Local well posedness for a linear coagulation equation.
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Abstract

In this paper a family of linear coagulation models is solved. These models arise in the anal-
ysis of the asymptotic behaviour of coagulation equations yielding gelation for large particles.
The tools and techniques that are developed in this paper are based on the definition of a class
of weighted Sobolev spaces that take into account the characteristic time scales associated to
the coagulation equation for large particles, as well as in the continuation argument introduced
by Schauder to prove well posedness of general classes of elliptic and parabolic equations. The
estimates derived in this paper will be used in [5] to construct rigorously classical solutions of
the coagulation equation exhibiting loss of mass.

AMS numbers: 45K05, 45A05, 45M05, 82C40, 82C05, 82C22.

1 Introduction

This paper is part of a program to study the well posedness of classical solutions after the gela-
tion time for a general class of coagulation equations that behave asymptotically as homogeneous
kernels.

The classical coagulation equation reads:

o @) =5 [ K@=y fle-n) 0y~ [ K@) @oiody (1D

This equation can be thought as describing the distribution of sizes for a set of particles with
size x that aggregate with particles of size y, independently distributed, with a rate K (x,y).

It is well known that for kernels K (x,y) that behave asymptotically for large x, y as (a:y)% with
1 < X < 2, the solutions of (1.1) exhibit the phenomenon known as “gelation”, that means that the
first moment of f, that is formally preserved for the solutions of (1.1), is not any longer preserved
after some finite time t*, due to the fact that a macroscopic fraction of particles “escapes” to
infinitely large sizes (cf. [8]).

A detailed description of the asymptotics of the function f(z,t) as * — oo for solutions
exhibiting gelation behaviour is still lacking, except for the case K (x,y) = -y where (1.1) can be
explicitly solved using integral transforms (cf. [3], [10], [11]) . In order to obtain more information
on the asymptotics of the solutions of (1.1) for more general kernels, we have studied in a detailed
way in [4] the fundamental solution of the linearized problem obtained considering the evolution
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of functions f that are close to f(r) = Az~ 2 with kernel K (z,y) = (v y)% , 1 <A< 2. The
reason for considering the evolution near such power law, is that , as it has been proved in [12],
the function f(z) = Ar~%5 is a steady solution of the equation (1.1). The interpretation of
this distribution in the particle setting above corresponds to a continuous transport of particles
emanating from the origin and being transported towards x = oo at a constant rate (cf. [12]).
The power law =% was also obtained in [13] where explicit particular solutions of the discrete
coagulation equations yielding loss of mass have been constructed. A precise description of the
meaning of this statement can be found in [4].

In order to understand solutions of the coagulation equation (1.1) yielding a “flux” of particles
towards infinity, it is natural to linearize around f (), in order to clarify how such transport of
particles could take place. We will denote the linearized problem considered in [4] as:

ge=1Llgl » 9(0)=go (1.2)

where

L(g) = /096/2 ((I —y) % - x’m) ¥ 2g(y)dy
+ /Ow/2 ((w —y)M2g(x —y) — 1’”29(:0)) y~*2dy

o0
a=3/? //2 yM2g(y)dy — 2v2xA "D 2g(x). (1.3)
T

A technical difficulty that arises in the study of the linearization of (1.1) around f (x) is due to
the fact that this function is singular near x = 0. This has several relevant consequences. First, the
resulting linearized operator becomes singular near x = 0, and as a consequence, it has regularizing
effects that cannot be expected to take place for the original problem (1.1). As a matter of fact,
the linearized operator considered in [4] behaves, locally near a given value of z, as:

gi(x,t) = — (—Dm)i (z*2g(x,t)) + higher order terms

In particular, this problem can be considered as a nonlocal parabolic equation whose generator
has Fourier symbol —v/2ik. Clearly, the regularity properties associated to this problem can be
expected to be very different from the ones associated to (1.1).

