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Up to now, research in photothermal techniques has been mainly restricted to samples with flat
surfaces. In this work the surface temperature oscillation of multilayered cylindrical samples which
are heated by a modulated light beam is calculated by using the quadrupole method. Different
illumination geometries have been studied. Moreover, the lack of adherence between layers, as well
as heat losses at the surface, has been considered in the model. Following this theoretical approach,
photothermal techniques can be used for the quantitative thermophysical characterization of
cylindrical samples with continuously varying in-depth thermal conductivity. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2400403�

I. INTRODUCTION

Photothermal techniques have become very powerful
tools for the thermophysical characterization and nondestruc-
tive evaluation �NDE� of a wide variety of materials.1 Pho-
tothermal wave techniques are based on the generation and
detection of thermal waves in the sample under study. Ther-
mal waves are generated in a material as a consequence of
the absorption of an intensity modulated light beam. These
highly damped thermal waves propagate through the material
and are scattered by the buried heterogeneities. Different
photothermal setups have been developed to detect these
thermal waves and therefore to extract from them informa-
tion on the thermal properties and internal structure of the
material: infrared radiometry, mirage effect, photothermal re-
flectance, etc.

For decades, research in photothermal techniques has
been restricted to samples with flat surfaces. Recently, some
studies on cylindrical and spherical samples have been
published.2–4 In this work we calculate, using the quadrupole
method, the surface temperature of a multilayered cylindrical
sample which is heated by a modulated light beam. The
quadrupole method is a unified exact method of representing
linear systems. It has been applied in the framework of con-
ductive transfer to calculate the surface temperature of flat
multilayered samples.5 Here we exploit this elegant method
to express the surface temperature of multilayered cylindrical
samples in a compact manner. Different illumination geom-
etries have been studied, both with and without keeping the
cylindrical symmetry. On the other hand, the lack of adher-
ence between layers has been taken into account by introduc-
ing a thermal contact resistance. Moreover, heat losses at the
surface have also been considered. Consequently, it is ex-
pected that this theoretical approach encourages the use of
photothermal techniques for the quantitative thermophysical

characterization of cylindrical samples with continuously
varying in-depth thermal conductivity, as is the case of hard-
ened steel wires, tubes, and nails.

II. THEORY

In this section we first apply the quadrupole method to
calculate the surface temperature of a multilayered cylinder
that is illuminated by a light beam with cylindrical symme-
try, modulated at a frequency f ��=2�f�. Accordingly, in
this simple configuration the one-dimensional approach can
be used. Then we generalize the method to include illumina-
tions with no cylindrical symmetry, which are of more prac-
tical interest.

A. Illumination with cylindrical symmetry

1. A hollow cylinder

Let us consider an infinite, homogeneous, and opaque
hollow cylinder with an outer radius a and an inner radius b,
which is uniformly illuminated by a radial light beam of
intensity I0 modulated at a frequency f . Its cross section is
shown in Fig. 1�a�. Due to the cylindrical symmetry of the
illumination the temperature oscillation at any point of the
cylinder can be written as6,7

T�r� = PJ0�qr� + QH0�qr� , �1�

where q=�i� /D is the thermal wave vector, with D the ther-
mal diffusivity of the sample and J0 and H0 are the zeroth
order of the Bessel and Hankel functions of the first kind,
respectively. The first term in Eq. �1� represents the ingoing
cylindrical thermal wave starting at the sample surface, while
the second one is the corresponding reflected wave at the
inner surface. P and Q are two constants to be determined
according to the boundary conditions. On the other hand, if
we define j as minus the heat flux at any point of the cylin-
der, then it writesa�Electronic mail: agustin.salazar@ehu.es
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j�r� = K
dT

dr
= Kq�PJ0��qr� + QH0��qr�� , �2�

where K is the thermal conductivity of the sample and J0� and
H0� are the derivatives of the Bessel and Hankel functions,
respectively. The constants P and Q can be easily eliminated
from Eqs. �1� and �2� by taking the values of temperature and
heat flux at both surfaces �r=a and r=b�. In this way, a linear
relation between temperature and flux at the outer and inner
surfaces is obtained that can be expressed in the following
matrix form:

