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Abstract. In this paper we prove the existence of solutions of the Uehling-Uhlenbeck
equation that behave like k−7/6 as k → 0. From the physical point of view, such
solutions can be thought as particle distributions in the space of momentum having
a sink (or a source) of particles with zero momentum. Our construction is based
on the precise estimates of the semigroup for the linearized equation around the
singular function k−7/6 that we obtained in [5].
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1 Introduction

We consider the initial value problem asociated to the Uehling Uhlenbeck (U-U)
equation:

∂f

∂t
(t, k) = Q(f)(t, k) (1.1)

f(0, k) = f0(k) (1.2)
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where

Q (f) (k1) =

∫
D(k1)

W (k1, k2, k3, k4) q(f)dk3dk4 (1.3)

q (f) = f3f4(1 + f1)(1 + f2)− f1f2(1 + f3)(1 + f4) (1.4)

D (k1) ≡ {(k3, k4) : k3 + k4 ≥ k1} (1.5)

W (k1, k2, k3, k4) =
min

(√
k1,

√
k2,

√
k3,

√
k4

)
√
k1

(1.6)

k2 = k3 + k4 − k1. (1.7)

We are interested in solutions which are singular at the origin, and more particularly
behaving like k−7/6 as k → 0. The choice of this specific asymptotics is due to the
fact that, as it is proved by A. M. Balk, V. E. Zakharov in [3], Ak−7/6 is a stationary
solution of the equation

Q̃ (f) (k1) = 0 (1.8)

for all A > 0, where

Q̃ (f) (k1) =

∫
D(k1)

W (k1, k2, k3, k4) q̃(f)dk3dk4 (1.9)

q̃ (f) = f3f4(f1 + f2)− f1f2(f3 + f4). (1.10)

Notice that q̃(f) contains the largest terms of q(f) for large values of f . We therefore
consider initial data f0 which also behave in that way at the origin.

1.1 Physical Motivation

Let us define

ρ0 :=

∫ ∞

0

√
k dk

ek − 1
=

√
π

2
ζ(3/2) (1.11)

where ζ is the classical Riemann’s zeta function.

The U-U equation describes a dilute gas of Bose particles. It has a one parameter
family of steady states Bρ characterized by their total density ρ > 0 as follows:

• If 0 < ρ ≤ ρ0 then

Bρ(k) ≡ Fµ(k) :=
1

ek+µ − 1
where ρ =

∫ ∞

0

√
k dk

eµ+k − 1
, µ ≥ 0. (1.12)

• If ρ > ρ0

Bρ(k) ≡
1

ek − 1
+ (ρ− ρ0)

δ0√
k

(1.13)
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Notice that in both cases
∫∞

0
Bρ(k)

√
k dk = ρ. The solutions Bρ(k) in (1.12) are the

classical Bose-Einstein equilibrium distributions if µ > 0 and the Planck distribution
if µ = 0. On the other hand, the solutions (1.13) are the classical distributions that
describe the thermal equilibrium of a family of bosons with Bose-Einstein condensate
of particles having zero momentum.

In this paper we construct solutions of (1.1)-(1.7) that behave like k−7/6 near the
origin. The physical meaning of such asymptotics is that these particle distributions
have a nonzero flux of particles towards the origin (cf. [3, 7, 10]). More precisely,
the asymptotics

f(t, k) ∼ a(t) k−7/6, as k → 0 (1.14)

means that the rate gain of particles towards the particles with zero momentum is

lim
K→0

d

dt

(∫
|k1|≤K

√
k1 f(k1, t) dk1

)
= −(a(t))3

3
U ′(7/6) (1.15)

where

U(ν) :=

∫
D(1)

a(ξ2, ξ3, ξ4) dξ3 dξ4

and

a(ξ2, ξ3, ξ4) := [W (ξ1, ξ2, ξ3, ξ4) q(ξ
−ν)]|ξ1=1

There are several different ways of deriving (1.15). One possibility is to make a
careful counting of the number of particles leaving the region {k : |k| ≤ δ} towards
{k : |k| > δ}, as well as the particles entering into {k : |k| ≤ δ} from {k : |k| > δ},
under the assumption (1.14). An alternative way of deriving (1.15), analogous to
the method used in [2] is to approximate the singular behaviour k−7/6 by the less
singular behaviour k−7/6+δ, δ > 0 and compute the rate of change in the number of
particles. After deriving some asymptotics for the arising integrals we obtain that

d

dt

(∫
|k1|≤k

√
k1 f(k1, t) dk1

)
= −(a(t))3

3
U ′(7/6) +O(k1/10) as k → 0

where the last term is uniform on δ for 0 < δ = 7/6 − ν sufficiently small. Taking
the limit δ → 0 the result follows (cf. [2]).

The presence of a nonzero flux of particles towards the particles of zero momen-
tum makes tempting to think that the solutions constructed in this paper could
provide some information about the dynamic growth of Bose-Einstein condensates.
However, this does not seem to be the case since the zero momentum particles would
not interact at all with the particles outside the condensate. Actually, a more careful
analysis yields more complicated models (cf. [14, 15, 10, 1]) where the condensate
interacts with the particles that are not in the condensate. Some of the models
proposed in these papers will be studied more carefully elsewhere.
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There exist other kinetic equations describing fluxes of some physical quantity in
some mathematical space (momentum, energy or others). One of the most typical
examples is the case of gelation in coagulation processes described by means of
Smoluchovski equation (cf. [11]). Actually the solutions obtained in this paper have
several analogies with the explicit examples that describe gelation in such processes.
Other physically relevant cases arise in the theory of weak turbulence that can be
applied to describe the distribution of energy in fields of gravity waves, capillary
waves, Langmuir waves in plasmas, acoustic waves or others. A detailed description
of these examples can be found in [18]. A particularly simple example of solutions
behaving like those found in this paper have been constructed for the Kompaneets
equation that describes the energy of photons in plasma physics ([6]).

In all these cases, there exists a stationary solution of the corresponding kinetic
equation of the form f(k) = k−β, that plays a role analogous to the distribution
k−7/6 in our case. Physically, such solutions describe a flux of some physical quantity
(particles, energy or others...) from high to small values of the quantity or viceversa,
like in the classical Kolmogorov theory of turbulence.

We are not aware of any situation where the solutions constructed in this paper
could have any clear physical meaning. However, we think that the mathematical
methods employed in their construction can be used to treat some of the physical
examples mentioned above.

1.2 Mathematical motivation

From the mathematical point of view, this paper is the continuation of the previous
work [5]. In that paper we studied the linear problem that results linearising the

leading term in the collision integral Q̃ defined in (1.9)-(1.10). The paper [5] contains
a detailed description of the fundamental solution associated to such linear problem.
In this paper we construct singular solutions which behave like k−7/6 near the origin,
estimating carefully the nonlinear parts in the equation (2.3) in suitable functional
spaces.

The solutions constructed in this paper are, as far as we are aware, the first
example of singular solutions of a nonlinear kinetic equation with precise singular
behaviour for a general initial data that has been rigorously obtained. Indeed, the
solutions that we obtain have the precise asymptotic behaviour f ∼ a(t) k−7/6 as
k → 0. There is of course a large literature devoted to the study of bounded solutions
of kinetic equations of Boltzmann type. On the other hand, X. Lu has recently
proved the global existence of weak solutions for the Uehling Uhlenbeck equation cf.
([12, 13]). Moreover these papers also describe the long time asymptotics towards
the stationary solutions as t→∞.

One of the mathematical consequences of our analysis that seems worth to men-
tion is the presence of some kind of regularizing effects for the problem (1.1), (1.2).
At a first glance this could seem surprising, because the structure of this equation
suggests a “hyperbolic” non regularizing behaviour for its solutions. These regu-
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larizing effects are, however, restricted to the values of f at the particular point
k = 0. Some typical examples of the kind of “smoothing effects” associated to this
equation are Theorem 3.2 and Lemma 3.21 in Subsection 3.5 below. The estimates
for ∂a

∂t
(t) when (1.14) holds, resemble more a typical estimate for parabolic than

for hyperbolic equations. Actually, a large part of the methods used in the proofs
of our results are very similar to the standard semigroup arguments for parabolic
equations. On the other hand, (3.27) indicates that such regularizing effects do not
take place away from the origin. Indeed, the presence of the Dirac mass term shows
that the smoothness of the initial data does not increase if k 6= 0.

Finally, let us notice that, most likely, the solutions obtained in this paper cannot
be extended globally in time. Indeed, the numerical calculations in [7, 10, 14, 15]
suggest that the regular solutions of the UU equation might blow up in finite time
and it would not be surprising to find the same type of behaviour for the singular
solutions derived in this paper.

2 Outline of the paper.

Our goal is to obtain an existence and uniqueness theory for singular solutions of
the equation

∂f

∂t
(t, k) = Q(f)(t, k) (2.1)

f(0, k) = f0(k) (2.2)

where Q(f) is defined as in (1.1)-(1.7). The initial data f0 ≥ 0 is assumed to satisfy
the following conditions:

|f0(k)− Ak−7/6| ≤ B

k7/6−δ
, 0 ≤ k ≤ 1, (2.3)

|f ′0(k) +
7

6
Ak−13/6| ≤ B

k13/6−δ
, 0 ≤ k ≤ 1 (2.4)

f0(k) ≤ B
e−Dk

k7/6
, k ≥ 1 (2.5)

for some positive constants A, B, D and δ . The key assumption on f0(k) is that it
behaves like the stationary solution k−7/6 near the origin

The main result that we prove in this paper is the following.

Theorem 2.1 For any f0 satisfying (2.3)-(2.5), there exists a unique solution f ∈
C1,0((0, T )× (0,+∞)) of (2.1), (2.2) as well as a function a(t), satisfying:

0 ≤ f(t, k) ≤ L
e−Dk

k7/6
, if k > 0, t ∈ (0, T ), (2.6)
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|f(t, k)− a(t) k−7/6| ≤ Lk−7/6+δ/2, k ≤ 1, t ∈ (0, T ), (2.7)

|a(t)| ≤ L, for t ∈ (0, T ), (2.8)

for some positive constant L and for some T = T (A,B, δ) > 0.

Remark 2.2 The space of functions C1,0((0, T ) × (0,+∞)) is the set of functions
which are continuously differentiable with respect to the first variable in (0,+∞) and
continuous with respect to the second variable on (0,∞).

In order to construct the desired solution we will argue as follows. It is convenient
to consider first the problem (2.1) (2.2) replacing the kernel W (k1, k2, k3, k4) by the
truncated kernel

WM,M ′(k1, k2, k3, k4) = W (k1, k2, k3, k4)χ

(
|k3 − k4|
M

)
χ

(
|k1|
M ′

)
(2.9)

where M and M ′ are large positive constants, χ(z) = 1 if 0 ≤ z ≤ 1, χ(z) = 0 if
z > 1. Similar cutoffs are often used in the study of other kinetic equations (cf. [4]).
The reason for this cutoff in our case is to control the “Boltzmann like”, quadratic
terms in f in (1.4), that otherwise would yield divergences in some of the terms
arising later. Using this truncation, the problem (2.1)-(2.2) becomes the truncated
problem:

∂f

∂t
(t, k) = QM,M ′(f)(t, k) (2.10)

f(0, k) = f0(k) (2.11)

where

QMM ′ (f) (k1) =

∫
D(k1)

WM,M ′ (k1, k2, k3, k4) q(f)dk3dk4 (2.12)

Notice that f also depends on M and M ′ but, for the sake of simplicity, we will not
write this dependence explicitly.

As a first step, we will obtain solutions of (2.10)-(2.12) in the form:

f(k, t) = λ(t) f0(k) + g(k, t) (2.13)

where λ(t) will be uniquely chosen by means of the condition

lim
k→0

k7/6 g(t, k) = 0, ∀t > 0, (2.14)

that means that g is less singular near the origin than k−7/6. Moreover we will
assume that λ(0) = 1, whence (cf. (2.3))

g(0, k) = 0, k ≥ 0. (2.15)
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We introduce the notation:

q(f0 + g) = q(f0) + `(f0, g) + n(f0, g) (2.16)

where `(f0, g) is a linear function on g and n(f0, g) contains the quadratic and higher
order terms on g. The equation (2.10) might then be written as follows:

∂g

∂t
(t, k1) = Lk(λ(t) f0, g)(k1, t) +R1(t, k1) +R2(t, k1, g)− λ′(t) f0 (2.17)

where, for t > 0, k1 > 0,

Lk(λ(t) f0, g)(k1, t) =

∫
D(k1)

WM,M ′(k1, k2, k3, k4) `(λ(t)f0, g) dk3 dk4 (2.18)

R1(t, k1) =

∫
D(k1)

WM,M ′(k1, k2, k3, k4) q(λ(t) f0) dk3 dk4 (2.19)

R2(t, k1, g) =

∫
D(k1)

WM,M ′(k1, k2, k3, k4)n(λ(t) f0, g) dk3 dk4 (2.20)

It may be convenient to reformulate the problem (2.10)-(2.12) using the new time
variable

τ =

∫ t

0

λ2(s) ds. (2.21)

Then, the problem (2.10)-(2.12) becomes:

∂g

∂τ
(τ, k1) = Lk,2(f0, g)(k1, τ) +

1

λ(τ)
Lk,1(f0, g)(k1, τ) +

+
1

λ2(τ)
(R1(τ, k1) +R2(τ, k1, g))− λτ f0(k1) (2.22)

g(0, k1) = 0 (2.23)

where, with some abuse of notation, we still denote g(τ, k1) ≡ g(t, k1), λ(τ) = λ(t),

λτ = λ′(t)
λ2(t)

, and Lk,2(f0, g̃1) is quadratic with respect to f0 and Lk,1(f0, g̃1)(k1, t) is

linear with respect to f0. Notice that, as long as 0 < c1 ≤ λ(τ) ≤ c2 the two equa-
tions (2.22) and (2.17) are equivalent, or more precisely, a solution of (2.17) with
the regularity given in Theorem 2.1 exists if and only if there exists a solution of
(2.22) with the same regularity.

