3 

0.997 

4.38±0.81 

4.32±0.81 

-0.04±0.01 

5.3×10
−2

–2.7×10
−3 

7.4×10
−2

–3.4×10
−3 

0.999 

Eq.5.3 

A1 (s/mm
2
) 

α 

t for T>TC 

R
2
 

0.014±0.002 

0.66±0.02 

3.2×10
−2

–2.7×10
−3 

0.979 

0.043±0.005 

0.369±0.015 

3.5×10
−2

–2.3×10
−3 

0.986 

 

Eq.5.5 

A3 (s/mm
2
) 

D3 (s/mm
2
) 

D3/A3 

t for T>TC 

R
2
 

0.0292±7×10
−4 

7.06×10
−6

±9.6×10
−7 

2.4×10
-4 

3.2×10
−2

–2.7×10
−3 

0.977 

0.0119±2×10
−4 

5.11×10
−6

±2.5×10
−7 

4.3×10
-4 

3.5×10
−2

–2.3×10
−3 

0.992 

 

At low atomic percentage of dopands (x=0.1), the behavior in the vicinity of Tc is 

practically the same as for the undoped sample, where a combination of several 

competing mechanisms is needed to describe the anomaly in the paraelectric phase. On 

the one hand, the nearness to a Lifshitz point enhances the fluctuations of the order 

parameter while on the other one, the nearness to a tricritical point reduces them. 

Besides, point defects are responsible for inducing long-range perturbations of the order 

parameter. The combination of all of them is needed to take into account a clear 

deviation from a mean field model, which has been discarded by the appropriate 

fittings.  

An interesting event happens when Pb content is increased: for the sample doped 

with x=0.2 a clear evolution starts, because its critical behavior can be explained by two 

models. The first one, obtained by only fitting the paraelectric phase, is a combination 
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of the first fluctuational correction together with the contribution of charged defects 

(eq.5.5), similarly to x=0.1. The second model is the one which takes into account both 

phases at the same time (eq. 5.2) whose fitting gave a critical index 0.07  , which is 

close to the mean-field one. Finally, if Pb ions are introduced in a proportion of x=0.3, a 

very nice fitting of both phases to eq.5.2 gives a critical parameter 0.04  , which is 

even closer to the mean field model (0), while it was not possible to fit it to any 

model with had any relation to the nearness to Lifshitz or tricritical points or the 

contribution of point defects. This result implies that the sample with x=0.3 behaves as a 

common uniaxial ferroelectric, where long range interactions are dominating. Thus, 

comparing the critical studies for these three samples, a clear evolution from a non 

mean-field behavior to it has been observed, when Sn ions are substituted by Pb ones in 

(PbxSn1-x)2P2S6 mixed ferroelectrics up to x=0.3. 

 

 5.5. Conclusions 

 The thermal diffusivity of (PbxSn1-x)2P2S6 ferroelectric family has been measured 

in a wide temperature range, observing the typical behavior of poor thermal conductive 

materials, where phonons are predominant in heat propagation. Thermal anisotropy has 

been confirmed for Pb2P2S6 paraelectric crystal with monoclinic structure. The second 

order character of the transition has been proved for samples with Pb content of x=0.1, 

0.2, 0.3 and 0.45. The evolution of critical behavior when introducing Pb ions has been 

observed. There is a crossover from a non-mean field behavior at x=0.1 (the first 

fluctuational correction and the contribution of charged defects must be taken into 

account) to a mean-field one at x=0.3 (long-range interactions are predominating). 
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CHAPTER 6 

Experimental results and discussion on (PbxSn1−x)2P2Se6 mixed ferroelectrics 

 6.1. Introduction 

 This chapter is focused on the third and last part of the general phase diagram 

(fig.3.7). After chapter 3, it is established that the substitution of Sn by Pb atoms in 

(PbxSn1−x)2P2Se6 series leads to a decrease in the temperature of both the paraelectric to 

incommensurate (Ti) and the incommensurate to ferroelectric (Tc) phase transitions. At 

the same time, the temperature width of the incommensurate phase considerably 

increases [3]. Such ion replacing also alter the shape of the anomalies at critical 

temperatures Ti and Tc, which become more smeared around the phase transitions when 

Pb is introduced in the crystal lattice. The question we are interested in is: how the 

introduction of Pb dopands into (PbxSn1−x)2P2Se6 mixed crystals (whose state diagram 

after ref. [94, 109] is displayed on fig.6.1) will affect the thermal properties and the 

critical behavior in the neighborhood of the second order phase transition at Ti 

(paraelectric to incommensurate). 

Thus, the aim of this chapter is to thermally characterize the family 

(PbxSn1−x)2P2Se6 measuring thermal diffusivity in a wide temperature range (from 30K 

to room temperature), studying the character of the different phase transitions as well as 

the critical behavior of the continuous ones. 

6.2. Samples characterization 

 Single semiconductor crystals (PbxSn1−x)2P2Se6 with monoclinic crystalline 

structure [76] were grown by a vapor-transport method in a quartz tube using SnI2 as a 

transport reagent. The nominal concentrations of Pb were as follows x=0, 0.05, 0.1, 0.2, 

0.47, 0.8 and 1. The crystals were prepared in three groups. The first one comprises x=0 

and 1. Thin plane parallel slabs (300-500μm) were cut and polished in the monoclinic 

symmetry plane perpendicular to (010) direction, so their absolute values could be 

compared with to the ones reported in [205]. Second group includes the samples with 

x=0.05, 0.2, and 0.47. The growth of these mixed solid solutions turned out to be more 

difficult; hence, small and brittle crystals were obtained. Finally, the crystals with Pb 
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concentrations of x=0.1 and 0.8 were grown in order to extend the concentration series. 

When preparing thin plane parallel slabs with Pb contents of x=0.05, 0.1, 0.2, and 0.47, 

it was not possible to obtain their surfaces in a direction perpendicular to (010) but only 

to the (100) one. In particular, for one crystal (Pb0.8Sn0.2)2P2Se6 was even impossible to 

find any principal direction; as a consequence, the sample was prepared to measure only 

the effective value of thermal diffusivity. The crystalline quality has been checked by 

X-ray measurements, which was very good save for the sample with x=0.8, which had 

an evident worse quality than the rest of the crystals.  

 

Fig. 6.1. Phase diagram for (PbxSn1−x)2P2Se6 mixed ferroelectrics after references [94, 109] together 

with data obtained from our thermal diffusivity measurements [60, 208, 209]. The solid symbols 

present the second order transition from the paraelectric phase to the incommensurate one. Empty 

symbols indicate the first order transition from the incommensurate to ferroelectric phase. Lines are 

just guides for the eye.  

 6.3. Experimental results 

 Thermal diffusivity (D) curves for lead/sulfur-selenium mixed compounds in a 

temperature range from 30K till room temperature are presented in fig.6.2. As explained 

in a section 2, in samples x=0 and 1 D was measured along (010) crystallographic 

direction while in samples x=0.05, 0.1, 0.2 and 0.47 it was measured along the (100) 

direction. Note that for x=0.8 an effective thermal diffusivity has been obtained. Since 
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the thermal anisotropy for these materials is well established [205, 95, 127] and thermal 

diffusivity as well as thermal conductivity are higher in the (100) direction than in the 

(010) one, the two curves for x=0 and x=1 will have a higher value in the (100) 

direction than what is shown in fig.6.2, being above the rest of the curves at room 

temperature. This behavior has already been observed when comparing thermal 

diffusivity curves in the three directions at room temperature for Sn2P2S6 [95] and 

Pb2P2S6 (see figure 5.5 in chapter 5 and [205]). 

 

Fig.6.2. Temperature evolution of our thermal diffusivity data for (PbxSn1−x)2P2Se6 crystals [208]. 

 As seen from fig.6.2 the general trend is maintained in all curves and thermal 

diffusivity increases with decreasing temperature. The same has been observed in the 

case of (PbxSn1−x)2P2S6  ferroelectrics (see fig 5.3 in chapter 5 and [205]), confirming 

their thermal insulator behavior, where phonons are responsible for the heat transport. 

The increase of D for the mixed compounds at lower temperatures is slowlier than that 

for undoped crystals. This can be explained by the presence of two different species (Pb 

and Sn) with different sizes (Pb
2+

 ionic radius is larger than that for Sn
2+

) in the cation 

sublattice for mixed compositions. As a consequence, both atoms share the same space 
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available for them, distorting the crystalline lattice and, in turn, reducing the phonon 

mean free path.  

 Dips have been observed superimposed on the curves for samples x=0, 0.05, 0.1, 

0.2, and 0.47 indicating the presence of phase transitions (fig.6.2). The first order 

transition from the incommensurate to the ferroelectric phase has been detected only on 

the crystals with concentrations x=0, 0.05, and 0.1; they can be seen in the inset of fig 

6.2 (lower temperature transitions) and are presented in detail in fig.6.3. As seen from 

the latter figure, there is a clear hysteresis indicated not only by the difference of the 

critical temperature on high resolution (10mK/min) heating and cooling runs but also by 

the difference in shape between them, confirming the discontinuous character of the 

transition. It is worth noting that the temperature difference is increased when Pb is 

introduced in a higher atomic percentage. This is in agreement with data reported by 

Vysochanskii and coworkers obtained by means of light transmission measurements 

[94]. 

 

Fig. 6.3. Thermal diffusivity as a function of temperature for(PbxSn1−x)2P2Se6. First order transition: 

(a) x=0; (b) x=0.05 and (c) x=0.1. 

 The continuous paraelectric to incommensurate phase transition has been detected 

in the samples with lead concentrations of x=0, 0.05, 0.1, 0.2, and 0.47. As they can not 

be well appreciated in fig.6.2, fig 6.4 illustrates them in detail, confirming that the 

increase of Pb concentration induces an expanding smearing of the anomaly at Ti. First, 

the anomaly becomes less marked at low dopant concentration (x=0.05) with respect to 

the pure crystal. Then, starting with x=0.1 to x=0.2, the transition becomes more 
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“extended” in temperature. Note that the vertical scale for x=0.2 is extremely shallow 

compared to the one for x=0.  

 

Fig. 6.4. Thermal diffusivity as a function of temperature for(PbxSn1−x)2P2Se6. Second order transition: 

(a) x=0; (b) x=0.05; (c) x=0.1; (d) x=0.2; (f) x=0.47. 

Further increasing of Pb contents to x=0.47 leads to even a stronger smearing of 

the transition (fig.6.3.e). Nevertheless, two distinct changes in the slope of the thermal 

diffusivity curve are seen, separated by about 7K. These two points probably indicate 

the starting and finishing points of the phase transition. Note that the continuous 

transition at x=0.47 is even more “suppressed” than that at x=0.2, meaning that 

transition itself is dissolved at higher Pb content. For the samples doped with x=0.8 and 

x=1 the measurement has been performed down to 30K and no transition of any kind 

was found in any of them. The continuous character of the transitions displayed on 

fig.6.3 has been checked out by repeating slow heating and cooling runs several times. 

No hysteresis is hinted, neither by the difference in critical temperature nor in the 

shapes of the thermal diffusivity curves. The resulting phase transition temperatures 

which have been observed in this work are also plotted on fig.6.1. As can be seen, there 
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is some discrepancy between data reported by different authors [94, 109] and our 

results. As it is well known, the precise position of any phase transition depends heavily 

on the stoichiometry of the particular sample, which is a question of the growing 

procedure. This could be the reason for the temperature discrepancies of the transitions, 

since the authors in [94, 109] have worked with different samples than us. 

 6.4. Critical behavior 

 Regarding the critical analysis, we have used as fitting variable the inverse of the 

thermal diffusivity, since it behaves as specific heat in the critical region (see the 

previous chapter for the justification), using eq.5.2 based on the modern critical theory 

and fitting both branches of the phase transition at the same time.  

  0.5
1/ 1

    D B Ct A t E t


. (6.1) 

Unfortunately, only the thermal diffusivity dips for x=0, 0.05 and 0.1 are useful to 

retrieve meaningful information. In particular, the sample doped with 10% of Pb is 

probably the limiting case for which such a quantitative study can be performed, since 

for x=0.2 the shape of the anomaly is too rounded.  

