ON THE FUNDAMENTAL SOLUTION OF A LINEARIZED

UEHLING-UHLENBECK EQUATION.

M. Escobedo!, S. Mischler?, J. J. L. Veldzquez®

Abstract. In this paper we describe the fundamental solution of the equa-
tion that is obtained linearizing the Uehling-Uhlenbeck equation around the
steady state of Kolmogorov type f(k) = k~7/5. Detailed estimates on its
asymptotics are obtained.
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1 Introduction.

This paper is devoted to the analysis of several mathematical properties of the
Uehling Uhlenbeck equation. This equation, introduced by L. W. Nordheim
in [16] and by E. A. Uehling and G. E. Uhlenbeck in [21], describes the
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evolution in the momentum space of a weakly interacting gas of bosons. In
the homogeneous case, this equation has the form:

.0 = QU )W) (1)

where f = f(t,p) is the particle density in the momentum space at time ¢.
The precise form of the collision kernel @) is given by:

Q) (m) = /(RS)SW(pl,pz,pz,m)Q(f)dmdpgdm (1.2)

q(f) = fsfa(l+ f))A+ fa) = fifo(1+ f3)(1 + f2) (1.3)
W (p1,p2,p3,p4) = w(p1,p2,P3,P4)0(p1 + p2 — P3 — Da) -
S(Ipa|* + [pal? = Ipsl* — Ipal?) (1.4)

From now on for convenience we write, f; = f(-,p;), ¢ = 1---4, where §
represents the Dirac measure and w is basically the differential cross section.
The function w is determined by the specific kind of interaction under con-
sideration. Since boson-boson is a short range interaction it can be assumed
that w is constant (cf. [10] vol. 3), and therefore it can be chosen as w = 1
after rescaling the time.

If we assume that the gas is isotropic, we may write f(¢,p) = f(¢t,|p|) =
f(t, k) with k = |p|>. The equation (1.1) reduces then to

0
a—;]: (kh t) == //;(kl) w (k’l, k’g, k’3, ]{34) q (f) dk’gdk}l (15)

(see for instance [19]), where ¢ (f) is as in (1.3) and D (k1) is defined by

means of

D (k) = {(ks k) < by + > B} (1.6)
and finally
i ki, Vko, Vks, Vk
W(k1,k2,k3,k4) — min (\/_17 \/_27 \/_37 \/_4) (17>
Vi
ko = ks+ky— k. (1.8)

There are several reasons for considering the equation (1.5) with singular ini-
tial data as k — 0. More precisely, data behaving as k~7/¢. This particular
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type of behaviour arises in applications of the equation (1.1) in Bose Einstein
condensation, as in references [6, 18, 19], and in weak turbulence, as in [4, 3].
The interpretation of solutions of equation (1.1) behaving as |p|~7/3 = k~7/6
when k& — 0 is the existence of a net flux or sink of particles at the origin
p =0 (cf. [4, 3,6, 9]). In this paper we restrict our analysis to the study of
isotropic solutions by simplicity. The study of the stability properties of the
perturbation of the singular solution |p|~7/® of (1.1)-(1.4) is an interesting
problem that, however, will not be considered in this paper.

Our purpose is to develop a rigorous mathematical theory of well posedness
for (1.5) whose solutions behave like k~7/¢ as k — 0. In order to do that, our
approach will consist in deriving a suitable semigroup theory for the problem
which is obtained by linearizing (1.5) around £~7/6. We use the semigroup
obtained in this paper in order to study the nonlinear problem in a forth-
coming paper. We remark that global solutions for an analogous equation,
with a modified version of the kernel, has been studied by X. G. Lu in [13, 14].

In the analysis made in this paper we will assume that the density f is large
and therefore we will neglect the quadratic terms in the collision integral.
The reason for this assumption is that the values of f are very large near
the origin for the singular stationary solution k~7/. In the companion pa-
per [5] we will construct solutions of the whole nonlinear equation (1.5)-(1.8)
behaving like the singular solution k~7/6 near the origin. For such solutions
the quadratic terms of the collision integral give a negligible contribution.
We then approximate the Uehling Uhlenbeck equation by the following one,
that has better homogeneity properties:

of ~
2 (k1) = Q) )

/ / W (kr. ko s k) @ (F) dhsdhs (19)
D(k1)

where
q(f) = fafa (fr+ f2) = fifo (fs + fa) (1.10)

and W and D(k;) are as in (1.6) and (1.7)-(1.8). This equation has been
extensively studied in the context of weak turbulence (cf. [4] and references
therein).

The main contribution of this paper is to study the fundamental solution
corresponding to the linearization of the equation (1.9), (1.10) around the
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solution £~7/6. To this end, we make an extensive use of the ideas in [4]. In
that paper, Balk and Zakharov have developed a very general technique for
the study of linear kinetic equations with homogeneous kernels. In this paper
we have adapted those ideas to the specific problem considered here and, in
particular we have obtained rather refined L estimates for the fundamental
solution associated to the equation that will be needed for the study of the
nonlinear problem (1.1)-(1.4). From the physical point of view the solutions
of (1.1)-(1.4) behaving like k~7/% near the origin can be thought as solutions
having a flux of particles towards the origin (cf. [3], [5]).

There are relatively few mathematical results about the equation (1.1) or
related and only some of them are rigorous from the point of view of anal-
ysis. The formal derivation of that equation taking as a starting point the
hamiltonian for a system of many interacting particles and using methods of
statistical physics was first given in [21]. This derivation is by now a stan-
dard textbook result and can be found, for instance in [2]. The equation (1.1)
shares many properties with the classical Boltzmann equation. In particular
it has an increasing entropy given by

H(f) = g {1+ f(p) In(14 f(p)) — f(p)In f(p)} dp (1.11)

The stationary solutions of the simplified equation (1.9) (1.10) of the form
f(k) = k* have been studied very much in detail. In particular it was proved
in [22] that the only solution to the equation Q(f) = 0 of this kind with
enough integrability conditions to ensure that the integral term Q(f) is well
defined is f(k) = k~7/6. The proof of this result is obtained in [4] using
some interesting symmetry properties of the equation (1.9) (1.10) (see [3] for
a different proof of the same result). Finally we remark that the numerical
simulations of [9] and [18, 19] indicate that some solutions of (1.9) (1.10) can
blow up in a finite time in a self similar form. A fully rigorous proof of such
a blow up phenomena has not been obtained yet. This blowing up behavior
is very different from the type of behaviors exhibited by the classical Boltz-
mann equation. Also the type of singular behaviour that we obtain in this
paper and in [5] is rather different from the usual solutions that have been
so far obtained in Boltzmann or other kinetic equations.

The basic idea of the paper is the following. First we linearized in the equa-
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tion (1.9) around the singular stationary solution k~5. More precisely we
write [ = k=% + F. The correction F then satisfies a linear equation of the

form ( i )
1 oo M\ 77
Rkt = [P w (1.12)
3 Jo
where p is a measure in [0, 00) .
The integral operator on the right of (1.12) is homogeneous of degree
zero. Using this fact, it follows that, after taking Mellin’s transform in the
variable k and Laplace’s transform in ¢, (1.12) becomes the following delay

equation in the complex plane:

2G (2,6) =G (z,g . %) o (5 - %) + Gy (€) (1.13)

where z is the Laplace variable, GG is the Laplace-Mellin transform of F, G
is the Mellin transform of F' (£,0) = Fy () and @ is an explicit meromorphic
function that can be explicitly computed, but it has a complicated functional
form in terms of hypergeometric functions.

The equation (1.12) makes sense only if suitable decay assumptions are
made for F as k — 07, k& — oo. Such decay assumptions provide some
analyticity conditions for G (z,-) with the form:

G (z,-) analyticin & € <§, %) (1.14)

The problem (1.13), (1.14) can be explicitly solved using the classical
Wiener-Hopf method. Using the resulting formula we will obtain a solution
F (k,t) of (1.12) with initial data F (k,0) = 0 (k — ko) using the inversion
formula for the Laplace-Mellin transform. Most of this paper consists in
deriving such explicit formula as well as “a priori” estimates for the derived
solution.

Unfortunately, the computations required to implement the plan sketched
above are cumbersome for several reasons. First, the measure y () above is
complicated due to the cumbersome structure of the collision kernel é( f)
n (1.9). Second, the formulae obtained using the Wiener-Hopf method are
complicated since they require the computation of several singular integrals.
Finally, the last step requires to compute the asymptotics of the Laplace-
Mellin inversion of the function G (z,£) that contain some additional inte-
grations. On the other hand, in many of the previous steps we need to know
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the position of the complex zeroes of an involved meromorphic function in a
strip of the complex plane, something that we have made numerically.

The plan of the paper is the following. In Section 2, we linearise the equation
(1.9), (1.10) around the steady state f(k) = k~7/% and obtain the Cauchy
problem (2.9). We state in Theorem 2.2 our main result about the exis-
tence, uniqueness and behaviour of the solutions. In order to introduce and
motivate the natural functional framework we perform a first change of vari-
ables and obtain the new formulation of the problem in (2.13). This one is
then reduced to the Carleman type equation (2.30) and (2.31). In Section
3 we solve in detail the Carleman equation using the classical Wiener-Hopf
method. In Section 4 we derive several estimates for the resulting fundamen-
tal solution of the linearized problem. Finally, in several Appendices at the
end of the paper we have collected some technical results which are used in
the arguments.

