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Abstract. In this work the surface temperature oscillation of multilayered cylin-
drical samples which are uniformly heated by a modulated light beam is calculated
using the thermal quadrupole method. This temperature is compared with that
calculated in cylinders with continuously varying in-depth thermal conductivity.
Following this theoretical approach, photothermal techniques can be used for the
quantitative thermophysical characterization of hardened steel wires, tubes and
nails.

1 Introduction

The quadrupole method is a unified exact method of representing linear systems. It has been
applied in the framework of conductive transfer to calculate the surface temperature of flat
multilayered samples [1]. Here we exploit this method to express the surface temperature of
multilayered cylindrical samples in a compact manner. For the sake of simplicity we focus in
this work on multilayered cylinders which are uniformly illuminated. We compare these results
with those calculated in cylinders with in-depth varying thermal conductivity. This work opens
the way to develop inverse procedures for the thermophysical characterization of hardened steel
samples as wires, tubes and nails.

2 Theory

Let us first consider an infinite and opaque multilayered cylinder whose outer surface is uni-
formly illuminated by a light beam of intensity Io modulated at a frequency f . It is made of N
layers of different thicknesses and materials (see Fig. 1). The thermophysical properties of layer
i are labeled by subindex i and its outer and inner radii by ai and ai+1 respectively. According
to the quadrupole method, in the absence of heat losses the temperature at the outer and inner
surfaces of the cylinder are given by [2]:

T (a1) =
Io

2

A

C
and T (aN+1) =

Io

2

1

C
, (1)

where the frequency dependent coefficients A and C are obtained from the following matrix
product: (

A B
C D

)
=
N∏
i=1

(
Ai Bi
Ci Di

)
, (2)



384 The European Physical Journal Special Topics

Fig. 1. Cross-section of the cylinder.

with
Ai = [H

′
o(qiai+1)Jo(qiai)− J ′o(qiai+1)Ho(qiai)] /Ei,

Bi = [Jo(qiai+1)Ho(qiai)−Ho(qiai+1)Jo(qiai)] /EiKiqi,
Ci = Kiqi [H

′
o(qiai+1)J

′
o(qiai)− J ′o(qiai+1)H ′o(qiai)] /Ei,

Di = [Jo(qiai+1)H
′
o(qiai)−Ho(qiai+1)J ′o(qiai)] /Ei,

and
Ei = H

′
o(qiai+1)Jo(qiai+1)−Ho(qiai+1)J ′o(qiai+1).

Here q =
√
iω/d is the thermal wave vector, K is the thermal conductivity, d is the thermal

diffusivity and Jo and Ho are the zeroth order of the Bessel and Hankel functions respectively.
It is worth noting that Eqs. (1) and (2) are the same as those obtained for a homogeneous and
semi-infinite slab whose front surface is periodically illuminated by a uniform light beam [1],
but the coefficients A to D depend now on Bessel functions instead of on hyperbolic ones.
Let us now consider a solid cylinder of radius a1 whose thermal conductivity varies radially

as a polynomial: K(r) = Ko +K1r +K2r
2 + · · · +Kprp, while the heat capacity ρc remains

constant. As before, its surface is uniformly illuminated by a radial light beam of intensity Io
modulated at a frequency f . Temperature at any point of the cylinder is given by [3]:

T (r) =
Io

2K(a1)

θ(r)

θ′(a1)
, (3)

where θ(r) =
∑∞
n=0 cnr

n is the ingoing thermal wave, and θ′(a1) is its derivative evaluated
at r = a1. Coefficients cn are given by: co = 1, c1 = 0 and the remainder coefficients satisfy
the following recurrence relation: cn+2(n + 2)

2Ko + cn+1(n + 2)(n + 1)K1 + cn(n + 2)nK2 +
cn−1(n + 2)(n − 1)K3 + . . . + cn−p+2(n + 2)(n − p + 2)Kp + iωρccn = 0. In this last equation
coefficients with negative subindex are null. For instance c2 = − iωρc4Ko

and c3 =
iωρcK1
6K2o

.

3 Numerical simulations and discussion

In Fig. 2 we show the frequency dependence of the amplitude and phase of the surface
temperature of a cylinder of radius 1mm, whose thermal conductivity varies linearly from
K = 10Wm−1K−1 at the center to K = 5Wm−1K−1 at the surface (K = 10 − 5 × 103 r),
while the heat capacity ρc = 2.5× 106 S.I. remains constant. In all the simulations the temper-
ature is normalized to a homogeneous cylinder of the same radius and heat capacity but with a
constant thermal conductivity K = 10Wm−1K−1. The continuous line is the exact calculation
performed using Eq. (2) and is compared with calculations performed in a multilayered cylinder
with layers of uniform thickness: Dashed and dotted lines represent a 6-layer and a 10-layer
cylinder respectively. As can be seen results differ at high frequencies and a high number of
layers would be required to fit the linear behavior.
In order to reduce the number of layers needed to simulate the linear behavior we use layers

of different thickness, thinner outside and thicker inside the cylinder. In Fig. 3 we show the
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Fig. 2. Amplitude and phase of the surface temperature for a linearly varying in-depth thermal con-
ductivity. Layers of the same thickness are used.
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Fig. 3. The same as Fig. 2 but using layers of
different thicknesses.

0

2

4

6

8

10

10-1 100 101 102

 
N

or
m

al
iz

ed
 p

ha
se

 (
de

ge
es

)
 

f (Hz)

6-layers 
12-layers
Cubic

Fig. 4. Phase of the surface temperature for a cubi-
cally varying in-depth thermal conductivity. Layers of
different thicknesses are used.

phase of the surface temperature for the same cylinder as in Fig. 2 but using layers whose
thicknesses are multiple of the outer one. In this case with only 6 layers the linear behavior is
perfectly reproduced.
Finally in Fig. 4 we show the phase of the surface temperature as a function of the modu-

lation frequency for a cylinder of the same size and heat capacity as before but whose thermal
conductivity varies as K = 10 − 5 × 109r3. This means that at the center and at the sur-
face of the cylinder the thermal conductivities are the same as before, K = 10Wm−1K−1
and K = 5Wm−1K−1 respectively, but K varies slowly at the inner part of the cylinder and
abruptly at the outer part. Unlike in the case of linear thermal conductivity now 12 layers of
increasing thickness are needed to reproduce the cubic behavior. This fact is related to the
sharp change of thermal conductivity at the outer part of the cylinder. On the other hand,
when comparing the phases for the linear and the cubic conductivities, this last one produces a
smaller phase contrast at low frequencies (∼8◦ against ∼10◦ at the peak) but a higher contrast
at high frequencies.
The quadrupole method is useful to calculate the surface temperature of a multilayered

cylinder. Using this method it has been demonstrated that, with a few number of layers of
different thicknesses, the surface temperature of a cylindrical sample with continuously varying
in-depth thermal conductivity can be calculated with high accuracy. Consequently the quadru-
pole method allows the development of inverse procedures, with a low number of unknowns,
to characterize the thermal properties of hardened steel wires, tubes and nails, in which the
thermal conductivity varies in-depth depending on the type of the applied thermal treatment.
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