The results of the fitting are shown in fig.6.5, together with the corresponding 

deviation plots, which signal the deviation of the fitted curves from the experimental 

data. The relevant fitted parameters are gathered in table 6.1. As seen from the table, the 

critical index α as well as the ratio of the critical coefficients A
+
/A

-
 for all three samples 

x=0, 0.05 and 0.1 are in good agreement with the 3D-XY model (theoretical value for 

α=-0.014 and ratio A
+
/A

-
=1.06), as predicted by renormalization group theory (see 

chapter 4, section 4.3). This model assumes that a two component order parameter is 

needed to describe the Hamiltonian for the system, as was aforementioned. The quality 

of the fittings is confirmed by the high coefficient of determination R
2
 (for an ideal fit 

R
2
=1).  

 It is worth noting that the critical behavior analysis of (PbxSn1−x)2P2Se6 family had 

been previously undertaken only for the undoped Sn2P2Sе6 crystal, measuring optical 

birefringence [202, 204] or neutron magnetic resonance (NMR) [203]. Moreover, in 

those publications only one phase of the transition has been considered, the paraelectric 
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one for birefringence and the incommensurate one for NMR. Bear in mind that our 

results have been obtained simultaneously fitting both low and high temperature 

branches of the critical anomaly. Our fits have also been performed under the strictest 

theoretical conditions described in section 4.2, which is the only way to retrieve 

valuable information on the appropriate universality class. In this respect, the results 

obtained from our thermal diffusivity measurements accompanied with the findings 

reported in [202, 203, 204] give us a clear picture, indicating that the continuous 

paraelectric to incommensurate phase transitions at x=0, 0.05 and 0.1 add up to the list 

of the 3D-XY universality class. 

 

Fig.6.5. Above: Experimental data (circles) for the inverse of thermal diffusivity as a function of the 

reduced temperature t = (T-TC)/TC for (PbxSn1−x)2P2Se6 ferroelectrics. The lines represent the fits to eq. 

6.1, fitting both branches at the same time. Below: Deviation plots corresponding to the fits shown 

above. Open circles are for T < TC and crosses for T > TC. 
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Table 6.1. 

Results of the fitting of the inverse of thermal diffusivity using eq. 6.1. The relevant fitting parameters 

are shown together with the fitted range in reduced temperature units t=(T-TC)/TC as well the quality of 

the fitting through the coefficient of determination R
2
. 

Parameters x=0 x=0.05 x=0.1 

α -0.019±0.008 -0.026±0.018 -0.018±0.007 

A
+
/A

- 
1.00 1.03 0.99 

Fitted range for T > Tc 2.6×10
-3

-3.2×10
-2

 9.1×10
-4

-3.1×10
-2

 5.07×10
-3

-9.63×10
-2

 

Fitted range for T < Tc 4.3×10
-3

-3.6×10
-2

 6.4×10
-3

-4.8×10
-2

 2.21×10
-2

-1.05×10
-1

 

R
2
 0.999 0.995 0.999 

 

6.5. Conclusions 

 The thermal diffusivity in (PbxSn1−x)2P2Se6 mixed ferroelectrics has been 

measured in a range from 30K till room temperature using an ac photopyroelectric 

calorimeter. A temperature evolution typical for thermally insulating materials has been 

observed. The structural first order transition from the ferroelectric to the 

incommensurate phase has been detected for samples with Pb contents of x=0, 0.05 and 

0.1 and its hysteresis checked. In turn, the continuous paraelectric commensurate to 

incommensurate phase transition has been observed for x=0, 0.05, 0.1, 0.2, and 0.47. 

The critical behavior of this transition has been studied for x=0, 0.05 and 0.1. The 

critical parameters obtained from the analysis allow to attribute these three transitions to 

the 3D-XY universality class. The samples doped with x=0.8 and x=1 do not show any 

transition in the full temperature range of study (30K to room temperature). 
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CHAPTER 7 

Experimental results and discussion on Sn2P2S6 doped with Ge, Sb, Te 

 7.1. Introduction 

 Isovalent doping can significantly modify the physical properties of a material. 

Concerning Sn2P2S6 − like crystals, a significant property is ferroelectricity. The nature 

of that effect comes from the stereochemical activity of the electron lone pair (5s
2
) of Sn 

atoms in the cation sublattice, which is determined by a hybridization with P2S6 

molecular electronic levels (3p
4
). As a result of those electronic orbital interactions a 

spontaneous polarization appears [115, 210, 211]. In this chapter we consider the 

influence of isovalent atom substitutions on the ferroelectric properties of Sn2P2S6 

crystal, which presents a second order ferroelectric to paraelectric phase transition at 

about 337K. At the same time, it is also interesting to study the evolution of its critical 

behavior in the neighborhood of the transition, when Sn is replaced by Ge, or P by Sb or 

S by Te in the crystal lattice. This might give relevant information about the influence 

and contribution of the different species to the physical mechanisms responsible for the 

critical anomaly. 

 7.2. Samples and measuring procedure 

 Single crystals of Sn2P2S6 doped with Ge, Sb and Te atoms were grown by a 

vapour-transport method in a quartz tube using SnI2 as a transport reagent. The 

synthesis of the starting material in the polycrystalline form has been carried out using 

high-purity elements Sn (99.99%), P (99.999%), S (99.99%), Ge (99.999%), Sb 

(99.999%), Te (99.99%), the numbers in parenthesis representing the atomic 

percentage. The nominal content of dopants, given in atomic percentage, is as follows: 

Ge: 3%, 5%; Sb: 0.5%, 1%, 2% and Te: 1%, 2%. Depending on the particular doping 

the samples present different color: for Ge it is a light orange, while for Sb and Te the 

color is light red and light brown, respectively. 

 For thermal diffusivity investigations the crystals have been prepared in the form 

of thin plane-parallel slabs with faces perpendicular to the (001) crystallographic 

direction and thickness in a range of 0.500-0.530 mm. The experimental setup and 
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measuring procedure used during the study have been the same as those used in 

chapters 5 and 6, complying with all the theoretical requirements needed. The only 

difference has been the use of another cryostat. Since the temperatures of interest for 

these materials falls out of the working regime of a closed cycle He cryostat (20-320K), 

a liquid nitrogen bath cryostat has been employed (78-400K). 

 7.3. Experimental results 

 Thermal diffusivity as a function of temperature has been measured for all doped 

samples in a range of 295-395K. The experimental curves are presented on fig.7.1.-7.3. 

To better compare and visually see the influence of each dopant (Ge, Sb and Te) the 

previously measured thermal diffusivity for the pure Sn2P2S6 along its (001) direction 

[95] has been also included in fig. 7.1-7.3. For all curves a dip superimposed on the 

typical evolution with temperature signals the presence of a second order phase 

transition from the initial high temperature paraelectric phase to the low temperature 

ferroelectric one. As seen from graphs 7.1-7.3 the three dopants alter the original shape 

of the transition but in a different way. 

 Introducing Ge atoms into the cation sublattice of 2 2 6Sn P S  crystal increases the 

critical temperature. From the initial value of TC = 336.2 K for the undoped sample, it 

rises up to 346.1K at 3% Ge and then to 349.2K for the nominal Ge content of 5% 

(fig.7.1). An increase of the transition temperature had already been observed by Maior 

and coworkers [212] measuring the temperature evolution of the piezoelectric and 

pyroelectric coefficients but with less resolution. It should be pointed out, that the dip of 

the transition becomes sharper as Ge is introduced at higher atomic percentage. 
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Fig. 7.1. Thermal diffusivity in the (001) direction as a function of temperature for Sn2P2S6 doped with 

Ge: (a) pure Sn2P2S6 [95]; (b) Sn2P2S6+3%Ge; (c) Sn2P2S6+5%Ge. 

 On the contrary, Sb atoms, which are isovalent to P in the anion sublattice, 

provoke a slight downward shift in the critical temperature. But the effect is much 

smaller compared to the influence of Ge atoms. At the same time, the transition is 

broadened and the shape of the anomaly at TC is more rounded. For the samples doped 

with Sb of 1% and 2% the position of the transition temperature is practically the same 

but the general evolution of D(T) dependence is altered (see fig. 7.2). 

 

Fig. 7.2. Thermal diffusivity in the (001) direction as a function of temperature for Sn2P2S6 doped with 

Sb: (a) pure Sn2P2S6 [95]; (b) Sn2P2S6+0.5%Sb; (c) Sn2P2S6+1%Sb; (c) Sn2P2S6+2%Sb. 
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 Concerning the substitution of S by Te, there is just a minor variation in the 

critical temperature between the undoped crystal and the doped ones (1%, 2%, see 

fig.7.3). As seen from the graph, in the case of Te the shapes of the anomalies are more 

similar to the undoped ones than in the case of Ge and Sb. Roughly, we can say there is 

only a vertical extension of the dip at 1% of Te and a compression for the 2% doped 

sample compared to the pure Sn2P2S6.  

 

Fig. 7.3. Thermal diffusivity in the (001) direction as a function of temperature for Sn2P2S6 doped with 

Te: (a) pure Sn2P2S6 [95]; (b) Sn2P2S6+1%Te; (c) Sn2P2S6+2%Te. 

 For all cases the continuous character of the transitions has been confirmed by the 

lack of a temperature hysteresis performing slow heating-cooling runs (20-25mK/min). 

There was also no difference in the shape of the anomalies on heating and cooling 

regimes. 

 It is worth noting that there is one common feature among fig.7.1-7.3. For all 

three cases the absolute value of the thermal diffusivity is reduced at “low” dopant 

contents while a further doping increase leads to a rise in thermal diffusivity, but always 

smaller than the one for the undoped sample. Moreover, the absolute value of D is quite 

low for all samples and fall within the range of poor thermal conductors, where phonons 

play the main role in heat transport. It is quite common that, in thermal insulators, small 

additions of dopant reduce the phonon mean free path due to the disorder introduced 

while from a certain atomic percentage up there is a relative increment, as it happens 
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with these crystals. This feature has also been observed when studying the thermal 

diffusivity at room temperature for (PbxSn1-x)2P2S6 mixed compounds (fig.5.2), where 

doped samples had a lower values than the undoped ones [205]. The possible reason for 

a low thermal diffusivity for Sn2P2S6 − like ferroelectrics at room temperature is the low 

mean group velocity of their short-wave acoustic phonons and the small phonon mean 

free path, which is comparable to the unit cell size of these crystals [127]. 

 7.4. Influence on the ferroelectricity 

 Let’s discuss the influence of the particular dopant on the ferroelectric properties 

of Sn2P2S6 crystal. As the spontaneous polarization in this material is attributed to the 

stereoactivity of the Sn atoms in the cation sublattice, we will first consider the 

influence of Ge. As seen from fig. 7.1, the transition itself becomes sharper and it is 

shifted to higher temperatures with the increased addition of Ge. As stated in ref. [211], 

the origin of the ferroelectricity lies in the hybridization of the electronic orbitals of the 

cation Sn
2+

 (5s
2
) and P2S6

4-
 (3p) anion sublattices and it heavily depends on the energy 

distance between their electronic state levels. Thus, the isovalent atoms entering the 

stereoactive cation sublattice will change this hybridization affecting the ferroelectric 

properties. Thus, the introduction of Ge (4s
2
) instead of Sn (5s

2
) reduces the energy 

difference between the electronic states responsible for the hybridization, and as a 

consequence the ferroelectric state can be stable at higher temperatures. Exactly the 

opposite effect has been observed when Sn is replaced by Pb. Because of the larger 

energy distance between Pb (6s
2
) and P2S6

4-
 (3p) electronic states the hybridization 

becomes weaker, disfavoring the ferroelectricity, which is reflected in the lowering of 

the transition temperature and the smearing in the shape of the critical anomaly (see 

fig.5.4 in chapter 5). 

 Turning our attention to Sn2P2S6 doped with Sb, it is clear from fig.7.2 that there 

is some broadening of the transition and a slight reduction in the critical temperature. 

Both the broadening and the decrease in temperature TC suggest a slight disfavor of the 

ferroelectricity. As stated in ref. [211], the contribution of the P2S6 clusters to the 

ferroelectricity, whose acentricity is mainly reflected in the deformation of the charge 
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distribution along the P-P bonds, is much smaller than the contribution of Sn atoms. The 

isovalent replacement of P by Sb atoms with larger atomic radius modifies the position 

of the energy levels at the top of valence band [213], which could be related to the slight 

disfavor of ferroelectricity. 

