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In the last years there has been a growing interest in the application of photothermal techniques to
samples with nonflat surfaces, in particular cylinders and spheres. In this work the surface
temperature oscillation of multilayered spherical samples which are heated by a modulated light
beam is calculated by using the quadrupole method. Several illumination geometries have been
studied. Moreover, the lack of adherence between layers, as well as heat losses at the surface, has
been considered in the model. This theoretical approach allows photothermal techniques to be used
to characterize the thermal properties of spherical samples with continuously varying in-depth
thermal conductivity. © 2007 American Institute of Physics. �DOI: 10.1063/1.2735414�

I. INTRODUCTION

Photothermal techniques have become very powerful
tools for the thermophysical characterization and nondestruc-
tive evaluation �NDE� of a wide variety of materials.1

Photothermal-wave techniques are based on the generation
and detection of thermal waves in the sample under study.
Thermal waves are generated in a material as a consequence
of the absorption of an intensity-modulated light beam.
These highly damped thermal waves propagate through the
material and are scattered by the buried heterogeneities. Dif-
ferent photothermal setups have been developed to detect
these thermal waves and therefore to extract information on
the thermal properties and internal structure of the material:
infrared radiometry, mirage effect, photothermal reflectance,
etc.

For decades, research in photothermal techniques has
been restricted to samples with flat surfaces. Recently, some
studies of cylindrical and spherical samples have been
published.2–5 In this work we use the quadrupole method to
calculate the surface temperature of a multilayered spherical
sample which is heated by a modulated light beam. The
quadrupole method is a unified exact method for represent-
ing linear systems. It has been applied in the framework of
conductive transfer to calculate the surface temperature of
multilayered flat samples6 and multilayered cylindrical
samples.5 Here we exploit this elegant method to express the
surface temperature of multilayered spherical samples in a
compact manner. Different illumination geometries have
been studied, both with and without keeping the spherical
symmetry. On the other hand, the lack of adherence between
layers has been taken into account by introducing a thermal
contact resistance. Moreover, heat losses at the surface have
also been considered. Consequently, it is expected that this
theoretical approach encourages the use of photothermal
techniques for the quantitative thermophysical characteriza-
tion of spherical samples with continuously varying in-depth
thermal conductivity, as is the case of hardened-steel ball
bearings.

In Sec. II we first apply the quadrupole method to cal-
culate the surface temperature of a multilayered sphere that
is uniformly illuminated by a light beam modulated at a fre-
quency f ��=2�f�. Accordingly, in this simple configuration
the one-dimensional approach can be used. Then, in Sec. III,
we generalize the method to include nonuniform illumina-
tions, which are of more practical interest.

II. MULTILAYERED SPHERE WITH UNIFORM
ILLUMINATION

A. A hollow sphere

Let us consider a homogeneous and opaque hollow
sphere with an outer radius � and an inner radius b, which is
uniformly illuminated by a light beam of intensity I0 modu-
lated at a frequency f . Its cross section is shown in Fig. 1�a�.
Due to the spherical symmetry of the illumination, the tem-
perature oscillation at any point of the sphere can be written
as7

T�r� = Uj0�qr� + Vh0�qr� , �1�

where q=�i� /D is the thermal wave vector, with D the ther-
mal diffusivity of the sample, and j0 and h0 are the zeroth
order of the spherical Bessel and Hankel functions, respec-
tively. The first term in Eq. �1� represents the ingoing spheri-
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FIG. 1. Cross section of a hollow sphere �a� and a multilayered sphere �b�
uniformly illuminated.
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cal thermal wave starting at the sample surface, while the
second one is the corresponding reflected wave at the inner
surface. U and V are two constants to be determined accord-
ing to the boundary conditions. On the other hand, if we
define � as minus the heat flux at any point of the sphere,
then it is written