Our strategy in order to solve the problem (2.17), (2.15) and (2.14) is the following.
It turns out that the most relevant terms to describe the asymptotics of g(k, t) as
k → 0 are ∂g

∂τ
and Lk(λ(τ) f0, g). If only these terms are kept in the equation, we

obtain a linear problem that can be analysed using the results of [5]. This is made
in Section 3. The reason that the term R1 is less relevant than the linear terms in
(2.16) is that f0 behaves like the stationary solution k−7/6 near the origin and this
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yields a cancelation in the integral term in (2.19), and as a consequence this term is
smaller than Lk(λ(t) f0, g) as k → 0. On the other hand, the term R2 only contains
quadratic terms in g and due to (2.14) its contribution is also smaller than that due
to the linear terms.
The solution of (2.15), (2.17) can be writen using the results for the linear semi-
groups in Section 3 by means of the variation of constants formula. In particular,
such formula can be used to compute the limit limk→0 k

7/6 g(t, k). Then, the con-
dition (2.14) becomes an integro-differential equation for λ that is solved under
suitable regularity assumptions on the initial data f0 (cf. Section 4).
Moreover, we obtain uniform estimates on λ and g for M and M ′ suficiently large
(cf. Section 5). Using these estimates it is not hard to take the limit as M and M ′

go to infinity to obtain a solution to (2.1)-(2.2). Similar arguments also provide the
uniqueness in the class of functions under consideration.

3 On the linearized equation.

3.1 Functional framework and main results.

In this Section we study the solutions of the following Cauchy problem:

∂h

∂τ
= Lk,2(f0, h)(k1, τ) +

1

λ(τ)
Lk,1(f0, h)(k1, τ) + ν(k1, τ) (3.1)

h(0, k) = h0(k). (3.2)

for some given function ν. To this end we rewrite (3.1) in a more convenient manner.
We define the functions:

q̃(f) = f3 f4 (f1 + f2)− f1 f2 (f3 + f4) (3.3)

r(f) = f3 f4 − f1 f2 (3.4)

as well as

q̃(f0 + g) = q̃(f0) + ˜̀(f0, g) + ñ(f0, g) (3.5)

r(f0 + g) = r(f0) + s(f0, g) + r(g) (3.6)

where ˜̀ and s contain only linear terms on g. Notice that, since q(f) = q̃(f) + r(f),
we have

`(f0, g) = ˜̀(f0, g) + s(f0, g).

For further reference, it is convenient to define the operator:

L̃k(k
−7/6, g)(k1, t) =

∫
D(k1)

W (k1, k2, k3, k4) ˜̀(k−7/6, g) dk3 dk4. (3.7)
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A detailed (and complicated) expression of ˜̀(k−7/6, g) can be found in [Ref.[5],
Eq.(2.2) for ql(F )]. But in the present paper we do not use that expression. We
now introduce some suitable functional spaces.

Xp,q,r(T ) =
{
ϕ∈ C([0, T ]), L∞loc(R+) ∩ C(R+); t1−r||ϕ||p,q < +∞

}
(3.8)

endowed with the norm

|||ϕ|||p,q,r = sup
0≤t≤T

t1−r||ϕ||p,q, (3.9)

||ϕ||p,q = sup
0≤k≤1

{kp|ϕ(k)|}+ sup
k≥1

{kq|ϕ(k)|} . (3.10)

where p, q, r are three arbitrary real numbers. Since we will use these spaces repeat-
edly with r = 1, we write them using, by convenience, the particular notation:

Yp,q(T ) := Xp,q,1(T ) =
{
ϕ∈ C([0, T ]), L∞loc(R+) ∩ C(R+); |||ϕ|||p,q < +∞

}
(3.11)

where

|||ϕ|||p,q := |||ϕ|||p,q,1 = sup
0≤τ≤T

||ϕ(τ, ·)||p,q.

Using the homogeneity of ˜̀ we can rewrite (3.1), as:

hτ = L̃k(k
−7/6, h)(k1, τ) + U(k;λ, h) + ν(k, τ) (3.12)

where,

U(k1;λ, h) = U1(k1;λ, h) + U2(k1;λ, h) + U3(k1;λ, h)

U1(k1;λ, h) =

∫
D(k1)

WM,M ′

(
˜̀(f0, h)− ˜̀(k−7/6, h)

)
dk3 dk4 (3.13)

U2(k1;λ, h) = λ(τ)−1

∫
D(k1)

WM,M ′ s(f0, h) dk3 dk4 (3.14)

U3(k;λ, h) =

∫
D(k1)

(WM,M ′ −W ) ˜̀(k−7/6, h) dk3 dk4 (3.15)

We will say that a function h solves the equation (3.12) with initial data h(0, k) =
h0(k) in the integral sense if the following integral equality holds:

h(τ, k) =

∫ ∞

0

G(τ, k, k0)h0(k0) dk0

+

∫ τ

0

ds

∫ ∞

0

dk0G(τ − s, k, k0) [U(k, λ(s), h(s)) + ν(k, s)], (3.16)

where G(τ, k, k0) is the Green’s function associated to the Cauchy problem:

∂h

∂τ
= L̃k(k

−7/6, h) (3.17)

h(0, k) = δ(k − k0) (3.18)

that was obtained in [5] whose detailed properties are recalled in the Theorem 3.5
below. The main results proved in this Section are the following.
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Theorem 3.1 Suppose that the function λ(τ) satisfies,

λ(0) = 1, and
1

2
≤ λ(τ) ≤ 2, ∀τ ∈ [0, 1] (3.19)

that ||h0||7/6,β < +∞ and that ν ∈ Yα,β(T ′) for some T ′ > 0, where α = 3/2 − δ
and β = 11/6− δ with δ > 0 sufficiently small.
Then, for any M > 1 and M ′ > 1 there exists T > 0 and a unique solution h of
(3.1), (3.2) in the integral sense in the space Y7/6,β(T ). Moreover

|||h|||7/6,β ≤ CM,M ′
(
||h0||7/6,β + T 3δ |||ν|||α,β

)
. (3.20)

On the other hand, there exists a function a ∈ L∞([0, T ]) such that,

||h− a(τ)k
−7/6
1 χ{0≤k1≤1}||7/6−δ/2,β ≤ CM,M ′

(
τ−3δ/2||h0||7/6,β + τ 3δ/2|||ν|||α,β

)
.(3.21)

|a(τ)| ≤ CM,M ′
(
||h0||7/6,β + τ 3δ|||ν|||α,β

)
. (3.22)

Theorem 3.2 Suppose that (3.19) holds. Suppose that ||h0||α,β < +∞ and that
|||ν|||α,β,γ < +∞ where α = 3/2− δ and β = 11/6− δ with δ > 0, γ > 0 sufficiently
small.
Then, for any M > 1 and M ′ > 1 there exists T > 0 sufficiently small and a unique
solution h of (3.1), (3.2) in the integral sense for 0 < τ < T such that

||h(τ, ·)||7/6,β ≤
C

τ 1−3δ
||h0||α,β + CM,M ′T γ |||ν|||α,β,γ

τ 1−3δ
.

On the other hand, there exists a function a(τ) such that,

||h− a(τ)k
−7/6
1 χ0≤k1≤1}||7/6−δ/2,β ≤ CM,M ′(τ−1+9δ/2||h0||α,β +

+|||ν|||α,β,γτ
−1+γ+3δ/2). (3.23)

|a(τ)| ≤ CM,M ′ (τ−1+6δ||h0||α,β + |||ν|||α,β,γτ
−1+γ+3δ). (3.24)

Remark 3.3 The main difference between both Theorems is that Theorem 3.1 re-
quires stronger boundedness assumptions on the initial data h0 as k → 0.

Remark 3.4 The existence time T in the Theorems above could depend, in princi-
ple, on Mand M ′. It will be shown in Section 5 that it is possible to derive uniform
lower estimates for T if M and M ′ are large enough.

The key ingredient in the proof of Theorem 3.1 is the description of the solution
of the linear problem (3.17) (3.18) that we recall here for the reader’ s convenience.
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Theorem 3.5 (cf. [5]) For each k0 > 0 there exists a unique solution of (3.17)-
(3.18) in the class of measures of the form:

G(τ, k, k0) = α(τ)δ(k − k0) +H(τ, k, k0)

where,

H(τ, ·, k0) ∈ L∞loc(R
+),

|H(τ, k, k0)|| ≤ C

k7/6
, k ≤ k0/2,

|H(τ, k, k0)| ≤ C

k11/6
, k ≥ 2k0 (3.25)

|H(τ, k, k0)| ≤ C

|k − k0|5/6
, |k − k0| ≤

k0

2
.

Moreover, G(τ, k, k0) has the self similar form:

G(τ, k, k0) =
1

k0

G(
τ

k
1/3
0

,
k

k0

, 1) (3.26)

and the function G(τ, k, 1) satisfies the following estimates. For k ∈ (0, 2) we have

G(τ, k, 1) = e−a τδ(k − 1) + σ(τ) k−7/6 +R1(τ, k) +R2(τ, k), (3.27)

where σ ∈ C[0,+∞) satisfies:

σ(τ) =

{
Aτ 4 +O(τ 4+ε) as τ → 0+,

O(τ−(3v0−5/2)) as τ → +∞ (3.28)

where R1 , R2 might be estimated as

R1(τ, k) ≡ 0 for |k − 1| ≥ 1

2
,

|R1(τ, k)| ≤ C
e−(a−ε)τ

|k − 1|5/6
for |k − 1| ≤ 1

2
, (3.29)

R2(τ, k) ≤ Cψ1(τ)

(
τ 3

k

)b̃

(3.30)

with

ψ1(τ) =


1

τ 5/2+ε
for 0 ≤ τ ≤ 1

1

τ 3v0−ε
for τ > 1.

(3.31)
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On the other hand, for k > 2 we have:

G(τ, k, 1) ≤ Cψ2(τ)

(
τ 3

k

) 11
6

(3.32)

ψ2(τ) =


1

τ
9
2
+ε

for 0 ≤ τ ≤ 1

1

τ 1+3v0−ε
for τ > 1,

(3.33)

In these formulae, A ∈ R, ε > 0 is an arbitrarily small number, b̃ is an arbitrary
number in the interval (1, 7/6), and v0 = 1.84020 · · · The constant C depends on ε
and b̃ but is independent on k0 and τ .

Remark 3.6 The constants b̃, v0 and ε will have the same meaning throughout the
rest of the paper.

Remark 3.7 Notice that, since the right hand sides of (3.31) and (3.33) are mono-
tonically decreasing, we can assume without loss of generality that the functions ψ1

and ψ2 are globally decreasing in τ , something that will be made from now on.

Remark 3.8 Although not explicitly stated among the results in [5], the function
G(t, k, k0) is differentiable with respect to t, for k > 0, k0 > 0 and t > 0 as it can
be seen using the explicit representation formula of G obtained in [5], cf. formulas
(4.17), (4.19) and (4.25) therein. Moreover, the function τ

∣∣∂G
∂τ

∣∣ satisfy the same
estimates as G.

3.2 Some estimates for the semigroup generated by L̃k.

The two Lemmas in this subsection provide some estimates for the semigroup gen-
erated by L̃k with initial data bounded near the origin or at infinity by power laws.

Lemma 3.9 Suppose that ϕ solves

∂ϕ

∂τ
= L̃k(k

−7/6, ϕ)

ϕ(0, k) = ϕ0(k).

where

|ϕ0(k)| ≤ k−αχ{k≤1}, (3.34)

with α ∈ [7/6, 3/2). Then, there exists a function a ∈ L∞([0, 1]) such that, for any
τ ∈ [0, 1]:

|ϕ(τ, k)− a(τ) k−7/6| ≤ Cτ−3αΦ(y), for 0 ≤ k ≤ 2, (3.35)
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|a(τ)| ≤ C τ 7/2−3α, (3.36)

where y = k τ−3 and

Φ(y) = min{y−b̃, y−7/6}. (3.37)

On the other hand:

|ϕ(τ, k)| ≤ C y−11/6 τ−9/2−ε, for k > 2 (3.38)

for any τ ∈ [0, 1], and where ε is as in Theorem 3.5 .

Proof. We assume in the rest of the proof that 0 ≤ τ ≤ 1. Using the fundamental
solution G described in Theorem 3.5 as well as the Remark 3.8, we can write

ϕ(τ, k) =

∫ 1

0

1

k0

G(
τ

k
1/3
0

,
k

k0

, 1)ϕ0(k0) dk0

=

∫ min(k/2, 1)

0

· · · dk0 +

∫ 1

min(k/2, 1)

· · · dk0 ≡ I1 + I2.

We first estimate I1. Using (3.32) we have:

|I1| ≤ C

(
τ 3

k

)11/6 ∫ min(k/2,1)

0

ψ2

(
τ

k
1/3
0

)
k
−(α+1)
0 dk0

= C

(
τ 3

k

)11/6

τ−3 α

∫ min(k/2,1)τ−3

0

ψ2

(
1

ξ1/3

)
ξ−(α+1) dξ.