 Finally, as seen from fig. 7.3 the Te atoms practically do not alter the position of 

the critical temperature, keeping the similar features in the shape of the anomalies. It 

could be said that there is a very slight favoring of the ferroelectricity. The effect of Te 

on the electronic orbitals has been also studied by XPS [213] with the conclusion that 

there is a strong hybridization with P and S orbitals near the top of the valence band but 

with a very slight influence on the Sn
2+

 lone pair, thus having very little influence on the 

stereoactivity. Hence, the results we have obtained are not surprising when Te 

substitutes non-ferroactive S atoms in the crystal lattice. 

 7.5. Critical behavior 

 The phase transition has been quantitatively analyzed in all samples to study the 

evolution of the critical behavior with doping. The models put to test have been the 

same ones as exposed on chapter 5, for the same reasons. Therefore, the inverse of 

thermal diffusivity 1/D has been fitted by theoretical models corresponding to the 

equations 5.1-5.5. 

 The first equation used has been the classical Landau approach in terms of 

general mean-field model taking into account the possible coupling of polarization to 

strain (eq. 5.1), applied to the ferroelectric phase and that we reproduce here for the sake 

of clarity.  

   1

2

1/
1 4 (T T )

   
 

c

c

T
D B C T T p

p
, (7.1) 

with  2

1 / 2p a K ,  2

2 /p a  . In all cases the fits were quite good indicating, that, 

indeed, the temperature evolution of the inverse of the thermal diffusivity in the low 

temperature phase of these doped ferroelectrics can be nicely described by a Landau 

model. Moreover, depending on the particular dopant (Ge, Sb or Te), there is some 

variation in the phenomenological parameters in the Landau expansion β' and γ obtained 
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from the fitting coefficients. We can compare them with the obtained ones for the pure 

sample using the same technique by Oleaga et al [95]. Both β' and γ are reduced with an 

increase of germanium content, the first maintaining the positive sign, which confirms 

the second order character of the transition (see table 7.1). This reduction is due to the 

fact that the transition becomes sharper. The introduction of Sb instead of P in Sn2P2S6 

crystal lattice also alters the values of the phenomenological Landau parameters (Table 

7.1), with the difference that the phenomenological coefficient ’ is slightly decreased 

and  is heavily reduced when compared with the pure sample (Table 7.1). The 

reduction in ’ is related to the broadening of the transition. Finally, the introduction of 

Te atoms slightly increases both coefficients β' and γ but, in all, they do not differ much 

from those of the undoped Sn2P2S6. 

Table 7.1. 

Results of the fitting using the Landau model (eq. 7.1). The columns show the adjustable parameters p1 

and p2, the fitted range in reduced temperature units t=(T-TC)/TC, the coefficient of determination  R
2
, 

as well as the calculated phenomenological parameters in the Landau expansion ’ and . The values 

for Sn2P2S6 are extracted from ref [95]. 

Sample p1 (s/mm
2
) p2 (K

-1
) Fitted range R

2
 ’(Jm

5
C

-4
) Jm

9
C

-6
) 

Sn2P2S6 
3.321×10

-3
 

±4×10
-6

 

0.0512 

±0.0002 
3.2×10

-2
-2.0×10

-3
 0.9922 6.1×10

8
 2.3×10

10
 

3% Ge 
0.0185 

±0.0044 

10.02 

±4.23 
3.1×10

-2
-1.4×10

-3
 0.9994 1.6×10

8
 1.6×10

10
 

5% Ge 
0.0111 

±0.0008 

4.49 

±0.45 
2.7×10

-2
-9.1×10

-4
 0.9994 2.5×10

7
 1.7×10

9
 

0.5% Sb 
0.018 

±0.006 

0.0037 

±0.0008 
4.2×10

-2
-1.9×10

-3
 0.9990 1.6×10

8
 5.9×10

7
 

1% Sb 
0.026 

±0.008 

0.0015 

±0.0003 
6.6×10

-2
-3.3×10

-3
 0.9996 1.1×10

8
 1.1×10

8
 

2% Sb 
0.017 

±0.005 

0.0044 

±0.0008 
3.5×10

-2
-3.0×10

-3
 0.9996 1.7×10

8
 7.8×10

7
 

1% Te 
3.67×10

-3
 

±2.1×10
-4

 

0.105 

±0.005 
2.8×10

-2
-8.6×10

-4
 0.9999 7.8×10

8
 4.0×10

10
 

2% Te 
2.54×10

-3
 

±2.5×10
-4

 

0.093 

±0.009 
3.6×10

-2
-1.3×10

-3
 0.9999 1.1×10

9
 7.3×10

10
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All the fits to eq. 7.1 performed for the samples Sn2P2S6+3%Ge, Sn2P2S6+5%Ge, 

Sn2P2S6+0.5%Sb, Sn2P2S6+1%Sb, Sn2P2S6+2%Sb, Sn2P2S6+1%Te and Sn2P2S6+2%Te 

together with the corresponding deviation plots are displayed on figures 7.4-7.6. 

Additionally, table 7.1 contains all the relevant fitting parameters related to the eq. 5.1 

such as the fitted range, adjustable parameters p1 and p2, coefficient of determination R
2
 

and phenomenological Landau parameters β' and γ. 

Now let’s turn our attention to the paraelectric phase. The first model we have 

tested has been a first fluctuation correction to the Landau approach corresponding to 

eq. 5.3, where critical exponent α has to be -0.5. Unfortunately, for all doped samples no 

good fits to eq.5.3 were found, indicating that the first order fluctuation of the order 

parameter is not enough on its own to describe the critical behavior of the inverse of the 

thermal diffusivity in the immediate vicinity of the transition. We have also allowed the 

critical exponent to deviate from -0.5 in the fittings with Eq 5.3, to see if the model 

which takes into account the possible attenuations of the fluctuation effects caused by 

long-range dipole interactions could be of application. Eq 5.4 corresponds to this model 

and introduces a small multiplicative logarithmic correction ln
b

t . But the fittings were 

very bad and the values of deviated strongly from -0.5 (both to bigger and smaller 

values, depending on the samples), which definitely ruled out this model, with or 

without a logarithmic correction. 

 After this, the next model tested has been the combination of two mechanisms: 

the fluctuation effects and the possible contribution of charged defects, which 

corresponds to eq.5.5: 

 
0.5 1.5

3 3 3 31/
 

   D B C t A t D t . (7.2) 

The helpful information that can be retrieved from the eq. 7.2 is the ratio of the 

coefficients D3/A3, which indicates the relative importance of the charged defects (D3) 

with respect to the first order fluctuations (A3). In particular, this model was of 

application when describing the critical behavior of the pure Sn2P2S6 uniaxial 

ferroelectric [95]. As the samples under study do not differ much from the pure sample, 

it was necessary to test if this model could be also valid now. Indeed, for all doped 
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samples, good fits to eq. 7.2 were found. The fitted curves together with the 

corresponding deviation plot are displayed on fig.7.4-7.6. All the relevant fitting 

parameters are collected in table 7.2. As can be seen from that table, there is also some 

correlation between those critical ratios depending on the particular type of dopant. 

Table 7.2. 

Results of the fitting procedure using eq. (5.5). In each case the relevant fitting parameters are shown 

together with the fitted range in reduced temperature units t=(T-TC)/TC as well the quality of the fitting 

through the coefficient of determination R
2
. The values for Sn2P2S6 are extracted from ref [95]. 

Sample Fitted range R
2
 A3 (s/mm

2
) D3 (s/mm

2
) D3/A3 

Sn2P2S6 2.7×10
-2

-6.8×10
-4

 0.981 
3.25×10

-3 

±6×10
-4

 

1.62×10
-5 

±1×10
-7

 
5.0×10

-3
 

3% Ge 2.5×10
-2

-5.3×10
-4

 0.966 
7.10×10

-4 

±2.15×10
-4

 

1.60×10
-5 

±2×10
-7

 
2.3×10

-2
 

5% Ge 2.9×10
-2

-7.2×10
-4

 0.985 
6.15×10

-4 

±1.65×10
-4

 

2.83×10
-5 

±2×10
-7

 
4.6×10

-2
 

0.5% Sb 3.2×10
-2

-1.9×10
-3

 0.988 
4.06×10

-3 

±8.1×10
-4

 

5.45×10
-5 

±1.0×10
-6

 
1.3×10

-2
 

1% Sb 3.6×10
-2

-1.2×10
-3

 0.953 
1.63×10

-3 

±2.7×10
-4

 

2.52×10
-5 

±3×10
-7

 
1.6×10

-2
 

2% Sb 3.6×10
-2

-2.8×10
-3

 0.987 
5.59×10

-3
 

±8.9×10
-4

 

9.95×10
-5 

±1.5×10
-6

 
1.8×10

-2
 

1% Te 2.0×10
-2

-5.8×10
-4

 0.967 
2.07×10

-3 

±2.0×10
-4

 

1.10×10
-5 

±1×10
-7

 
5.3×10

-3
 

2% Te 2.3×10
-2

-6.9×10
-4

 0.952 
2.99×10

-3 

±6.7×10
-4

 

1.77×10
-5 

±4×10
-7

 
5.9×10

-3
 

 

 In the case of Ge impurities, this ratio is increased from 5.0×10
-3

 in the undoped 

crystal [95] to 2.3×10
-2

 and 4.6×10
-2

 in the samples doped with 3% and 5% Ge, showing 

how the introduction of Ge atoms in the crystal lattice increases the importance of the 

charged defects mechanism in the vicinity of the transition compared to the case of the 

pure sample. For Sb atoms there is also an increase of D3/A3 ratio, but smaller than in 

the case of Ge. It rises up from an initial value of 5.0×10
-3

 to 1.3×10
-2

 for 0.5% Sb, 

1.6×10
-2

 for 1% Sb and finally 1.8×10
-2

 for 2% Sb. Finally, when studying the critical 

behavior by fitting to eq. 7.2 for Te-doped samples, only minor variations of the ratio 

D3/A3 have been found. There is just a slight increase from 5.0×10
-3

 to 5.3×10
-3

 for 1% 
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Te and 5.9×10
-3

 for 2% Te. Nevertheless, the values for doped samples are very close to 

the undoped one indicating that the introduction of Te atoms in low atomic percentages 

does not alter the critical behavior as it happens with Sb and in particular with Ge 

atoms. Thus, we can say that Ge is the dopant which introduces the strongest changes in 

the critical ratio D3/A3.  

It is worth noting that an effort has also been done to fit both high and low 

temperature branches simultaneously under the modern criteria for critical behavior, 

using  eq. 5.2, trying to attribute a particular universality class out of the ones presented 

in chapter 4 for ferroelectric materials. Unfortunately, no proper fits were found in any 

case and that’s why they are not shown in this report. 

 

Fig. 7.4. Above: Experimental data (circles) for the inverse of thermal diffusivity as a function of the 

reduced temperature for Sn2P2S6+3%Ge (a.1) and Sn2P2S6+5%Ge (b.1). The lines marked as (1) 

represent the fits to eq. (7.1) for the ferroelectric phases while the ones marked as (2) represent the fits 

to eq. (7.2) for the paraelectric phases. Below: Deviation plots corresponding to the fits shown above. 

Open circles are for T < TC and crosses for T > TC. 
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Fig. 7.5. Above: Experimental data (circles) for the inverse of thermal diffusivity as a function of the 

reduced temperature for Sn2P2S6+0.5%Sb (a.1), Sn2P2S6+1%Sb (b.1),  Sn2P2S6+2%Sb (c.1). The lines 

marked as (1) represent the fits to eq. (7.1) for the ferroelectric phases while the ones marked as (2) 

represent the fits to eq. (7.2) for the paraelectric phases. Below: Deviation plots corresponding to the 

fits shown above. Open circles are for T < TC and crosses for T > TC. 
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Fig. 7.6. Above: Experimental data (circles) for the inverse of thermal diffusivity as a function of the 

reduced temperature for Sn2P2S6+1%Te (a.1) and Sn2P2S6+2%Te (b.1). The lines marked as (1) 

represent the fits to eq. (7.1) for the ferroelectric phases while the ones marked as (2) represent the fits 

to eq. (7.2) for the paraelectric phases. Below: Deviation plots corresponding to the fits shown above. 