2 The Linearized problem: Carleman equa-
tion
We first proceed to linearise the equation (1.6)-(1.10) around the particular
solution £~7/6. To this end we write
f=kT+F

Plugging this expression into (1.5)-(1.8) and keeping only the terms which are
linear with respect to F' we obtain the linearized Uehling Uhlenbeck equation

oF
- = Qu(F) = W (ky, ko, ks, ka) qu(F) dks dky (2.1)
ot Dkr)
for t > 0,k > 0, where
1 1 1 11 1
11 11 1 11 1
WW(E% + Fy) — ki/ﬁ(kg/b, + kZ/G)Fg - k;/G(k;/G + kZ/G)Fl(Q.Q)

We express, in the following proposition the collision integral ()7 in a more
suitable way for our next calculations.
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Proposition 2.1 Equatz’on (2.1)-(2. 2) might be written as

OF
E = k‘l/g ]{;4/3 / K (23)
where K € C* ((0,1) U (1, +00)) satisfies:

) ~ ar'’? as r—0

(2.4
r) o~ ayr % as r— o0 (2.5
(2.6

(r
(
(r) ~ as(1—r)"+a,+0((1—-r)"% as r—1"
(r

NNNN

) ~ as(r—1) tag+O((1 =) as r—1F, (2.7
and a; € R, i =1,---6. The constants a > 0, a; and the kernel K(r) can be
explicitely computed and they are given in the Appendix A.

Proof. Using the symmetries of the right hand side of (2.1), the equation
may be written as follows:

OF 1 11
- - F 1% —
ot ' /D(kl) {k7/6 kS Ky (kg/ﬁ 7/6>

1 1 1
+ 2/%)F:,,VV{]{?/@.(W+k;/6)—kj/6 L} dk dk,

1 1 1
+ /D(kl) F, W{kg/ﬁ k7/6 - kz/6<k?7’/6 7/6)}dk3 dky
= ]3F1+Il+_[2’ (28)

where W is as in (1.7).

Tedious but elementary computations, which are sketched in Appendix A1,
show that I 4 I5 can be written as the integral term in (2.3) and I3 is exactly
—ak™'/3. The asymptotics (2.5)-(2.7) can be obtained by means of explicit
computations.

Y dks dky

As we already said in the Introduction, the main goal of this work is to
obtain a semi explicit expression of the solution to the Cauchy problem asso-
ciated to equation (2.3). To this end we construct the fundamental solution
F(t,k, ko) of the Uehling Uhlenbeck equation, which solves:

a T [~ __r
E(t,k,ko) = _WF(t7 k,ko) + W/O K(E)F@,T’, k?o) d’l“, t > O,k’ > 0,

F(t,k,ko) :5(k—k0), ko > 0.
(2.9)



We transform now (2.9) to a more convenient form by means of the following
change of variables:

r = €%, k=¢" (2.10)
F(t,k,1)=G(t,2), K(r/k) = K @¥)=e"YK(x—y), (2.11)

with
K(z)=e"K(e™). (2.12)

We are then lead to the following Cauchy problem:

o0

9 —x/3
&g(t,x) =%/ (—ag(t,:v) + /_OO
G(0,z) = d(x),

for t > 0 and x € R.

Analysing the solution of (2.13), is crucial to understand the analyticity
properties of the function ®(¢) = —a+K(¢), where K is the Fourier transform
of K. It turns out that this function is meromorphic with explicit poles in
the imaginary axes (cf. Appendix B). On the other hand, the positions of
the zeros of ®(&) determine the asymptotics of G(t,z). The zeros of ® that
are closer to the line Zm¢& = 4/3 are placed at £ = 7i/6, £ = 13i/6 and there
are two zeros placed symmetrically with respect to the imaginary axes at the
points

Kz —y)G(t,y) d@/) ) (2.13)

g = j:Uo + Uoi (214)

where the values of uy and vy are computed numerically and are given by

up = 0.331..., v = 1.84020....

2.1 Functional framework.

As a first step we make precise in which class of functions it is natural to
solve (2.13).
Due to (2.4) and (2.5), the behaviour of the kernel I is

K(z) ~ aes as z— —o0 (2.15)

K(z) ~ aze” " as x — +o0. (2.16)



Therefore, in order for the integral term in (2.13) to be convergent it is
natural to assume :

IG(t,z)| < Ce™* for 2 <0, G(t,z)| < Ce™™® for x>0 (2.17)

for some m > —1/6 and M < 3/2, and where from now on, C' is a generic
constant that might change from line to line.

Suppose now that G is a function satisfying (2.17). Then, by (2.15) and
(2.16)

| /Z K(z—y)G(y)dy| < C (e‘gm + e_mm) (2.18)

for x > 0. We deduce from (2.18) that the right hand side of (2.13) may be
estimated as:

e—x/3

() + [ K(w—y)g@)dy\gc(e-<m+é>x+e-%x), (2.19)

for x > 0. Therefore, for any initial data of (2.13), say compactly sup-
ported, it would follow from the equation that (2.17) for x > 0 holds for
some m € (1/6,11/6]. Iterating the argument, we deduce (2.17) for z > 0
with M < 3/2 and m = 11/6.

Notice that, since we are interested in solving the problem (2.13) whose
initial data is a Dirac mass, one would have an additional term e3*/2 in the
right hand side of (2.18). We define then:

UM)={H € L;.(R); H satisfies (2.17) with m = 11/6},

loc

V(M,z9) ={G; G(z) =ad(x —x0)+ H(x), acR HelUM)}, xoeR.
(2.20)

These spaces have a natural translation in the k variable by means of (2.10),
(2.11), namely:

UM) = {heLZ(0,400); |h(k)] < CEML, for k <1,
and |h(k)| < CE*S, for k > 1}

V(M, ko) = {F; F(k) =ad(k—ko)+h(k), a €R, heU(M)}, ko>D0.
(2.21)



We finally remark that the Fourier transform of the elements of U (M),
V(M, ) are analytic in suitable strips of the complex plane. More precisely,
let us define,

G(&) = \/LQ_W/_ ooe*i’s‘xg(a:) dx. (2.22)

It is easily checked that for any G € V(M, x), the function G is analytic in
the strip

Su=A{& E=u+iv, M <v<11/6, u € R}. (2.23)
Moreover, notice that for G € V(M, x), the corresponding Fourier transform
G is a uniformly bounded function in such strips.

2.2 The main result.
The scaling properties of (2.3) suggest the following functional dependence:

1 t k

F(t,k ko) = —F

—=, s 1). 2.24
oo (224)

Therefore, it is enough to study (2.9) for ky = 1. Our main result is the
following.

Theorem 2.2 Assume that M € (7/6,3/2). Then, for all kg > 0, there
exists a unique solution F(t,-, ko) of (2.9) in the class of functions V(M ko).
Moreover, F(t,- ko) € V(7/6,ko), has the form given in (2.24). For k €
(0,2) the function F(t,k,1) can be written as:

F(t k1) =e 5k — 1)+ o(t) k7% + Ri(t, k) + Ra(t, k),

where o € C[0,400) satisfies:

Atr+O0@*™) as t — 0T,
o)) ={ sy ey o 2.25)
R1 satisfies,
1
Ri(t,k)=0 for |[k—1|> 2 (2.26)
e—(a—a)t 1
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and Ro satisfies:

Ro(t, k) < k) - (2.28)

On the other hand, for k > 2,

11

3\ 6
¢ (t—> for 0 <t<1

3 €
F(t, k1) < t2+C k oy b (2.29)
v — (E) for t > 1,

In these formulae, A is an explicit numerical constant, € > 0 is an arbitrarily
small number, b is an arbitrary number in the interval (1,7/6), and vy as in
(2.14). The constant C' depends on € and b but is independent on t.

2.3 Carleman equation.

In order to solve (2.13) we transform this equation into a Carleman equation
taking the Fourier transform in the x variable and the Laplace transform
in the ¢ variable. We define the Fourier transform with respect to the z
variable, G(t,£), as in (2.22) and the Laplace transform of this last function
with respect to ¢ by means of

G(z,8) = /Ooo e G (t, &) dt.

In this manner, (2.13) becomes:

? 1 1
- g)@(ﬁ - g) + Nors (2.30)

where ®(¢€) = —a + K(£) and K is the Fourier transform of K.

2G(2,€) = G(z,¢

Since we are looking for solutions of (2.13) in the class V(M,0) with M
as in the statement of Theorem 2.2, it follows that G(z,-) is analytic in a
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strip Sys (cf. (2.23)) whose width is larger that 1/3.
Therefore, the basic problem that we need to solve is the following:

For any z € C, Rez > 0, find a function G(z,-) analytic in the strip
Su=A{& E=u+iv, M <v<11/6, uw € R} for some M <3/2 (2.31)
and satisfying (2.30) on Sy;.