��r� = K
dT

dr
= Kq�Uj0��qr� + Vh0��qr�� , �2�

where K is the thermal conductivity of the sample and j0� and
h0� are the derivatives of the spherical Bessel and Hankel
functions, respectively. The constants U and V can be easily
eliminated from Eqs. �1� and �2� by taking the values of
temperature and heat flux at both surfaces �r=a and r=b�. In
this way, a linear relation between temperature and flux at
the outer and inner surfaces is obtained, which can be ex-
pressed in the matrix form

�T�a�
��a� � = �A B

C D
��T�b�

��b� � , �3�

with

A = �h0��qb� j0�qa� − j0��qb�h0�qa��/E ,

B = � j0�qb�h0�qa� − h0�qb� j0�qa��/EKq ,

C = Kq�h0��qb� j0��qa� − j0��qb�h0��qa��/E ,

D = � j0�qb�h0��qa� − h0�qb� j0��qa��/E ,

E = h0��qb� j0�qb� − h0�qb� j0��qb� .

It is interesting to note that Eq. �3� is valid for any boundary
condition at the surfaces. According to Eq. �3�, if the heat
flux at both surfaces is known, then the surface temperature
can be obtained. For instance, for negligible heat losses
���a�= I0 /2 and ��b�=0� the surface temperature at both
surfaces reduces to

T�a� =
I0

2

A

C
, �4a�

T�b� =
I0

2

1

C
. �4b�

On the other hand, when heat losses are present ���a�
= I0 /2−HaT�a� and ��b�=HbT�b�� the surface temperature is
written

T�a� =
I0

2

A + BHb

C + DHb + AHa + BHaHb
, �5a�

T�b� =
I0

2

1

C + DHb + AHa + BHaHb
, �5b�

where Ha and Hb are the linearized heat transfer coefficients
at the outer and inner surfaces, respectively, which account
for convective and radiative losses.6 Note that in the absence
of heat losses �Ha=Hb=0� Eqs. �5a� and �5b� reduce to Eqs.
�4a� and �4b�. On the other hand, by making b=0 in Eq. �5a�
and using the properties of the spherical Bessel functions,8,9

the surface temperature of a solid sphere is obtained:

T�a� =
I0

2

j0�qa�
Kqj0��qa� + Haj0�qa� . �6�

As the radius of the sphere a tends to infinity, Eq. �6� reduces
to T�a�= �I0 /2��1/Kq+Ha�, which is the expression for the
surface temperature of a semi-infinite flat sample with ex-
tended illumination.

It is worth noting that Eqs. �3�, �4a�, �4b�, �5a�, and �5b�
are the same as those obtained for a homogeneous and semi-
infinite slab and for a hollow cylinder whose front surfaces
are periodically illuminated by a uniform light beam,5,6 but
now the coefficients from A to D depend neither on hyper-
bolic functions nor on Bessel functions but on spherical
Bessel functions. That is the reason why we have used minus
the heat flux instead of the heat flux itself.

B. A multilayered sphere

Now we consider an opaque multilayered sphere whose
outer surface is uniformly illuminated by a radial light beam
of intensity I0 modulated at a frequency f . Its cross section is
shown in Fig. 1�b�. It is made of N layers of different thick-
nesses and materials. The thermophysical properties of layer
i are labeled by subindex i and its outer and inner radii by ai

and ai+1, respectively. According to the quadrupole method
the temperature at the outer and inner surfaces of the sphere,
taking into account the influence of heat losses, is given by
Eqs. �5a� and �5b�:

T�a1� =
I0

2

A� + B�Hb

C� + D�Hb + A�Ha + B�HaHb
, �7a�

T�aN+1� =
I0

2

1

C� + D�Hb + A�Ha + B�HaHb
, �7b�

but now the transfer matrix to obtain the frequency-
dependent coefficients A�−D� is

�A� B�

C� D�
� = �

i=1

N �Ai Bi

Ci Di
� , �8�

with

Ai = �h0��qiai+1� j0�qiai� − j0��qiai+1�h0�qiai��/Ei,

Bi = � j0�qiai+1�h0�qiai� − h0�qiai+1� j0�qiai��/EiKiqi,

Ci = Kiqi�h0��qiai+1� j0��qiai� − j0��qiai+1�h0��qiai��/Ei,

Di = � j0�qiai+1�h0��qiai� − h0�qiai+1� j0��qiai��/Ei,

Ei = h0��qiai+1� j0�qiai+1� − h0�qiai+1� j0��qiai+1� .