Something that it is worth noticing is that the same half-derivative operator arises for all the
values of . This can be seen in the second term on the right-hand side of (1.3) since the same
exponent y_% appears independently on the value of A. This term y_% is due to the combination

of the term (y)% and the factor (y)fg in (y)f%

On the other hand, from the physical point of view, the solution f (z) is associated to the
presence of a constant flux of particles leaving from the origin, as it can be seen in [4]. Bounded
solutions of (1.1) do not have such a constant flux of particles with size z = 0.

However, in spite of these differences between the linearized problem (1.2) and (1.1) there
are good reasons for studying (1.2) in order to understand particle fluxes towards infinity for the
nonlinear equation (1.1). The main one is that solutions of (1.1) yielding particle fluxes towards
xr = oo can be expected to behave as one of the solutions f as indicated above for each given
time. Moreover, the problem (1.2) can be solved explicitly using the methods in [1] due to its good
properties under rescalings. Moreover it is possible to derive detailed estimates of the corresponding
fundamental solution in all the regions of the space-time (z,t) (cf. [4]).

Nevertheless, in order to avoid the shortcomings of (1.2) as an approximation of (1.1), it would
be more convenient to study the linearization of (1.1) near a smooth bounded function fy () that



behaves asymptotically as Az~*5" as 2 — oo. The resulting problem would be:

ge=L(g) , 9(0)=go (1.4)

with:

xr (o) o0
L(g) = /O (x =) folw—y)adg(y)dy— =3 fy (x)/O yig(y)dy—a?g (96)/0 y? fo (y)dy

Problem (1.4) is in some sense closer to (1.1) than (1.2). Indeed, (1.4) does not have regularizing
properties at any z > 0. On the other hand, bounded solutions of (1.4) yield a zero flux of particles
from the origin.

Unfortunately, the solution of (1.4) cannot be obtained explicitly as it has been made in [4].
Moreover, to prove even local solvability in time of (1.4) is not an easy task due to the presence of
the integral term fooo y2 g (y)dy. In the absence of this term the local solvability of (1.4) could be
easily obtained using a fixed point argument. However, the presence of this integral term makes
this problem much harder to solve.

The key idea that will be used in this paper is to solve (1.4) approximating it by means of
(1.2) for  — oo. The operator on the right hand side can be thought as an operator having half
derivative at © = oo. As a consequence, the equation (1.4) has some kind of “smoothing effects”
for = oo. The presence of these regularizing effects is cleaner in the equation (1.2). Nevertheless,
this last equation has regularizing effects for all the values of x. Therefore, to approximate the
regularizing effects of (1.4) by means of those of (1.2) is something that must be given a precise
meaning and it will be made in this paper. Regularising effects in kinetic equations with singular
kernels have been previously obtained for Boltzmann equation cf. [2] and [14].

There is another feature of the approximation of (1.4) using (1.2) that is worth mentioning. As
indicated above, the function f (x) can be thought as describing a flux of particles coming from
2 = 0 that are transported towards & = co. On the contrary, the funtion fy (z) does not provide
any flux of particles from the origin, although it is associated to a flux of particles transported
towards x = oco. If we rewrite these two functions using the change of variables F' = R f(RE),
with € of order one and R — oo, it follows that f(z) = Az~"% becomes F (¢) = A¢~*% and
fo (z) becomes Fy (§) = R’ f, (R¢). Notice that Fy (€) — F(€) as R — oo, for all £ > 0.
Such a convergence fails for & — 0 or, more precisely, for x of order one. Actually that is the
region where (1.4) cannot be approximated by (1.2). This region can be considered as containing
a “boundary layer” where the boundedness of fy plays a role, and where the absence of particle
fluxes and regularizing effects for (1.4) are seen. The analysis of this paper can be thought as the
development of the mathematical techniques to handle such a boundary layer effects, as well as
the proof of the fact that the dynamics of (1.4) can be approximated by means of the singular
problem (1.2) at least for times of order one.