Problem (2.31) may be solved by means of suitable Wiener-Hopf types argu-
ments as introduced in this context in [4]. The analyticity properties of the
function ®(&) play a crucial role solving (2.31). Therefore, we summarize the
relevant properties of ® in the Appendix B. Concerning the analyticity of G
with respect to the z variable, it turns out that it is possible to extend G
analytically to z € C\ R~ as it will be explained in the next section.

3 Solving Carleman equation using Wiener-
Hopf method.

3.1 Reformulating the Carleman equation.

Problem (2.31) might be solved in a more convenient manner after transform-
ing the strip Sj; in the exterior of a line by means of a conformal mapping.
We will prove Theorem 2.2, assuming by definiteness that M = 4/3. This
is useful inorder to discharge the notation at several points, but the same
arguments could be made for any value of M € (7/6,3/2). Let us introduce
the following new set ofvariables:

¢ =T(&) = 530 (3.1)
9(2,¢) = G(2,¢) (3.2)
P(¢) = ®(¢).

Notice that the transformation 7' transforms the complex plane C in the
Riemann surface associated to the logarithmic function that we will denote
from now on as §. The function ¢ is meromorphic in this Riemann surface.
We can characterize uniquely each of the sheets of this Riemann surface
by means of the argument 6 of ¢, where ¢ = re®. Notice in particular
that the strip S4/3, where by assumption the function G(z,§) is analytic, is
transformed by means of (3.1), into the portion of S such that 6 € (0, 37).
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Therefore, the function g(z,-) is analytic in that region. Let us denote as D
the following portion of the Riemann surface S:

D={CeS; (=r r>00<6<2n}. (3.4)

The definition of the function g(z, {) as well as (2.30) imply that g solves the
following problem:

1
2g(z,x —i0) = p(z) g(z,z +i0) + Nors for all z € RT  (3.5)
T

¢ is analytic and bounded in D, (3.6)

where, for any z € R*:
g(z,x +1i0) = llir(l) g(z,2e), g(z,x —i0) = lgrg) g(z, 2e'®™=9)) (3.7)
(@) = lim F(ze™). (38)

Problem (3.5)-(3.8) is explicitly solvable using the Wiener Hopf method. The
result is the following:

Theorem 3.1 For any z € C\ R™, there exists a unique bounded function
g=g(z,-), solving (3.5)-(3.8) given by:
(2.0) 1 ¢ [ M(z,A—i0) d\
z —_ e =
T T i fy TMEG A0

(3.9)

where,

M(z,¢) = exp [%/Oooln <9”9)> <Aig - )\—1/\0) d/\], (3.10)

Ao € C\ R" is arbitrary, and the logarithmic function is defined in such a
way that:

Im <Alggl+ In (9"3))) —Tm (m <—g>> € (—2r,0) (3.11)

and it is extended analytically for X moving along the positive real line.
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Remark 3.2 The possibility to extend the function In (M> analytically as

indicated in the Theorem 3.1 is not automatic but it will be obtained during
the proof of this result.

Remark 3.3 At a first glance, the arbitrariness of the number Ny, could
yield several different functions g(z,(). Nevertheless, it turns out that the
dependence on Ny disappears, in (3.9) as it will be seen in the proof of the
Theorem 3.1.

Proof of the Theorem 3.1. During the proof we will use several technical
lemmae that we state and prove in Appendix C in order to avoid breaking
the continuity of the main argument.

Since the function ¢(A) does not vanish in a neighborhood of R (cf. (P-2) in
Appendix B), we can define, the function A(\) = In (¢(\)/z) in such domain.
Moreover, we can uniquely prescribe this function setting

lim Zm (h(\) = Zm (1n(—9)) € (—27,0) (3.12)

A—0 z
Since h is bounded in a neighborhood of R*, we can define the function M

as in (3.10).

Notice that deforming the contour ¢ € [0, 00) to the contour ¢ € [0,z —¢] U
{¢=¢e”, 6 [-m0]}U[z +¢,00), using the analiticity properties of log <

and taking the limit ¢ — 0 we obtain:

In (M (2,2 +i0")) :%m (@>+2LM_PV/OOOIH (@S)) (Aig = A_lAO) dA

where M (z,x +i07) is as in (3.7). A similar argument yields:

In (M (2,2 — i0")) :—%m (@)_‘—ZLMPV/OOOIH (%A)) (Aic - )\—1)\0) dA

whence, substractint these formulae we obtain:

1 M (z,x +i0)

;P(CE) = M(z,z —i0) (3.13)
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where M (xz £ 10) are defined as in (3.7).
Plugging (3.13) into (3.5) we obtain

M (z,x —i0)

M(z,x —1i0) g(z,z —10) = M(z,x +10) g(z,x 4+ 10) +
(22 = 10) gz = i0) = M(s,2+ 0) g2+ i0) + -

. (3.14)

for all x € RT. We now claim that

M — 30
% = W(z, +i0) = W(z,x —i0), foranyz>0  (3.15)
where:
1 [ M(z,\A—i0) 1 1
W - — d\ 3.16

and A is an arbitrary number in D.

Formula (3.15) is a consequence of the Plemej Sojoltski formula if M (z, A—i0)
had good boundedness properties for A — 0 and A — +o00. Such properties,
in whose proof plays a crucial role property (P-4) in Appendix B, are sum-
marized in Proposition C.1 in Appendix C.

Using (3.15) in (3.14) we deduce:
M(z,2—i0)g(z,x—i0)+ W (z,2—i0) = M(z,241i0)g(z, x+i0)+ W (z, x+1i0),

(3.17)
for all z € RT.

It then follows that the function C(z,-) defined by means of:

(3.18)

is analytic in C \ {0}. Due to the boundedness of g(z,-) as well as the
estimates in Proposition C.1 and Proposition C.3, the function C(z,() is
bounded in compact sets and growths at most as |[¢|*™° as |¢| — +oo, for
some 0 > 0. Therefore, by Liouville’s theorem, C(z, () does not depend on ¢
i e.

Vze C\R™ : (C(2,¢) =C(2), (3.19)
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whence, by (3.18):

_ VERC() = Wz Q)

9(z,¢) N e (3.20)
where, .
C(Z) = mlimg_,g7<€DW(Z, C), (321)

as it can be seen taking the limit of both sides of (3.18) as ( — 0 and using
the boundedness of g as well as (C.3) in Proposition C.1. Notice that the
limit at the right hand side of (3.21) exists due to (C.3). The analyticity of
g(z,+) in D follows from the analyticity of W, M as well as the fact that M
does not vanish in D as it can be checked from (3.10). Finally we compute
V27 O(z) — W(z,¢). Using (3.21) and (3.16),

> d\
\/ﬂC(z)—W(z,C):%g : M(z,)\—iO)m.

Plugging this formula into (3.20) we obtain (3.9)

3.2 The solution of the Carleman equation.

Using (3.9), we can immediately solve (2.31). The change of variables (3.1)-
(3.3) yields
G(2,6) = 9(z,T(S)). (3.22)

From (3.9) we deduce that G, the solution of (2.31), is given by:

3 m(z,y — i0) dy
QAQ‘ZEIW%< n(=,6) )wWﬂ—n’

where
m(z,§) = M(z,T(¢)) (3.23)
m(z,y—i0)

m(z,€)
follows. Using (3.23), (3.1) and (3.10) we can rewrite m as

The z dependence of the quotient ( ) may be computed explicitly as
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m(z,€) = V(E) expl3i /Z o (_ia) «

1 1
67
e (66’Ty _ ebmE by _ aeﬁmﬁ) dy] (3.24)
P .
Vo —omin [ (2D, -
Imy:% —a

1 1
e 5 - - | dy].
e0my _ ebmg ebmy ae(‘m&

The function V(&) is analytic in the region Zmé € (4/3,5/3). Moreover,
we can extend V(-) analytically to the strip (4/3,5/3 +¢) with 0 < e < ¢
deforming the contour of the integral in (3.25 ), in order to avoid singularities.
For instance for Zm¢& € (4/3 +¢,5/3 4 ¢), 0 < € < § the analytic extension

of V is given by:
In (—M) X (3.26)
a

V() = expl-3i [

Imy:(%-i-e)

1 1
6y o
€ (667Ty _ 667r§ ebmy aeﬁm%) dy]

It will be assumed in the following that the function V has been extended in
this manner wherever it is needed.
Using (3.24) we have, for Zmy = 5/3, and Im¢ € (4/3 +¢,5/3 + ¢):

m(z,y —i0) _ V(y)
. 2
where, E(z,y,§) = exp[3i /Imn:(ngE) In (—5> X

1 1
67n o
€ (6671'77 — ebmy ebm 667T€) d’f]]

The integral £ may be computed using residues. Therefore,

V(y)
()

m(z,y — i0)
m(z,§)

= exp [6ma(2) (y — €] (3.27)

<
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where a(z) is defined by

a(z) = L,ln <_f> : (3.28)

and the branch of the logarithm is determined assuming that Arg(—z) €
(0,27) and henceforth,

0 < Re(a(z)) < 1. (3.29)
It then follows that
3i bra(z) -6 Y(¥) _ dy
Ced= L weEewe-y G0

where V(-) has been defined in (3.25).