Using that ψ2 is monotonically decreasing we deduce that

|I1| ≤ C

(
τ 3

k

)11/6

ψ2

(
τ

min(k/2, 1)1/3

)
min(k/2, 1)−α. (3.39)

Combining (3.39) and (3.33) we obtain

|I1| ≤ C τ−3 α min{yv0−3/2−α−ε/3, y−α−1/3+ε/3}, 0 < k ≤ 2,

|I1| ≤ C τ−9/2−ε y−11/6, k ≥ 2. (3.40)

We now estimate the term I2. By definition, I2 = 0 for k > 2. On the other hand,
using (3.27) we can rewrite I2 for 0 ≤ k ≤ 2 as:

I2 = a(τ) k−7/6 + ϕ0(k) e
− aτ

k1/3χ{k≤1} +

∫ k/2

0

σ(τ/k
1/3
0 )

(
k0

k

)7/6

ϕ0(k0)
dk0

k0

+

∫ 1

k/2

R1(
τ

k
1/3
0

,
k

k0

)ϕ0(k0)
dk0

k0

+

∫ 1

k/2

R2(
τ

k
1/3
0

,
k

k0

)ϕ0(k0)
dk0

k0

≡ a(τ) k−7/6 + I2,1 + I2,2 + I2,3 + I2,4. (3.41)
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where

a(τ) =

∫ 1

0

σ(τ/k
1/3
0 )k

7/6
0 ϕ0(k0)

dk0

k0

.

Therefore, using (3.34) and (3.28)

|a(τ)| ≤ τ 7/2−3α

∫ 1
τ3

0

σ(ξ−1/3) ξ1/6−α dξ ≤ C τ 7/2−3α for 0 ≤ τ ≤ 1. (3.42)

Using again (3.34), we can estimate the second term in the right hand side of (3.41)
as

|I2,1| ≤ τ−3αy−α e−ay−1/3

(3.43)

A similar argument yields,

|I2,2| ≤ τ−3αy−7/6

∫ y/2

0

σ(ξ−1/3)ξ1/6−αdξ. (3.44)

|I2,3| ≤ C τ−3α

∫ 3y/2

y/2

e
−(a−ε) 1

ξ1/3

|y − ξ|5/6
ξ−1/6−αdξ (3.45)

|I2,4| ≤ Cτ−3αy−b̃

∫ ∞

y/2

ψ1(
1

ξ1/3
)
dξ

ξ1+α
. (3.46)

The right hand sides in the formulas (3.43)-(3.46) have a self similar structure of
the form τ−3αΘ(y), y ≡ k/τ 3. Therefore it only remains to estimate the different
functions Θ for y → 0 and y → ∞. The corresponding functions Θ in (3.43) and
(3.45) have an exponential decay as y → 0. Using (3.28) and (3.31) it follows that
the contributions of the functions Θ in (3.44) and (3.46) behave respectively like

yv0−5/6−α and y−b̃ as y → 0. Since v0 − 5/6− α > −b̃, and b̃ > 1 it follows that all

the terms in (3.43)-(3.46) might be bounded as C τ−3α y−b̃ when y → 0. On the other
hand, the functions Θ might be estimated in an analogous manner for y → ∞. In
particular, the functions Θ in (3.43) and (3.45) are bounded like C y−α as y → ∞.
The corresponding function Θ in (3.44) and (3.46) are bounded by C y−7/6 and

y5/6−b̃+ε/3y−α respectively as y →∞. Since α ≥ 7/6 and 5/6− b̃+ ε/3 < 0, all the
terms in (3.43)-(3.46) are bounded as Cy−7/6 as y → +∞. Combining the estimates
obtained for the different functions Θ for large and small values of y we obtain
(3.35). Finally (3.36) follows from (3.42) and (3.38) is a consequence of (3.40). ut

Lemma 3.10 Suppose that ϕ solves

ϕτ = L̃k(k
−7/6, ϕ)

ϕ(0, k) = ϕ0(k).
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where

|ϕ0(k)| ≤ k−βχ{k≥1}, (3.47)

with β = 11/6−δ, δ > 0 small enough. Then, for τ ∈ [0, 1], the following inequalities
hold:

|ϕ(τ, k)− β(τ) k−7/6| ≤ C k−βχ{k≥1} + C τ−5/2−ε y−b̃ 0 ≤ k ≤ 2 (3.48)

where y = k τ−3 and

|β(τ)| ≤ C τ 4. (3.49)

Moreover

|ϕ(τ, k)| ≤ Ck−β, k ≥ 2. (3.50)

Proof. Using the fundamental solution G described in Theorem 3.5 as well as the
Remark 3.8 we can write

ϕ(τ, k) =

∫ ∞

1

1

k0

G(
τ

k
1/3
0

,
k

k0

, 1)ϕ0(k0) dk0

=

∫ max(k/2, 1)

1

· · · dk0 +

∫ ∞

max(k/2,1)

· · · dk0 ≡ J1 + J2.

We first estimate J1. Using (3.26), (3.32) and (3.47) we obtain

|J1| ≤ Cχ{k≥2}y
−11/6

∫ k/2

1

ψ2(
τ

k
1/3
0

)
dk0

k1+β
0

≤ Cτ−3βχ{k≥2}y
−11/6

∫ y/2

0

ψ2(ξ
−1/3)

dξ

ξ1+β
. (3.51)

On the other hand J1 = 0 for k < 2.
We now estimate J2. Using (3.27) we can rewrite J2 for 0 ≤ k ≤ 2 as

J2 − β(τ) k−7/6 = ϕ0(k) e
− aτ

k1/3χ{k≥1} +

+

∫ ∞

1

R1(
τ

k
1/3
0

,
k

k0

)ϕ0(k0)
dk0

k0

+

∫ ∞

1

R2(
τ

k
1/3
0

,
k

k0

)ϕ0(k0)
dk0

k0

,

≡ J2,1 + J2,2 + J2,3,

where

β(τ) =

∫ ∞

1

σ(τ/k
1/3
0 )k

7/6
0 ϕ0(k0)

dk0

k0

.

Taking into account (3.28) and (3.47) we arrive at

|β(τ)| ≤ Cτ 4. (3.52)
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On the other hand using again (3.47) as well as (3.29) and (3.30) we obtain,

|J2,1| ≤ C τ−3 β y−β e−a y−1/3

χ{k≥1}.

|J2,2| ≤ C

∫ 2k

2k/3

χ{k0≥1}
e−(a−ε)τ/k

1/3
0

|k/k0 − 1|5/6

dk0

k1+β
0

that vanishes for k small enough. The term with R2 gives, for k ≤ 2

|J2,3| ≤ Cy−b̃

∫ ∞

1

ψ1(
τ

k
1/3
0

)
dk0

k1+β
0

≤ Cτ−5/2−ε y−b̃. (3.53)

Combining (3.52) and (3.53), (3.48) follows.

We now estimate J2 for k ≥ 2. To this end we rewrite J2 as

J2 = ϕ0(k) e
− aτ

k1/3 +

∫ ∞

k/2

σ(τ/k
1/3
0 )

(
k0

k

)7/6

ϕ0(k0)
dk0

k0

+

∫ ∞

k/2

(
R1(

τ

k
1/3
0

,
k

k0

) +R2(
τ

k
1/3
0

,
k

k0

)

)
ϕ0(k0)

dk0

k0

.

Using (3.28), (3.29) and (3.30) we deduce

|J2| ≤ Ck−β + Ck−7/6

∫ ∞

k/2

σ(τ/k
1/3
0 ) k

7/6−β−1
0 dk0 +

+

(
τ 3

k

)b̃ ∫ ∞

k/2

ψ1

(
τ

k
1/3
0

)
k−β−1

0 dk0 + C

∫ 2k

2k/3

k
−β−1/6
0

|k − k0|5/6
dk0.

Using a re-scaling argument, the last integral term can be estimated as k−β. There-
fore:

|J2| ≤ Cτ−3βΘ(y), y = k τ−3 (3.54)

where

Θ(y) := y−β + y−7/6

∫ ∞

y/2

σ(ξ−1/3) ξ7/6−β−1 dξ +

+y−b̃

∫ 3y/2

y/2

ψ1(
1

ξ1/3
)
ξ−β−1/6

|y − ξ|5/6
dξ. (3.55)

Using (3.28), (3.31) and (3.33) it follows that, for large values of y, the second term
on the right hand side of (3.55) can be bounded as C y−4/3−β, and the third one as

C y−b̃+5/6+ε/3 y−β. Therefore Θ(y) ≤ C y−β for y > 1. On the other hand combining
(3.33) and (3.51) it follows that |J1| ≤ τ−3 β y−11/6 for y > 1. Using then (3.54), as
well as the fact that for k ≥ 2 and 0 ≤ τ ≤ 1 we have y ≥ 2, the estimate (3.50)
follows. ut

We now derive similar results for the non homogeneous equation.
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Proposition 3.11 Let us define

θ ≡ sup
0≤τ≤T

(
sup

0≤k≤1
{kα|µ(τ, k)|}+ sup

k≥1

{
kβ|µ(τ, k)|

})
. (3.56)

where α = 3/2 − δ, β = 11/6 − δ with δ > 0 arbitrarily small. Suppose that
0 ≤ T ≤ 1. Then, there exists a function y ∈ L∞([0, T ]) and a constant C > 0
independent on θ and T such that the solution in the integral sense of

∂h

∂τ
= L̃k(k

−7/6, h) + µ(τ, k1),

h(0, k1) = 0.

satisfies

|h(τ, k1)− y(τ) k
−7/6
1 | ≤ C θ τ 3δ/2 k

−7/6+δ/2
1 for 0 ≤ k ≤ 1. (3.57)

|h(τ, k1)| ≤ C θ τ k−β
1 for k > 1 (3.58)

where

|y(τ)| ≤ C θ τ 3δ, (3.59)

for 0 ≤ τ ≤ T.

Proof. The idea is to use the estimates derived in Lemma 3.9 with α = 3/2− δ and
Lemma 3.10. Combining (3.36) and (3.49), with the variation of constant formula
we obtain (3.59). On the other hand,

|h(τ, k1)− y(τ) k
−7/6
1 | ≤ CM

∫ τ

0

(τ − s)−3αΦ(
k

(τ − s)3
)ds

+
C

kb̃
1

∫ τ

0

(τ − s)3b̃−5/2−εds+ C θ τ k−βχ{k ≥ 1}

= Ck
1/3−α
1

∫ τ/k
1/3
1

0

u−3αΦ(u−3)du+ Ck−b̃
1 τ 3b̃−3/2−ε

+ C θ τ k−βχ{k ≥ 1}. (3.60)

Then, using (3.37) we deduce that
∫ τ/k

1/3
1

0
u−3αΦ(u−3)du is convergent as k1 → 0

and it behaves like (k1/τ
3)−δ as τ 3/k1 → 0. Therefore (3.58) follows.

To obtain (3.57), we use (3.56) as well as the estimates (3.35), (3.50) in Lemmas 3.9
and 3.10. ut

3.3 Estimates for the higher order terms.

Let us rewrite by convenience the equation (3.12) in the form,
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hτ = L̃k(k
−7/6, h)(k1, τ) + U(k;λ, h) + ν(k1, τ). (3.61)

In this subsection we obtain some technical estimates for the terms U that are linear
on h but less singular near the origin than L̃k(k

−7/6, h)(k1, τ). These estimates are
written in terms of suitable functional norms of the function h itself. The results in
this subsection will allow to prove Theorem 3.1 by means of a standard fixed point
argument.

We rewrite q̃ and r in (3.3), (3.4) as

q̃(f) = f1q̃1(f) + q̃2(f) (3.62)

r(f) = r1(f)− f1 f2

where

q̃1(f) = f3 f4 − f2 f3 − f2 f4 (3.63)

q̃2(f) = f2 f3 f4 (3.64)

r1(f) = f3 f4.

Notice that the functions q̃1(f), q̃2(f), r(f) do not depend on f1. On the other hand,
we introduce the linearisations of these functions by means of:

q̃i(f0 + g) = q̃i(f0) + ˜̀
i(f0, g) + ñi(f0, g), i = 1, 2 (3.65)

r1(f0 + g) = r1(f0) + s1(f0, g) + r1(g). (3.66)

where ˜̀
i and s1 only contain linear terms on g. Combining (3.5), (3.6) and (3.65),

(3.66), we obtain

˜̀(f0, g) = q̃1(f0) g1 +
[
f0,1

˜̀
1(f0, g) + ˜̀

2(f0, g)
]

(3.67)

s(f0, g) = −g1 f0,2 + s1(f0, g)− f0,1 g2 (3.68)

(f0,i ≡ f0(ki).) Using (3.67) and (3.68) we can rewrite U1, U2 and U3 in (3.13), (3.14)
as

U1 = h1 U1,1 + U1,2

U2 = h1 U2,1 + U2,2

U3 = h1 U3,1 + U3,2

where

U1,1 =

∫
D(k1)

WM,M ′(k1, k2, k3, k4)
(
q̃1(f0)− q̃1(k

−7/6)
)
dk3 dk4
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U1,2 =

∫
D(k1)

WM,M ′(k1, k2, k3, k4)
(
f0,1

˜̀
1(f0, h)− k

−7/6
1

˜̀
1(k

−7/6, h)

+˜̀
2(f0, h)− ˜̀

2(k
−7/6, h)

)
dk3 dk4 (3.69)

U2,1 = −λ(τ)−1

∫
D(k1)

WM,M ′(k1, k2, k3, k4) f0,2 dk3 dk4

U2,2 = λ(τ)−1

∫
D(k1)

WM,M ′(k1, k2, k3, k4) (s1(f0, h)− f0,1 h2) dk3 dk4

U3,1 =

∫
D(k1)

(WM,M ′ −W )(k1, k2, k3, k4) q̃1(k
−7/6) dk3 dk4

U3,2 =

∫
D(k1)

(WM,M ′ −W )
(
k
−7/6
1

˜̀
1(k

−7/6, h) + ˜̀
2(k

−7/6, h)
)
dk3 dk4

The dependence of the functions Ui,j with respect to their arguments will not be
explicitely written unless it is necessary. As a general rule we will only write the
dependence on the variables that are relevant in the argument.