Let us remark that to solve the problems (1.2), (1.4) is equivalent to the solution of suitable
problems with sources and vanishing initial data. Indeed, suppose that § = g (z,t), is a smooth
function satisfying g (x,0) = go (x) . Let us define h = g — §. Then:

hy =LA+, h(0)=0 (1.5)
he=L[h+p , h(0)=0 (1.6)
with fi = L[] — g1, 1= L[g) — g1

The method that we will use in this paper to solve (1.4) makes use of a classical continuation
method. More precisely, we will embed (1.6) into the family of problems:

he=(1—0) L +0LMh) +u, h(0) =0, 0€0,1] (1.7)

The problem (1.7) can be explicitly solved for § = 0 using the fundamental solution in [4].
Suppose that (1.7) can be solved for § = 6* € [0,1). We will show that (1.7) can be solved for



0 > 6* with (# — 0*) small enough. This will allow to extend by continuity the solution of (1.7)
from 6 = 0 to # = 1, and then to obtain a solution of (1.6). Similar continuity methods have been
extensively used in the analysis of PDE’s (cf. [6, 7, 15]).

The structure of this paper is the following. Section 2 contains the definition of the functional
spaces that will be used in the rest of the paper. These spaces have been chosen in order to
capture the main features of the asymptotics of the solutions of (1.4) as x — oo, as well as suitable
regularity properties that is convenient to control in the solutions due to the fact that the L (-)
can be thought as a rescaled half-derivative operator as x — oo as indicated above. Sections 3
and 4 are devoted to the proof of regularizing effects for the evolution problem associated to the
most singular part of the operator £ (-). Section 3 contains some technical preliminary Lemmas
and Section 4 contains the actual proof of the required regularity results which are summarized in
Theorem 3.1. Section 5 contains similar regularizing effects for the evolution problem associated to
the operator L (). These results are derived from those obtained in Sections 3 and 4 treating the
less singular terms in £ (-) in a perturbative manner (cf. Theorem 5.1). Section 6, which contains
some of the most technical arguments of the paper, derives detailed estimates for the difference
(L — L) . The terms in the difference (£ — L) () can be classified in two types. The terms denoted
in Section 6 as A; (cf. (6.1) ) are those whose estimate does not require good regularity estimates
for the function . On the contrary in the terms denoted as Ay (cf. (6.2) ) the operator (£ — L)
acts like a half derivative operator and strict regularity assumptions are required for . The terms
in A; which are much easier to control are estimated in Lemmas 6.1, 6.2. The terms in Ay are
estimated in Lemma 6.5, with the help of some auxiliary technical results (Lemmas 6.3 and 6.4).
Section 7 derives regularity estimates for the solutions of the family of interpolating problems
(1.7) (ct. Lemma 7.4 ). These estimates are obtained treating the interpolated problem (1.7) as
a perturbation of the problem with @ = 1 which has been explicitly solved in [4]. Lemma 7.2
contains an estimate for the solutions of (1.7) with § = 1 and Lemma 7.3 estimates the effect of
the terms in the difference (£ — L). Finally Section 8 contains the proofs of the main results of
the paper (namely Theorems 2.1, 2.2) by means of the continuation argument in the solutions of
(1.7) sketched above.

The results obtained in this paper will be used in [5] to construct rigorously classical solutions
of the coagulation system exhibiting loss of mass.

2 Functional Framework and statement of the main results.

We introduce now the set of initial data, fo € C*7(R*), v € (0,1), that we shall consider in this
paper. We will assume that the function fy is close to the function Az~(+*/2) for some constant
A € R. To this end define

ho(x) = fo(x) — Az~ PN/ D¢(x) (2.1)

where ¢ is a smooth cutoff function such that {(x) = 1 for z > 1 and {(x) =0if 0 <z < 1/2.
We then require in all this paper that for some positive constants B and ¢, the following condition
holds :

34 34 34
Yz Plho(y)| +y 2 +1+‘Slhé(y)lJrls%th 7 gl conry2.2m + [holcoroy < B (2.2)

All the estimates in the rest of paper will depend on the constants A, B,y and §. For the sake of
shortedness this dependence will not be indicated.