On the other hand, the lack of adherence between two adja-
cent layers can be accounted for by considering a very thin
intermediate air layer. The thickness of this intermediate
layer satisfies the condition �n=an−an+1→0, and according
to the asymptotic behavior of the spherical Bessel
functions,8,9 the coefficients of the corresponding transfer
matrix can be simplified as An=Dn=1, Bn=�n /Kair=R, and
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Cn=0. Here R is the thermal contact resistance. This means
that the effect of a thermal resistance between layers i and
i+1 �Ri,i+1� is accounted for by inserting in Eq. �8� the fol-
lowing matrix between the two adjacent matrices i and i+1:

�1 Ri,i+1

0 1
� . �9�

III. MULTILAYERED SPHERE WITH NONUNIFORM
ILLUMINATION

The illumination we dealt with in the previous section is
the easiest one to be solved mathematically because of the
spherical symmetry. However, this is difficult to fulfill in
photothermal experiments. Accordingly, we generalize the
thermal quadrupole procedure to include two types of illumi-
nation with no spherical symmetry, but with more practical
applications: radial and flat geometries �see Fig. 2�. Both
subtend the same angle �=�. In the first one �see Fig. 2�a��
the light intensity over the sphere surface g�� ,�� is I0 for
0���� and zero for all other angles, and after being ex-
panded in Fourier-Legendre series is written9

g��,�� = I0	
n=0

� �2n + 1

2



0

�

Pn�cos �� sin �d��
	Pn�cos �� = I0	

n=0

�

gn���Pn�cos �� , �10�

where Pn are the Legendre polynomials.
In the second one �see Fig. 2�b�� the light intensity is

I0 cos � for 0���� and zero for all other angles, and ex-
panded in Fourier series can be written as

g��,�� = I0	
n=0

� �2n + 1

2



0

�

Pn�cos �� cos � sin � d��
	Pn�cos ��

= I0	
n=0

�

gn���Pn�cos �� . �11�

A. A hollow sphere

Let us consider the same hollow sphere as in Sec. II A.
Two light beams are considered whose cross-sections are
shown in Fig. 2. According to the loss of spherical symmetry,
the temperature oscillation at any point of the sphere is given
by7

T�r,�� = 	
n=0

�

�Unjn�qr� + Vnhn�qr��Pn�cos ��

= 	
n=0

�

tn�r�Pn�cos �� , �12�

where jn and hn are the nth order of the spherical Bessel and
Hankel functions, respectively. Un and Vn are constants to be
determined according to the boundary conditions. On the
other hand, � at any point of the sphere is written

��r,�� = K
�T

�r

= Kq	
n=0

�

�Unjn��qr� + Vnhn��qr��Pn�cos ��

= 	
n=0

�

fn�r�Pn�cos �� , �13�

where jn� and hn� are the derivatives of the Bessel and Hankel
functions, respectively. The Un and Vn constants can be
eliminated from Eqs. �12� and �13� by taking the values of tn

and fn at both surfaces �r=a and r=b�. In this way, a linear
relation between tn and fn at the outer and inner surfaces is
obtained, which can be expressed in the matrix form

� tn�a�
fn�a� � = �An Bn

Cn Dn
�� tn�b�

fn�b� � ,

∀n = 0, . . . ,� , �14�

with

An = �hn��qb� jn�qa� − jn��qb�hn�qa��/En,

Bn = � jn�qb�hn�qa� − hn�qb� jn�qa��/EnKq ,

Cn = Kq�hn��qb� jn��qa� − jn��qb�hn��qa��/En,

Dn = � jn�qb�hn��qa� − hn�qb� jn��qa��/En,

En = hn��qb� jn�qb� − hn�qb� jn��qb� .