4 Analysis of the fundamental solution to the
Cauchy problem.

4.1 Inverting the Fourier and Laplace transforms.

The function G(z,£), in (3.30) provides the Laplace Fourier transform of the
fundamental solution of the problem (2.13). In this section we invert the
Laplace and Fourier transform in order to find the solution G (¢, x) of (2.13),
as well as derive its main properties.

We recall that the inverse Laplace and inverse Fourier transform for regular
functions are given respectively by

c+oot
LG ({t)=G(t) = —/ e*G(2)dz (4.1)

270 J oo

and
oco+bi

V 2 /ooerz

where in (4.1) ¢ is large enough to have all the singularities of G at the left of
the line Rez = ¢, and in (4.2) we assume that G € V(M, ) which is defined
in (2.20) and we then choose b in order to have the contour of integration

FG)(x) = G(x) G (€)de (4.2)
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contained on the strip Sy, defined in (2.23). Since the function G(z,§) to
which we apply £7! and F~! is just bounded, those operators are defined
in the sense of tempered distributions (cf. [17]). Therefore, the fundamental
solution of the problem (2.13) is given by:

G(t,x)=F 1 (L7'G) (4.3)

4.2 Description of G(¢,z) near x = 0.
We will check below that the function G(z,&) can be split (roughly) as

G(2,8) = Goo(2) +[G(2,8) — Goo(2)] (4.4)

where

Go(2) = lim G(z,§).

|§|—=+o0

In particular, this implies that G(¢, x) can be decomposed as:
G(t, ) = goo(t)0(x) + Greg(t, x)

where Greg turns out to be an integrable function. In the rest of this section
we make the meaning of this decomposition precise and study the properties
of goo; Greg. In particular we study their asymptotics as ¢t — 0, ¢ — +oc and
r — Fo0.

Since G(z,&) — G (2) does not decay fast enough as |£| — 400, it is conve-
nient, instead of descomposing G as in (4.4), to split G(z, &) in the following
manner. Using the change of variables y — & = 6 as well as Proposition C.6,
we can rewrite (3.30) as:

3Z . ®(€) d@
G 2, = / e[67ra(z) 9]6[3261n<— J )+h(§79)] . 45
( 6) 2T 2 Imgzg_zmg (€6m9 o 1) ( )

We have shown in formula (B.2), in Appendix B, that the function ®(¢)

has the form: B
) =—at+) : _”5
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for suitable B, &, (cf. (B.2)). We then define

B, 1
VO =—at ) —et—g D B (4.6)

In|>=L In<L

where L is chosen in order to have

B,
E |€’_§| | <e in |Im¢ <10 (4.7)
In|>L "

for 1 small to be precised, and &;, satisfies

1
§—¢&L

Y B <&, in [Img <10 (4.8)

In|<L

for 5 > 0 small enough to be precised. Notice that choosing L large enough
we can assume that W is analytic in the strip |Zm&| < 10. Moreover, if ;
and g9 are small enough and L large enough, we have that

@)Y, _ -
() 1= 006l (49)
as €] — oo and [Zmé| < 10. It then follows that the function & given by
h(€,0) = h(£,0) + 3iln <%> (4.10)

also satisfies the estimates (C.27). Let us decompose G as follows

G(2,8) = A1 + Ay, (4.11)
: 3i0 In(— 28
dy = 2 / el6ma(2)f] el )]de, (4.12)
V2T 2 JIm =53 —Tme (e — 1)
A= 3! / el6ma(z) 0]  [3i01n(— ()] (€0 —1)df (4.13)
V2T 2 JImo=53-Tme (€S —1)

where the function, A; approaches a constant value as || — +oo and can
be chosen such that |max.4; — min .A| is as small as we need. On the other
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hand, Ay decays as [{] — 4oo faster than 1/[¢| (cf. (B.3) and Proposition
C.6 ), and as a consequence, its inverse Fourier transform will be a continu-
ous bounded function.

We remark that A; may be explicitly computed by using residues. To this
end, it is enough to replace the integral defining A; by the limit of integra-
tions in a sequence of contours I'g. These contours are squares with basis
Imb =d, Ref € (—R, R), with d € (§,6 + 1/3) and the remaining sides are
contained in the half plane Zm#f < 0. On these sides, the integrand in (4.12)
can be estimated as:

3i01In \I'(E)
pl6ma(z) ] 6[ (==l

3R69(arg(—§)—arg(— \1/((1 ) ))]

‘€6m9_1’

(4.14)

Choosing €1 and &9 in (4.7), (4.8) small enough, it follows that In(|z|/|¥(§)|) >
01if |z| > 2. On the other hand, arg(—z/a) € (0, 27) and lim¢| oo (arg(=¥ () /a) =
0, it then follows

[3i01n(—L)]
lim elora 0"~ 9 — . (4.15)
B=+00 Jp\{Tmo=d} (e —1)

Therefore A; can be computed adding the residues of the integrand in (4.12):

1 &= . R16 1 V(&) !
A, = 6—217rna(z)6nln( 7 ) - - (]_ 4+ —2 , 4.16
1 V27 2 ; V2T 2 z ( )

for |z| > 2. The validity of (4.16) for |z| < 2 follows by analytic continuation.

Proposition 4.1 The fundamental solution G(t,x) defined by (3.30) and
(4.3) might be decomposed in the following manner:

G(t,7) = Gaing(t, ) + Greg(t, 1) (4.17)
where
Going(t, @) == F (LA, Greglt, ) i=F 1 (LT A,) (4.18)
The term Gging can be written as

5

Gsing(t,x) = e~ "d(x + ot

e +a6 ) sign(z) + H(t, x) (4.19)
=1 17 v
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where 'H is a Holder continuous function in x in a neighbourhood of v =
0. The functions oy might be computed explicitly. The function G, is a
continuous function in a neighbourhood of x = 0. The functions oy and the
Hélder constants of the function H(t,-) are uniformly bounded in bounded
intervals of t.

Moreover, the following global estimate holds:

|Gsing(t, x) — e~ (2] < Ce(a=e)t () (4.20)

where

1
@) < pe for st

e~ 10ke] for |z| > 1.
Proof. Using (4.16) and (4.18), we obtain:
oV
Gaing(t,x) = F 1 ( o ) ().

Then, for £ bounded, using the Taylor expansion for the exponential function
as well as (4.9) and (B.3), we obtain:

(4.21)

where H is a Holder continuous function in x in a neighborhood of z = 0,
and (1, - - - (g, are polynomials in the ¢ variable.

On the other hand, in order to derive bounds for large ¢ we argue as follows.
Let us introduce a regular cut off function y, x(s) = 1 for |s| < 1, and
x(s) =0 for s > 2. We rewrite Gginy(t, ) as

Ging(t,7) = e ™ {]-"_1(1)+]-“‘1 (e‘““f)‘“)’* {1 <E>] 1)
= (e—(w—a)tx (%‘))} (4.23)

The first term in the right hand side of (4.23) gives the Dirac mass. In
the second term, since (&)t is bounded, it is possible to linearise in the
exponential. Therefore, arguing as in the derivation of (4.22) we obtain:

jeatF1 <e—(ws)—a>t(1 ~x <@)) — 1) | < Ce @) ()

t6

(x)+H(t,x) (4.22)
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where € > 0 is arbitrarily small and ¢; satisfies,

1

SOI(I) ~ |LL’|—5/6 as r — 0, gOl(ZE) ~ 6_10|$|

as |x| — oo.

Finally, for the last term in the right hand side of (4.23) we obtain the

estimate
|6_atf_1 ( — (¢ (|§6|)> | < Ce” (a—e)t —10|x\
t

This yields (4.20) and (4.21).

We now proceed to derive the holderianity of G,., near the origin. To this
end we compute first the inverse of the Laplace transform. Using (4.1), and
classical contour deformation arguments, we obtain

6ma(z) 0 c+o001
L_l 6[ ()] _ L 6[67ra(z) 6] et %
z 270 J o oo z
= (at)*® (™ —1)['(-3i0), (4.24)

where I" is the usual Gamma function. Plugging (4.24) into (4.13) (4.18) we
arrive at

Greg(x,t) = F ! (\j’l_ T'(=3i6)e 310 In(— ¥

) ( h(£,0) 1) (at)?’wd@

Tm6=5—Tmé¢

(4.25)
Due to (4.6)-(4.8), ‘63@'9111( (O)] < €29 with £y > 0 small. On the other
hand, Stirling’s formula for the Gamma function implies, |T'(—3i0)| < Ce~1%/2
for Im@ = 3 —Im& and Imé € (4/3,5/3) and |0] large. These estimates
yield the convergence of the integral in (4.25).

The Holder property of G,., follows combining (4.25) and (C.27). More pre-
cisely we split the integral in (4.25), in the two regions || > [£| and |0] < |¢].
It follows from (C.27) that e"&9 — 1 is bounded by C|¢|77/¢ when [0] < |¢].
Due to the fact that the rest of the integrand decays exponentially in |0|
the resulting contribution to the integral may be bounded as C|¢|~7/6. In
order to estimate the contribution to the integral due to the region 0] > [¢|
we take into account that |h(&,6)| < e3]d| as |#| — +o00, where £5 may be
chosen as small as we wish provided |{]| is large enough. Using again the
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exponential decay of the remaining terms it follows that the contribution
of this part of the integral is exponentially small as |{| — +oo. Therefore,
|As(t, &) = O(|€]77/°) as |¢] — +oo and the holderianity of G, follows by
classical Fourier analysis results.