Open circles are for T < TC and crosses for T > TC. 

7.6. Conclusions 

 The temperature evolution of the thermal diffusivity in the neighbourhood of the 

second order ferroelectric phase transition has been measured in the poor conductive 

uniaxial ferroelectric Sn2P2S6 crystal independently doped with isovalent Ge, Sb and Te 

atoms using ac photopyroelectric calorimetry in the back configuration. It was found 

that Ge dopant strongly improves the stereoactivity, caused by the strengthening of the 

sp
2
 electronic levels hybridization, increasing the transition temperature. Sb atoms affect 
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in a smaller scale but in an opposite manner, disfavoring the ferroelectricity (shifting the 

transition to little bit lower temperatures) while Te has practically no influence at the 

studied concentrations. The critical behavior for all dopants has been studied via the 

inverse of the thermal diffusivity. In all cases the ferroelectric phase can be well 

described by classical Landau model in terms of a mean-field approach. On the 

contrary, for the description of the paraelectric phase it is necessary to take into account 

fluctuation effects of the order parameter accompanied together with the possible 

contribution of the charged defects, ruling out a mean-field description. From the 

quantitative analysis it was found that the relative importance of the charged defects 

mechanism is stronger in the samples doped with Ge than in those doped with Sb, while 

Te impurities have practically no influence on the critical behavior and the samples 

containing it behave very close to the undoped Sn2P2S6 crystal. 
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CHAPTER 8 

Experimental results and discussion on Sn2P2(S0.72Se0.28)6 doped with Pb and Ge. In 

search of a tricritical Lifshitz point 

 8.1. Introduction 

 The uniaxial ferroelectric family (Sn1-yPby)2P2(S1-xSex)6 is quite an interesting 

physical system, which allows a comprehensive study of a series of multicritical points 

which appear on the (T, p, x, y) phase diagram. In chapter 3 we have already discussed 

some theoretical predictions and experimental data related to the possible existence of 

special multicritical points such as Lifshitz, tricritical, Lifshitz tricritical, and a virtual 

Lifshitz tricritical point. The locations of a tricritical point and a Lifshitz point have 

already been well established (see chapter 3, section 3.2.5). On the other hand, two 

others (a Lifshitz tricritical and a virtual Lifshitz tricritical) have been theorized but not 

experimentally confirmed by any research group yet. 

In this work we try to localize experimentally a tricritical Lifshitz point on the (T, 

x, y) state diagram taking into account two dopants (x and y). To be able perform this 

type of research we have studied the well known crystal with a Lifshitz point 

Sn2P2(S0.72Se0.28)6, which has been additionally doped with Pb or Ge atoms. As known 

from previous chapters, only these species have a strong influence on the stereoactivity 

of the Sn2P2S6 crystal, which is reflected in the phase transition temperature shift. The 

most intriguing question is: could, indeed, Pb or Ge isovalent dopants change the 

character of the phase transition starting from the Lifshitz point LP? 

To answer this question we will carefully investigate the changes in the character 

of the transition in the samples using low temperature rate measurements of the thermal 

diffusivity. The experimental results will be discussed within the theoretical models 

taking into account the features of the three-well local potential for fluctuations of the 

order parameter. Additionally, we will analyze the evolution of the critical behavior 

using the renormalization group calculations and focusing our attention on the possible 

appearance of a Lifshitz Tricritical universality class. 
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 8.2. Samples and measuring procedure 

 The vapour-transport method has been used to obtain the single ferroelectric 

crystals Sn2P2(S0.72Se0.28)6 additionally codoped with 5% Pb, 8% Pb and 5% Ge in 

atomic percentage. The samples were grown in an evacuated quartz tube using I2 as a 

transport agent. The synthesis of the starting material in the polycrystalline form was 

carried out using high-purity elements Sn (99.99%), P (99.999%), S (99.99%), Se 

(99.99%), Pb (99.99%) and Ge (99.999%), also in atomic percentage. The required 

amount of Sn, P, S, Se, Pb or Ge was placed into the quartz tube for further 

homogenization at 650 C during one week. After that, the recrystallization by vapor 

transport between hot zone at 650 C and cool zone at 630 C has taken three days. In the 

next stage, the cool zone was cleaned by heating and further this zone has been cooled 

to 615 C and kept at this temperature till the appearance of a visually observed crystal 

nucleus. From this moment the single crystal growth was started with a duration of 

nearly one month. At finish of growth process the hot zone of quartz tube was 

absolutely clean, what gives evidence about full mass transport and growth of the single 

crystal with the required stoichiometry. 

 Due to the electronic properties of Ge this type of dopant can be introduced into 

the crystal lattice of Sn2P2(S0.72Se0.28)6 only up to a certain percentage [211] while Pb 

atoms can completely substitute Sn ones. The crystalline quality has been checked by 

X-ray diffraction technique. All three samples show well defined sharp diffraction lines 

confirming their good crystal quality. No additional phases were found. The same 

equipment has been employed to orient the samples studied. The two crystals doped 

with Pb and the one doped with Ge were oriented in the [001] and [100] 

crystallographic directions, respectively. 

 The physical variable we have measured is thermal diffusivity D retrieved by 

means of a high resolution ac photopyrocalorimetry technique. The detailed description 

of the experimental setup used can be easily found in the previous chapters of the 

present thesis. We just want to emphasize that during this study the lowest temperature 

variations were as slow as 2.5 mK/min. This was necessary to precisely detect the 

possible temperature hysteresis while performing heating/cooling runs and detect a 
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change in the phase transition character. Similar temperature rates have been used by 

Oleaga, et.al, in order to detect the change in the character of the phase transition in 

Sn2P2(S1-xSex)6 ferroelectric family at Se content from x=0 up to x=1 [60]. Fig. 8.1 

contains the difference in the position of the critical temperature in heating and cooling 

runs as a function of the temperature rate for concentrations close to the Lifshitz point 

x=0.28 presented in that paper. This figure will help us while discussing the 

experimental data obtained in this work. 

 

Fig. 8.1. Hysteresis study (difference in the position of the critical temperature in heating and cooling 

runs as a function of the temperature rate) for Sn2P2(S1-xSex)6 mixed ferroelectrics near the Lifshitz 

concentration; x=0.28 is the crystal with a Lifshitz point LP [60]. 

 8.3. Experimental results and critical behavior 

 The temperature evolution of the thermal diffusivity D in the neighborhood of TC 

for the three samples is presented on fig. 8.2. To better compare our experimental 

curves with the undoped Sn2P2(S0.72Se0.28)6 and to see the differences among the 

anomalies, we also show the published thermal diffusivity data for Sn2P2(S1-xSex)6 (fig. 

8.3) for 0 ≤ x ≤ 0.3 [60]. The introduction of Pb into the crystal lattice reduces the 

critical temperature from an initial value of 281.31 K for Sn2P2(S0.72Se0.28)6 (see fig.8.3) 

down to 259.12 K and 251.96 K for the samples doped with 5% and 8% Pb, 

respectively (fig.8.2, curves 1, 2). This happens due to the changes in the hybridization 

of the electronic orbitals of the cation and anion sublattices: when Pb substitutes Sn the 

hybridization becomes weaker, reducing the transition temperature. It is worth noting 

that the dip which marks the transition is broadened and smeared at higher Pb contents 

with respect to Sn2P2(S0.72Se0.28)6 crystal. A similar behavior has been observed in (Sn1-
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xPbx)2P2S6 [205]. On the other hand, Ge dopant affects in an opposite manner enhancing 

the total stereoactivity of the crystal. The critical temperature is shifted upwards to 284 

K (fig.8.2, curve 3). The anomaly keeps its sharpness, but the shape is slightly 

broadened with respect to the Lifshitz concentration. A similar influence of Ge atoms 

has been found when studying the thermal diffusivity in Sn2P2S6 doped with Ge [214]. 

 

Fig. 8.2. Thermal diffusivity as a function of temperature in the vicinity of TC for Sn2P2(S0.72Se0.28)6  

doped with 5% Pb, 8% Pb and, 5% Ge (curves 1, 2 and 3, respectively).  

The character of the three transitions was checked in detail investigating a 

possible temperature hysteresis. For each sample, heating and cooling runs were 

performed with decreasing rates of 20, 10, 5, 2.5 mK/min. The results are displayed on 

fig 8.4.  
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Fig. 8.3. Thermal diffusivity as a function of temperature for the Sn2P2(S1-xSex)6 family near a Lifshitz 

point [60]. 

 

Fig. 8.4. Thermal hysteresis. Above: Difference in the critical temperature in heating and cooling runs 

as a function of temperature rate; the circles are the experimental values, the straight lines the linear 

fittings. Below: Shape of the thermal diffusivity curves on heating and cooling for a temperature rate 

of 10 mK/min. Labels are as follows: a1 and a2 are for Sn2P2(S0.72Se0.28)6  doped with 5% Pb, b1 and 

b2 with 8% Pb, c1 and c2 with 5% Ge. 
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The samples doped by 5% Pb and 5%Ge show similar asymptotic behavior with 

intersection point about of 0.14 K on the vertical axis (fig.8.4 a, c). This value is quite 

close to the one obtained for Sn2P2(S0.72Se0.28)6 [60], which is about 0.1K (see fig. 8.1 at 

x=0.28). This means the transitions are in the verge of changing their character to first 

order. Moreover, we have not found a perfect superposition of the shapes at 

heating/cooling runs, as it happens in the case of a clear second order phase transition. 

In the case of 8%Pb, the value of the temperature hysteresis is twice larger than in the 

two previous samples and it is about 0.28 K (fig. 8.4 b). Note, that a similar hysteresis 

was observed in Sn2P2(S0.6Se0.4)6 crystal (see fig. 8.1 at x=0.4) [60], for which the 

character of the phase transition has already crossed the border between the second and 

first order types. These data give a hint that a tricritical point has been crossed. 

In order to ascertain which kind of tricritical point is present here, we have used 

the renormalization group theory analysis and investigated the evolution of the 

universality class from the Lifshitz one obtained for Sn2P2(S0.72Se0.28)6 [60]. It is worth 

noting that the best way to discriminate among universality classes is monitoring the 

critical index α, which describes the specific heat anomaly near the continuous phase 

transition. The benefit of this exponent with respect to other critical indices such as β 

(related to the spontaneous polarization) and γ (related to the inverse of dielectric 

susceptibility) is that α changes more from one universality class to another one (see 

table 4.2 in chapter 4). Moreover, to obtain β and γ only one branch is involved, while to 

rigorously obtain α it is necessary to consider both branches of the transition (below and 

above TC), which makes it more reliable. 

As was shown in previous chapters of this thesis, instead of specific heat the 

inverse of thermal diffusivity 1/D can be successfully used in a critical behavior 

analysis in this family of ferroelectrics. Thus, according to the theory, to extract the 

value of the critical exponent α, well defined experimental curves obtained for 

Sn2P2(S0.72Se0.28)6+5%Pb and Sn2P2(S0.72Se0.28)6+5%Ge have been fitted to the following 

equation, which is based on eq. 4.20.  

  0.5
1/ 1D B Ct A t E t

     , (8.1) 
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where t is the reduced temperature, which is defined as ( ) /C Ct T T T  . 

The fits have not been performed for the sample with 8%Pb as the transition in 

this case is already a first order type. In the fitting procedure we focus our attention on 

the possible appearance of universality classes where tricriticality takes place, such as a 

Tricritical T (α=0.5 with small logarithmic correction), Uniaxial Tricritical UT (α=0.5), 

Tricritical Lifshitz LT (α=9/14) and Uniaxial Lifshitz tricritical ULT (α=0.5 with 

another logarithmic correction) [3]. 