Lemma 3.12 There exists a positive constant C, depending only on A,B,D, δ in
(2.3)- (2.5) such that, for all (k1, k2, k3, k4) satisfying k2 = k3 + k4 − k1, there holds

|q̃1(f0)− q̃1(Ak
−7/6)| ≤ C

(
kδ

3 + kδ
4

k
7/6
3 k

7/6
4

+
kδ

2 + kδ
4

k
7/6
2 k

7/6
4

+
kδ

2 + kδ
3

k
7/6
2 k

7/6
3

)
.

Proof. Notice that,

|q̃1(f0)− q̃1(Ak
−7/6)| ≤

4∑
i,j=2; i<j

∣∣∣f0,i f0,j − k
−7/6
i k

−7/6
j

∣∣∣
and since

|f0,j − Ak
−7/6
j ||f0,i| ≤ Ck

−7/6+δ
j k

−7/6
i , |f0,i − Ak

−7/6
i ||k−7/6

j | ≤ Ck
−7/6+δ
i k

−7/6
j

the result follows. ut

Lemma 3.13 There exists a positive constant C as in Lemma 3.12 such that

|U1,1| ≤
C

k
1/3−δ
1

Proof. The result follows using Lemma 3.12, rescaling the variables of integration
as k3 = k1ξ3, k4 = k1ξ4 and using the expression of W . ut

Lemma 3.14 There exists a positive constant C as in Lemma 3.12 such that
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|f0,1
˜̀
1(f0, h)− Ak

−7/6
1

˜̀
1(Ak

−7/6,, h)| ≤

C

[
k
−7/6+δ
1

4∑
i,j=2; i6=j

k
−7/6
i ζ(kj) + k

−7/6
1

4∑
i,j=2; i6=j

k
−7/6+δ
i ζ(kj)

]
|||h|||7/6,β

(3.70)

where ζ(k) = k−7/6 if 0 ≤ k ≤ 1 and ζ(k) = k−11/6+δ if k ≥ 1.

Proof. We write

f0,1
˜̀
1(f0, h)− Ak

−7/6
1

˜̀
1(Ak

−7/6,, h) =
(
f0,1 − Ak

−7/6
1

)
˜̀
1(f0, h) +

k
−7/6
1

(
˜̀
1(f0, h)− ˜̀

1(Ak
−7/6,, h)

)
The first term is estimated using∣∣∣(f0,1 − Ak

−7/6
1

)
˜̀
1(f0, h)

∣∣∣ ≤ C k
−7/6+δ
1 |||h|||7/6,β

4∑
i,j=2; i6=j

k
−7/6
i ζ(kj).

The second term is estimated as in Lemma (3.12). ut

Lemma 3.15 There exists a positive constant C = C(A,B,D, δ) such that

|˜̀2(f0, h)− ˜̀
2(Ak

−7/6, h)| ≤ C |||h|||7/6,β

4∑
i,j,`=2; i6=j,i 6=`,j 6=`

k
−7/6
i k

−7/6
j

(
kδ

i + kδ
j

)
ζ(k`) (3.71)

Proof. Formula (3.71) is a consequence of the definition of ˜̀
2 as well as of (2.3)-

(2.5).

Lemma 3.16 There exists a positive constant CM ≡ C(A,B,D, δ,M), independent
of M ′, such that the following estimates hold

|U1,2(h)− U1,2(h̃)| ≤
CM

k
3/2−δ
1

|||h− h̃|||7/6,β for 0 ≤ k1 ≤ 1, (3.72)

|U1,2(h)− U1,2(h̃)| ≤
CM

k
17/6−δ
1

|||h− h̃|||7/6,β for k1 > 1. (3.73)

Proof. Let us suppose by simplicity that h̃ ≡ 0, since the argument in the general
case is similar. Using (3.70), (3.71) in (3.69) we deduce:

|U1,2| ≤ C

∫
D(k1)

WM,M ′

{
4∑

i,j=1;i6=j

4∑
`=2;` 6=i, 6̀=j

k
−7/6
i k

−7/6
j (kδ

i + kδ
j )ζ(k`)

}
dk3 dk4

(3.74)
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In order to obtain (3.72), we bound ζ(k`) by k
−7/6
` in (3.70) and (3.71). Using

the rescaling kj = k1ξj for j = 2, 3, 4 the result follows. For k1 > 1 the largest
contribution to the integral in (3.74) is due to the terms where ` = 2. On the other
hand, due to the cutoff in WM,M ′ , k3 and k4 are of order of k1 for k1 large. Due

to this, the corresponding integral can be estimated by k
−1/2
1 k

−7/3+δ
1 and this yields

(3.73). ut

Lemma 3.17 For all ε > 0 arbitrarily small there exists a positive constant CM

with the same dependences as in Lemma 3.16 and depending also on ε such that

|U2,1| ≤
CM

k
1/2
1

for ∀k1 > 1.

Proof.Using that W ≤
√
k2/

√
k1 and that the kernel WM,M ′ is not zero only if

|k3 − k4| ≤M the result follows.

Lemma 3.18 There exists a positive constant CM as in Lemma 3.17 such that

|U2,2(h)| ≤
CM

k
5/3
1

|||h|||7/6,β, for 0 ≤ k1 ≤ 1 (3.75)

and

|U2,2(h)| ≤
CM

k
β+1/2
1

|||h|||7/6,β, for k1 ≤ 1. (3.76)

Proof. When 0 ≤ k1 ≤ 1, the term due to s1(f0, h) might be estimated as

|s1(f0, h)| ≤
4∑

i,j=2,i6=j

k
−7/6
i k

−7/6
j .

The corresponding estimate follows using the rescaling kj = k1 ξj, j = 2, 3, 4. On the
other hand, the term in U2,2 containing f0,1 h2 can be estimated, after integrating in

k3, k4, as CMk
−7/6
1 k

−1/2
1 for k1 ≤ 1. In order to make this integration it is convenient

to change the integral variables from k3, k4 to k2, k3 − k4. Then the function WM,M ′

is estimated by 1 for k2 ≥ k1 and
√
k2/

√
k1 for k2 ≤ k1. Whence estimate (3.75)

follows. On the other hand, in order to derive the estimate for k1 > 1, we use the
fact that due to the cutoff k3 and k4 are of order of k1. The contribution in U2,2 due
to the term f0,1 h2 might be estimated by CMe

−Dk1 after integration in k3, k4. To
estimate the remaining terms in U2,2 we use the fact that

|s1(f0, h)| ≤
4∑

i,j=3;i6=j

f0,i hj.

For k1 > 1, the largest contribution to U2,2 is due to the the terms with i = 2. The

resulting contribution can be bounded as k
−β−1/2
1 , whence (3.76) follows. ut
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Lemma 3.19 There exists a positive constant CM as in Lemma 3.17 such that

|U3,1(h)| ≤ CM , for 0 ≤ k1 ≤ 1 (3.77)

and

|U3,1(h)| ≤
CM

k
1/3
1

, for k1 ≥ 1.

Proof. The estimate (3.77) for 0 ≤ k1 ≤ 1 follows using that, due to the cutoff, the
domain of integration is contained in a fixed domain independent of k1. For k1 ≥ 1,
we estimate |WM,M ′ − W | by 2W and use in the resulting integral the rescaling
kj = k1 ξj, j = 2, 3, 4. ut

Lemma 3.20 There exists a positive constant CM as in Lemma 3.17 such that

|U3,2(h)| ≤
CM

k
7/6
1

|||h|||7/6,β, for 0 ≤ k1 ≤ 1

and

|U3,2(h)| ≤
CM

k
1/3+β
1

|||h− h̃|||7/6,β, for k1 ≥ 1.

Proof. The proof is essentially similar to that of the previous Lemma. ut

3.4 Proof of the Theorems 3.1 and 3.2.

We can reformulate the original problem (3.1), (3.2) as a fixed point problem. To
this end we use the variation of constants formula in (3.2) (3.61) to obtain

h(τ, k1) =

∫ ∞

0

G(τ, k1, ξ)h0(ξ) +

∫ τ

0

ds

∫ ∞

0

dξ G(τ − s, k1, ξ)U(ξ;λ(s), h(s, ξ))

+

∫ τ

0

ds

∫ ∞

0

dξ G(τ − s, k1, ξ) ν(s, ξ) ≡ T (h)(τ, k1). (3.78)

where G(τ, k1, ξ) is the fundamental solution of the problem (3.17)-(3.18) described
in Theorem 3.5.

Proof of Theorem 3.1. The Theorem will follow by proving that the opera-
tor T defined in (3.78) is contractive in the space Y7/6,β(T ) for T > 0 small enough.

To this end, notice that using Lemma 3.13, as well as Lemmas 3.16 - 3.20, we
obtain

|
3∑

j=1

(h1 Uj,1 + Uj,2) (ξ;λ(s), h(s, ξ)) + ν(s, ξ)| ≤
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CM ξ−3/2+δ
(
|||h|||7/6,β + |||ν|||α,β

)
for 0 ≤ ξ ≤ 1 (3.79)

|
3∑

j=1

(h1 Uj,1 + Uj,2) (ξ;λ(s), h(s, ξ)) + ν(s, ξ)| ≤

CM ξ−β−1/3+δ
(
|||h|||7/6,β + |||ν|||α,β

)
for ξ > 1 (3.80)

Combining these estimates with Proposition 3.11 we obtain

|||T (h− h̃)|||7/6,β ≤ CM T 3δ/2|||h− h̃|||7/6,β

where CM is a positive constant as in Lemma 3.16. The existence and uniqueness
parts in Theorem 3.1 for small T follow by means of a standard fixed point argument.
On the other hand, combining (3.79) and (3.80) with Proposition 3.11, we arrive at

|||T (h)|||7/6,β ≤ CM

(
||h0||7/6,β + T 3δ/2 |||h|||7/6,β

)
+ T 3δ/2 |||ν|||7/6,β (3.81)

that yields the estimate (3.20).
The proof of (3.21) (3.22) follows from Proposition 3.11 that yields an estimate for
the contribution due to the term ν, as well as Lemma 3.9 with α = 7/6 that provides
bounds for the contribution due to h0. ut

Proof of Theorem 3.2. The proof of Theorem 3.2 is very similar to the one
of Theorem 3.1 although we must use the functional space X7/6,β,3 δ(T ). We first
rewrite the equation as

hτ = Lk(λ(τ)Ak−7/6, h) + µ(k1, τ) + ν (3.82)

where

µ(τ, k1) = Lk(λ(τ)f0, h)− Lk(λ(τ)Ak−7/6, h). (3.83)

Arguing then as in the proofs of formulas (3.79) and (3.80), we first obtain

||µ(τ, ·)||3/2−δ,β ≤
C

τ 1−3δ
|||h|||7/6,β,3 δ, 0 ≤ τ ≤ T.

We use now the usual fix point argument. Given h in X7/6,β,3 δ(T ) we define µ as in
(3.83) and then solve (3.82) with h(0, k1) = h0(k1). This defines an operator T (h).
Using the variation of constants formula as well as Lemmae 3.9, 3.10 we obtain

||T (h)(τ, ·)||7/6,β ≤ C||h0||7/6,β + C

∫ τ

0

ds

(τ − s)1−3δ
×{

|||h|||7/6,β,3 δ

s1−3δ
+
|||ν|||α,β,γ

s1−γ

}
≤ C||h0||7/6,β + C T 3δ |||h|||7/6,β,3 δ

τ 1−3δ
+ CT γ |||ν|||α,β,γ

τ 1−3δ
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and similarly,

|||T (h1 − h2)|||7/6,β,3 δ ≤ CT 3δ|||h1 − h2|||7/6,β,3 δ.

The existence and uniqueness of solution of (3.1), (3.2) in the space X7/6,β,3 δ(T )
follows for T > 0 sufficiently small by the usual contraction argument. Finally,
(3.23) and (3.24) follow by a small modification of the proof of Proposition 3.11.
More precisely, if h̃ is a solution of (3.82) with initial data h̃0(k) = 0 then, arguing
as in the derivation of (3.60), we have

|h̃(τ, k1)− y(τ) k
−7/6
1 | ≤ CM

∫ τ

0

(τ − s)−3αΦ(
k

(τ − s)3
) j(s)ds

+
C

kb̃
1

∫ τ

0

(τ − s)3b̃−5/2−ε j(s)ds (3.84)

where

j(s) ≡
{
||h||α,β,δ

s1−3δ
+
|||ν|||α,β,γ

s1−γ

}
and b̃ =

7

6
− δ

2
.