Proposition 4.1 provides a description of the fundamental solution for x near
the origin. The proof of this results actually shows that G,., is bounded for
(t,x) in compact subsets of (0,+00) x R.

We now proceed to describe the asymptotic behaviour of this fundamental
solution for x — Fo0.

4.3 Asymptotics of G as v — —c.
Our starting point for this analysis is the formula (4.5). Notice that

G(z,7) = F HG(z,) = et Gz, €)dE (4.26)

Vor /Im£ b
where, for z # 0, this integral is defined in the sense of oscillatory integrals
(cf. for example [20]). The main contribution of G(z,x) as + — —oo is due
to the closest pole of G(z,-) to the line Zm& = b below this line.

Notice that the expression (3.30) shows that G(z,€) is analytic in the strip
Imé € (4/3,5/3). Moreover, deforming the contour of integration, we can
extend G(z,-) meromorphically to the strip Zm¢& € (—2/3,5/3) with poles
at the points (1 + 2k)i/6, k = 0,1,2,3. Moreover, for d € (1/3,5/3) and
d—1/3 <Im& < d, G(z,&) can be computed by means of

3 oY) dy
G(z,€) = efme(z) (y=9) 4.27
( 5) /_271'2 /Imy:d V(f) (eﬁﬂ(yff) _ 1) ( )
The residue of G(z,-) at the pole 7:/6 is given by:
Ti 3ia 6777ra(z)i 67ra (= yv( )
Res | G(z,:), E=—| = d
( (=), € 6) 221 '(71/6)V(3i/2) /Zmy:d (emw=Ti/6) 1 1) Y

Choosing d in (4.27) close to 4/3 and moving down the contour of integration
in (4.26) we obtain, using residues:

- 3a 6—%6777ra(z)i 67ra (z yv( )
= ——d 4.2
S T OVICTP) /Imy @y @ U
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1 -
— ia de.

where b is an arbitrary complex number satisfying Zmb € (1,7/6).

Taking the inverse of the Laplace transform we obtain:
G(t,x) = LHG)(t,2) = o(t)e 6" + Ry(t, z).

Using (4.24) and (4.28):

)= e ) VT = 3

Ri(t,x) = \/%—WEI (/I 515”5 G(z,g)dg) :

We now proceed to derive estimates for ¢ and Rj.

and

Proposition 4.2 The following estimates hold:
o(t) = At* + O(t***) as t — 0OF,

o (t)] = Ot~ B=5/2) = O(13%%) a5 t — toc,

where A is a given constant, € is an arbitrary number in (0,1/2).

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

Proof. As a first step we prove (4.32). To this end we use again contour

deformation moving down the line Zmy = d.

The poles of the function I'(—3iy—7/2) are placed at y = (7i/6) —(ni/3),n =
0,1,---. On the other hand, by Proposition (C.5) V has zeros at y = (7:/6) —
(ni/3), for n = 0,1,2,3 . We deduce that V(y)I'(=3iy — 7/2) is analytic in
the strip Zmy € (—1/6,v9 + 1/3), meromorphic in C, and has simple poles
at —i/6 (coming from the Gamma function) and at fug + i(vg + 1/3) (cf.

(P-2) in Appendix B).
Therefore, the Residues Theorem implies:

o(t) = At + r(t)
where,

a*V(—=1/6)mi

A= 120/(7i/6)V(3i/2)’
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_ 3a iy+1 e Z
"= ST vE2) /Img‘fj VT (=3iy = 3)dy
where d is an arbitrary number such that d € (—1/3,—1/6).
Combining (C.22), (C.29) and (P-3) in Appendix B, as well as Stirling’s for-
mula it follows that V(y)I'(—3iy — %) decays exponentially as |y| — +oo
along the contour of integration. On the other hand, in the same contour of
integration, |(at)3¥| < C.t**¢, with e € (0,1/2), whence (4.32) follows.

In order to prove (4.33) we increase the value of d in (4.30) using contour
deformation. In this process we do not meet any singularity of the integrand
until d = vg + 1/3 due to the Proposition C.5 as well as the analyticity prop-
erties of the Gamma function. Arguing as in the proof of (4.32), formula
(4.33) follows.

We now derive the estimates for the remainder term (4.31).

Proposition 4.3 The following estimates hold:

|Ry(t,2)] < C'e_gx(at)g(i’_d) for x <0, 0<t<l, (4.34)

|Ri(t,x)| < C’e_i’”&(at)_?’(r_g), forz <0, t>1, (4.35)

where b is an arbitrary real number in (1,7/6), d is an arbitrary real number
in (5/6,1) and r is an arbitrary number less than vy = 1.84....

Proof of Proposition 4.3. We use again the splitting (4.11) into (4.31):

R1<t,$) = R171<t,$) + RLQ(t,.T), (436)

where,
Ry (t,z) = \/% /I g_gixﬁﬁ—l (Ai(2,6))dé (4.37)
Rio(t,x) = \/% /I é_giwgﬁ_l (Aa(z,6)) dé (4.38)

We begin estimating R; ;. Using (4.16) it follows that

PEES ef‘lf(ﬁ)tdg’

1
V2T JIme=h
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where from now on this integral has to be understood in the sense of oscilla-
tory integrals. Since W is analytic in the strip [Zm¢| < 10, we can decrease
the value of b by means of contour deformation, to any b > —10. Therefore,
using (4.6)- (4.10) it follows that

IRy (t,x)| < Cem@tel0%  for 2 < 0. (4.39)
Moreover, computing |Ry 1(t,z) — Ry 1(0,x)| we arrive at:
|Ria(t, )| < Cte® forx<0, 0<t<1. (4.40)

We now estimate R .

1 ) 1 c+001
- - iz 2t
Rualto) == | am / (= 6 dzde

where Aj is as in (4.13). Using (4.24) we then obtain

3i | : | e
Ris(t,z) = ez&tf/ (eh(f,n—ﬁ) . 1) 631(7]7&) ln(f - ) %
1.2(t, ) V2T Jme=h Tmy=>4

x (at) " T(3i(€ — n)) dnde.

We begin estimating Ry as t — 0 and < 0 . Notice that, due to (C.25)
we may write 7y 5 as

Rl 2 = ﬁ e“gfil Q(t, g) df (441)
27 Imle; ,
where,
i . V i 0 qx(g)
R12(t ) = \/ﬁ/z 4?153 n=¢) ['(3i(€ —n)) {% eBi(n=8)1 (-%2) dn
mn=3

(4.42)
We move down the contour of integration in (4.42) as usual. Notice that
['(3i(§ —n)) has a pole for n = £ but this singularity cancels out with the

zero of the term between brackets. Using again Proposition C.5, we can
rewrite (4.42) as
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Rialt.€) = —= [ (@)* O —n) x

w _ Bit—)m(=*{)
{V(E) dn  (4.43)

where d is any real number in (5/6,1). This restriction in d comes from the
fact that the function I'(3i(§¢ — 7)) has a pole at n = £ — /3 and that we are
in the region where Zm¢ € (1,7/6).
Using (C.25), we estimate (4.43) as

a“mw*@@/' ael [ Jame e g (444)
7

m&=b Imn=d

Using (C.27) it follows that the integral term in (4.44) is bounded whence
(4.34) follows.

Finally we estimate R;(t,z) for # < 0 and ¢t > 0 large. To this end we take as
starting point formula (4.42). Moving up the contour of integration, we do
not meet any singularity until Zmn = vy (cf. Proposition C.5). Therefore,
using Proposition C.6, and (4.42)

|Ria(t, €)] < Ce™(at) 700 x
gé Jde | |dnlTEi(E — )| [0 OmEED (e, - €)).

mé&=b Imn=d

where r is an arbitrary number less than vy. Using Stirling’s formula as well
as (4.6)-(4.10), (4.37) and (C.27) we arrive at (4.35).

4.4 Asymptotics of G as © — +oc.
Proposition 4.4 The following estimates hold,

G(t,2)| < Ce 5%t for 2>0, 0<t <1, (4.45)

G(t,2)| < Ce™ oot~ UHB—1/0)+e o 050, ¢ > 1, (4.46)
where € > 0 is arbitrarily small. Notice that (14 3(vy—11/6)) = 1.0206 > 1.
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Proof of Proposition 4.4. Arguing as in the derivation of (4.36)-(4.38)
and using
g(t, l’) = Rg,l(t, l’) + R272(t, 33'),

where,using (4.16)

1 )
Ralto) = —= [ g
1 .
Raaltr) = o= [ L (Aol ) de

Using the analyticity of ® we can deform the contour of integration and
choose b = 10. Therefore as in the proof of (4.39) and (4.40),

|Raq(t,x)] < Ce(@=9)te=102  for 2> 0. (4.47)

|Roa(t, )| < Cte % forx >0, 0<t<1. (4.48)

On the other hand, we may write,

i = £ o) o
o 27 Imé=b Imn=d

x (at)™ 9 T(3i(€ — n)) dndé.

where first, we have deformed the contour deformation in the £ variable to
make b > d. This is possible because the singularity of the Gamma function

at 1 = £ cancels out with the zero of the term (eﬁ(m_f) — 1).