The results of the theoretical fitting for 5%Pb and 5%Ge accompanied with their 

corresponding deviation plots are depicted on fig.8.5. The fitting parameters A
±
, B, C, 

E
±
 and α together with their errors are collected in table 8.1. In the same table we have 

also included the temperature range t fitted and the determination coefficient R
2
, which 

represents the quality of the fits. As seen from the graph both fits are very good, which 

is also confirmed by the high determination coefficient R
2
 (R

2
=1 the case for perfect fit) 

and the deviation plots. The values of the critical exponent α are 0.64 and 0.25 for 5%Pb 

and 5%Ge, respectively. In the first case, the value agrees with αtheoretical=0.64, which 

corresponds to the Lifshitz Tricritical LT universality class while the second one 

coincides with Lifshitz class L (αtheoretical=0.25). The ratio of the critical parameters 

A
+
/A

-
 is 0.63 and 0.49, respectively.   
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Fig. 8.5. Above: Experimental data (circles) for the inverse of thermal diffusivity as a function of the 

reduced temperature for Sn2P2(S0.72Se0.28)6  doped with 5% Pb (a.1) and with 5%Ge (b.1). The 

continuous lines represent the fits to Eq. (8.1). Below: Deviation plots corresponding to the fits shown 

above. Open circles are for T < TC and crosses for T > TC. 

Table. 8.1.  

Result of the fitting of the inverse of thermal diffusivity 1/D using Eq. (8.1). The parameters (α, A
+
, 

A
+
/A

-
, TC, B, C, E

±
) are shown together with the fitted range and the coefficient of determination R

2
. 

Parameters 5%Pb 5%Ge 

α 0.638 ±0.006 0.252 ±0.001 

A
+
, s/mm

2
 0.0140 ±0.0008 0.269 ±0.004 

A
+
/A

-
 0.631 ±0.001 0.493 ±0.005 

TC, K 259.122 ±0.001 283.995 ±0.001 

Fitted range |t|, T > Tc 3.54×10
-4 

- 3.14×10
-2

 4.69×10
-5 

- 3.50×10
-2

 

Fitted range |t|, T < Tc 9.45×10
-4 

- 3.11×10
-2

 4.18×10
-4 

- 3.83×10
-2

 

B, s/mm
2
 3.85 ±0.02 2.84 ±0.01 

C, s/mm
2
 2.89 ±0.05 2.98 ±0.04 

E
+
 -3.8 ±0.7 1.23 ±0.06 

E
-
 9.5 ±0.9 0.87 ±0.01 

R
2
 0.9988 0.9997 
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8.4. Discussion 

Such a complicated phenomenon as a multicritical point on the state diagram of 

any material needs a strong theoretical basement. In literature there are several 

publications which explain the possible presence of different high-order points on the 

(T, p, x, y) state diagram of (Sn1-yPby)2P2(S1-xSex)6 mixed compounds.  

To explain the appearance of a tricritical points in this ferroelectric family we 

consider some theoretical models related to this phenomenon. It has been recently 

shown that a macroscopic model for Sn2P2S6 developed with an ab-inito effective-

Hamiltonian approach based on a three-well shape of the local potential can explain its 

dynamic and thermodynamic properties in a wide temperature range [115]. This model 

allows predicting a specific heat anomaly with features comparable to the 

experimentally observed ones [215]. Later, it has also been proposed that the shape of 

this local potential can be related to the Blume-Emery-Griffiths model (BEG), where 

pseudospins can have values -1, 0 and +1. This approach has been used to quantitatively 

explain the influence of Pb atoms on the ferroelectric properties while they substitute Sn 

in the (Sn1-yPby)2P2S6 series [107]. Moreover, a combination of the BEG and the axial-

next-nearest-neighbour Ising model (ANNNI) has been used to predict a possible 

location of a Tricritical Lifshitz point TCLP in a system with a three-well local 

potential. According to these predictions the Lifshitz points line should terminate in a 

high-order TCLP while external pressure is applied [216]. This model also implies that 

the continuous phase transition at TC ≈ 337 K in Sn2P2S6 should change its character 

under compression. As was shown in chapter 3 the TCP in Sn2P2S6 has been 

experimentally proven on (T, p) and its coordinates are p ≈ 0.4 GPa, T ≈ 250 K [105]. 

Under mechanical compression the stereoactivity of Sn2P2S6 is reduced due to the three-

well local potential surface flattening. This leads to the critical temperature decrease till 

the TCP is reached, where the transition changes its character from second-order to first 

order. 

Additionally, if Pb is introduced instead of Sn to obtain (Sn1-yPby)2P2S6 the 

stereoactivity is also reduced due to the electronic hybridization weakening [216]. This 

is caused by the larger energy distance between the ferroactive electron lone pair of Pb 
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(6s
2
) and the molecular orbital of the anion sublattice, with respect to the Sn (5s

2
) ones. 

Pb atoms play the role of the so-called “chemical pressure”, additionally creating strong 

random-field defects. This situation has been successfully described by BEG model 

taking into account the random field influence. According to the explanation given by 

this theoretical approach, the phase transition in (Sn1-yPby)2P2S)6 series must change its 

character as the critical temperature decreases. Also, the shape of the anomaly at TC 

should be more smeared due to the influence of the random field defects created by Pb 

atoms [216, 217]. At S substitution by Se the critical temperature is also shifted 

downwards but the effect is much smaller than that of Pb. Moreover, there is no phase 

transition shape smearing [60], which means the random field is less relevant than in the 

case of Pb doping. 

Taking into account the influence of both species (Pb as well as Se) and all the 

theoretical predictions written above, it can be expected that a tricritical Lifshitz point 

would be achieved if Pb atoms are introduced into the crystal lattice of 

Sn2P2(S0.72Se0.28)6. Thus, the critical temperature lowering should lead to a crossover 

from a Lifshitz point LP to a tricritical Lifshitz point TCLP.  

The experimental results obtained in this work strongly support this hypothesis. 

Let’s consider the fits performed in more detail. From Sn2P2(S0.72Se0.28)6+0%Pb to 

Sn2P2(S0.72Se0.28)6+5%Pb the critical index α changes from 0.34 (close to L universality 

class α ≈ 0.25) to 0.64 (LT class αtheoretical ≈ 0.64). The fits performed have quite a good 

quality with very small errors in the fitting parameters (see table 8.1) and small 

deviations, which are presented as a percentage on fig.8.5 a. The universality classes T 

and UT are discarded as their critical values are 0.5 (with logarithmic correction) and 

0.5, respectively. This means, indeed, that the transition in Sn2P2(S0.72Se0.28)6+5%Pb is 

related to a Lifshitz point. We have also checked the possibility of fitting the 

experimental curves to two other classes:  UL (uniaxial dipole-dipole interactions are 

relevant, αtheoretical ≈ 1/6) or UTL (αtheoretical ≈ 0.5 with another logarithmic correction) 

but all trials failed. Thus, we can say that the dipolar interactions in this transition are 

not as relevant as the order parameter fluctuations, which, in turn, are caused by 

presence of a Lifshitz point. Additionally, we have calculated the ratio of the critical 
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parameters A
+
/A

-
=0.63 for Sn2P2(S0.72Se0.28)6+5%Pb, but that value is theorized in 

literature only for the Lifshitz class L, which falls within the range of 0.30-0.35 [172], 

not for LT, UL or UTL. For Sn2P2(S0.72Se0.28)6 the ratio A
+
/A

- 
was found to be 0.42 [60]. 

New theoretical developments are needed to know if the value that we have obtained is 

sensible or not. 

Another evidence which supports the idea that we passed along a tricritical point 

is the fact that the phase transition in Sn2P2(S0.72Se0.28)6+8%Pb is first order as shown by 

the hysteresis study (fig.8.4 b) while the sample doped with 5%Pb is on the verge of 

changing the transition character. Besides, both transitions for 5%Pb and 8%Pb are 

more and more smeared with respect to the undoped sample, confirming the theoretical 

predictions given by BEG-model with random field influence created by the impurities. 

Finally, turning our attention to the crystal doped with 5%Ge, it is seen that Ge 

has an opposite effect to that caused by Pb atoms. There is a slight upwards shift in the 

critical temperature (of about 2.7 K) compared to the undoped Sn2P2(S0.72Se0.28)6 sample 

[60]. This is caused by the electronic hybridization strengthening, which takes place 

with the addition of Ge. The transition itself keeps similar features (shape, hysteresis 

value) to the ones shown in Sn2P2(S0.72Se0.28)6. Moreover, the critical exponent obtained 

coincides perfectly well with the Lifshitz universality class L and the critical ratio A
+
/A

-

= 0.49 is slightly higher than that of Sn2P2(S0.72Se0.28)6 A
+
/A

-
= 0.42 [60]. The quality of 

the fitting was extremely good (see both table 8.1 and fig 8.5 b). Thus, we can say that 

doping with Ge does not provoke any changes in the character of the transition and that 

the critical behavior of the transition is maintained, belonging to the Lifshitz class.  

 

8.5. Conclusions 

 The location of a tricritical Lifshitz point TCLP has been experimentally defined 

for (Sn0.95Pb0.05)2P2(S0.72Se0.28)6 solid solution at TC = 259.12 K, fulfilling all the 

predictions provided by BEG-model with random field. The theory says that Lifshitz 

points line must terminates in a TCLP at phase transition temperature decreasing. This 

can be realized by mechanical pressure or by addition of chemical dopants. Besides, the 

chemical dopants can produce random field defects, smearing the anomaly at TC. This is 
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exactly what we have if Pb is introduced in a crystal with the Lifshitz concentration. 

The hysteresis study confirms that the samples with 5%Pb and 5%Ge are on the verge 

of changing the transition character while the crystal doped by 8%Pb has already 

crossed the border, confirming that there is a clear first order transition. Besides, the 

fittings performed show that the ferroelectric transition in (Sn0.95Pb0.05)2P2(S0.72Se0.28)6 

belongs to the Lifshitz Tricritical LT class as the critical index α is exactly the same as 

the theoretically predicted one α = 0.64. On the other hand, the introduction of Ge 

increases the critical temperature, which was 281.31 K for Sn2P2(S0.72Se0.28)6, to 284 K 

for Sn2P2(S0.72Se0.28)6+5%Ge due to the strengthening of the stereoactivity. There is no 

change in the critical behavior as the Lifshitz class L is maintained for this sample, 

because the critical index α = 0.25. 
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CHAPTER 9 

Origin of ultra-low thermal conductivity in Sn(Pb)2P2S(Se)6 ferroelectric crystals 

 9.1. Introduction 

 Nowadays an enormous attention is dedicated to searching possible ways which 

allow minimizing the lattice thermal conductivity of semiconductors [218, 22]. This 

challenge is one of the crucial problems for thermoelectric applications, where waste of 

heat can be converted into useful electricity. Thus, understanding the nature of sources 

producing a thermal resistance in crystalline solids can give new ideas in manufacturing 

prospective thermoelectric materials. To sort out this problem we discuss some 

peculiarities about the low thermal conductivity of Sn(Pb)2P2S(Se)6-like ferroelectrics. 

We explain the effect of different mechanisms of anharmonicity on the shape of the 

thermal conductivity curves considering at the same place the features occurring on the   

state diagram of phosphorouss chalcogenide family studied. In spite of the fact that our 

materials are not thermoelectric, the physical interpretation of the results is of great 

importance and can serve as a good basement for further researches. Besides, the 

experimental data together with the theoretical support presented in the chapter will 

provide a quite complete picture about heat propagation in Sn(Pb)2P2S(Se)6 compounds. 

This will also help to better understand the origin of the electron-phonon interaction 

processes taking place in this type of crystals. 

 Sn(Pb)2P2S(Se)6 system is a very suitable candidate to perform such a broad 

study. In the first place, this is due to the complex shape of the phase diagram where 

three different phases (paraelectric, incommensurate and ferroelectric) are separated by 

first and second order transition lines as well as by multicritical points (see fig. 3.7). 