We can now estimate the first term in the right hand side of this inequality splitting
the integral in the intervals (0, τ/2) and (τ/2, τ). In the second one, we can bound
s−1+3δ and s−1+γ by Cτ−1+3δ and Cτ−1+γ respectively, and estimate the remaining
integral as in (3.81). This gives eventually, for 0 ≤ τ ≤ T and 0 ≤ k1 ≤ 1:∫ τ

τ/2

(τ − s)−3αΦ(
k

(τ − s)3
) j(s)ds ≤

C(||h||α,β,δτ
−1+9δ/2 + |||ν|||α,β,γτ

−1+γ+3δ/2) k
−7/6+δ/2
1

On the other hand, the contribution due to the integral for 0 ≤ s ≤ τ/2 is estimated
using the monotonicity of the function Φ defined in (3.37). Then∫ τ/2

0

(τ − s)−3αΦ(
k

(τ − s)3
) j(s) ds ≤ C

1

τ 3α
Φ(

k

τ 3
)

∫ τ/2

0

j(s) ds

≤ C(||h0||τ−1+9δ/2 + |||ν|||α,β,γτ
−1+γ+3δ/2) k

−7/6+δ/2
1 .

The second integral in the right hand side of (3.84) is estimated using similar argu-
ments. Finally, the bound (3.22) for a(τ) follows as in Proposition 3.11, using (3.36)
and (3.49). ut

3.5 Some regularity results for the time derivatives.

We now prove some regularity properties with respect to the initial time for the
function a(τ) whose existence is asserted in (3.21) that will be needed later.
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Lemma 3.21 Let us suppose that f0 satisfies (2.3), (2.4), (2.5) and 1/2 ≤ λ(τ) ≤ 1
for τ ≤ τ ≤ T . Let us denote as H the unique solution of the problem

∂H

∂τ
(τ, τ , k) = Lk,2(f0, H(τ, τ)) +

1

λ(τ)
Lk,1(f0, H(τ, τ)) (3.85)

for τ ≤ τ ≤ T,

H(τ , τ) = f0. (3.86)

in Y7/6,β(T ). Suppose also that

|λ′(τ)| ≤ C, 0 ≤ τ ≤ T. (3.87)

Then, the function a(τ, τ) defined as

a(τ, τ) = lim
k1→0

k
7/6
1 H(τ, τ , k1), (3.88)

satisfies:

a(τ +, τ) = A (3.89)

| ∂
∂τ

a(τ, τ)| ≤ C (τ − τ)−1+3δ, τ ≤ t ≤ T. (3.90)

∣∣∣∣∣∣∣∣∂H∂τ
∣∣∣∣∣∣∣∣

7/6,β

≤
C sup0≤τ≤T |λ(τ)|

(τ − τ)1−3δ
, (3.91)

∣∣∣∣∣∣∣∣∂H∂τ
∣∣∣∣∣∣∣∣

7/6,β

≤ C

(τ − τ)1−3δ

{
sup

0≤τ≤T
|λ(τ)|+ sup

0≤τ≤T
|λ′(τ)|

}
(3.92)

and ∣∣∣∣∂a∂τ (τ, τ)

∣∣∣∣ ≤ C

(τ − τ)1−3δ

{
sup

0≤τ≤T
|λ(τ)|+ sup

0≤τ≤T
|λ′(τ)|

}
(3.93)

for τ ≤ τ ≤ T .
Finally, under the same assumptions,

||H(τ, τ)− a(τ, τ) k−7/6||7/6−δ/2,β ≤ C (3.94)

||∂H
∂τ

(τ, τ)− ∂a

∂τ
(τ, τ) k−7/6||7/6−δ/2,β ≤

C

(τ − τ)1−3δ/2
(3.95)

for τ ≤ τ ≤ T .
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Proof of Lemma 3.21. The existence and uniqueness of the solution H follows
from Theorem 3.1 with ν = 0. Using now (3.78) we obtain:

H(τ, τ , k1) =

∫ ∞

0

G(τ − τ , k1, ξ) f0(ξ) dξ (3.96)

+

∫ τ

τ

ds

∫ ∞

0

dξG(τ − s, k1, ξ)U(ξ;λ(s), H(s, τ , ξ)).

(3.97)

Multiplying by k
7/6
1 and taking the limit as k1 → 0 we arrive at,

a(τ, τ) =

∫ ∞

0

ξ1/6 σ(
τ − τ

ξ1/3
) f0(ξ) dξ

+

∫ τ

τ

ds

∫ ∞

0

dξ ξ1/6 σ(
τ − s

ξ1/3
)U(ξ;λ(s), H(s, τ , ξ)) (3.98)

for all τ < τ , where the convergence of the different integrals is ensured by the
estimates (3.79) and (3.80). We now take the limit of (3.98) as τ → τ . To this end,
we use in the first integral of the right hand side the change of variables ξ = ζ τ 3

and (2.3), whence

lim
τ→τ

∫ ∞

0

ξ1/6 σ(
τ − τ

ξ1/3
) f0(ξ) dξ = A

∫ ∞

0

σ(ζ−1/3) ζ−1 dζ. (3.99)

Differentiating the identity Q̃(Ak−7/6) = 0 (c.f. (1.8)) with respect to A we obtain
Lk,2(Ak

−7/6, Hs) = 0. Therefore, if f0(ξ) = ξ−7/6 and U = 0 in (3.99) it would
follow that a(τ , τ) = A, whence∫ ∞

0

σ(ζ−1/3) ζ−1 dζ = 1. (3.100)

On the other hand, using (3.79) and (3.80) and Lemmas 3.9, 3.10 we deduce∣∣∣∣∫ ∞

0

dξ ξ1/6 σ(
τ − s

ξ1/3
)U(ξ;λ(s), H(s, τ , ξ))

∣∣∣∣ ≤ C(τ − s)−1+3δ.

Integrating this formula in the interval (τ , τ), we derive an estimate for the second
term of the right hand side of (3.98) in the form C (τ − τ)−3 δ. Taking the limit
τ → τ and using (3.99), (3.100) we obtain (3.89).

The function H(τ, τ , k) satisfies (3.85) in the classical sense. To check this we could
differentiate formally in (3.97), after rewriting the second integral in the right hand
side as: ∫ τ−τ

0

ds

∫ ∞

0

dξ G(s, k1, ξ)U(ξ;λ(τ − s), H(τ − s, τ , ξ))
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and obtain:

∂H

∂τ
(τ, τ , k1) =

∫ ∞

0

∂G

∂τ
(τ − τ , k1, ξ) f0(ξ) dξ +

∫ ∞

0

G(τ − τ , k1, ξ)U(ξ;λ(τ), f0(ξ)) dξ

+

∫ τ−τ

0

ds

∫ ∞

0

dξ G(s, k1, ξ)

{
∂U
∂λ

λ′(τ − s) +
∂U
∂H

∂H

∂τ
(τ − s, τ , ξ)

}
.

Use of Gronwall’s Lemma would then give that H is a classical solution of (3.85).
To make this argument rigorously we have just replaced ∂/∂τ by the incremental
quotients and pass to the limit.

Let us first indicate the formal arguments that we will use to prove (3.90), (3.92),
(3.93), (3.94) and (3.95). In order to prove (3.90) we differentiate (3.85) and (3.86)
with respect to τ to obtain:

∂

∂τ

(
∂H

∂τ

)
(τ, τ , k) = Lk

(
λ(τ) f0,

(
∂H

∂τ

)
(τ, τ)

)
, (3.101)

∂H

∂τ
(τ , τ) = −∂H

∂τ
(τ , τ) = −Lk(λ(τ) f0, f0) (3.102)

Using (2.3) we obtain

||Lk(λ(τ) f0, f0)||α, β ≤ C (3.103)

with α = 3/2 − δ and β = 11/6 − δ. The estimate (3.90) is then a consequence of
Theorem 3.2.

The analogous argument to prove (3.92) and (3.93) would be as follows. We notice
first that, due to (3.87), to estimate the derivative of a function with respect to t is
equivalent to estimate its derivative with respect to τ . Differentiating (3.85) with
respect to τ , and using (3.101) and (3.102), we obtain that ∂H

∂τ
solves

∂

∂τ

(
∂H

∂τ

)
= Lk,2

(
f0,

(
∂H

∂τ

))
+

+
1

λ(τ)
Lk,1

(
f0,

(
∂H

∂τ

))
+

∂

∂τ

(
1

λ(τ)

)
Lk,1 (f0, H) (3.104)

∂H

∂τ
(τ , τ) =

1

λ(τ)
Lk (λ(τ) f0, f0) . (3.105)

Combining (2.3), (2.5), (3.87), as well as the fact that H ∈ Y7/6,β(T ), it follows that∣∣∣∣∣∣∣∣ ∂∂τ
(

1

λ(τ)

)
Lk,1 (f0, H)

∣∣∣∣∣∣∣∣
α,β

≤ C.

Applying Theorem 3.2 to (3.103) we deduce (3.92). Formula (3.93) follows from
(3.22).
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Analogously, in order to derive (3.94) we use the fact that the equation satisfied
for W = H − f0, that might be derived using (3.85), (3.86) is a linear equation with

zero initial data and source terms bounded by Ck
−3/2+δ
1 for k1 ≤ 1. Therefore (3.94)

follows using variation of the constants as above and Theorem 3.1. The proof of
(3.95) is similar, but using (3.104), (3.105) instead of (3.85), (3.86) and Theorem
3.2 instead of Theorem 3.1.

The above computations can be made rigorous replacing the derivatives ∂/∂τ and
∂/∂τ by the corresponding incremental quotients. ut

4 Solving the nonlinear truncated equation.

In this Section we prove the following result.

Theorem 4.1 Suppose that f0 satisfies (2.3), (2.5), then for any M > 0 and M ′ >
0 there exists T = T (M,M ′) > 0 and a unique solution of (2.10)-(2.12) of the form
f(t) = λ(t) f0 + g(t) where g ∈ C[[0, T ]× (0,∞)], g ∈ Y7/6−δ/2, β(T ), β = 11/6− δ,
δ > 0 sufficiently small, and λ ∈ C[0, T ] ∩ C1(0, T ). Moreover,

|||g|||7/6−δ,β(T ) ≤ CM,M ′ T δ/2. (4.1)

Remark 4.2 Notice that the condition g ∈ Y7/6−δ, β(T ) implies that (2.14) holds.

The idea of the proof of Theorem 4.1 is to use a fixed point argument for (2.17)
under the constraint (2.14). We will obtain first a proof of the result in the τ vari-
able instead of t because due to (2.21) both formulations are equivalent as long as
1/2 ≤ λ ≤ 2. The statement in the t variable immediately follows due to the same
reason. As a first step, we derive suitable estimates for the terms R1 R2 defined in
(2.19), (2.20).

Lemma 4.3 Suppose that f0 satisfies (2.3), (2.5) and 1/2 ≤ λ(τ) ≤ 2 for 0 ≤ τ ≤
T for some T > 0. Then the function R1(τ, k1) defined in (2.19) satisfies:

sup
0≤τ≤T

|R1(τ, k1)| ≤
CM

k
3/2−δ
1

, k1 ≤ 1, (4.2)

sup
0≤τ≤T

|R1(τ, k1)| ≤
CM

k
7/3−2δ
1

, k1 ≥ 1. (4.3)

where CM = C(A,B,D, δ,M) is a positive constant independent of M ′.
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Proof of Lemma 4.3. Using the fact that q(f) = q̃(f) + r(f) as well as (3.5) with
g = λ(τ)(f0 − Ak−7/6), we can rewrite R1 as

R1(τ, k1) =

∫
D(k1)

WM,M ′ q̃(λ(τ)Ak−7/6) dk3 dk4 +

+

∫
D(k1)

WM,M ′ ˜̀(λ(τ)Ak−7/6, λ(τ) (f0 − Ak−7/6)) dk3 dk4

+

∫
D(k1)

WM,M ′ ñ(λ(τ)Ak−7/6, λ(τ) (f0 − Ak−7/6)) dk3 dk4

+

∫
D(k1)

WM,M ′ r(λ(τ)f0) dk3 dk4

≡ R1,1 +R1,2 +R1,3 +R1,4. (4.4)

Since WM,M ′ is supported in the region |k3−k4| ≤M , the term q̃(f) may be bounded

by CM k
−7/3
1 min(1, k

−7/6
2 ) (c.f. (3.3)). We then deduce, using thatW (k1, k2, k3, k4) ≤

min(1,
√
k2/

√
k1):

|R1,1| ≤ CM k
−7/3
1

∫ ∞

0

min(1,

√
k2√
k1

) min(1, k
−7/6
2 ) dk2

Spliting the integral in the three regions 0 < k2 < 1, 1 < k2 < k1 and k1 < k2 <∞
we obtain:

|R1,1| ≤
CM

k
5/2
1

, k1 ≥ 1. (4.5)

On the other hand, since∫
D(k1)

W q̃(Ak−7/6) dk3 dk4 = 0 (4.6)

we can rewrite R1,1 as

R1,1 =

∫
D(k1)

(WM,M ′ −W ) q̃(λ(τ)Ak−7/6) dk3 dk4. (4.7)

Using that WM,M ′ −W vanishes for |k3 − k4| < M , we obtain

|R1,1| ≤
CM

k
7/6
1

, k1 ≤ 1. (4.8)

We consider now R1,2. Due to (2.3) the estimate |λ(τ)(f0 − Ak−7/6)| ≤ Ck
−7/6+δ
1

holds for all k1 > 0. Making the change of variables k3 = k1 ξ3, k4 = k1 ξ4, it follows
that

|R1,2| ≤
C

k
3/2−δ
1

, for k1 ≤ 1. (4.9)
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Arguing as in the derivation of (4.5) we obtain

|R1,2| ≤ CMe
−Bk1 , for k1 ≥ 1. (4.10)