�T�a�
j�a�

� = �A B

C D
��T�b�

j�b�
� , �3�

with

A = �H0��qb�J0�qa� − J0��qb�H0�qa��/E ,

B = �J0�qb�H0�qa� − H0�qb�J0�qa��/EKq ,

C = Kq�H0��qb�J0��qa� − J0��qb�H0��qa��/E ,

D = �J0�qb�H0��qa� − H0�qb�J0��qa��/E

and

E = H0��qb�J0�qb� − H0�qb�J0��qb� .

It is interesting to note that Eq. �3� is valid for any
boundary condition at the surfaces. According to Eq. �3�, if
the heat flux at both surfaces is known, then the surface
temperature can be obtained. For instance, for negligible heat
losses �j�a�= I0 /2 and j�b�=0� the surface temperature at
both surfaces reduces to

T�a� =
I0

2

A

C
, �4a�

T�b� =
I0

2

1

C
. �4b�

On the other hand, when heat losses are present �j�a�
= I0 /2−haT�a� and j�b�=hbT�b�� the surface temperature
writes

T�a� =
I0

2

A + Bhb

C + Dhb + Aha + Bhahb
, �5a�

T�b� =
I0

2

1

C + Dhb + Aha + Bhahb
, �5b�

where ha and hb are the linearized heat transfer coefficients5

at the outer and inner surfaces, respectively, which account
for convective and radiative losses. Note that in the absence
of heat losses �ha=hb=0� Eqs. �5� reduce to Eqs. �4�. On the
other hand, by making b=0 in Eq. �5a� and using the prop-
erties of the Bessel functions,8,9 the surface temperature of a
solid cylinder is obtained,

T�a� =
I0

2

J0�qa�
KqJ0��qa� + haJ0�qa�

. �6�

It is worth noting that Eqs. �3�–�5� are the same as those
obtained for a homogeneous and semi-infinite slab whose
front surface is periodically illuminated by a uniform light
beam,5 but the coefficients A to D depend now on Bessel
functions instead of on hyperbolic ones. That is the reason
why we have used minus the heat flux instead of the heat
flux itself.

2. A multilayered cylinder

Now we consider an infinite and opaque multilayered
cylinder whose outer surface is uniformly illuminated by a
radial light beam of intensity I0 modulated at a frequency f .
Its cross section is shown in Fig. 1�b�. It is made of N layers
of different thicknesses and materials. The thermophysical
properties of layer i are labeled by subindex i and its outer
and inner radii by ai and ai+1, respectively. According to the
quadrupole method the temperature at the outer and inner
surfaces of the cylinder, taking into account the influence of
heat losses, are given by Eqs. �5�,

T�a1� =
I0

2

A� + B�hb

C� + D�hb + A�ha + B�hahb
, �7a�

FIG. 1. Cross section of �a� a semi-infinite and opaque
hollow cylinder and �b� a multilayered cylinder with an
illumination with cylindrical symmetry.
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T�aN+1� =
I0

2

1

C� + D�hb + A�ha + B�hahb
, �7b�

but now the transfer matrix to obtain the frequency depen-
dent coefficients A� to D� is

�A� B�

C� D�
� = �

i=1

N �Ai Bi

Ci Di
� , �8�

with

Ai = �H0��qiai+1�J0�qiai� − J0��qiai+1�H0�qiai��/Ei,

Bi = �J0�qiai+1�H0�qiai� − H0�qiai+1�J0�qiai��/EiKiqi,

Ci = Kiqi�H0��qiai+1�J0��qiai� − J0��qiai+1�H0��qiai��/Ei,

Di = �J0�qiai+1�H0��qiai� − H0�qiai+1�J0��qiai��/Ei

and

Ei = H0��qiai+1�J0�qiai+1� − H0�qiai+1�J0��qiai+1� .