Remember that the ferroelectric phase in Sn2P2S6 is associated with the transverse (TO) 

polar soft optic mode near the Brillouin zone center [219, 220]. The incommensurate 

phase appearance in the more covalent Sn2P2Se6 is related to the linear interaction of the 

soft transverse optic (TO) branch with the longitudinal acoustic (LA) and the transverse 

acoustic (TA) branches [220, 99]. For the lead containing crystals Pb2P2S6 and Pb2P2Se6 

the paraelectric state is stabilized down to lowest temperatures [107, 221]. This provides 

an interesting comparison among the parent compounds Sn2P2S6, Pb2P2S6, Sn2P2Se6, 
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Pb2P2Se6 along a wide temperature range. Secondly, this family allows obtaining a 

whole set of stable solid solutions (PbySn1-y)2P2S6, (PbySn1-y)2P2Se6 and Sn2P2(SexS1-x)6, 

giving an opportunity to study the influence of mass fluctuation effects on the thermal 

conductivity behavior. Thirdly, the three-well landscape of the local potential of Sn2P2S6 

[115] is sensitive to Sn by Pb substitution or to a presence of isovalent alien dopants and 

also to the temperature changes. As a result, the shape of the central and side wells 

depths can be heavily modified producing new channels for anharmonicity.  

 Recently it was shown that, in addition to the Sn
2+

 5s
2
 stereoactive lone pair, the 

charge disproportionation of phosphorous ions P
4+

 + P
4+

 ↔ P
3+

 + P
5+

 is also involved in 

the valence fluctuations creating the Sn2P2S6 paraelectric phase instability in the 

considered crystals [222]. Thus, the lone pair electrons relaxations together with the 

valence fluctuations determine a strong lattice anharmonicity which is characterized by 

a high value of the Grüneisen parameter: using acoustic data, it has been determined to 

be γ = 1.52 for Pb2P2S6 and γ = 1.36 for the paraelectric phase of Sn2P2S6 [223, 108].  

 All these peculiarities about the structural, electronic and chemical features of 

these chalcogenide ferroelectrics have led to presenting an illustrative analysis of a high 

lattice anharmonicity in connection with electron instability studying the temperature 

evolution of the thermal conductivity curves. 

 9.2. Samples and experimental results 

 According to the scope of this thesis, a set of samples was selected as 

representatives of the right hand side and left hand side of the phase diagram (fig. 3.7). 

The full list of them is as follows: (PbySn1-y)2P2S6 series with y=0, 0.1, 0.2, 0.3, 0.45, 0.8 

and 1; (PbySn1-y)2P2Se6 series with y=0, 0.1, 0.2, 0.47, 0.8 and 1. We have also studied 

two germanium doped crystals: Sn2P2S6+5%Ge and Pb2P2S6+2%Ge. 

 The thermal conductivity dependencies for all samples studied were calculated 

using the constitutive eq. (9.1) by mixing our measured thermal diffusivity D data with 

heat capacity Cp published in literature [100, 224, 109, 125, 225]. 

 pk C D .  (9.1) 
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One important comment has to be mentioned in here. In the calculation procedure only 

the background of heat capacity was considered avoiding the region of the critical 

anomaly occurrence. This is caused by the fact that the techniques, rates, and samples 

used to measure both thermal variables were different. Thus, the exact position and 

shapes of the anomalies (where there were any) did not coincide in the thermal 

diffusivity and heat capacity curves. This is why the dips in thermal conductivity 

dependencies presented below should be considered as “artifacts” whose form is mainly 

caused by having combined the full thermal diffusivity data with the background heat 

capacity. Luckily, our analysis is not focused on the region close to the phase transition 

but, instead, we are interested in the wide temperature evolution. 

 Figure 9.1 displays the temperature evolution of both thermal diffusivity D as 

well as thermal conductivity k for the four parent compounds in a wide temperature 

range. From the left panel it is clearly seen that the diffusivity dependencies steadily 

grow on cooling showing a typical thermal insulator behavior. In the paraelectric phases 

the pair of crystals Pb2P2S6, Pb2P2Se6 have a slightly higher thermal diffusivity with 

respect to their Sn containing analogues. At low temperatures the opposite happens for 

the ferroelectric state of Sn2P2S6 and Sn2P2Se6, where the value of D exceeds those for 

the paraelectric phases in Pb2P2S6 and Pb2P2Se6. Also, the more covalent Pb2P2Se6, 

Sn2P2Se6 present a lower thermal diffusivity than that of Pb2P2S6 and Sn2P2S6. 

 Now we turn our attention to the thermal conductivity curves (fig. 9.1 right 

panel). For Pb2P2S6 and Pb2P2Se6 in the paraelectric phase and for Sn2P2S6 and Sn2P2Se6 

in the ferroelectric one the dependencies decrease on heating according to the usual 

Eiken law behavior where k ~ T
-n

 (our exponents falls within the range of -0.8 to -1.2). 

This confirms a predominant contribution of the three-phonon scattering processes to 

heat exchange above the Debye temperature, which has the following values: D ≈ 85 K 

for Pb2P2S6, D ≈ 55 K for Pb2P2Se6, D ≈ 83 K for Sn2P2S6 and D ≈ 74 K for Sn2P2Se6 

after [224, 100, 226]. At high temperatures T ≫ D in the paraelectric phase for all 

extreme compounds the thermal conductivity deviates to constant values. At low 

temperatures inside the ferroelectric phase the conductivity is higher for the Sn-

containing crystals than in the Pb2P2S6 and Pb2P2Se6 samples. 
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 Within the incommensurate phase in Sn2P2Se6 between Tc ≈ 193 K and Ti ≈ 221 K 

the thermal conductivity reveals almost a flat behavior reaching the lowest value among 

all four extreme compounds. Note that a similar value has been previously found by 

Rizak et. al. for Sn2P2Se6 glassy material [127]. This fact demonstrates that the minimal 

thermal conductivity kmin is successfully observed for the investigated crystals. In the 

incommensurate phase with a modulation period of near 14 unit cells [220] the folding 

of the Brillouin zone can create additional phonon scattering centers producing an 

effective suppression of the thermal conductivity. At lowest temperatures near 40K the 

maximum value of about 6 W/m K was found for Sn2P2S6 ferroelectric phase while the 

minimal one of about 1.7 W/m K was observed for Pb2P2Se6 crystal. 

  

Fig. 9.1. Double logarithmic scale of the thermal diffusivity (left panel) and the thermal conductivity 

(right panel) as a function of temperature for Pb2P2S6, Pb2P2Se6, Sn2P2S6 and Sn2P2Se6 crystals. 

 In the mixed compositions (PbySn1-y)2P2S6 and (PbySn1-y)2P2Se6 the k(T) 

dependencies are drastically altered (fig. 9.2, 9.3). The measured thermal diffusivity 

curves have already been presented in chapter 5 (fig. 5.3) for (PbySn1-y)2P2S6 mixed 

compounds and in chapter 6 (fig. 6.2) for (PbySn1-y)2P2Se6 system. There is a big 

contrast between the pure and the doped crystals due to the mass fluctuations which 

induce additional phonon scattering. Especially this is clearly demonstrated at low 

temperatures, approximately below 100K, in the middle of the concentration interval (y 

≈ 0.5) where the thermal conductivity is lowered several times reaching almost 0.5 

W/m K for both sulfide and selenide series (fig. 9.2, 9.3, 9.4). Concerning the high 

temperature region (above 250K) there are no significant changes in thermal 
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conductivity. Here, obviously, the crystal lattice anharmonicity is so strong that 

additional phonon scattering mechanism by atom mass fluctuations does not play a 

relevant role.  

 

Fig. 9.2. Temperature dependence of thermal conductivity for (PbySn1-y)2P2S6 crystals, in log-log scale.  

 An interesting thermal conductivity behavior has been observed for (PbySn1-

y)2P2Se6 with lead content of y=0.2 (fig. 9.3). This crystal reveals a very broad 

temperature minimum of k(T), which is located near the paraelectric to incommensurate 

phase transition (Ti ≈ 160K). Also a wide minimum is observed close to the paraelectric-

ferroelectric transition in (PbySn1-y)2P2S6 at y=0.45 (T0 ≈ 125K). The most uncommon 

behavior of the conductivity has been found for the selenide mixed crystals doped with 

y=0.2 and y=0.47. For these two samples the dependencies present a soft decrease on 

cooling which is similar to the temperature evolution of the glassy Sn2P2Se6 [127] (fig. 

9.3). These peculiarities are related to the heat capacity regular behavior together with 

the temperature change of the phonon group velocity for the heat transferring lattice 

vibrations characterized by thermal diffusivity and also their lifetimes. 
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Fig. 9.3. Temperature dependence of thermal conductivity for (PbySn1-y)2P2Se6 crystals, in log-log 

scale. Data for Sn2P2Se6 glassy are taken from [127]. 

 

Fig. 9.4. Composition dependence of thermal conductivity for (PbySn1-y)2P2S6 and (PbySn1-y)2P2Se6 

crystals at different temperatures. 

 Lastly, we have checked the possible influence of Ge impurities on the thermal 

properties of Sn2P2S6 ferroelectric and Pb2P2S6 paraelectric crystals (fig. 9.5). It was 

found that Ge dopants steadily increase the thermal diffusivity as well as thermal 

conductivity of Pb2P2S6 on cooling. Near 40K the doped sample reaches the maximum 
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value of about 5 W/m K in thermal conductivity (see fig. 9.5) while the pure sample at 

the same temperature shows about 3 W/m K. On the other hand, germanium atoms have 

virtually no influence on both transport thermal properties in the ferroelectric phase of 

Sn2P2S6 (fig. 9.5). 

  

Fig. 9.5. Temperature dependence of thermal diffusivity (left panel) and thermal conductivity (right 

panel) for nominally pure Pb2P2S6 and Sn2P2S6 crystals in comparison with data for Pb2P2S6 and 

Sn2P2S6 crystals doped with Ge. 

9.3. Discussion 

 In the first place, let’s try to explain the ultralow thermal conductivity 

experimentally obtained for the crystalline structures of Sn(Pb)2P2S(Se)6 system. To 

estimate the lowest possible thermal conductivity limit for this type of materials we use 

what is known as the “amorphous limit” for crystals or minimum thermal conductivity 

[227]: 
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Where the summation is over three (two transverse and one longitudinal) sound modes 

with velocities i , i  is the Debye temperature for each mode   
1 3

26i i Bk n    , n is 

the density of atoms, and Bk  is the Boltzmann constant. 

 Thus, taking into account the values of sound velocities LA =2760 m/s, 1TA =1830 

m/s and 2TA =1690 m/s for Sn2P2Se6 crystal [3] the calculated curve of the minimum 

value of thermal conductivity is presented on fig. 9.6. We have selected this crystal not 
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at random as it is possible to compare this theoretical prediction with experimental data 

available for Sn2P2Se6 glassy material. Besides, Sn2P2Se6 crystal reveals the lowest 

conductivity among all parent compounds at high temperatures (see fig. 9.1). As seen 

from the graph near 300 K the curve saturates reaching 0.4 W/m K and coincides with 

the value for Sn2P2Se6 glassy (fig. 9.3). Consequently, for all four extreme compounds 

at room temperature, the lowest thermal conductivity is reached. This, in turn, means 

that the phonon mean free path l achieves its minimal length which is comparable with 

the unit cell size (l ≈ 10–20 Å). This estimation also shows that “hoping” thermal 

conductivity is reached instead of heat transport by propagating phonons. 

 

Fig. 9.6. Calculated dependence for minimal value of thermal conductivity in Sn2P2Se6 crystal.  

 Let’s now discuss the temperature evolution of the experimentally obtained 

curves regarding the physical mechanisms which are responsible for the thermal 

resistance and also for the anharmonicity of the crystal lattice in Sn(Pb)2P2S(Se)6 

system.  

 In the first place, a strong lattice anharmonicity is observed by means of neutron 

scattering measurements performed for Sn2P2S6 and Sn2P2Se6 [219, 220], shown by a 

temperature dependent coupling of the soft optic branches with the longitudinal and 

transverse acoustic branches in a wide reciprocal space of the Brillouin zone, associated 

with the phase transitions. This coupling is also pronounced in ultrasound and 

hypersound attenuation investigations [9]. 
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Secondly, the experimental data about phonon anharmonicity in the paraelectric 

phase of Sn2P2S6 type crystals could be interpreted considering the phase transitions 

mechanisms based on the BEG model for systems with local three-well potential for the 

order parameter (spontaneous polarization) fluctuations [3, 107, 115, 228]. The side 

wells are deeper than the central one in the case of the stereoactive Sn
2+

 cation 

sublattice. For lead containing compounds, because of the weakened Pb
2+

 stereoactivity, 

the central well in the local three-well potential is the deepest one [221, 212]. Here also 

the P
4+

 + P
4+

 ↔ P
3+

 + P
5+

 valence fluctuations could be important for electron- phonon 

interaction [221]. The thermal conductivity experimental curves correlate fairly well 

with the state diagram. At low temperatures the ferroelectric phase lattice dynamics are 

not perturbed by electron lone pair relaxations because the pseudospins with highest 

probability are placed in the side well with lowest energy. On the contrary, on heating 

above 250K, the probability of finding a pseudospin in a central well increases and lone 

pair relaxations contribute to the growth of the lattice anharmonicity. Such picture 

correlates with the observed rise of thermal conductivity on cooling for Sn2P2S6 crystal, 

whose (T) dependence grows above that of the Pb2P2S6 crystal (fig. 9.1). A similar 

rise of (T) for Sn2P2Se6 relative to the one for Pb2P2Se6 is observed on cooling as well. 