For negligible heat losses �fn�a�= I0gn��� /2 and fn�b�=0,
∀n=0, . . . ,�� the coefficients tn�a� and tn�b� are

tn�a� =
I0

2
gn��� An

Cn
, �15a�

tn�b� =
I0

2
gn��� 1

Cn
, �15b�

and using Eq. �12� the surface temperature can be obtained:

FIG. 2. Cross section of a hollow sphere with two kinds of nonuniform
illumination: �a� radial and �b� flat.

103534-3 N. Madariaga and A. Salazar J. Appl. Phys. 101, 103534 �2007�

Downloaded 31 May 2007 to 158.227.65.33. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



T�a,�� =
I0

2 	
n=0

�

gn��� An

Cn
Pn�cos �� , �16a�

T�b,�� =
I0

2 	
n=0

�

gn��� 1

Cn
Pn�cos �� , �16b�

where gn��� is taken from Eqs. �10� or �11� according to the
geometry of the illumination.

When heat losses are present �fn�a�= I0gn��� /2
−Hatn�a� and fn�b�=Hatn�b�, ∀n=0, . . . ,�� the coefficients
tn�a� and tn�b� are

tn�a� =
I0

2
gn��� An + BnHb

Cn+DnHb + AnHa + BnHaHb

, �17a�

tn�b� =
I0

2
gn��� 1

Cn+DnHb + AnHa + BnHaHb

, �17b�

and from Eq. �12� the surface temperature is obtained:

T�a,�� =
I0

2 	
n=0

�

gn��� An + BnHb

Cn + DnHb + AnHa + BnHaHb

	Pn�cos �� , �18a�

T�b,�� =
I0

2 	
n=0

�

gn��� 1

Cn + DnHb + AnHa + BnHaHb

	Pn�cos �� . �18b�

As a particular case, by making b=0 in Eq. �18a� and using
the properties of the spherical Bessel functions,8,9 a simple
expression for the surface temperature of a solid sphere is
obtained:

T�a,�� =
I0

2 	
n=0

�

gn��� jn�qa�
Kqjn��qa� + Hajn�qa� Pn�cos �� .

�19�

B. A multilayered sphere

Finally, we consider the same multilayered sphere as in
Sec. II B. Proceeding in a similar way as before, the tempera-
ture at any point of the outer and inner surfaces, taking into
account the influence of heat losses, is given by Eqs. �18a�
and �18b�:

T�a1,�� =
I0

2 	
n=0

�

gn��� An� + Bn�Hb

Cn� + Dn�Hb + An�Ha + Bn�HaHb

	Pn�cos �� , �20a�

T�aN+1,�� =
I0

2 	
n=0

�

gn��� 1

Cn� + Dn�Hb + An�Ha + Bn�HaHb

	Pn�cos �� , �20b�

but now the n transfer matrices to obtain the frequency-
dependent coefficients An�−Dn� are

�An� Bn�

Cn� Dn�
� = �

i=1

N �Ani Bni

Cni Dni
�, n = 0, . . . , + � , �21�

with

Ani = �hni� �qiai+1� jni�qiai� − jni� �qiai+1�hni�qiai��Eni,

Bni = � jni�qiai+1�hni�qiai� − hni�qiai+1� jni�qiai��/EniKiqi,

Cni = Kiqi�hni� �qiai+1� jni� �qiai� − jni� �qiai+1�hni� �qiai��/Eni,

Dni = � jni�qiai+1�hni� �qiai� − hni�qiai+1� jni� �qiai��/Eni,

Eni = hni� �qiai+1� jni�qiai+1� − hni�qiai+1� jni� �qiai+1� .

As in the case of illumination with spherical symmetry, the
influence of a bad adherence between layers i and i+1 is
accounted for by inserting in Eq. �21� the same matrix given
by Eq. �9� between the two adjacent matrices i and i+1.