3 it B
RQVQ(.[:, ZE) == \/ﬂ z—mézg € R272(t, g) d€ (449)
where,
5 _ L 3i0-6) yaie — vy | 20D i) in(— 2 }

(4.50)
We now try to move up the contour deformation on £ as much as possible,
but in this deformation, we must also deform the contour on the n variable, in
order to avoid the singularity of I'(3i(§ —n)) at ¢ —n = i/3. The function V(§)
has a zero at £ = 117/6 since ® has a pole at 3i/2 due to (C.22). Therefore,
the integral in (4.50) has a pole at £ = 114/6 whose corresponding residue
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yields a contribution &(t)e~'1*/6  similarly as in the derivation of (4.29),

(4.30). In order to obtain estimates of the time dependence of these terms,
we make contour deformation in the 7 variable, having in mind the following
ideas. First to deduce estimates for ¢ — 0, Zmn should be taken as small as
possible. To obtain estimates for t — 400, Zmn as large as possible. Finally,
Im(& —n) shoud be larger that 1/3 in order to avoid the singularities of the
Gamma function. Deforming the contours as it was made in the previous
subsection we obtain (4.45), (4.46).

4.5 The proof of Theorem 2.2.

At this stage, Theorem 2.2 is just a reformulation of Proposition 4.1, Propo-
sition 4.2, Proposition 4.3, by means of formulas (2.24)-(2.12)

A Properties of the kernel K.

A.1 Proof of Proposition 2.1.

Using (1.7) and (2.2) it follows, after elementary integrals, that

72 Vs dks dk, Vky dks dky

he R Vi Vi
k’}/g D1 (kl) \/El kf;/G kz/6 Dg(kl) \/E]_ kg/G kg/()

Dl(lﬁ) = {(/{3,/{4); 0< k3 < kl, 0< ks < lﬁ, ki < ks + k4} (A52)
Dg(k'l) = {(kg, k’4), k?g > k’l, 0<ky < ]{31} (A53)
In order to estimate the two last terms of (A.51) we use one of the coordinate
transformations introduced by V. E. Zakharov in [22]:
k2 (ks + kg — k1)ky
= -—, 64 = .
ks ks

€3
Therefore

S VELEO K VE Jpiky B E]S
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Whence, using (A.51), gives:
Vks + k
b= = (72+ / s bl dk:4>. (A.54)
Dq(1

k;l/?’ 7/6 7/6

The last integral can be transformed into a more symmetric form using an-
other of the transformations introduced in [22], namely:

ky ks
g = —— Yy =———
P kst ki — 1 TN kgt k-1
whence o oo Ao d
P1apP2
a:72+/ / 776 76 776" (A55)
1S (pe o= 1) 07 py

The last integral can be computed numerically. One gets:
a = 72.80964399...

Standard calculus computations yield:

ks

k1 ]f
I = 4/3{/ ks Fy K (7 >

Vi [k B Ka () (A5

1 1

where

! 01/2 7/6 2/3
Kn(03) = 2/ db, (97/6(1+e 5 — 6, />+
1—63

o 91/2 » e
3
+2/ o), (07/6(1+e >_W> (A57)
1 2
Kn(03) = 2 i 92/3<1+97/6)—i/2) +
21(03) = o e
+2/ a0, (05700 + 070 — ;7). (ag)
1

with 6, = k;/ky, for £ = 2,3,4. Notice that, 6, = 3+ 60, — 1. In an analogous
manner,

k

ks
(k:

" )} (A.59)

k1
I - 4/3{/ dky Fy Ky 2)+/ ks Fy a2
1 k1
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Ki5(604) = o 1/2 (p=7/6 —7/6 -7/6
10(0)) = d03(0s + 1 — 05) (93 (14 6y — 0)"7/5 — 26, >+
1
02
+/0 dfs (0;2/3(92 +1—63)770 — 29;2/3) -
1
05/ / b, (9;7/6(92 +1—63)7 70— 29;7/6> +
02
Ky (0,) = " =7/6 ~7/6 ~7/6
22(0s) = dfs (6057 (1 + 60 — 63) — 20, +
1

1465
+/ d03(02 + 1 — 03)'/? (9;7/6(1 + 05— 63) 770 — 2957/6)

02

1
/ dbs (952/3(92 +1—0;)77 29??2/?))
0
(A.60)

On the other hand, we can write the integrals K1, -+ Ko in terms of the
Gauss hypergeometric functions F(a,b; c; z) using repeatedly the formulae

(cf. [1]):
Fla,b;c;z) = —F(b)l;((cc)— ) /0 71— )L — ) d,

—F(b)1;<(cc)_ b /100 7t — D)t — )T dt,

that are valid for Re(c) > Re(b) > 0. After some long and tedious, but
standard computations we can transform equation (2.8) in:

Fla,byc;z) =

a 1 < r
By =~ F (k) + W/o K(p) F(r)dr (A.61)

where a is as in (A.54) and

[ Ki(r) ifO<r<i1
K(r) = { Ky(r) ifl<m, (4.62)
4
Ki(r): = §x3/2f(1, 7/6:5/2;2) + 623 F(1,7/6;4/3; x) — 1821/3
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12 (5/6)231/2 84
+ 24z1/% — F(2/3)((1/—)x)4/3 + 314/%(13/6, 1;11/6; )

_ 122'°T(5/6)°
T(2/3)(z + 1)4/3

72

42
N €x4/3}"(13/6, 1;11/6; —z)

24
— %x‘w}"(lf}/& 3;23/6; —x) 4 623 F(1,7/6;4/3; —x)
4
- §x3/2]:(1,7/6;5/2;—x), (A.63)
4
Ky(x): = 6:1:’7/6.7-"(1,7/6;4/3;1/33)—gx’7/6.7-"(1,7/6;5/2;1/x)—1—2495’7/6
8T'(5/6)% 31/ _ay 84
_ 2N 2 e 1)AB L 226 1(1.13/6:11/6: 1
I'(5/6) s 42 .
— 12— )43 — B F(1,1/6;11/6; —1
4
+ —5505 a9 F(2,7/6;17/6; —1/z) —
3024

42
03 P06 F(3,13/6;23/6; —1/x) — Em‘m/G]—"(l, 13/6;11/6; —1/x)

4
+ 62 /F(1,7/6;4/3; —1/x) — 5;1:*7/6}'(1, 7/6:5/2;—1/x).  (A.64)
Formulae (2.4)-(2.7) are a consequence of the classical asymptotic expansions

for the hypergeometric functions (cf. [1]), as well as the expressions for the
kernels Ki; - -+ K99. The numerical constants in these formulae are given by:

1
ay = —§(3 2281(2/3)% + 2°/31(2/3)33Y2 — 87),  ay = %
m
and - q
T

B The Fourier transform of the Kernel.

In this Section we list some properties of the function

®=—a+K
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used in the analysis of the solutions of (2.30). Due to (A.62), we can write
K in terms of suitable Mellin transforms of the functions K; and Ks:

« 1 .

Pt Ki(p)dp + / “ Ks(p) dp. B.1
\/%/ 1(p) dp N 2(p) dp (B.1)
The Mellin transform K might be computed using formulae (A.64), (A.63) in
terms of generalized hypergeometric functions, but the resulting expression
is not particularly illuminating. Nevertheless, using the series expansions for
those functions we arrive at the following formula:

BE) = —
“Z 1—6z£+12] +Z 1—325+3J +Z 3+2z§+2j)+

Jj= Jj=

+Z 10—1—3@54—6]) (B2)

Jj=

where the coefficients A;(7),i=1---4,j=0,1,... are

18(2)Y30(7/6 + 25)T'(2/3)
T'(5/6 + 25)m5/20(5/2 + 2/)0(4/3 + 2j)
{—3Y21(2/3)7*°T(4/3 + 25)T'(5/6 + 2j)+
+47°T(5/2 4+ 25)T(5/6 + 25)+
+18(2)'/°1(2/3)°1'(5/2 + 2j) 7' /*T'(4/3 + 2j) } ,

Al<j) =

. DABYVA(=1)Y + 2)T(5/6)*T(4/3 + )
Aolg)i= - AT(1+ ) ’
(i) = 36(3Y2(—1)7 +2)I'(5/6)*T'(4/3 + j)  6(1+ (=1))['(5/6)T'(1/6 + j)
3(J) = (1 + ) * Tl/21(3/2 + j) ’
() 180°(2/3)T(19/6 + 25)2Y/3(27*T(17/6 + 25) + 9(2)Y/30(2/3)3T(10/3 + 25)7/?)
ol7) = T(10/3 + 2j)m 2T (17/6 + 2j) |

We can now list the main properties of the function ®.

e (P-1) The function ®(§) is meromorphic in the complex plane C with
poles at the points:

£ =

Ny C—0.1.9...
2+])Z7 .] P B}
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10 Ny .
6 = (_+2J)Z’ ]2071727"'

3
1
1

e (P-2) The function ® has a simple zero at the point £ = 7i/6. This is
the only zero of ® in the strip Zmé € (—1/6,5/3). Moreover, it also has a
simple zero at £ = 13i/6 and two simple zeros at & = +ug + ivg with:

up = 0.331...; vy = 1.84020...