 Let’s now turn our attention to the mixed compounds. For selenide crystal with 

y=0.2 a minimum of k is attained close to Ti ≈ 160 K (≈ 0.3 W/m K) (see fig. 9.3) which 

is lower than the minimum attained for the (PbySn1-y)2P2S6 sample with y = 0.45 near T0 

≈ 125 K (≈ 0.45 W/m K) (see fig. 9.2). Such comparison evidently demonstrates a much 

stronger softening of the heat transferring phonons group velocity in selenide mixed 

compound as a result of the coupling between the soft optic and acoustic branches 

related to the transition into the IC phase. Besides, this effect has an electronic nature: a 

more covalent chemical bounding in the selenide compounds enforces that coupling 

associated with the modulated IC phase appearance [220, 99]. It is worth to emphasize 

one aspect. Comparing the slopes and absolute values of the experimentally observed 

k(T) dependencies (fig. 9.2 and 9.3) with those of the calculated minimum value for 

Sn2P2Se6 (fig. 9.6), it is found that among all samples (Pb0.2Sn0.8)2P2Se6 crystal 

possesses the most similar behavior to the latter theoretical curve (fig. 9.7). For both 
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curves the thermal conductivity increases with temperature (this only happens in the 

samples doped with intermediate concentrations) and with a not too different trend, 

especially in the temperature range from 60K to about 165K, where the incommensurate 

phase appears for the doped (Pb0.2Sn0.8)2P2Se6. In this mixed compound the thermal 

conductivity is maximally suppressed. This tells us that the strong coupling of optic and 

acoustic phonon branches that provokes the IC phase, together with mass fluctuations, 

can heavily reduce the thermal conductivity of the crystalline semiconductors. 

 

Fig. 9.7. Experimental thermal conductivity curve for (Pb0.2Sn0.8)2P2Se6 (black dots) and minimum 

calculated value for Sn2P2Se6 using eq. 9.1 (red dots). 

Lastly, the influence of the strongly stereoactive Ge cations can be easily 

interpreted. While Ge is introduced into the crystal matrix of Sn2P2S6 the local potential 

does not change its shape and the side wells remain deeper than the central one; thus, 

there is no influence on the anharmonicity. In the case of the paraelectric Pb2P2S6, 

where the central well of the local potential is the deepest, the germanium impurities 

change this picture, surely inducing a deeper side well and thus reducing the 

anharmonicity, which leads to a rise of the thermal conductivity.  
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 9.4. Conclusions 

 By mixing heat capacity and thermal diffusivity, the temperature evolution of 

thermal conductivity has been analyzed for Sn(Pb)2P2S(Se)6 semiconductor 

ferroelectrics. An ultralow conductivity near 0.5 W/m K is observed for parent 

compounds near room temperature in the paraelectric phase. The origin of the strong 

lattice anharmonicity in Sn2P2S6 is related to the relaxations of the 5s
2
 electron lone 

pairs of Sn
2+

 together with P
4+

 + P
4+

 ↔ P
3+

 + P
5+

 valence fluctuations in the anionic 

sublattice. At lower temperatures the ferroelectric Sn2P2S6 and Sn2P2Se6 crystals exceed 

their lead containing analogous because the relaxations of Sn
2+

 lone pair are frozen. 

 In the mixed (PbySn1-y)2P2S6 and (PbySn1-y)2P2Se6 compounds a clear evidence of 

mass fluctuation has been observed with a result that thermal conductivity is reduced till 

about 0.5 W/m K near 50K. At high temperatures above 250 K this effect does not play 

a significant role. The lowest k(T) values have been found for (Pb0.2Sn0.8)2P2Se6 crystal, 

in which the mass fluctuations effect, together with the presence of the IC phase caused 

by strong between optic and acoustic phonon branches, heavily suppress the thermal 

conductivity.  

 The introduction of alien ferroactive Ge
2+

 atoms considerably increases the 

thermal conductivity of the Pb2P2S6 paraelectric sample at low temperatures near 50K 

and virtually do not create changes on the thermal conductivity dependence of Sn2P2S6 

ferroelectric crystal. This is related to the changes (or absence of them) in the shape of 

the well potential caused by Ge. 
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CONCLUSIONS 

In this summary of the thesis, the author would like to stress the important results 

obtained in the study of the thermal properties and the critical behavior of the second 

order phase transitions of Sn(Pb)2P2S(Se)6 by means of ac photopyroelectric 

calorimetry: 

• The influence of Pb atoms in (Sn1-yPby)2P2S6 series with y=0, 0.1, 0.2, 0.3, 0.45, 

0.8 and 1 is reflected as a strong downward shifting of the critical temperature with a 

simultaneously anomaly shape smearing. It was found that the thermal diffusivity is 

higher in the extreme compounds than in the mixed ones. This can be explained by 

distortions of the crystal lattice caused by the fact that Sn and Pb atoms share the same 

space available for them, which leads to a phonon mean-free path reduction. Also, 

thermal anisotropy was confirmed in the monoclinic Pb2P2S6 paraelectric with the 

conclusion that heat propagation is favored in the (100) direction. A critical behavior 

study has been performed for the samples with y = 0.1, 0.2, 0.3 and compared with the 

results obtained for the undoped sample. To properly describe the situation in samples 

with y = 0 and 0.1 it is necessary to use a model in which both order parameter 

fluctuations and contribution of the charged defects are accounted for. In the case of y = 

0.3, a very good fit was found for both phases with a critical index close to 0, meaning 

the sample behaves as a common uniaxial ferroelectric. The crystal with y = 0.2 is an 

intermediate case in which the predominance of the long-range perturbations is not 

settled yet as it happens in y = 0.3. Thus, we can conclude that introduction of Pb 

provokes an evolution of the critical behavior from non mean-field at y = 0 and 0.1 to a 

mean-field one y = 0.3. There is no change in the character of the transition. 

• In the case of (Sn1-yPby)2P2Se6 mixed ferroelectrics, Pb also reduces the 

temperature of the continuous and discontinuous transitions. At the same time, the 

thermal hysteresis of the first order transition increases as well the width of the 

incommensurate phase existence. Two transitions have been detected for samples with 

Pb content of y = 0, 0.05 and 0.1 while in the crystals with y = 0.2 and 0.47 we have 

only found the continuous paraelectric to incommensurate phase transition. Thermal 

diffusivity rises up with temperature lowering due to a phonon mean-free path increase. 
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A critical behavior study has been carried out for the continuous transition at y = 0, 0.05 

and 0.1 within the frame of renormalization group theory. The critical exponents 

obtained are in good agreement with the theoretically predicted 3D-XY model for that 

kind of transition. This means that the Hamiltonian describing the dynamics of the 

system at the anomaly has to contain a two components order parameter. 

• The investigation of Sn2P2S6 doped with Ge, Sb and Te has established that each 

dopant affects the ferroelectricity in quite a different way. Thus, the introduction of Ge 

enhances the total ferroelectricity, Sb atoms slightly reduce it and Te virtually has no 

influence on it. This is caused by changes in the electronic orbitals hybridization 

between the cation and the anion sublattices provided by the introduction of the alien 

atoms. The results of the critical behavior analysis show that for all doped samples the 

ferroelectric phase is well approximated by the classical Landau model, while to 

describe the paraelectric one it is necessary to take into account the combined 

contributions of charged defects and order parameter fluctuations. The same 

combination of models has been observed for the undoped sample. No appropriate fits 

to any other possible universality class were found. The relevant importance of the 

charged defects is higher for the sample doped with Ge atoms with respect to the pure 

Sn2P2S6 crystal. For the ones doped with Sb this importance is smaller. Lastly, Te 

doping only slightly increases the critical parameters, but in all they are close to those 

obtained for the undoped sample. 

•An equivalent study on Sn2P2(S0.72Se0.28)6 independently doped with 5% Pb, 

8%Pb and 5%Ge has been performed and the changes from the undoped sample have 

been compared with the theoretical predictions given by the Blue-Emery-Griffiths 

model with random field. The critical index α = 0.64 obtained for 

Sn2P2(S0.72Se0.28)6+5%Pb coincides perfectly well with the one predicted by 

renormalization group theory for the Lifshitz Tricritical class (αtheor = 0.64). All other 

universality classes such as Uniaxial Lifshitz Tricritical, Uniaxial Tricritical and 

Tricritical have been discarded by the fact that it was impossible to obtain any proper 

fit. The sample Sn2P2(S0.72Se0.28)6+8%Pb already reveals a first order transition. On the 

other side, an introduction of 5%Ge changes neither the character of the transition nor 
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the critical behavior from the one observed in the undoped Sn2P2(S0.72Se0.28)6. Their 

critical exponents α = 0.25 and α = 0.34, respectively, are close to the Lifshitz class 

(αtheor = 0.25). Besides, the results agree with a Blue-Emery Griffiths model with 

random field. The model says that three-well local potential flattening caused by a 

decrease of the transition temperature can lead to the appearance of a Tricritical point. 

In our case the anomaly has been shifted from initial 281.31K for Sn2P2(S0.72Se0.28)6 

down to 259.12K for Sn2P2(S0.72Se0.28)6+5%Pb. Thus, the experimental data confirms 

the appearance of the Lifshitz tricritical point in the (Sn1-yPby)2P2(S1-xSex)6 solid 

compounds. Its coordinates have been found as follows: TLTP = 259.12 K, x = 0.28 and y 

= 0.05.  

•A complete analysis of the thermal conductivity of Sn(Pb)2P2S(Se)6 system has 

been performed taking into account the features of their composition-temperature phase 

diagram. The ultra-low thermal conductivity (about 0.5 W/m K) in the high-temperature 

centrosymmetric phase of Sn2P2S6 crystal is due to a strong lattice anharmonicity. This 

is caused by the relaxations of the 5s
2
 electron pairs of Sn

2+
 together with valence 

fluctuations related to P
4+

 + P
4+

 ↔ P
3+

 + P
5+

 charge disproportionation in the anionic 

(P2S6)
4-

 subgroup of the crystal unit cell. In the case of Pb2P2S(Se)6 the smaller 

stereoactivity of the 6s
2
 electrons lone pairs of Pb

2+
 cations determines the growth of 

thermal conductivity on cooling in the paraelectric phase. At low temperatures inside 

the ferroelectric phase the k(T) curve of Sn2P2S6 exceeds the one for Pb2P2S6 

paraelectric crystal, because of freezing of the electron lone pair relaxations of Sn
2+

 

cations. At low temperatures the same happens with Se-containing compositions. 

Substitution of S by Se in Sn2P2S6 induces the incommensurate phase appearance 

between the paraelectric and ferroelectric phases and increases the coupling of the soft 

optic and acoustic branches in a wide region of wave vectors space. This effectively 

lowers the thermal conductivity. Besides, the conductivity of the more covalent 

Sn2P2Se6 and Pb2P2Se6 crystals is lower with respect to their sulfur analogues. 

In the case of (PbySn1-y)2P2S6 and (PbySn1-y)2P2Se6 mixed compositions the mass 

fluctuations create additional phonon scattering centers, which heavily suppress the 

thermal conductivity. Especially, this effect is pronounced at low temperatures (near 
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60K) for the middle of Pb concentrations (about y ≈ 0.5) for both selenide and sulfide 

crystals. Besides, (Pb0.2Sn0.8)2P2Se6 reveals the lowest k(T) dependence among all 

samples studied due to a combination of the mass fluctuation in the crystal matrix 

together with the IC phase existence. 