IV. NUMERICAL CALCULATIONS AND
DISCUSSION

Before starting with the study of multilayered spheres,
we performed two tests of consistency. First, we calculated
the surface temperature of a solid multilayered sphere made
of four layers of different thicknesses, but with the same
thermal properties. Calculations have been performed for
different values of the thermal properties and thicknesses. In
the case of uniform illumination �see Fig. 1�b�� we have used
Eq. �7a� and the amplitude and phase of the temperature are
always the same as those calculated for a solid sphere using
Eq. �6�. In the same way, for the case of flat illumination �see
Fig. 2�b�� we have used Eq. �20a� and the results are always
the same as those obtained for a solid sphere with Eq. �19�.
Second, we calculated the surface temperature of a hollow
sphere using Eqs. �4a� and �4b� when a and b tend to infinity.
We have used different values of the thermal properties of
the hollow sphere and the obtained amplitude and phase of
the surface temperature are always the same as those ob-
tained for a flat slab with thickness l=a−b.

We first present some numerical simulations for the case
of uniform illumination. As an illustrative example we cal-
culate the surface temperature oscillation in a two-layer solid
sphere with a total radius of 1 mm. The outer layer is made
of AISI-304 stainless steel �K=15 W m−1 K−1 and D
=4 mm2/s� with a thickness of 0.2 mm. In all the simulations
the surface temperature of the two-layer sphere is normalized
to a solid stainless-steel sphere with the same radius as the
bilayer one. In Fig. 3 the influence of the material of the
inner layer on the amplitude and phase of the surface tem-
perature is shown as a function of the modulation frequency.
Calculations have been performed using Eq. �7a� with no
heat losses. Four cases have been considered: �a� an ex-
tremely good thermal conductor �K=1000 W m−1 K−1 and
D=100 mm2/s�,10 �b� copper �K=400 W m−1 K−1 and D
=116 mm2/s�, �c� a typical polymer �K=0.25 W m−1 K−1

and D=0.10 mm2/s�, and �d� air �K=0.026 W m−1 K−1 and
D=22 mm2/s�. As can be seen, at high frequencies the nor-
malized amplitude tends to 1, indicating that the thermal
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wave does not reach the inner core. As the frequency de-
creases the normalized amplitude is higher �smaller� than 1 if
the thermal effusivity �e=K /�D� of the inner core is lower
�higher� than that of the outer layer. This is due to the fact
that the reflected thermal wave at the interface is in phase
�out of phase� with respect to the incident one, giving rise to
a constructive �destructive� interference. Finally, at very low
frequencies the sphere becomes thermally thin and its surface
temperature, which is given by Eq. �6�, reduces to

T�a� �
I0

2

3

�
ca
exp�− i

�

2
� , �22�

indicating that the amplitude of the surface temperature de-
pends on the inverse of the heat capacity �
c=K /D, where 

is the density and c the specific heat� while the phase remains
constant �−90°�. Accordingly, at very low frequencies the
normalized temperature Tn of the two-layer sphere is written

Tn �
�
c�solid sphere

�
c�two layer
=

�
c�solid sphere

v1�
c�outer layer + v2�
c�inner layer
,

�23�

where v1 and v2 are the volume fractions of the outer layer
and the inner core, respectively. In our calculations v1

=0.488 and v2=0.512. This means that for the extremely
good thermal conductor �
c=10	106 S.I.� Tn=0.54, for
copper �
c=3.45	106 S.I.� Tn=1.04, for the polymer �
c
=2.5	106 S.I.� Tn=1.21, and for air �
c=1.18	103 S.I.�
Tn=2.05, which are exactly the low-frequency values in Fig.
3.