Similar arguments yield

|R1,3| ≤
CM

k
5/2
1

, for k1 ≥ 1, (4.11)

|R1,3| ≤
CM

k
3/2−2δ
1

, for k1 ≤ 1, (4.12)

as well as

|R1,4| ≤
CM

k
4/3
1

, for k1 ≤ 1, (4.13)

|R1,4| ≤ CM e−Bk1 , for k1 ≥ 1. (4.14)

Putting together (4.5) and (4.8)-(4.14), Lemma 4.3 follows. ut

Lemma 4.4 Suppose that g ∈ Y7/6−δ/2, β(T ), for some T > 0, with β as in Theorem
4.1. Suppose that λ satisfies also the assumptions in Theorem 4.1 and 1/2 ≤ λ(τ) ≤
2. Then the function R2(τ, k1, g) defined by (2.20) satisfies

sup
0≤τ≤T

|R2(τ, k1, g)| ≤
CM

k
3/2−δ
1

, k1 ≤ 1 (4.15)

sup
0≤τ≤T

|R2(τ, k1, g)| ≤
CM

kβ
1

, k1 ≥ 1, (4.16)

where CM = C(A,B,D, δ,M, |||g|||7/6−δ/2, β) is uniformly bounded if |||g|||7/6−δ/2, β

is bounded and is independent of M ′. Moreover, suppose that g, g are such that

|||g|||7/6−δ/2, β + |||g|||7/6−δ/2, β ≤ ρ (4.17)

for some positive constant ρ. Then,

|||R2(·, ·, g)−R2(·, ·, g)|||3/2−δ, β ≤ CM |||g − g|||7/6−δ/2, β (4.18)

where CM = C(A,B,D, δ,M, ρ)
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Remark 4.5 Lemma 4.4 will play a crucial role in the forthcoming argument. The
reason is that it states that the function R2(τ, k1, g) is smaller near the origin than
the leading linear term Lk,2(f0, g)(τ, k1) in (2.22). Indeed, given g ∈ Y7/6−δ/2,β(T ),

it follows that Lk,2(f0, g)(τ, k1) is pointwise bounded by Ck
−3/2+δ/2
1 for 0 < k1 ≤ 1.

On the other hand, the term R2(τ, k1, g) can be estimated by the smaller quantity

Ck
−3/2+δ
1 for 0 < k1 ≤ 1. This additional smallness, that is due to the fact that

R2(τ, k1, g) is quadratic with respect to g, allow to handle this last term in a pertur-
bative manner.

Proof of Lemma 4.4 The function n(λ(τ) f0, g) contains two types of terms de-
pending on their homogeneity. Some of the terms are the ones in ñ that are quadratic
in g and linear in f0. These terms can be estimated for 0 ≤ k1 ≤ 1 using (2.3) and
g ∈ Y76−δ/2,β(T ). Using the change of variables k3 = k1 ξ3, k4 = k1 ξ4 we deduce an
estimate of the form (4.15) for the contribution due to these terms. The remain-
ing terms in n(λ(τ) f0, g) are the ones in r(λ(τ) f0, g). Their contribution can be

estimated as CMk
−7/6−δ
1 when k1 ≤ 1 which is smaller than the right hand side of

(4.15). Finally, (4.16) follows using the same arguments as in the proof of Lemma
4.3. Estimates for the differences (4.18) are obtained in the same way. ut

Proof of Theorem 4.1. We recall that we look for a solution of the problem
(2.22)-(2.23) of the form:

f(τ, k) = λ(τ) f0(k) + g(τ, k)

where λ(τ) will be prescribed imposing g ∈ Y7/6−δ/2,β(T ) for some T > 0. Moreover
we also have g(0, k) = 0 for k ≥ 0 (cf. (2.15)).

Let us introduce a suitable functional framework. We define the space

Λ(T )≡{λ ∈ C([0, T ]) ∩C1(0, T ) : |λ(τ)− λ(0)| ≤ 1

4
, |λ′(τ)| ≤ C, 0 ≤ τ ≤ T}(4.19)

endowed with the norm

||λ||1,∞ = sup
0≤τ≤T

{|λ(τ)|+ |λ′(τ)|} . (4.20)

Let us introduce the following functional spaces:

W(T ) =

{
g ∈ Y7/6−δ/2,β(T ),

∂g

∂τ
∈ Y7/6−δ/2,β(T )

}
(4.21)

with the norm,

||g||W = |||g|||7/6−δ/2,β +

∣∣∣∣∣∣∣∣∣∣∣∣∂g∂τ
∣∣∣∣∣∣∣∣∣∣∣∣

7/6−δ/2,β

(4.22)
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and Z(T ) = W × Λ(T ). We define an operator T from Z into itself as follows.
Given (g, λ) ∈ Z let g̃1 be the solution of:

∂g̃1

∂τ
(τ, k1) = Lk,2(f0, g̃1)(k1, τ) +

1

λ(τ)
Lk,1(f0, g̃1)(k1, τ) +

+
1

λ2(τ)
(R1(τ, k1) +R2(τ, k1, g)) (4.23)

g̃1(0) = 0. (4.24)

The function g̃1 is uniquely defined due to Theorem 3.1. Moreover, the limit

b(τ) ≡ bg,λ(τ) ≡ lim
k→0

k7/6g̃1(τ, k) (4.25)

exists. We define the function λ̃(t) as the solution of the integral equation

λ̃(τ) ≡ a(τ, 0) +
1

A

∫ τ

0

∂a

∂τ
(τ, τ) λ̃(τ) d τ − b(τ) ≡ S(λ̃), (4.26)

where a is defined by (3.88) in Lemma 3.21. Let us suppose for the moment that
the function λ̃(τ) solution of (4.26) is well defined. We then define a function g̃2 by
means of

g̃2(τ, k) =
1

A

{
H(τ, τ, k) λ̃(τ)−H(τ, 0, k) λ̃(0)−

∫ τ

0

∂H

∂τ
(τ, τ , k) λ̃(τ) dτ

}
(4.27)

where H is the solution of the problem (3.85), (3.86) whose existence and uniqueness
is asserted in Lemma 3.21.
After all these preliminaries we define

T : Z → Z
T (g, λ) = (g̃, λ̃) (4.28)

g̃ = g̃1 + g̃2.

Notice that a fixed point of the operator T is a solution of the integral equation
associated to the problem (2.22-(2.23). Moreover, we remark that the solution of
such an integral equation solves the differential equation (2.22)-(2.23). Indeed, this
follows from the differentiability of the function g̃2 defined in (4.27) with respect to
τ for k > 0. Such a regularity can be seen by differentiating formally the right hand
side of (3.101) with respect to τ and using the regularity properties of the function
H proved in Lemma 3.21 (cf. (3.91) and (3.92)).

We then proceed to check that the operator T is well defined. As a first step
we derive a local well-posedness result for (4.26). To this end we first prove an
auxiliary result. Let us denote as T(g;λ) = g̃1 the solution of (4.23), (4.24) and
S(g;λ) = T(g)− bg,λ k

−7/6. We then have the following
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Lemma 4.6 Suppose that λ ∈ Λ(T ) satisfies ||λ||1,∞ < ∞ with ||λ||1,∞ defined
in (4.20) and g, ∂g/∂τ ∈ Y7/6−δ/2,β(T ). Then the function b(τ) defined in (4.25)
satisfies

|b(τ)|+ |b′(τ)| ≤ C τ 3δ, 0 ≤ τ ≤ T (4.29)

Moreover

|bg,λ(τ)− bh,µ(τ)|+ |b′g,λ(τ)− b′h,µ(τ)| ≤ C τ 3δ (||λ− µ||1,∞ + ||g − h||W) (4.30)

and

||S(g;λ)− S(h;µ)||W ≤ CT 3δ/2(||g − h||W + ||λ− µ||L∞(0,T )) (4.31)

for 0 ≤ τ ≤ T , where C = C(A,B,D, δ,M,M ′, d) and d = |||g|||W + |||h|||W +
||λ||1,∞ + ||µ||1,∞ + ||g − h||W .

Proof of Lemma 4.6. The existence of the functions g̃1 and b(τ) and the part of
the estimate (4.29) for b is just a consequence of Theorem 3.1.

In order to estimate b′(τ), we differentiate (4.23) with respect to τ . The result-
ing equation has the form:

∂

∂τ

(
∂g̃1

∂τ

)
= Lk,2(f0,

∂g̃1

∂τ
)(k1, τ) +

1

λ(τ)
Lk,1(f0,

∂g̃1

∂τ
)(k1, τ) + F(k1, g, g̃1,

∂g

∂τ
, τ).

(4.32)

Arguing as in the proof of Lemmas 4.3 and 4.4, we deduce∣∣∣∣∣∣∣∣∣∣∣∣F(k1, g, g̃1,
∂g

∂τ
, τ)

∣∣∣∣∣∣∣∣∣∣∣∣
3/2−δ,β

≤ C||g||W (4.33)

The estimate for b′(τ) in (4.29) then follows from Theorem 4.1. Combining (4.18)
and Theorem 3.1 we obtain:

|bg,λ − bh,µ| ≤ C T 3δ
(
|||g − h|||7/6−δ/2,β + ||λ− µ||L∞(0,T )

)
(4.34)

|||S(g;λ)− S(h;µ)|||7/6−δ/2,β ≤ C T 3δ/2(|||g − h|||7/6−δ/2,β+
+||λ− µ||L∞(0,T )). (4.35)

Arguing as in the proof of (4.33) we arrive at∣∣∣∣∣∣∣∣∣∣∣∣F(k1, g,T(g;λ),
∂g

∂τ
, τ)−F(k1, h,T(h;µ),

∂h

∂τ
, τ)

∣∣∣∣∣∣∣∣∣∣∣∣
3/2−δ,β

≤

C(||g − h||W + ||λ− µ||L∞(0,T )) (4.36)
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Using again Theorem 3.1 we deduce

|b′g,λ − b′h,µ| ≤ C T 3δ(|||g − h|||W + ||λ− µ||L∞(0,T )), (4.37)∣∣∣∣∣∣∣∣∣∣∣∣ ∂∂tS(g;λ)− ∂

∂t
S(h;µ)

∣∣∣∣∣∣∣∣∣∣∣∣
7/6−δ/2,β

≤ CT 3δ/2(||g − h||W + ||λ− µ||L∞(0,T )). (4.38)

This concludes the proof of the Lemma 4.6. ut

We can now prove a local well-posedness result for (4.26).

Lemma 4.7 For any M > 0 and M ′ > 0 there exists T such that, T = T (A,B,
D, δ,M,M ′) and a unique λ ∈ C([0, T ]) solving (4.26) for 0 ≤ τ ≤ T . Moreover,

|λ(τ)− A| ≤ C(A,B,D, δ,M,M ′)T 3 δ, 0 ≤ τ ≤ T. (4.39)

Proof of Lemma 4.7. We notice that the operator S defined in (4.26) maps
C[0, T ] onto C[0, T ] and is contractive for T sufficiently small. Indeed, due to (4.30)
and (3.90), we have

|S(λ1)(τ)− S(λ2)(τ)| ≤ C q(T )T 3δ||λ1 − λ2||1,∞ (4.40)

where C = C(δ) and

q(T ) = sup
0≤τ≤τ≤T

|(τ − τ)1−3 δ ∂a

∂τ
(τ, τ)|. (4.41)

Moreover:

||S(λ)− b(·)− a(·, 0)||∞ ≤ q(T )T 3δ(||b||∞ + ||a(·, 0)||∞+
+ ||λ− b(·)− a(·, 0)||∞) (4.42)

By Theorem 3.1 and Lemma 3.21, we have, for some T̃ = T̃ (A,B,D, δ,M,M ′) > 0

||b(·)||∞ + ||a(·, 0)||∞ + q(T ) ≤ C(A,B,D, δ,M,M ′), 0 ≤ T ≤ T̃ . (4.43)

Therefore, a standard fixed point argument concludes the proof of the Lemma. ut

Lemma 4.8 The function λ̃ solution of the integral equation (4.26) satisfies:

|λ̃(τ)| ≤ C (||a(·, 0)||∞ + ||b||∞) , 0 ≤ τ ≤ T (4.44)

|λ̃τ (τ)| ≤ C||b′||∞, 0 ≤ τ ≤ T (4.45)

for T > 0 is sufficiently small.
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Proof of the Lemma 4.8. The inequality (4.44) is a consequence of (3.90) and
(4.26). On the other hand, in order to derive (4.45), we remark that integration by
parts in (4.26) yields:

1

A

∫ τ

0

a(τ, τ) λ̃′(τ) dτ + b(τ) = 0. (4.46)

Differentiating this equation we obtain

λ̃′(τ) +
1

A

∫ τ

0

∂a

∂τ
(τ, τ) λ̃′(τ) dτ + b′(τ) = 0 (4.47)

that, combined with (3.93) gives (4.45). ut

End of the Proof of Theorem 4.1. The proof reduces to show that the op-
erator T defined in (4.28) is a contraction for T small enough. Notice that

T (g, λ) = (T(g) + g̃2, λ̃). (4.48)

Let us first show that T(g)+ g̃2 ∈ W(T ). Indeed, using (4.27) and (3.88) we obtain:

lim
k→0

k7/6 g̃2(τ, k) = λ(τ)− a(τ, 0)λ(0)− 1

A

∫ τ

0

∂a

∂τ
(τ , τ) dτ (4.49)

Combining (4.25), (4.26) and (4.49) it then follows that:

lim
k→0

(
k7/6(T(g) + g̃2)

)
= 0 (4.50)

Then, the fact that, T(g)+ g̃2 ∈ W(T ) follows from (3.94), (3.95), (4.27) and (4.31).
Moreover we also obtain:

||(T(g) + g̃2)− (T(h) + h̃2)||W ≤ 1

4
(||g − h||W + ||λ− µ||1,∞) (4.51)

for T > 0 sufficiently small.