The operator L is given by:

L(g) = /Ox(x — M folz —y) y™? gly) dy — 22 fo(z) /Oo v gly) dy —

0
@) [T R @y
0
Our first goal is to study the solutions of the Cauchy problem:
oh
3, = L) +pu(r,2) (2.4)
h(0,2) =0 (2.5)

for some initial data hy and non homogeneous term u.
We shall also use repeatedly the following “localised version” of this equation. To this end, for all
R > 1 fixed, let x(z) € C;°(0,400) be such that:

1 ifee (R—E R+E),
x(x) = (2.6)
0 1fac¢( f,R—&- )

If we multiply the equation (2.4) by x(z) and call § = x(x) g(z) we obtain:

% - L@+ R0 (27)
z/2
R@) = x@) [ (=02l =) o)y gy
2M25( N2 — M2 () N2
3(x) /wy folw)dy — 2 fo()x (@) /my o(y)dy
z/2
n / (x(@) = x(& —9) (& — 929z — 9™ foly) dy. (2.8)

For any p > 1, L?P will denote the usual Lebesgue space. For any ¢ > 0 and any interval
I C (0,+00) we denote by H(I) the usual Sobolev space W2(I). The corresponding norms will
be denoted || - ||z» and || - ||gzo. When dealing with functions depending on variables = and t we
will write HZ or L} in order to indicate the argument with respect to which the norm is taken.
In order to define the functional spaces that will be needed we first introduce

. min(to+R~A~D/2 1) , 1/2
Nuohi to, R) = | R* / ()2 2.2 (2.9)
to
NS min(to+R~*"1D/2,T) , 1/2
No.o (b t0, R) = | R*+27 / IDZRE) 12 (.01 It (2.10)
to
T 1/2
Mao(h; R) = / B0 2y (2.11)
T 1/2
Moo (h; R) = (R / ||D;h<t>|%z<3/2,m>dt> (2.12)
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Figure 1: Domain decomposition for A = 1.5, tg = n R~*~1/2 and R = 2".

Then, we define the spaces:

\|f||qup(T)zos%leqMoo(f;R)—i— sup sup RP Ny (f;to, R) (2.13)
<R<

0<to<T R>1

Xp.o(T) = {f; 1 fllx, 1) < o0} (2.14)

fllve, )y = sup RIMyo(f; R)+ sup sup RP Ny;o(fito, R) (2.15)
’ 0<R<1 0<to<T R>1

V(1) = {1l o) < oo} (2.16)

We also use the following norms defined for functions ¢ = p(z):

llelllgp = sup {z?@(x)|} + sup{z”|p(z)[}
0<z<1 r>1

and the next one defined for functions ¢ = (-, t) and any T > 0:

|H¢|||G = OiltlgT |H7/’(’7t)|||3/27(3+/\)/2 + ||w”YSU/2,(3+/\)/2'

We define the space £r,, as
Erie = {fi I fllle < oo}

endowed with the norm ||| - |||,. Unless it is explicitly stated, we assume in all the remaining of
the paper that o is a fixed number satisfying
oe(1,2). (2.17)
In order to discharge the notation we will not write explicitly the dependence of the space &7,
and the norm ||| - |||, on o unless it is needed. We will then write:
&rio =&r; |l llo = I - (2.18)



We introduce a functional seminorm that measures in a natural way the regularising effect of the
operator L as x — oo. Consider a cutoff function n(x) defined as
1 ifze (3,2,
n(z) = (2.19)
0 if z ¢ (3.4).