Partial substitution of Sn and Pb in sulfide crystals by strongly ferroactive Ge 

atoms steadily increases the thermal diffusivity as well the thermal conductivity of 

Pb2P2S6 paraelectric. The maximal difference between nominally pure (3.1 W/m K) and 

doped (4.9 W/m K) samples is reached at lowest temperature near 40K. In case of 

Sn2P2S6 ferroelectric the introduction of Ge have virtually no influence on the general 

evolution of D(T) and k(T). 
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SUMMARY IN SPANISH / RESUMEN EN CASTELLANO 

“Influencia de dopantes isovalentes en el comportamiento crítico y las 

propiedades térmicas dinámicas  de cristales ferroeléctricos  

Sn(Pb)2P2S(Se)6” 

 

Esta tesis doctoral se ha realizado en el marco de un acuerdo de cotutela 

internacional entre la Uzhgorod National University, Uzhgorod, Ucrania y la 

Universidad del País Vasco-Euskal Herriko Unibertsitatea, habiendo realizado el 

estudiante Vasyl Shvalya una estancia en la UPV/EHU de 23 meses (aproximadamente 

la mitad del período total) con el soporte económico de la Unión Europea a través del 

programa ERASMUS MUNDUS ACTIVE.  

Los primeros 4 capítulos de la memoria son capítulos que contextualizan el 

trabajo experimental que se describe en los capítulos 5 al 9. El capítulo 1 contiene una 

descripción general de los procesos de transferencia de calor, introduciendo las 

definiciones de las variables térmicas que se van a manejar en la memoria. El capítulo 2 

describe con todo detalle las técnicas experimentales utilizadas y su fundamento teórico. 

La técnica básica utilizada ha sido calorimetría fotopiroeléctrica y en todos los casos se 

han utilizado monocristales de alta calidad para los estudios. El capítulo 3 contiene el 

estado del arte de las propiedades físicas de la familia ferroeléctrica estudiada y el 

capítulo 4 desarrolla la teoría del comportamiento crítico de transiciones de fase 

continuas (segundo orden), empezando por la teoría clásica de Landau y las 

correcciones aplicadas a la misma con el fin de considerar fenómenos tales como 

fluctuaciones del parámetro de orden, presencia de interacciones dipolares fuertes, 

contribución añadida de defectos cargados, etc.   Se describen los límites de esta teoría 

clásica y se pasa a describir la teoría moderna del comportamiento crítico, basada en el 

desarrollo de los hamiltonianos que incluyan las interacciones relevantes en la 

transición y la obtención por diferentes métodos (el más relevante de los cuales es la 

teoría de grupos de renormalización) del comportamiento singular de diferentes 

variables físicas, como el calor específico o la difusividad térmica. Se obtienen así las 
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diferentes clases de universalidad, donde cada una tiene un conjunto particular de 

exponentes críticos, susceptibles de ser evaluados experimentalmente. Así, una vez que 

obtengamos las curvas experimentales, las ajustaremos a los diferentes modelos teóricos 

con el fin de extraer conclusiones sobre los mecanismos físicos relevantes en la 

transición. La magnitud experimental utilizada para dichos ajustes ha sido en todos los 

casos el inverso de la difusividad térmica, cuyo comportamiento crítico es análogo al 

del calor específico en estos materiales. 

El propósito del estudio ha sido, en primer lugar, investigar la evolución de las 

propiedades térmicas de la familia ferroeléctrica Sn(Pb)2P2S(Se)6  en un muy amplio 

rango de temperaturas, estudiando el comportamiento crítico de las transiciones de fase 

continuas (segundo orden) que aparecen en su diagrama de fases, centrándonos 

especialmente en la influencia de la sustitución de Sn por Pb en las soluciones sólidas 

(Sn1-yPby)2P2S6 and (Sn1-yPby)2P2Se6. Con este propósito, se ha procedido a la medida de 

la difusividad térmica de ambas familias (Sn1-yPby)2P2S6 and (Sn1-yPby)2P2Se6 desde baja 

temperatura (30-40K) hasta temperatura ambiente o superior, según los casos, 

verificando la anisotropía de dicha propiedad térmica debida a la estructura monoclínica 

de los monocristales. En el caso de la familia (Sn1-yPby)2P2S6 (capítulo 5) se han 

identificado las transiciones de fase (todas continuas) que van siendo frustradas a 

medida que se incrementa el contenido de Pb, hasta que anula por completo la 

transición ferroeléctrica para y > 0.45. Se ha estudiado el comportamiento crítico de las 

mismas considerando la teoría clásica de Landau (campo medio), las posibles 

desviaciones a la misma teniendo en cuenta fluctuaciones del parámetro de orden, las 

posibles atenuaciones de estas fluctuaciones debidas a fuertes interacciones dipolares 

y/o la contribución de defectos cargados, comparando los resultados con las diferentes 

clases de universalidad. La conclusión ha sido que existe un crossover desde la muestra 

con y = 0.1 hasta la muestra con y = 0.3. En la primera, el comportamiento crítico de la 

fase paraeléctrica se puede describir con una combinación de la corrección de 

fluctuaciones de primer orden y la contribución de  defectos cargados (por lo tanto, un 

comportamiento alejado del campo medio descrito por la teoría clásica pura de Landau) 

mientras que en la última es suficiente considerar interacciones de largo alcance (campo 
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medio) para su descripción. En todos los casos las fases ferroeléctricas sí siguen el 

modelo de Landau. No ha sido posible encontrar correlación con las clases de 

unversalidad derivadas de la teoría moderna de comportamiento crítico al no poder 

realizar un único ajuste a las dos fases al mismo tiempo con dicho modelo. Las 

ecuaciones utilizadas para los ajustes en cada caso están descritas con todo detalle en el 

capítulo 4. 

 El capítulo 6 contiene el estudio equivalente de la familia  (Sn1-yPby)2P2Se6 donde 

la principal diferencia estriba en que, sin plomo, existen dos transiciones; desde la fase 

paraeléctrica de alta temperatura se pasa a una inconmensurable (segundo orden) para 

luego pasar, a más baja temperatura, a una fase ferroeléctrica con una transición de 

primer orden. En este caso, se han identificado las transiciones de primer orden  en las 

muestras con dopaje y=0, 0.05, 0.1 a través del estudio de la histéresis: comportamiento 

asintótico de la posición de la temperatura crítica en subida o bajada en función de la 

velocidad de cambio de la temperatura así como de la diferencia en la forma de la 

transición. Se han localizado transiciones de segundo orden de la fase paraeléctrica a la 

inconmensurable en  y = 0, 0.05, 0.1, 0.2, 0.47 de las cuales se han podido ajustar las 

tres primeras (las dos últimas se manifiestan sólo por leves alteraciones sobre el fondo 

de difusividad térmica). La teoría de grupos de renormalización afirma que esta 

transición particular debe ser descrita con un parámetro de orden con dos componentes 

y que la clase de universalidad a la que debe pertenecer es la 3D-XY (lo que ha sido 

experimentalmente verificado en muy pocas ocasiones a pesar de que este tipo de 

transición se da en muchos ferroeléctricos). Los ajustes realizados con las 3 muestras 

han concluido que, efectivamente, esta transición pertenece a dicha clase de 

universalidad. Por último, indicar que en las muestras con y = 0.8, 1 no se ha 

encontrado ninguna transición de fase. 

En el capítulo 7 se estudia la influencia de otros dopantes (Ge, Sb, Te) en las 

propiedades ferroeléctricas, térmicas y comportamiento crítico de Sn2P2S6. Ge sustituye 

al Sn, Sb al P y Te al S. Se discute cómo esas sustituciones (que se han realizado 

independientemente y no combinadas) alteran las hibridaciones de los niveles 

electrónicos del material responsables de las propiedades ferroeléctricas del mismo. La 
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presencia de Ge incrementa fuertemente la estereoactividad ya que refuerza la 

hibridación de los niveles sp
2
, lo que se revela en un notable incremento de la 

temperatura de la transición así como en un anomalía más marcada. Sb tiene un efecto 

contrario al del Ge pero es mucho más débil (la temperatura crítica se reduce 

ligeramente) mientras que Te no tiene prácticamente ninguna influencia. En lo que se 

refiere al comportamiento crítico en comparación con el de Sn2P2S6, de nuevo puede ser 

descrito por teoría clásica pura (modelo de Landau) en su fase ferroeléctrica, con ligeras 

variaciones en los coeficientes fenomenológicos del potencial termodinámico; la fase 

paraeléctrica, en cambio, sí es descrita por la teoría clásica pero teniendo en cuenta una 

combinación del efecto de fluctuaciones de primer orden del parámetro de orden junto 

con la presencia de defectos cargados. Se discute el cambio en el peso relativo de una u 

otra contribución. 

En el capítulo 8 se presenta el estudio de la consecución de un punto de Lifshitz 

tricrítico en el diagrama de fase de esta familia ferroeléctrica a partir de la concentración 

donde se da el punto de Lifshitz Sn2P2(S0.72Se0.28)6. Hay estudios previos sobre la 

consecución de puntos tricríticos aplicando presión mecánica en Sn2P2S6 o dopado e 

incluso se ha teorizado que podría encontrarse en el diagrama de fase (T, p, x, y) de la 

familia (PbySn1-y)2P2(S1-xSex)6 pero sin llegar a encontrarlo experimentalmente. Además, 

del modelo Blue-Emery-Griffiths (BEG) con influencia de campos al azar (random field 

influence) se infiere que se debería poder alcanzar un punto tricrítico a menor 

temperatura que en el  caso del punto de Lifshitz Sn2P2(S0.72Se0.28) (se teoriza en torno a 

250 K) y las singularidades en la transición deberían estar redondeadas, tanto más 

cuando ya cambie el carácter de la transición. Es bien conocida la equivalencia entre 

presión mecánica y presión química (dopaje) en la evolución de los diagramas de fase 

por lo que este trabajo se ha centrado en obtener dicho punto tricrítico añadiendo 

dopantes que tengan un  efecto claro y conocido en la estereoactividad del material, 

como son Pb (que la frustra) y Ge (que la refuerza). Así, se ha dopado Sn2P2(S0.72Se0.28) 

con 5% Pb, 8% Pb y 5% Ge (independientemente en cada caso) y se ha estudiado el 

carácter de cada transición (con un detallado estudio de la histéresis) y el 

comportamiento crítico de las de segundo orden; lo relevante de este último estudio es 
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que existen clases de universalidad relacionadas con los puntos de Lifshitz y puntos 

tricríticos en su diferentes combinaciones. El estudio ha revelado que con 5% Pb se 

alcanza un punto Lifshitz tricrítico (el exponente crítico coincide perfectamente con la 

clase de universalidad del mismo nombre) mientras que con 5% Ge sigue perteneciendo 

a la clase Lifshitz. Además, en el caso del 5% Pb, se cumplen las previsiones del 

modelo BEG acerca de las características y posición de la singularidad. La transición 

con 8% Pb es claramente primer orden. 

Por último, en el capítulo 9, se realiza un estudio general de análisis de las 

propiedades térmicas de Sn(Pb)2P2S(Se)6 desde 30K hasta en torno a temperatura 

ambiente con el fin de analizar el papel de los fonones en la propagación del calor. Se 

utilizan las medidas de difusividad térmica descritas en los capítulos anteriores y se 

combinan con valores de calor específico presentes en literatura para obtener la 

conductividad térmica, obteniendo valores ultrabajos de la misma para determinadas 

concentraciones. Se discute este comportamiento considerando la influencia de diversos 

mecanismos físicos que pueden ser el origen del crecimiento de la anarmonicidad de la 

red en estos cristales, tales como la interacción de fonones acústicos y ópticos, 

fluctuaciones de masa en la red cristalina, relajación de pares aislados de electrones. Por 

último, se analiza también el cambio en dicha anarmonicidad al codopar con Ge. 

 

Este trabajo de investigación ha dado lugar a 7 publicaciones en revistas del 

Journal Scitation Index y una octava está en proceso de revisión. Además, se han 

presentado seis comunicaciones en congresos internacionales y otras dos en nacionales. 
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