On the other hand, at high frequencies the normalized
phase tends to 0, but as the frequency decreases the normal-

ized phase is positive �negative� when the thermal effusivity
of the inner core is higher �lower� than that of the outer layer.
This is valid when the thermal effusivities of the two layers
are very different �see the solid and dash-dotted lines in Fig.
3�. If it is not the case, the normalized phase shows an os-
cillation, changing from positive to negative when the inner
core has a lower effusivity than the outer layer and from
negative to positive if the inner core has a higher effusivity
than the outer layer. Finally, at very low frequencies the nor-
malized phase tends to 0 since both the solid sphere and the
two-layer one are thermally thin and in such a case the phase
is independent of the thermal properties �see Eq. �22��. It is
worth noting that all these results are similar to those found
in two-layer flat materials and in two-layer solid cylinders
�see, for instance, Fig. 3 in Ref. 5�. The main difference is
that for the same materials and sizes the phase contrast be-
comes smaller for the sphere than for the cylinder.

The influence on the surface temperature due to the pres-
ence of a thermal resistance between the two layers is shown
in Fig. 4. The material is the same two-layer solid sphere as
in Fig. 3 with the inner layer made of copper. Calculations
have been performed using Eq. �7a� with no heat losses. The
solid line represents a perfect thermal contact, the dashed
line is for R=10−5 m2 K W−1, the dotted line is for R
=10−4 m2 K W−1, and the dash-dotted line is for R
=10−3 m2 K W−1. As the thermal resistance increases both
amplitude and phase differ from the perfect thermal contact
and the temperature behaves as in the case of an inner ther-
mal insulator: the normalized amplitude increases and the
normalized phase changes from negative to positive �see the
dotted line in Fig. 3 corresponding to the polymer�. In Fig. 5

FIG. 3. Normalized amplitude and
phase of the surface temperature of a
two-layer sphere whose radius is 1
mm, and with a uniform illumination.
The outer layer is 0.2 mm thick made
of AISI-304 stainless steel. Four dif-
ferent inner layers have been consid-
ered: �a� an extremely good thermal
conductor, solid line, �b� copper,
dashed line, �b� a polymer, dotted line,
and �c� air, dash-dotted line.

FIG. 4. Effect of the thermal resis-
tance in the normalized amplitude and
phase of the surface temperature of a
two-layer sphere whose radius is 1
mm and with a uniform illumination.
The outer layer is 0.2 mm thick made
of AISI-304 stainless steel. The inner
layer is made of copper. �a� R=0, solid
line, �b� R=10−5 m2 K W−1, dashed
line, �c� R=10−4 m2 K W−1, dotted
line, and �d� R=10−3 m2 K W−1, dash-
dotted line.
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the influence of heat losses at the surface is shown. The
bilayer sphere is the same as in Fig. 4, with a perfect thermal
contact between core and coating. The solid line represents
the absence of heat losses, and it is the same curve as the
solid line in Fig. 4. The influence of heat losses only appears
at very low frequencies, and it is small even for high coeffi-
cients of heat losses �H=100−500 W m−2 K−1�. This is due
to the fact that stainless steel is quite a good thermal conduc-
tor and the influence of heat losses increases as the thermal
conductivity of the material decreases.

Following with the same uniform illumination we ana-
lyze the surface temperature of a solid multilayered sphere. It
has a radius of 1 mm, with an inner core of radius 0.5 mm
made of AISI-304 stainless steel �K=15 W m−1 K−1 and D
=4 mm2/s�. In the outer part of the sphere the transport ther-
mal properties suffer from a continuously steplike decrease
down to half of the core values at the surface �K
=7.5 W m−1 K−1 and D=2 mm2/s�, while keeping constant
the heat capacity �
c=3.75	106 S.I.�. Calculations have
been performed using Eq. �7a� with no heat losses. In Fig. 6
the normalized amplitude and phase of the surface tempera-
ture oscillation is shown as a function of the modulation
frequency. Normalization is performed with respect to a ho-
mogeneous sphere of the same size made of AISI-304 stain-
less steel. Four cases have been considered: �a� two outer
layers 0.25 mm thick each, �b� three outer layers 0.166 mm
thick each, �c� five outer layers 0.10 mm thick each, and �d�
ten outer layers 0.05 mm thick each. It is seen that, at low
frequencies, the normalized amplitude tends to 1 and the
normalized phase tends to 0, according to Eq. �23� and tak-
ing into account that the heat capacities of the solid sphere
and the multilayered one are the same. In contrast, at high

frequencies the surface temperature is proportional to the in-
verse of the thermal effusivity, since Eq. �6� reduces to