Given then a function f € &, for all R > 0 and ¢ € [0,T] we define

Frao(X, 1) =n(X) f (RX, to + TR*(*”W) (2.20)
[f] =sup sup ROCTN/2x (2.21)
R>10<to<T

1/2

min(to+R™A"D/2 ) R
v / /|FR,t0(k,T)\2 (14 K27 min{|k], R}) dkdt ).
to R

Some explanation about the meaning of these complicated norms is in order. Roughly speaking
the norms in (2.13)-(2.16) , estimate functions behaving like the power law 77 as * — oo and x4
as ¢ — 0. In particular the space 7., consists of functions which can be estimated as the power
law 2~ "% as ¢ — oo and 23 as # — 0. The exponent =% appears in a natural manner in
the analysis of the equations (1.1) (or (1.2), (1.4)) because this is the expected behaviour of the
solutions yielding mass transfer as x — oo. The role of the exponent 7% is more technical, and it
could be probably be replaced by other power laws. However the value 7% appears in a natural
way because this is the singular behaviour that arises for the solutions of (1.2).

Notice that we have controlled the behaviour of the functions f using L? and Sobolev spaces
HZ (cf. (2.9), (2.12)). The reason for using this functional framework, instead of L>, C* C*< or
similar is because we will prove many regularity results using Fourier analysis, for which the L2
framework is more convenient. The control of this regularity is needed because, as indicated in
the Introduction, the operator L can be thought as some kind of rescaled %—derivative operator
as x — oo, and therefore, the control of these derivatives becomes needed. We use Sobolev spaces
HZ with o > 1 because we need L™ estimates for some of the functions in the corrective terms of
(L — L) as x — co. The embedding HZ < L* for o > % provides such estimates. These estimates
will also be needed when considering the complete non linear coagulation equation (cf. [5])

Finally, a point that deserves comment is the choice of time scale for the decomposition of the
space (x,t) in the set of rectangles shown in Figure 1. While the dyadic decomposition in space
is natural, the choice of the length scale R—>7" is not so obvious. The reason for this is that due
to the rescaling properties of the kernel K (z,y) in (1.1), the natural time scale producing changes

in f comparable to itself for functions f behaving like x= "2 as x — oo, due to the coalescence of
A—1
particles of size z is z7 "2 .

The main results of this paper are the following

Theorem 2.1 For any o € (1,2), § > 0 and for any fo satisfying (2.1) and (2.2), there exists
T > 0 such that for all p € Y30/2,2+6 the Cauchy problem (2.4) (2.5) has a unique solution h in
Er.». Moreover,

AT < Cllullyg,

3/2,2+46

for some positive constant C depending on T, o, § as well as A, B and v in (2.1) and (2.2) but
not on (.



Theorem 2.2 For any o € (1,2), § > 0 and for any fo satisfying (2.1) and (2.2), the solution of
the Cauchy problem (2.4) (2.5) satisfies

0 < Cllallys, .,
for some positive constant C depending on T, o, § as well as A, B and v in (2.1) and (2.2) but
not on (.

Theorem 2.2 is a regularising effect for the solutions of (2.4) (2.5). The operator £ can be thought
as half a derivative as © — co. However the solutions of (2.4), (2.5) do not gain any regularity for
any finite value of z. The norm (2.21) can be thought heuristically as a measure of

g |fa+o - 1@

c1/2

with € > 1/R. Theorem 2.2 then states that for the function h this quantity may be estimated by
ellyg

2,246

Wé en+d this Section with two warning remarks. The first one is that all along the paper we are
going to use freely the letters I, 15, -+ and Ji, Jo, -+ to denote different integrals. These letters
will be used in different arguments. They will be used consistently within each argument. The
second remark is that, in several arguments, we shall need to extend to a given interval suitable
regularity estimates that have already been proved in smaller intervals. This is done following a
standard and well known procedure involving decomposition of the identity and is not detailed in

the paper.