On the other hand, in order to keep track of the dependence of a(·, 0) with re-
spect to λ we denote as Hλ(t, 0) the solution of (3.85) and aλ the function defined
by (3.88) in Lemma 3.21. Lemma 4.8 then yields

||λ̃− µ̃||1,∞ ≤ C (||bg,λ − bh,µ||1,∞ + ||aλ(·, 0)− aµ(·, 0)||∞) . (4.52)

The first term of the right hand side of (4.52) has been estimated in (4.30). On the
other hand, the second term might be estimated as follows. Consider

∂

∂τ
(Hλ −Hµ) = Lk,1(f0, Hλ −Hµ) +

1

λ(τ)
Lk,2(f0, Hλ −Hµ) +(

1

λ(τ)
− 1

µ(τ)

)
Lk(f0, Hµ) (4.53)
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Using that ∣∣∣∣∣∣∣∣( 1

λ(τ)
− 1

µ(τ)

)
Lk,2(f0, Hµ)(t)

∣∣∣∣∣∣∣∣
3/2−δ,β

≤ C||λ− µ||∞

and Theorem 3.1 we deduce that

||aλ(·, 0)− aµ(·, 0)||∞ ≤ C ||λ− µ||W . (4.54)

Combining (4.30) and (4.54) we obtain,

||λ̃− µ̃||1,∞ ≤ 1

4
(||g − h||W + ||λ− µ||1,∞) (4.55)

for T > 0 sufficiently small. Formulae (4.49), (4.51) and (4.55) imply that T is a
contractive operator, whence the operator T defined in (4.28) has a unique fixed
point. Finally, changing to the time variable t using (2.21), Theorem 4.1 follows. ut

Remark 4.9 We notice that the dependence on M , M ′ of the different constants
C that have been used in the proof of Theorem 4.1 is due to the dependence on M ,
M ′ of the terms R1, R2, Uk, k = 1, 2, 3 in (2.19), (2.20) and (3.13)-(3.15). This
fact is relevant because in the next Section we will derive refined estimates on the
solution f of (2.10)-(2.11) that, in particular, will provide estimates on the terms
R1, R2, Uk, k = 1, 2, 3 independent on M , M ′. This will make possible to show
that the solution f constructed in Theorem 4.1 can be extended on a time interval
independent on M , M ′.

5 The limit M,M ′ →∞.

5.1 Uniform bounds.

The aim of this subsection is to obtain uniform bounds on the solutions of the
truncated nonlinear problem (2.10)-(2.12) with respect to the truncation parameters
M and M ′. The main result that we prove is an estimate of the form

0 ≤ f(t, k) ≤ L
e−Dk

k7/6
, if k > 0, t ∈ (0, T ), (5.1)

with L and T independent of M and M ′ and with D as in (2.5). We recall that,
although the functions f depend on M and M ′ we will not write this dependence
explicitly.

Notice that, due to (2.5) and (2.5)-(2.11), we have, for all M > 0 and M ′ > 0:

f(t, k) = f(0, k) ≤ L
e−Dk

k7/6
, for all k > M ′ and t > 0, (5.2)

whence (5.1) holds immediately for all k > M ′. Our goal now is to extend the range
of validity of this inequality to the values k < M ′.
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Due to the interaction between the regions of small and large values of k, it is not
possible to obtain the estimate (5.1) without estimating also the function f(t, k) for
k of order one. More precisely, in the derivation of (5.1), we will also obtain the
following

|f(t, k)− a(t) k−7/6| ≤ Lk−7/6+δ/2, k ≤ 1, t ∈ (0, T ), (5.3)

|a(t)| ≤ L, for t ∈ (0, T ), (5.4)

with L and T as in (5.1). The key idea to prove (5.1), (5.3), (5.4) is to use a
standard continuity argument. More precisely, it turns out that the functions f(t, k)
solutions of problems (2.10)-(2.12) satisfy (5.1), (5.3), (5.4) in an interval of time
t ∈ [0, T (M,M ′)]. This is proved in the next Lemma. In the rest of this subsection
we extend the range of validity of these inequalities, to a time interval independent
on M and M ′. Since we are interested in the limit as M and M ′ approach to ∞, we
will assume from now on that M and M ′ are larger than a positive fixed number.

Lemma 5.1 For any M > 0 and M ′ > 0, there exists T (M,M ′) such that the
solution f of (2.10)-(2.12), with f0 as in (2.3)-(2.5), obtained in Theorem 4.1,
satisfies (5.1), (5.3), (5.4) with L = 4B, where B is as in (2.3)-(2.3), for t ∈
[0, T (M,M ′)].

Proof of Lemma 5.1. For k > M ′ this is a consequence of the fact that WM,M ′

vanishes. For k ≤M ′ the result is a consequence of (4.1) in Theorem 4.1. ut
Our purpose is now to extend this estimates to a finite time T independent on

M ′. Let us denote from now on Tmax(M,M ′, L) the size of the largest interval of
the form [0, T ] where (5.1), (5.3), (5.4) hold.

Lemma 5.2 Let f be the solution of (2.10)-(2.12). There exists T > 0, T = T (L)
independent of M and M ′ such that

f(t, k) ≥ f0(k)

2
, 1 ≤ k ≤ 2, t ∈ [0,min{T, Tmax(M,M ′, L)}), (5.5)

Proof of Lemma 5.2. Notice that,

∂f1

∂t
≥ −f1

∫
D(k1)

f2(1 + f3 + f4)WM,M ′ dk3 dk4, for 0 ≤ t ≤ Tmax(M,M ′, L).(5.6)

In order to derive a lower estimate for ∂f
∂t

we need an upper estimate for the integral
term on the right hand side of (5.6). To this end we first use that:

∫
D(k1)

f2WM,M ′ dk3 dk4 ≤
1√
k1

∫ ∞

0

∫ k2+k1

−k2−k1

√
k2 f2 dξ dk2 (5.7)
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where ξ = k4 − k3. Therefore∫
D(k1)

f2WM,M ′ dk3 dk4 ≤ 2L√
k1

∫ ∞

0

√
k2
e−Dk2

k
7/6
2

(k2 + k1) dk2

= C L (k
−1/2
1 + k

1/2
1 ), (5.8)

where C is a positive constant independent of M,M ′ and L. On the other hand, a
straightforward calculation, using (5.1), gives:∫

D(k1)

f2 (f3 + f4)WM,M ′ dk3 dk4 ≤ C L2 k
−2/3
1 , (5.9)

where C is a positive constant independent of M,M ′ and L. Combining (5.8), (5.9)
we arrive at:∫

D(k1)

f2 (1 + f3 + f4)WM,M ′ dk3 dk4 ≤ C L (k
−1/2
1 + k

1/2
1 ) + C L2 k−2/3 (5.10)

for 0 ≤ t ≤ T (M,M ′). Therefore, by (5.6)

∂f

∂t
≥ −C L (k

−1/2
1 + k

1/2
1 )− C L2 k−2/3, for 0 ≤ t ≤ Tmax(M,M ′, L). (5.11)

Integrating this equation for k ∈ (1, 2) Lemma 5.2 follows. ut

We now prove the following,

Lemma 5.3 Suppose that f is a solution to (2.10)-(2.12) with initial data f0. Then,
there exists two positive constants ρ = ρ(L) and κ = κ(L), independent of M and
M ′ such that∫

D(k1)

f2 (1 + f3 + f4)WM,M ′ dk3 dk4 ≥
κ√
k1

min{M,k1}χ
(
k1

M ′

)
(5.12)

for 0 ≤ t ≤ Tmax(M,M ′, L).

Proof of Lemma 5.3.∫
D(k1)

f2 (1 + f3 + f4)WM,M ′ dk3 dk4 ≥ χ

(
k1

M ′

) ∫
D(k1)

f2WM,M ′ dk3 dk4

≥ χ

(
k1

M ′

) ∫ k1/2

0

∫ k1+k2

−k1−k2

WM,M ′ dξ f2 dk2

≥ 2√
k1

χ

(
k1

M ′

) ∫ k1/2

0

√
k2 f2

∫ k1−k2

0

χ

(
ξ

M

)
dξ dk2

=
1√
k1

χ

(
k1

M ′

)
min{k1,M}

∫ ∞

0

√
k2 f2 dk2. (5.13)

using Lemma 5.2 we derive a uniform lower estimate for the last integral and the
Lemma follows.
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Lemma 5.4 Suppose that f is a solution to (2.10)-(2.12) satisfying (5.1) with ini-
tial data f0. Then, there exists a positive constant ρ = ρ(L), independent on M and
M ′ such that,∫

D(k1)

f3 f4 (1 + f1 + f2)WM,M ′ dk3 dk4 ≤ C χ

(
k1

M ′

)
e−D k1

k
7/3
1

min{k1,M}

(5.14)

for k1 ≥ ρ and t ≤ Tmax(M,M ′).

Proof of Lemma 5.4. Estimate (5.1) implies that there exists ρ = ρ(L) > 0 such
that f1 ≤ 1 for k1 ≥ ρ. Then, for k1 ≥ ρ∫

D(k1)

f3 f4 (1 + f1 + f2)WM,M ′ dk3 dk4 ≤ 2

∫
D(k1)

f3 f4 (1 + f2)WM,M ′ dk3 dk4 (5.15)

Using again (5.1) we may write∫
D(k1)

f3 f4 (1 + f2)WM,M ′ dk3 dk4 = C e−D k1

∫ ∞

0

dk2(1 + f2) e
−D k2 J(k1, k2)

(5.16)

J(k1, k2) = (k1 + k2)
−7/6

∫ k1+k2

0

dξ
WM,M ′

(k1 + k2 − ξ)7/6
(5.17)

where the change of variables k2 = k3 + k4 − k1, ξ = k4 − k3 as well as the fact that
k1 + k2 + ξ ≥ k1 + k2 for ξ ≥ 0 have been used.

Consider first the case when ρ < k1 ≤ 2M and k2 ≥ k1. Using the estimate
WM,M ′ ≤ k

1/2
3 k

−1/2
1 = (k1 + k2 − ξ)1/2k

−1/2
1 we deduce that:

J(k1, k2) ≤ C k
−1/2
1 (k1 + k2)

−5/6 ≤ C k
−4/3
1 (5.18)

On the other hand, we use that WM,M ′ ≤ min{k1/2
2 k

−1/2
1 , (k1 +k2−ξ)1/2k

−1/2
1 } holds

if ρ < k1 ≤ 2M and k2 ≤ k1. Therefore, an explicit computation yields

J(k1, k2) ≤ C (k1 + k2)
−7/6 k

1/3
2 k

−1/2
1 ≤ 1

k
4/3
1

(
k2

k1

)1/3

. (5.19)

Where, in the derivation of this formula, we split the domain of integration in (5.17)
in the intervals, (0, k1 − k2) and (k1 − k2, k1 + k3). In the original variables these
regions are equivalent to k4 ≤ k1 and k4 ≥ k1 respectively.
Suppose now that k1 ≥ 2M . In this case, a geometrical argument shows that, for
the values of k3, k4 where WM,M ′ 6= 0, the values of k3, k4 can be estimated from
below by means of k1.More precisely, there exists a positive constant κ, independent
on k1, k3, k4,M and M ′ such that, for (k3, k4) ∈ D(k1), and WM,M ′ 6= 0, there holds

k3 ≥ κk1 and k4 ≥ κk1. Using WM,M ′ ≤ min(1, k
1/2
2 k

−1/2
1 ), it then follows that

J(k1, k2) ≤ C k
−7/3
1 M min{1, k1/2

2 k
−1/2
1 } ≤ C k

−7/3
1 M min{1, k1/3

2 k
−1/3
1 }. (5.20)
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By (5.18), (5.19) and (5.20) we obtain

J(k1, k2) ≤
C

k
7/3
1

min{k1,M} min

{
1,

(
k2

k1

)1/3
}

(5.21)

Plugging this in (5.16) (5.1), Lemma 5.4 follows. ut

Combining now the two previous Lemmas we can obtain the following upper es-
timate for the solutions.

Lemma 5.5 Suppose that f is a solution to (2.10)-(2.12) satisfying (5.1) in 0 ≤ t ≤
Tmax(M,M ′) with initial data f0 satisfying (2.3)-(2.5) . Then, there exists ρ = ρ(L)
independent on M and M ′ such that,

f(t, k1) ≤
L

2
k
−7/6
1 e−D k1 , k1 ≥ ρ, 0 ≤ t ≤ Tmax(M,M ′) (5.22)

Proof of Lemma 5.5. Using in (2.10) the estimates (5.12) and (5.14) we obtain

∂f

∂t
≤
(
C k

−7/3
1 e−D k1 − κ√

k1

f

)
min{M,k1}χ

(
k1

M ′

)
(5.23)

By the maximum principle, we obtain,

f(k1, t) ≤ max

{
f0(k1),

C

κ

e−D k1

k
11/6
1

}
. (5.24)

Combining (5.1) and (5.24), Lemma 5.5 follows. ut
As a final step, we prove that (5.22) also holds for 0 < k1 ≤ ρ as well as the

improved estimates (5.3) (5.4). To this end we use the regularity estimates derived
for the solutions of (2.10)-(2.12) in Section 3.