On the other hand, the lack of adherence between two
adjacent layers can be accounted for by considering a very
thin intermediate air layer. The thickness of this intermediate
layer satisfies the condition �n=an−an+1→0, and according
to the asymptotic behavior of the Bessel functions,8,9 the
coefficients of the corresponding transfer matrix can be sim-
plified as An=Dn=1, Bn=�n /Kair=R, and Cn=0. Here R is
the thermal contact resistance. This means that the effect of a
thermal resistance between layers i and i+1 �Ri,i+1� is ac-
counted for by inserting in Eq. �8� the following matrix be-
tween the two adjacent matrices i and i+1:

�1 Ri,i+1

0 1
� . �9�

B. Illumination with no cylindrical symmetry

The illumination we dealt with in the previous subsec-
tion is the easiest to be solved mathematically because of the
cylindrical symmetry. However, this is difficult to fulfill in
photothermal experiments. Accordingly we generalize the
thermal quadrupole procedure to include two types of illumi-
nation with no cylindrical symmetry but with more practical
application: a radial and a linear one �see Fig. 2�. Both sub-
tend the same angle 2�. In the first one �see Fig. 2�a�� the

light intensity over the cylinder surface g�� ,�� is I0 for
� /2−����� /2+� and zero for all other angles, and after
being expanded in Fourier series writes

g��,�� = I0 	
m=−�

�

�− i�msin�m��
m�

eim� = I0 	
m=−�

�

gm���eim�.

�10�

In the second one �see Fig. 2�b�� the light intensity is
I0 sin � for � /2−����� /2+� and zero for all other
angles, and expanded in Fourier series can be written as

g��,�� = I0 	
m=−�

�

�− i�m

�
m sin�m��cos � − sin � cos�m��

��m2 − 1�
eim�

= I0 	
m=−�

�

gm���eim�. �11�

1. A hollow cylinder

Let us consider the same hollow cylinder as in Sec.
II A 1. Two light beams are considered whose cross sections
are shown in Fig. 2. According to the loss of cylindrical
symmetry, the temperature oscillation at any point of the
cylinder is given by6,7

T�r,�� = 	
m=−�

�

�PmJm�qr� + QmHm�qr��eim�

= 	
m=−�

�

tm�r�eim�, �12�

where Jm and Hm are the mth order of the Bessel and Hankel
functions of the first kind, respectively. Pm and Qm are 2m
+1 constants to be determined according to the boundary
conditions. On the other hand, j at any point of the cylinder
writes

j�r,�� = K
�T

�r
= Kq 	

m=−�

�

�PmJm� �qr� + QmHm� �qr��eim�

= 	
m=−�

�

fm�r�eim�, �13�

where Jm� and Hm� are the derivatives of the Bessel and Han-
kel functions, respectively. The 2m+1 constants Pm and Qm

can be eliminated from Eqs. �10� and �11� by taking the
values of tm and fm at both surfaces �r=a and r=b�. In this
way, a linear relation between tm and fm at the outer and
inner surfaces is obtained that can be expressed in the fol-
lowing matrix form:

� tm�a�
fm�a�

� = �Am Bm

Cm Dm
�� tm�b�

fm�b�
� ,

∀m = − �, . . . ,0, . . . ,� , �14�

with

FIG. 2. Cross section of a semi-infinite and opaque hollow cylinder with
two kinds of illumination with no cylindrical symmetry: �a� radial and �b�
linear.
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Am = �Hm� �qb�Jm�qa� − Jm� �qb�Hm�qa��/Em,

Bm = �Jm�qb�Hm�qa� − Hm�qb�Jm�qa��/EmKq ,

Cm = Kq�Hm� �qb�Jm� �qa� − Jm� �qb�Hm� �qa��/Em,

Dm = �Jm�qb�Hm� �qa� − Hm�qb�Jm� �qa��/Em,

and

Em = Hm� �qb�Jm�qb� − Hm�qb�Jm� �qb� .