3 Auxiliary regularity results.

In order to study the regularity properties of the solutions to the equation (1.7) we define, for all
e such that 0 <e < 1:

T. r(f)(z) = /OOO (f(z) = f(z —y)) ®(y, R,e)dy (3.1)
B(y,R,e) = ﬁ + (1 — ) RBHN/2M2 f(Ry). (3.2)

The operator T, r (f) with € = 1 is the most singular term of the operator £ in (2.3). Moreover,
as indicated in the Introduction, we will solve (2.4), (2.5) by means of a continuation argument,
changing the parameter 6 in (1.7) from zero to one. This will require to obtain uniform regularity
estimates for all the family of interpolated operators. The family of operators T, g (f) yields the
most singular term of those interpolated operators for suitable choices of € € [0, 1]. We also define
for further references the operators

(Myjaf) (@) =22 f(2). (3.3)
Ko(€) = —V2r €[/ 3(¢). (3.4)

We now consider the interior regularity properties of the linear semigroup generated by the operator
TE,R 0] M)\/Q .

Theorem 3.1 (i) Suppose that Q € L?(0,1; HZ(1/2,2)), P € Lf(O,l;H§_1/2(1/2,2)) with o €
(1/2,2), k € (0,1] and f € L>=((1/4,2) x (0,1)) N L?(0,1; HY/?(1/4,2)) N H(0,1; L?(1/4,2)) is
such that f =0 if x <1/8 or x > 4 and satisfies

of

D =rTer (Myy2 f) +Q+ P (3.5)



for allz € (1/4,2), t € (0,1) and f(x,0) =0. Then:

1
120,017 3/4,5/2) < C (||Q||L§(o,1;Hg(1/2,2)) + ;l‘P‘|L%(O’1;H;71/2(1/2’2))+
[ £1 Lo ((1/4,2)% (0.1))) (3.6)
for some positive constant C independent of ¢ and R.
(ii) Suppose moreover that, for some Thag > 0, Q € L2(0, Tonaw; H(1/2,2)), P € L2(0, Thae; HZ~2(1/2,2)),

F e Lo((1/4,2) x (0, Thag)) N CHO, Tonae; Ha'?(1/4,2))) is such that f =0 if 2 < 1/8 or x > 4
and satisfies

of

EZTE,R (M/\/2f)+Q+P7a(I7t)f7 I€(1/472)3t>0) (37)

F(z,0) =0 (3.8)

for some function a € L>(0, Tynaz; H7(1/2,2)), a > A > 0. Then, for all t € [0, Tynar — 1):

min(T+1,Tnas) , 1/2
sup / Lo (3/4,5/2) A < (3.9)

0<T<Tmax T

min(T+1,Tmaz) 1/2
¢ _sw ( / QW1 2. dt)

0<T<Trmae \JT
C min(T+1,Tmax) 1/2
2
+—  sup / IPO5ro-1/2(1/2,2) 4t
€ 0<T<Tmax \JT
+C |‘f||L°°((1/4,2)x(0,me))
(iii) Suppose that for some Tas > 0, Q € L7 (0, Tnaw; H (1/2,2)), f € L((1/4,2) X (0, Trnaz)) N

C,}(O,Tmax;H;/Q(l/ll,Q))) is such that f =0 if © < 1/8 or x > 4 and satisfies (3.7) (3.8) with
P=0ande=0. Then

min(T+1,Trmaz) ~ v
(/ / \F(k, t)[2|k|2 min{lklﬂ}dk) <
R

T

min(T+1,Trmaz) 1/2
C s / QU Bz dt |+ ClIF i~ (152 0T
0<T<Tmax T

(3.10)
where F(x,t) = n(z) f(x,t), n is defined in (2.19) and C is independent of R.

Remark 3.2 It will be used repeatedly in the paper that the condition o > 1/2 ensures that the
space HY is an algebra under the multiplication.

Remark 3.3 Roughly speaking, the part (i) of Theorem 3.1 provides regularity estimates for times
t of order one. While part (ii) provides regularity estimates for arbitrary long times. It is important
to notice that in the Theorem 3.1, the time Ty can be arbitrarily large.