These are the only zeros of ® in the strip Zm¢ € (—1/3,5/2). In Figure 1
we have plotted the zeros and poles of the function ® which play a role in
the arguments used in this paper.

e (P-3) The function ® satisfies:

D) = Poc(E)] + IE[127(E) — P ()] = O] ) as [¢] — +oo  (B.3)

with o > 0. ) ;
D (6)=—a+ fﬁ + ? (B.4)

uniformly on strips of the form:
Sap=1£€C; E=u+iv, a<v <[}

e (P-4) Argument property: The function ®(\) does not make any complete
turn around the origin when A moves along any curve connecting the two
extremes of the strip S7/63/2 and entirely contained there. Notice that for
any horizontal line, contained in this strip the number of turns is constant
due to the argument principle. More precisely, since the function ® does
not vanish in the strip S7/63/2, it is possible to define an analytic function
In () on that strip (in general in a non unique way due to the multiplicity
of branches of the logarithmic function). It turns out that:

arg(®(—oo + b)) = limy—_Im (In(®(—o0 + ib))) = (B.5)
limy—.ooZ m (In(P(+o00 + b)) = arg(P(+oo + ib))
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for any b € (7/6,3/2). In Figure 4, we show a drawing of the image by ® of
the line R + 44/3.

Property (P-1) is just a consequence of the representation formula (B.1).
The presence of a zero of ® at & = 7i/6 follows from the fact that the func-
tion f(k) = k~7/% cancels the collision kernel Q(f) as was shown by Zakharov
[22].

The property (P-3) follows from (2.6),(2.7) using standard methods for study-
ing the asymptotics of the Fourier transform.

Concerning (P-2) and (P-4). We have numerically checked (P-2), combin-
ing the Argument Principle with a numerical computation using MAPLE
V. Similar computations have been used to numerically check (P-4). Notice
that due to the asymptotics (B.3) and (B.4), it is enough in order to check
(P-2), (P-4), to count the numbers of rotations of ® around the origin, when
& moves along horizontal lines & = b + R for suitable values of b € R. We
show in the enclosed pictures the motion of ®(&) for different values of b that
in particular imply (P-2), (P-4).

Concerning the positions of the zeros of ® some remarks are in order. The
presence of a zero at £ = 7i/6 is just a consequence of the fact that the non-
linear equation (1.1)-(1.4) has a family of steady states of the form Ck~7/6
for any value of C. It turns out that the function ® has a second zero at
¢ = 13i/6. This is a consequence of the fact that the linearized operator in
the right hand side of (2.3), cancels out the power k~7/¢ as it has been shown
in [8]. The presence of this zero is a general fact that has been shown for a
very general class of homogeneous kernels in [7, 8]. In general, the existence
of stationary homogeneous solutions for the linearizations near equilibria of
(1.1) is related to the existence of conserved quantities like energy, momen-
tum or number of particles. In particular the existence of a homogeneous,
radially symmetric solution for a linearized operator (2.3) is related to the
conservation of the number of particles by the equation (1.1).

Finally the zeros at £ = Fug + vy does not seem to be related to any of
the symmetries of the problem. Their position is determined by the whole
structure of the kernel KC. We have only been able to determine them using
numerical approximation.
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C Auxiliary results.

In this appendix we collect several properties of the different functions used
to prove the results of the paper.

C.1 Properties of the function M(z, ().

Proposition C.1 Let M(z,() be defined by (3.10) for ( € D C S, where
D is defined in (3.4). Then, for e¢ > 0 small enough, M(z,-) admits an
analytic extension to the domain D(gy) where,

D(go) ={C €8; (=1Cle”, 0 € (—ep,2m +29)} (C.1)
Moreover, for any e > 0, there exists § > 0 such that, for any = in the region
Z.={2€C; Argz€ (n—e,m+¢)}, (C.2)

there holds,
|M (2, ¢)| + [C] |d%M(Z,C)| < CE)C° for [¢] <2, ¢ € Do), (C.3)
IM(2,Q)l < CECI° for [¢]>2, ¢ € D(s)C4)

where C(z) is a positive constant, which depends on z.

The proof of Proposition C.1 is based on the following technical Lemma.

Lemma C.2 Suppose that f is analytic in the cone

C(20) = {C € C; ¢ =[¢le”, 6 € (—229,2¢0)}

for some €y > 0. Let us also assume that:

1 f(re?)]
/0 T2 dr < 400, for any 6 € (—2¢q, 2¢y) (C.5)
A_}()/l\lefg(%o) f(A) = Ly, A_mglenc(%o) J(A) =Ly, L;eC,i=1,3C.6)
1
'] = O(X), as A — 0, A — 400, A € C(2e). (C.7)

37



Then, for any \g € C\ C(2¢), the function

PO =50 [0 (52 - o) @ ©8)

is analytic in the domain D(ey) C S defined in (C.1). Moreover:

L
F(¢) = —2—7;1ng +o(In[¢]), as¢—0, ¢ € D(e). (C.9)

F(Q) = —ﬁln(’ +o(In|C]), as(¢— +oo, ¢ € D(ep). (C.10)

Proof. The analyticity of F'in D(g) follows from standard complex variable
theory combined with deformation of the contour of integration from R to
the rays e R* with |§] < &y. These deformations can be performed due to
the analyticity properties of f and (C.5).

We now proceed to prove (C.9). We describe in detail the proof only for
those values of ¢ € D. For arbitrary values of ( € D(eg) it is possible to
argue in a similar manner, after deformation of the contour of integration
from R* to e RT, |0 < go. Let us define,

0620 = 5 (Alc A—le)'

Then,

ﬂo:=L/ MCA0M+A(ﬂM—DSwQMMA

/ TS, ¢, o) dA (C.11)
= 1(¢ +k©+h©- (C12)
The term J;(¢) can be explicitly computed and it readily follows that
L
Ji1(¢) = —%mg +0(1), as¢(— 0, (€ D. (C.13)

On the other hand,
J3(()=0(1), as( —0, (€ D. (C.14)
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Finally, we estimate J,. To this end we rewrite it as:

1 I€1/2 d\ 1 2/¢] d\
RO = g | UM =D T C+2m/c/2(f/\)—L))\_<
! d\
t3 | U =152+ 00), a5 ¢ =0 ¢ D (€13

Splitting the region of integration of the third integral in two parts (2|], d)
and (9, 1), with § > 0 small, we obtain .

ICI/2 d\
=1 gw-n 2 [ v -0,
2| M=

C
< sup |f(N) — Ll + = sup [f(N)] as ¢—0.C €D,
Ae(0,0) A€(0,1)

Therefore, by (C.6), we deduce:
=o(|In(]), as (¢ =0, € D. (C.16)
In order to estimate the second term in the right hand side of (C.15), after

integrating by parts,

2(¢| A\ 2(¢|

| (J“(A)—L))\—_C < | M) In(A = Q)dA| + C sup [f(A) = L[ In(].
c1/2 c1/2 (0.2i¢)

Using now (C.7) it follows that

2(¢|
(N In(A = Q)dA[ = o(In[¢]) as || =0
I¢1/2
henceforth:
2(¢ d\
| (f(N) _L))\——§| =o(ln[¢]) as |¢|—0 (C.17)
I¢1/2

Combining (C.13)-(C.17) we arrive at (C.9). The proof of (C.10) can be

made along similar lines.
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Proof of Proposition C.1. Since the function h satisfies all the assump-
tions of the function f in Lemma C.2, it follows, that M (z,-) is well defined
and analytic in D(3eg0/2).

On the other hand, Lemma C.2 also implies that

Mz Q) =exp{ — 5 (n(~2)) ¢l + o[},
as || — 0. Using (3.11), we obtain that:
[M(2,0)l < C(2)[CI” for [¢] <2, ¢ € Dleo)

for z € Z. and some § = §(¢) > 0. Since the function M (z,-) is analytic in
D(eg), (C.3) follows using Cauchy estimates.

It only remains to prove (C.4). To this end, notice that by (C.10) ,

M) =exp{ - 5o tim (1 (=£) ) gl + oftalcpy

T (—400

as ( — +o00. Notice that, due to (P-4) of Appendix B,

() w5
Im (1n(=2)) € (=27.0).

Therefore, for z € Z., and some ¢ = d(¢) > 0.

where,

|M(2,¢)] < C(2)[¢|"" for [¢]>2, ¢ € D(e).

C.2 Properties of the function W(z, ().

Proposition C.3 The function W(z,-) defined in (3.16) is analytic in the
region D defined by (3.4). Moreover, for any z € Z. there exists § > 0 such
that:

(W(z,Ql <C(z) if|¢l<1, (eD (C.18)
W(z Ol < CEKIT iflcl=1, ¢eD (C.19)

where C(z) depends on z.
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Proof. The integral defining W (z, () converges due to (C.3) and (C.4). We
begin proving (C.18). The only difficulty is to estimate W(z, () for ¢ — 0.
We give the argument for Arg(¢) € (g9, 2m — €9), since for arbitrary ¢ € D a
similar argument can be made after suitable contours deformations that use
the analyticity of M (z,-) in D(go).