Proposition 5.6 Suppose that f is a solution to (2.10)-(2.12) satisfying (5.1), (5.3)
and (5.4) in 0 ≤ t ≤ Tmax(M,M ′) with initial data f0 satisfying (2.3)-(2.5). There
exists T ∗ = T ∗(A,B, δ) such that, if Tmax(M,M ′) ≤ T ∗

f(t, k1) ≤
1

2
Lk

−7/6
1 e−D k1 , 0 < k1 ≤ ρ (5.25)

|f(t, k)− a(t) k−7/6| ≤ L

2
k−7/6+δ/2, k ≤ 1, (5.26)

|a(t)| ≤ L

2
, (5.27)

for 0 ≤ t ≤ Tmax(M,M ′).

41



Remark 5.7 The key point in Proposition 5.6 is that T ∗ is independent on M , M ′.

Proof of the Proposition 5.6. Let us pick M0 > 0 large enough but fixed
(M0 = 4 would work). We assume from now on that M ≥ M0, M

′ ≥ M0. The
equation satisfied by f can be written as:

∂f

∂t
=

∫
D(k1)

WM0,M0 q̃(f) dk3 dk4 +

∫
D(k1)

(WM,M ′ −WM0,M0) q̃(f) dk3 dk4

+

∫
D(k1)

WM,M ′ (f3 f4 − f1 f2) dk3 dk4. (5.28)

Using (3.62), (3.63), (3.64) and (3.65) we can rewrite (5.28) as follows:

∂f

∂t
= λ2(t)

∫
D(k1)

WM0,M0
˜̀(f0, g) dk3 dk4 + S (5.29)

S = λ(t)

∫
D(k1)

WM0,M0 ñ(f0, g) dk3 dk4 +

∫
D(k1)

(WM,M ′ −WM0,M0) q̃(f) dk3 dk4

+

∫
D(k1)

WM,M ′ r(f) dk3 dk4 + λ3(t)

∫
D(k1)

WM0,M0 q̃(f0) dk3 dk4 (5.30)

= S1 + S2 + S3 + S4. (5.31)

In order to apply Theorem 3.1 we need to bound the source term S in (5.31). This
is done in the following Lemma.

Lemma 5.8 Suppose that f satisfies the asumptions in Proposition 5.6. Then,

||S(t)||3/2−δ, β ≤ C(L), 0 < t < Tmax(M,M ′) (5.32)

Proof of Lemma 5.8. The term S1 in (5.31) is estimated as the term R2 in the
Lemma 4.4. In the third term S3, in order to obtain an estimate uniform with
respect to M we use the exponential decay of f in (5.1) to bound the integral in
the region where k3 ≥ 1 or k4 ≥ 1. To estimate the contribution in the region
where k3 ≤ 1, k4 ≤ 1 we use the fact that r(f) is quadratic with respect to f and
therefore, its contribution is of lower order. Actually, the argument is exactly the
same as the one which has been used in Lemma 4.4 to estimate the quadratic terms
of R2. The main novelty arises in the estimate of S2. Notice that, the support of
WM,M ′ −WM0,M0 is contained in the region where |k3 − k4| ≥ M0. On the other
hand we write

|S2| ≤ a1(k1) f1 + a2(k1) (5.33)

where,

a1(k1) =

∫
D(k1)

|WM,M ′ −WM0,M0| (f3 f4 + f2 (f3 + f4)) dk3 dk4 (5.34)

a2(k1) =

∫
D(k1)

|WM,M ′ −WM0,M0| f2 f3 f4 dk3 dk4 (5.35)
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Since the integration in these two formulas takes place in the region where |k3 −
k4| > M0, the function a1 and a2 in (5.34), (5.35) can be bounded by a constant
independent on M and M ′ due to the exponential decay of f . Moreover, both
functions a1 a2 decay exponentially fast as k1 → +∞, due to the exponential decay
of the function f . ut
End of the Proof of Proposition 5.6. The basic idea is to apply once more
Theorem 3.1. Notice that Theorem 3.1 is written using the time variable τ , insted
of t. However, (2.21) as well as the fact that 1

2
≤ λ(t) ≤ 2, imply that the result of

Theorem 3.1 can also be applied in the t variable as it has been made in the Sections
3 and 4. Therefore, Theorem 3.1 combined with Lemma 5.8 yields,

|f(k, t)| ≤ B

k7/6
e−D k + C

T 3δ

k7/6
, 0 < k < ρ, 0 ≤ t ≤ Tmax(M,M ′), (5.36)

where C depends on M0 but is independent on M and M ′. Formula (5.25) follows
choosing T small enough but independent on M , M ′. Similarly,

|a(t)| ≤ B + C T 3δ/2 0 ≤ t ≤ 1, (5.37)

|f(t, k)− a(t) k−7/6| ≤ (B + CT−3δ/2k−7/6+δ/2).

Henceforth, (5.26), (5.27) follow choosing again T small enough but independent on
M , M ′. This concludes the proof of the Proposition 5.6. ut

Lemma 5.9 Suppose that f is a solution to (2.10)-(2.12) satisfying (5.1), (5.3)
and (5.4) in 0 ≤ t ≤ Tmax(M,M ′) with initial data f0 satisfying (2.3)-(2.5). Then,
the solution f constructed in Theorem 4.1 can be extended to a time interval [0, T )
where T = (A,B,D, δ) is independent of M and M ′.

Proof of the Lemma 5.9. Let us denote as Texist(M,M ′) the maximal existence
time of the solutions constructed in Theorem 4.1. If for some M > M0, M

′ > M0

we have Texist(M,M ′) ≥ T ∗ the Lemma will follow. Let us suppose that, on the
contrary, for some M > M0 and M ′ > M0, we have Texist(M,M ′) < T ∗. By
definition, Tmax(M,M ′) ≤ Texist(M,M ′). Moreover, we claim that Tmax(M,M ′) =
Texist(M,M ′). Indeed, if Tmax(M,M ′) < Texist(M,M ′), Lemma 5.5 and Proposition
5.6 yield a contradiction since estimates (5.1), (5.3) and (5.4), could be extended
beyond Tmax(M,M ′). Therefore, as long as the solution of (2.10)-(2.12) exists these
estimates hold. The constants arising in the contractivity argument that gives the
Theorem 4.1 are then independent on M M ′ (cf. Remark 4.9). We deduce that
there exists a lower bound for Texist(M,M ′) independent of M and M ′ and the
result follows. ut
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5.2 Taking the limit M → +∞, M ′ → +∞.

Proposition 5.10 Suppose that f = fM,M ′ are the solutions of (2.10)-(2.12) con-
structed in Theorem 4.1, and defined in the interval of time T independent of M and
M ′. Then limM,M ′→∞ fM,M ′(t, k) = f(t, k) uniformly on compact sets of R+× [0, T ).
The function f is such that f ∈ Y7/6,β, ∂tf ∈ Y3/2,β, it solves (2.1), (2.2) for
0 ≤ t ≤ T and moreover satisfies (5.1), (5.3), (5.4).

Proof of Proposition 5.10. The idea is to prove that the family {fM}M>M0

satisfies the Cauchy condition with the norm |||f |||7/6−δ/2,β. Let us write f = fM,M ′

and f̃ = ffM,fM ′ . It is convenient to use in all this argument the time variable τ
instead of t. Notice that the definition on τ in terms of t in (2.21) is different for
the solutions f and f̃ . We also define g = f − λ(τ) f0 and g̃ = f̃ − λ̃(τ) f0 where
λ = λM,M ′ and λ̃ = λ̃fM,fM ′ . Notice that both functions g and g̃ solve problem (2.22)
and (2.23). Then

∂(g − g̃)

∂τ
=

∫ ∫
D(k)

WM,M ′ ˜̀(f0, g − g̃) dk3 dk4 + (λτ − λ̃τ ) f0

+S1 + S2, (5.38)

where,

S1 =

∫ ∫
D(k)

(
WM,M ′ −WfM,fM ′

)
˜̀(f0, g̃) dk3 dk4

S2 =

∫ ∫
D(k)

(
WM,M ′

λ
s(f0, g)−

WfM,fM ′

λ̃
s(f0, g̃)

)
dk3 dk4

+

(
R1 +R2

λ2
− R̃1 + R̃2

λ̃2

)

where Ri and R̃i, i = 1, 2 are defined by means of (2.19), (2.20) using the functions
g and g̃ respectively.

Lemma 5.11 Let us denote m ≡ min(M,M ′, M̃ , M̃ ′). Then for some positive con-
stant C = C(A,B,D, δ),

||S1(t)||3/2−δ/2,β ≤ C e−
D M

2 , (5.39)

||S2(t)||3/2−δ/2,β ≤ C e−
D M

2 + |||g − g̃|||7/6−δ/2,β + ||λ− λ̃||L∞(0,T ). (5.40)

Proof of Lemma 5.11. We assume without any loss of generality that M̃ ≥ M .
The estimate (5.39) is a consequence of the exponential decay of the functions g, g̃
and the fact that the support of WM,M ′ −WfM,fM ′ is contained in the region where
k3 > M/2, k4 > M/2. To estimate S2 we decompose it in the sum of different terms

containing the differences WM,M ′ −WfM,fM ′ , g − g̃ and λ− λ̃, by means of the usual
triangular argument. ut

44



Lemma 5.12 Under the asumptions of Proposition 5.10

|λ(τ)− λ̃(τ)|+ |λτ (τ)− λ̃τ (τ)| ≤ C|||g − g̃|||7/6−δ/2,β, 0 ≤ τ ≤ T. (5.41)

Proof of Lemma 5.12. This result is a consequence of the estimates obtained for
the derivatives of the solution of the integral equation (4.26) (cf. (4.46)). On the
other hand, using the equation (4.47)

| d
dτ
λ(τ)− d

dτ
λ̃(τ)| ≤ 1

A

∫ τ

0

∣∣∣∣∂a∂τ̃ (τ, τ)

∣∣∣∣ ∣∣∣(λτ − λ̃τ )(τ)
∣∣∣ dτ +

+
1

A

∫ τ

0

∣∣∣∣(∂a∂τ̃ − ∂a

∂τ̃

)
(τ, τ)

∣∣∣∣ |λ̃τ | dτ̃ + |bτ (τ)− b̃τ (τ)| (5.42)

The first term in the right hand side of (5.42) is estimated, using (3.90) , by
CT 3δ||λτ− λ̃τ ||L∞(0,T ). The second one is estimated, applying Theorem 3.1 to (3.85),

(3.86), by CT 3δ||λ− λ̃||L∞(0,T ). Finally, the last one can be estimated, applying once

more Theorem 3.1 to (4.23), (4.24), by CT 3δ/2||λ− λ̃||L∞(0,T ) + C|||g − g̃|||7/6−δ/2,β.
A similar argument with the equation (4.26) shows that

||λ− λ̃||L∞(0,T ) ≤ CT 3δ/2||λ− λ̃||L∞(0,T ) + C|||g − g̃|||7/6−δ/2,β (5.43)

Combining these estimates the Lemma follows for T sufficiently small. ut
End of the Proof of Proposition 5.10. Combining Theorem 3.1 with Lemmas
5.11 and 5.12 we obtain

||λ− λ̃||L∞(0,T ) + |||g − g̃|||7/6−δ/2,β ≤ CT 3δ/2
(
||λ− λ̃||L∞(0,T ) + |||g − g̃|||7/6−δ/2,β

)
+Ce−

D M
2

whence, for T sufficiently small,

||λ− λ̃||L∞(0,T ) + |||g − g̃|||7/6−δ/2,β ≤ Ce−
D M

2

and the Proposition follows. This shows the existence of f as defined in the statement
of the Proposition. Notice that, we deduce from (2.10) and (2.12):

fM,M ′(t, k) = f0(k) +

∫ t

0

QM,M ′(fM,M ′)(s, k)ds.

Taking the limit M,M ′ → +∞ we deduce that,

f(t, k) = f0(k) +

∫ t

0

Q(f)(s, k)ds. (5.44)

Since the second term in the right hand side of (5.44) is a differentiable function of
time, we deduce ∂tf = Q(f) ∈ Y3/2,β.
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6 End of the Proof of Theorem 2.1.

6.1 Uniqueness of Solutions.

Proposition 6.1 Suppose that f0 satisfies (2.3)-(2.5). Then, there exists a unique
solution of (2.1), (2.2) satisfying (5.1), (5.3) and (5.4).

Proof of Proposition 6.1. The proof is basically the same as that of Proposition
5.10. Indeed, if f and f̃ are two solutions of (2.1), (2.2) satisfying (5.1), (5.3) and

(5.4) then they are of the form f = λ(τ) f0 + g, f̃ = λ̃(τ) f0 + g̃ with g and g̃ in the
space Y7/6−δ/2,β. Arguing exactly as in the proof of (5.44) we obtain

||λ− λ̃||L∞(0,T ) + |||g − g̃|||7/6−δ/2,β ≤ CT 3δ/2
(
||λ− λ̃||L∞(0,T ) + |||g − g̃|||7/6−δ/2,β

)
.

that yields the desired uniqueness for T small enough. ut

6.2 End of the Proof of Theorem 2.1.

The proof of Theorem 2.1 is just a consequence of Proposition 5.10 and Proposition
6.1
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