The proof of Theorem 3.1 is based on the classical freezing coefficients method that reduces
the problem to the case of a constant coefficient operator. Let us then define, for all zo € RT the
operator:

S..r(t) = exp [t Z TE,R] . (3.11)



We also define the operators:

Ti(9)(€) = ReW (£, 2, R)B(€) (3.12)
To(9)(€) = i ImW (€, e, R)P(E) (3.13)
where
W(E e ) = / T e R) (¢~ 1) dy (3.14)
/ foly) y™? (e78Y — 1) dy. (3.15)

We now collect several estimates on the operators 77 and 75 which are used in order to obtain
bounds on the operator S; g.

Lemma 3.4 The function W (€, e, R) defined in (3.14) may be rewritten as follows:

W(E e, R) = —eV2T(1/2) (1 + isign(€))[€]'* + (1 - e)VRW (¢/R), (3.16)
where the function W satisfies:
ReW <0 with ReW =0 if and only if £ = 0, (3.17)
, W
=50 (1+isign<(zz)))z|1/2 =—V2r(/2), (3:18)
ZEI-‘POO W(z) = —/0 2 foly), (3.19)
—~ C

As a consequence of these properties, the function W satisfies:

ReW <0 with ReW =0 if and only if £ =0, (3.21)
and is such that, for all e > 0 and & fized,
Llim W e R) = —V/2/2(1 + isign(€))|€|V/2. (3.22)
—+o00

Proof of Lemma 3.4. Using formulas (3.2), (3.14) and (3.15) properties (3.17)—(3.19) follow. In
order to prove (3.20) we may write:

! _ . o° —i _ 7 > / i
wW'(E) = —i /0 y)\/2+1 foy)e yfdy — g/0 d, (yA 241 fo(y)) e ygdy
= é/o h(y)e_i“ dy with h(y) = J, (y’\/2+1 fo(y)) )

We now split the integral [°h(y)e ®Sdy in the intervals of integration [2”—", QW("H) , n o=
0,1,2,.... Writing in each of the intervals h(y) = h (2”?”) { ( )} , using that
27 (n41)
Jann® e~ Wedy = 0 as well as the Holderianity properties of fy stated in (2.2) we obtain:
€
2 (n+1)
1 C
h _’yfdy’ < C / ( > dy < ——
J, roe Z € @ ) S e
(3.20) follows. Finally, properties (3.21) and (3.22) directly follow from (3.17)—(3.20).
(]

We collect now some regularising properties of the semigroups generated by the operators S
and z)/? Ty defined in (3.11) and (3.12).

10



Proposition 3.5 For all 0 > 0 and s € (0,1]:

2

t t
'/SE,R(t—S)h(s)ds §C/ Hh(s)||%{g(R) ds (3.23)
0 He (R) 0
1 t \2 2 1
/ / kT e FTE=9)n(s)ds dtgc/ |R()]|%- (R) dt (3.24)
0 0 He (R) 0
1 t 2 1
/ / 70 N5 () s at< < / A2 2 (R) dt. (3.25)
0 0 He (R) 13 0

Moreover, for all B € (0,1] and n a C*® function of compact support, there exists 0 < p <
min(o, 3/2) such that

1S, (t) [0, Te. k) B | o r) < Ct™P |0 gro—o () (3.26)

2

! 22Ty (t—
/Tle% 1=, Ty]h(s) ds

1
ds < C [Ty rce (3.27)
0 0

1
/
where C' denotes a generic positive constant independent of the function h of R and € but depending
onao, 3, pandn.

Ho(R)

In the proof of Proposition 3.5 we will use the following result.