For negligible heat losses �fm�a�= I0gm��� /2 and fm�b�
=0, ∀m=−� , . . . ,0 , . . . ,�� the coefficients tm�a� and tm�b�
are

tm�a� =
I0

2
gm���

Am

Cm
, �15a�

tm�b� =
I0

2
gm���

1

Cm
, �15b�

and using Eq. �12� the surface temperature can be obtained,

T�a,�� =
I0

2 	
m=−�

�

gm���
Am

Cm
eim�, �16a�

T�b,�� =
I0

2 	
m=−�

�

gm���
1

Cm
eim�, �16b�

where gm��� is taken from Eq. �10� or �11� according to the
geometry of the illumination.

When heat losses are present �fm�a�= I0gm��� /2
−hatm�a� and fm�b�=hatm�b� , ∀m=−� , . . . ,0 , . . . ,�� the co-
efficients tm�a� and tm�b� are

tm�a� =
I0

2
gm���

Am + Bmhb

Cm + Dmhb + Amha + Bmhahb
, �17a�

tm�b� =
I0

2
gm���

1

Cm + Dmhb + Amha + Bmhahb
, �17b�

and from Eq. �12� the surface temperature is obtained,

T�a,�� =
I0

2 	
m=−�

�

gm���
Am + Bmhb

Cm + Dmhb + Amha + Bmhahb
eim�,

�18a�

T�b,�� =
I0

2 	
m=−�

�

gm���
1

Cm + Dmhb + Amha + Bmhahb
eim�.

�18b�

As a particular case, by making b=0 in Eq. �18a� and
using the properties of the Bessel functions,8,9 a simple ex-
pression for the surface temperature of a solid cylinder is
obtained,

T�a,�� =
I0

2 	
m=−�

�

gm���
Jm�qa�

KqJm� �qa� + haJm�qa�
eim�. �19�

2. A multilayered cylinder

Finally, we consider the same multilayered cylinder as in
Sec. II A 2. Proceeding in a similar way as before, the tem-
perature at any point of the outer and inner surfaces, taking
into account the influence of heat losses, is given by
Eqs. �18�,

FIG. 3. Normalized amplitude and phase of the surface
temperature of a two-layer cylinder whose radius is
1 mm and with an illumination with cylindrical
symmetry. The outer layer is 0.2 mm thick made
of AISI-304 stainless steel. Three different inner
layers are considered: �a� a good thermal conductor
�K=400 W m−1 K−1 and D=100 mm2/s� �continuous
line�, �b� a thermal insulator �K=0.2 W m−1 K−1

and D=0.1 mm2/s� �dashed line�, and �c� air
�K=0.026 W m−1 K−1 and D=22 mm2/s� �dotted line�.

FIG. 4. Effect of the thermal resistance in the normal-
ized amplitude and phase of the surface temperature of
a two-layer cylinder whose radius is 1 mm and with an
illumination with cylindrical symmetry. The outer layer
is 0.2 mm thick made of AISI-304 stainless steel. The
inner layer is made of a good thermal conductor
�K=400 W m−1 K−1 and D=100 mm2/s�. �a�
R=0 �continuous line�, �b� R=10−5 m2 K W−1 �dashed
line�, �c� R=10−4 m2 K W−1 �dotted line�, and �d�
R=10−3 m2 K W−1 �dashed-dotted line�.
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T�a1,�� =
I0

2 	
m=−�

�

gm���

�
Am� + Bm� hb

Cm� + Dm� hb + Am� ha + Bm� hahb

eim�, �20a�

T�aN+1,�� =
I0

2 	
m=−�

�

gm���

�
1

Cm� + Dm� hb + Am� ha + Bm� hahb

eim�, �20b�

but now the 2m+1 transfer matrices to obtain the frequency
dependent coefficients Am� to Dm� are

�Am� Bm�

Cm� Dm�
� = �

i=1

N �Ami Bmi

Cmi Dmi
�, m = − �, . . . ,0, . . . , + � ,

�21�

with

Ami = �Hmi� �qiai+1�Jmi�qiai� − Jmi� �qiai+1�Hmi�qiai��Emi,

Bmi = �Jmi�qiai+1�Hmi�qiai�

− Hmi�qiai+1�Jmi�qiai��/EmiKiqi,

Cmi = Kiqi�Hmi� �qiai+1�Jmi� �qiai�

− Jmi� �qiai+1�Hmi� �qiai��/Emi,

Dmi = �Jmi�qiai+1�Hmi� �qiai� − Hmi�qiai+1�Jmi� �qiai��/Emi

and

Emi = Hmi� �qiai+1�Jmi�qiai+1� − Hmi�qiai+1�Jmi� �qiai+1� .