T�a� �
I0

2

1

e��
exp�− i

�

4
� , �24�

the same expression as for a flat sample, and therefore the
normalized amplitude is given by

Tn �
esolid sphere

eouter layer
. �25�

Accordingly, in our example Tn=7500/5303=1.414, which
is the high-frequency value in Fig. 6. At intermediate fre-
quencies there is a positive phase contrast since thermal
waves propagating through the multilayered sphere are
crossing layers of increasing effusivity and therefore the re-
flected thermal waves interfere destructively with the inci-
dent ones, as happened in Fig. 3 for an inner layer of copper
�see the solid line�. On the other hand, as the number of
layers increases the shapes of both the amplitude and phase
are similar but shifted to higher frequencies. Moreover, the
highest phase contrast is reduced. This is due to the fact that
as the number of layers increases the thermal contrast re-
duces and therefore the amplitude of the reflected thermal
wave becomes smaller. Note that as the number of layers
tends to infinity this model simulates the case of a heteroge-
neous sphere with continuously varying thermal properties,
as is the case of samples affected by surface modifying
processes—e.g., steel hardening, annealing, etc. However, as
in the case of multilayered cylinders, the convergence is very
slow and many layers are necessary to guarantee conver-
gence at high frequencies.5

FIG. 5. Effect of heat losses in the
normalized amplitude and phase of the
surface temperature for the same two-
layer sphere as in Fig. 4. �a� H=0,
solid line, �b� H=100 W m−2 K−1,
dashed line, �c� H=200 W m−2 K−1,
dotted line, and �d� H
=500 W m−2 K−1, dash-dotted line.

FIG. 6. Normalized amplitude and
phase of the surface temperature of a
multilayered sphere whose radius is 1
mm and with a uniform illumination.
The inner core is made of AISI-304
stainless steel and has a radius of 0.5
mm. In the outer part of the sphere the
transport thermal properties suffer
from a continuously steplike decrease
down to half of the core values at the
surface. Four cases are considered: �a�
two outer layers, solid line, �b� three
outer layers, dashed line, �c� five outer
layers, dotted line, and �d� ten outer
layers, dash-dotted line.
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Now we study the same multilayered sphere of Fig. 6
but illuminated with a flat light beam �as that shown in Fig.
2�b�� with �=� /2. Calculations have been performed using
Eq. �20a� without heat losses. In Fig. 7 we show the fre-
quency scan of the normalized amplitude and phase of the
surface temperature as measured at the north pole of the
sample ��=0�. Three differences with respect to Fig. 6 can be
pointed out: �a� A double-peak structure appears in both the
amplitude and phase, �b� a shift to lower frequencies of the
features occurs, and �c� there is a small increase of the phase
contrast.

It is worth noting that using the inverse Laplace
transform,6 the modulated solutions presented in Secs. II and
III can be used to calculate the temperature evolution of mul-
tilayered spheres after being heated by a short-duration light
pulse. This means that this theoretical approach can be used
in both lock-in and pulsed infrared thermography.

In this work an extension of the thermal quadrupole
method to calculate the surface temperature of multilayered
spherical samples has been presented. It is expected that this
theoretical approach will encourage the use of photothermal
techniques for quantitative thermophysical characterization
of coated spheres and hardened-steel spherical samples such
as ball bearings.
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FIG. 7. The same as in Fig. 6, but now
illuminated by a flat light beam, as that
shown in Fig. 2�b�, with �=� /2. The
temperature is calculated at the north
pole of the sample ��=0�.
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