We write:

2/¢] 1 00
W(z,g):/o (~~)d>\+/2<|(~~)d>\+/1 (- ) d. (C.20)

The last integral in (C.20) is trivially bounded as ¢ — 0. In order to esti-
mate the first integral in the right hand side of (C.20), we use the fact that
A= (] > e0/2(¢|, for Arg(C) € (g0,2m — €g). Using (C.3) we can estimate
that term as C[¢|°. Finally, to estimate the second term of the right hand
side of (C.20) we use for A € (2|¢|,1), |\ — (| > |\|/2. Henceforth, that
integral is bounded as ( — 0. From all these estimates, (C.18) follows.

To prove (C.19) we split the integral defining W as:

W(z,g):/o (---)d)\+/100(---)d/\. (C.21)

The first integral in the right hand side of (C.21) is uniformly bounded for
large (. On the other hand the second one, might be estimated as

- * el KO
D) d) SO/ )\15__d>\§_<-16
[ eamise [T Rt gas S

for Arg(C) € (g9,2m — £¢). Henceforth, (C.19) and Proposition C.3 follow.

C.3 Properties of the function V.

In this subsection we study several properties of the function V that are
needed in the following.

Proposition C.4 The function V, defined by means of (3.25) (5.26) in
Imn € (4/3 —6,5/3) for some § > 0, satisfies

V(n— %) =—V(n) M. (C.22)
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for alln € C such that Imn € (4/3—9,5/3). The function V) can be extended
analytically to the strip Tmn € (—1/3,11/6) and meromorphically to C using
(C.22)

Proof. The analyticity properties of ¥ would follow from (C.22) in the strip
Imn e (4/3 —6,5/3) deforming slightly the contour of integration. Indeed,
® is a meromorphic function in C, without poles in the strip Zmn € (1,4/3)
and with a zero in n = 7i/6. We then restrict our attention to the proof of
(C.22).

Using (3.25),

Vi - =) = eXp[—Si/ In <_—(y i @0)>
3 Imy:% a
1 1
67
e (667ry — ebm o ebmy aeﬁmii) dy](023>

Deforming the contour of integration to Zmy = %—5—1—5 with 5/3+5—Zmn <
e < 9, we pass through the pole y = n — i/3 of the integrand. Then, using
residues:

O (y + 10) 1 1
In | ———— )™ - ) d
/Imy§ ' ( a ) ‘ (667ry —efm  ebmy — aeﬁmgl) 4

_ Inl — (I)(y> 6Ty 1 o 1 d
- 4 a € ebmy _ o6 ebmy ae67r5i Y
Imy=(3—0+e)

+%ln (—M) .

Plugging this formula into (C.23) we obtain (C.22) and Proposition C.4 fol-
lows.

Proposition C.5 The only zeros of the function V in the strip Imn &
—1/3.11/6) are located at n =i 328 k. —0.1.2.3. These zeros are simple
( /7 /) n 6 5 Ly Sy 14
and

V(n) :_V(3z'/2)61>’(7z'/6)7£0 (C.24)

Moreover the only pole of the function V in Imn € (—1/3,2) is n = 11i/6.
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Proof. The results concerning the poles are just a consequence of formula
(C.22) and properties (P-1), (P-2) in Appendix B. The fact the only zeros of
V in that strip are 7 1gk for k = 0,1,2,3 is a consequence of (C.22) as well
as property (P-2) of the function ® in Appendix B. Formula (C.24) follows
from (C.22), the fact that V(3i/2) # 0 is a consequence of (3.24). Finally,
by (P-2) in Appendix B, ®'(7i/6) # 0.

In order to describe the asymptotic behaviour of the function G(z,€) as
€] — oo we will use the following

Proposition C.6 For any £ € C such that Tm& € (4/3,5/3) and n € C
such that ITmn = 5/3,

V() _ sin-om(~22)] nen-e) (C.25)

where the function

' . d(y) (eﬁﬂ(n y) _ (E—y)) dy
Mo = &)= =% /Imy—(ngg%n (@(5)) (1 — ef7—v)) (1 — ebm(E—y)) (C.26)

satisfies:

(&, n —&)| < C {min{[§ — n?|¢|77%, 1€ —nl|&|7O}+ 1¢)77/°} . (C27)

Moreover, there exist a > 0 and C' > 0 such that
Cleme kP < (g)] < e, (C.28)
Proof. Using (3.26),

Vin) : DY)\ 6y 1 1
v(E) P[5 /Imy=(§+a) ln( a )° o™y — b ebmy — bme )

where € > 0 has been chosen such that 4/3 + ¢ < Zm¢. We write now:

vin) _ . (&) (o) — S dy ey
W a eXp[—3Z o (_T) /Imy (5+¢) (1 — e67f(77*y)) (1 — ebm(e- y)>]e .

Elementary calculus yields

(eaw(n y) _ 6m(E— y)) dy
/Imy:(g+5) (1— 6677(77711)) (1 — e0m(E-y)) =n-—¢,
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and (C.25) follows.
In order to finish the proof of Proposition C.6 it only remains to prove that
h satisfies (C.27). To this end we need the following Lemma.

Lemma C.7 There exists a constant C' > 0 such that, for all & and y in C
satisfying Im& € (4/3,5/3), Imy € (4/3,5/3) there holds:

D(y) ly — ¢
|m(5@Q|SCKW“HmW'

Proof. We distinguish the two following cases | —y| > 2|¢| and | —y| < 2[¢].
In the first case, |y| > [£| and

C C|E—
[D() — @(y)| < [P() — 1 +[D(y) — 1] < €[1/6 < Eme\

where in the second inequality we use the property (P-3) in the Appendix B.
On the other hand, if |£ — y| < 2|, we use that

where the contour of integration is a segment connecting £ and y. Using
again (P-3) we obtain

Cl€ —yl
&J7/6

Using that |In(®(y)/®(£))] < C|P(y) — P(€)|/|P(£)| as well as the fact that
|®(&)] is bounded from below for Zm¢ € (4/3,5/3) we deduce

Q(y) ly —¢]
“n(uo)'§0|amf

Exchanging the role of the variables ¢ and y, Lemma (C.7) follows.

YodA
\MO—MWSCllwmg

End of the proof of Proposition C.6. Using Lemma C.7 it follows that,

ly — €| ‘eﬁﬂ(n—y) _ eﬁﬂ(f—y)‘ |dy]
|7/6 + |y’7/6 |]_ — 667r(77—y)| |1 — @67"(§—y)| ’

Imy:(%+a)|§
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Suppose that Re& > Ren. Then,

ly —¢| |57~ |dy|

Tmy=(+0)|E[7/6 + [y[/6 |1 — eS7w)| |1 — ebmiev)|

The terms |1—e%"=%)| and |1—e%™(¢=¥)| in the denominator do not vanish due
to the choice of the contour of integration. Moreover they can be estimated
from below independently of ¢, by means of a suitable choice of €. Therefore,

h(En—=8| < C ly =&l |dy|

Tmy=(4 +e) Rey<reel&|7/C + [y[T/6 |1 — ebmn=v)]
’y — f’ 667TR€(§—ZI)

+ C / |dy
Imy:(%+5),Rey2Re§ |§|7/6 + |y|7/6

Then,
ly — & |dy|
h(en —€)] < c/
Tmy=(3 +e) Rey<ren |§]7/C |1 — e770)]|
ly —¢|
* 0/ e s
Imy=(3+) Ren<rey<recl€|"/® + [y|7/6
C
TG C.29
T (C.29)

Using |y —¢| < |y —n|+|n—¢&]|, the first term in the right hand side of (C.29)
can be estimated as C(1 + |n — &[)/|€|7/6.

In order to estimate the second integral, we use first that |y — & < Cln —¢|.
The remaining integral may then be estimated as C|¢ — n[|¢]7Y/%. On the
other hand, this second term might be also bounded as C|¢ — n|2/|¢|7/S.
Therefore, combining the two inequalities we obtain:

b€, = )] < C {minl¢ = nf*/IgI"%. ¢ = nllel %} + 1€ 7"}

The argument for Ren > Reé is similar using the symmetry of the integrand.
Finally, (C.29) is an immediate consequence of (C.25), (C.27) and (P-3) in
Appendix B.
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Figure 1: Some of the zeros and poles of the function .
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Figure 2: b=-1/4.
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Figure 3: b=1.
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Figure 4: b=4/3.
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Figure 5: b=>5/3, r runs from -5 to 5.
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Figure 6: b=21/12=1.75, r runs from -5 to 5.
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Figure 7: b=23/12=1.9166666667, r runs from -5 to 5.

o4




-4e’ 05 -2e. 05 Y 2e-'05 4e-'05 6e-05

~le- 05+

-2e-05

-3e-05

Figure 8: b=1.8402088125,r runs from -0.331301 to -0.331269 and from
0.331269 to 0.331301.
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Figure 9: b=1.840205625, r runs from -0.33131 to -0.33126 and from
0.33126 to 0.33131..
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