As in the case of illumination with cylindrical symmetry,
the influence of a bad adherence between layers i and i+1 is
accounted for by inserting in Eq. �21� the same matrix given
by Eq. �9� between the two adjacent matrices i and i+1.

III. NUMERICAL CALCULATIONS AND
DISCUSSION

As a test of consistency we have compared our solutions
obtained from the quadrupole method to those previously
published using Green’s function method for a solid cylinder
and for a two-layer cylinder which are illuminated as in Fig.
2�b�.2,3 Calculations of the surface temperature of a solid
cylinder using our Eq. �19� and using Eq. �11� in Ref. 2 and
of a bilayer cylinder using our Eq. �20a� and using Eq. �17�
in Ref. 3 show the same results in the whole range of fre-
quencies.

Now we calculate the surface temperature oscillation in
a two-layer solid cylinder with a total radius of 1 mm, which
is illuminated by a modulated light beam with cylindrical
symmetry as that shown in Fig. 1�a�. The outer layer is made
of AISI-304 stainless steel �K=10 W m−1 K−1 and D
=4 mm2/s� with a thickness of 0.2 mm. In all the simula-
tions the surface temperature of the two-layer cylinder is
normalized to a homogeneous stainless steel cylinder with
the same radius as the bilayer one. In Fig. 3 the influence of
the material of the inner layer on the amplitude and phase of
the surface temperature is shown as a function of the modu-
lation frequency. The continuous line represents the case of

FIG. 5. Effect of heat losses in the normalized ampli-
tude and phase of the surface temperature of the
same two-layer cylinder as in Fig. 4. �a� h=0
�continuous line�, �b� h=100 W m−2 K−1 �dashed line�,
�c� h=200 W m−2 K−1 �dotted line�, and �d�
h=500 W m−2 K−1 �dashed-dotted line�.

FIG. 6. Normalized amplitude and phase of the surface
temperature of a multilayered cylinder whose radius is
1 mm and with an illumination with cylindrical symme-
try. The inner core is made of AISI-304 stainless steel
�K=10 W m−1 K−1 and D=4 mm2/s� and has a radius
of 0.5 mm. In the outer part of the cylinder the transport
thermal properties suffer from a continuously steplike
decrease down to half of the core values at the surface
�K=5 W m−1 K−1 and D=2 mm2/s�. Four cases are
considered: �a� two outer layers �continuous line�, �b�
three outer layers �dashed line�, �c� five outer layers
�dotted line�, and �d� ten outer layers �dashed-dotted
line�.
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an inner layer made of a much better thermal conductor than
the stainless steel �K=400 W m−1 K−1 and D=100 mm2/s�.
As can be seen there is a decrease in the amplitude together
with an increase in the phase. The dotted line corresponds to
an inner air layer �K=0.026 W m−1 K−1 and D=22 mm2/s�,
showing the opposite trend, i.e., an increase in amplitude and
a decrease in phase. Finally, the dashed line stands for a
thermal insulator �K=0.2 W m−1 K−1 and D=0.1 mm2/s�
that shows an intermediate behavior. These results are simi-
lar to those found in two-layer plates.1 The influence in the
surface temperature due to the presence of a thermal resis-
tance between the two layers is shown in Fig. 4. The material
is the same two-layer cylinder as in Fig. 3 with the
inner layer made of a very good thermal conductor
�K=400 W m−1 K−1 and D=100 mm2/s�. The continuous
line represents a perfect thermal contact, the dashed line
is for R=10−5 m2 K W−1, the dotted line is for
R=10−4 m2 K W−1, and the dashed-dotted line for
R=10−3 m2 K W−1. As the thermal resistance increases both
amplitude and phase differ from the perfect thermal contact,
represented by the continuous line, and the temperature be-
haves as in the case of an inner insulator �see dashed line in
Fig. 3�. In Fig. 5 the influence of heat losses at the surface is
shown. The bilayer cylinder is the same as in Fig. 4, with a
perfect thermal contact between the core and coating. The
continuous line represents the absence of heat losses and it is
the same curve as the continuous line in Fig. 4. The influence
of heat losses only appears at low frequencies and it is
small even for high coefficients of heat losses
�h=100–500 W m−2 K−1�. This is due to the fact that stain-
less steel is quite a good thermal conductor and the influence
of heat losses increases as the thermal conductivity of the
material decreases.

Following with the same illumination we analyze the
surface temperature of a multilayered cylinder. It has a radius
of 1 mm, with an inner core of a radius of 0.5 mm made
of AISI-304 stainless steel �K=10 W m−1 K−1 and
D=4 mm2/s�. In the outer part of the cylinder the transport
thermal properties suffer from a continuously steplike de-
crease down to half of the core values at the surface
�K=5 W m−1 K−1 and D=2 mm2/s�. In Fig. 6 the normal-
ized amplitude and phase of the surface temperature oscilla-
tion is shown as a function of the modulation frequency.
Normalization is performed with respect to a homogeneous
cylinder of the same size made of AISI-304 stainless steel.
Four cases are considered: �a� two outer layers 0.25 mm

thick each, �b� three outer layers 0.166 mm thick each, �c�
five outer layers 0.10 mm thick each, and �d� ten outer layers
0.05 mm thick each. As the number of layers increases the
shapes of both amplitude and phase are similar but shifted to
higher frequencies. Moreover, the highest phase contrast is
reduced. This is due to the fact that as the number of layers
increases the thermal contrast reduces and therefore the am-
plitude of the reflected thermal wave becomes smaller. Note
that as the number of layers goes to infinity this model simu-
lates the case of a heterogeneous material with continuously
varying thermal properties, as is the case of samples affected
by surface modifying processes, e.g., steel hardening, an-
nealing, etc. However, as in the case of flat layered systems,
the convergence is very slow and many layers are necessary
to guarantee the convergence.10

Now we study the same multilayered sample of Fig. 6
but illuminated with a light beam with no cylindrical sym-
metry �as that shown in Fig. 2�b�� with �=� /2. In Fig. 7 we
show the frequency scan of the normalized amplitude and
phase of the surface temperature as measured at the north
pole of the sample ��=� /2�. Three differences with respect
to Fig. 6 can be pointed out: �a� a double peak structure, both
in amplitude and phase, �b� a shift to lower frequencies, and
�c� a reduction of the highest phase contrast. In Fig. 8 we
show the south pole temperature ��=−� /2� as a function of
the square root frequency. As in the case of flat layers a
linear behavior has been found, but a simple relation be-
tween its slope and the effective thermal properties of the
multilayered cylinder has not been found. As can be seen, as

FIG. 7. The same as in Fig. 6, but now illuminated by
a light beam with no cylindrical symmetry, as that
shown in Fig. 2�b�, with �=� /2. The temperature is
calculated at the north pole of the sample ��=� /2�.

FIG. 8. The same sample and illumination as in Fig. 7, but now the tem-
perature is calculated at the south pole of the sample ��=−� /2�.
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the number of layers increases the slope does in agreement
with the corresponding increase of the effective thermal
properties of the sample.

It is worth noting that using the inverse Laplace
transform,5 the modulated solutions presented in Sec. II can
be used to calculate the temperature evolution of multilay-
ered cylinders after being heated by a short duration light
pulse. This means that this theoretical approach can be used
in both lock-in and pulsed infrared thermographies.

In this work an extension of the thermal quadrupole
method to calculate the surface temperature of multilayered
cylindrical samples has been presented. It is expected that
this theoretical approach encourages the use of photothermal
techniques for the quantitative thermophysical characteriza-
tion of coated cylinders and hardened steel cylindrical
samples such as thin wires, tubes, and nails.
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