Lemma 3.6 There exists a positive constant C' such that for all R>1,e>0and >0, >0
satisfying o+ 8 = 1:

€ — =l

W2 R) =Wz R)| < Op s

(1+|W(z,e, R))*(1+ |W(, e R)|)P (3.28)

for all z € R and £ € R such that |z] > 1 and |£] > 1.
Proof of Lemma 3.6. By definition:
W (¢ e, R) = —eV27 (1 + isign(€))|€]/? + (1 — e)VRW(£/R).

The following estimate can be readily obtained studying separately the cases sign(&) = sign(z),
sign(§) = —sign(z)

; 1/2 ; 1/2 € — 2|
|sign(§)[¢] /2 - sign(z)|z| / | < QW
Therefore:
lev2m (1 +isign(€))|€]/? — evV2m (1 4 isign(z))]z|/?| < Cs|§|1/|§;_|zz||1/2.

Using then |W(2)| > 2 /e |z|'/? we obtain:

V2 (1 + isign(§)E]'/? — ev2m (1 +isign(2)|z"/| _ , 1€~ 2|
1+ W)™ @+ [W(E))” PREE

In order to prove a similar estimate for W we consider the following cases:

(1) €] < 2R and |z| < 2R,

11



(ii) |¢] > R/2 and |z| > R/2
(iii) |¢] > 2R and |z| < R/2

(iv) |z| > 2R and |¢] < R/2.

In the case (i) we have Cy|¢]"/? < ‘\/» W( ) < Cy]€|Y? and similar esti-

|57 (5)

mates also for z. Defining g = VR RW (ﬁ) we have by Taylor’s theorem:

20\ 2 ¢ / _
19%(6) g(z)\s/ gl ()l dn < C € - 2|.

[l

<Coerr—75
IR

. —~ (& ~ /z
Then |g(§) — g(2)| < m, whence VR ‘W (R -w (E) and the con-

clusion follows as above.

If condition (ii) holds, suppose first that sign& = —sign z. Then, |£ — z| = || + |z| and

‘fw() VEW (2)| < e VR

€1+ 12l o
1Pzl

VAW (55) = VRW ()| < 0 2 (Gl < g+ e+ e

Suppose now, still under assumption (ii), that sign¢ = sign z. Then, using (3.20) we have

N 1/24a
5 (VAT (R) <0

|m|tt

Using the Young’s inequality > C > 0 for a positive constant C' = C(«, ) we deduce

for all n > R/2. Using Taylor’s theorem it then follows that:

Therefore, if |£]/2 < |z| < 2|¢| then,
o [ gl A oo
e M

tra = e = TR = O

Otherwise,

¢ nte R/2 e T |Z| |Z‘ €15
The cases (iii) and (iv) can be treated equivalently. In both cases we have |§;|Z| > Cy > 0.
Moreover, in the case (iv):
|\/7W( ) \/7 z ‘ /2 a/2 @ _
V(&) Yol o] i yC N L WO it |
1 e S

(i) () e

12



And this ends the proof of Lemma 3.6. o

Proof of Proposition 3.5. In order to prove (3.23) we write:

ERt—S h(s)ds

He (R)
C// /(1+|g|5)2ew3/2<t—51)T1(5) ay/? (t— ST (¢, 51) x
RJO 0

xe% o2 (t—s2)T1(€) *zo/ (t—s2)T2(& (ﬁ(€’32) ds1 dss d¢

t , R 2 t
<o [arien? ([ ed @i s as) de<o [ s,
R 0 0

where T7 and T» are defined in (3.12) and (3.13). This proves (3.23).

¢
We prove now (3.24). To this end let us define the function ¢(z,t) = / ev0 "R Ty (=) h(s)ds which
0

satisfies:

3}
a—f—xé‘”nﬂ(tp)—&—h(m,t), t>0,2>0; ¢(x,0)=0.

Multiplying this equation by —x T} M?° in L?(R) where M is the multiplier operator associated
to the symbol |£| we obtain:

- A/2 o o o
26tHM 1) ollfe@w + K= o %lIM (Tio)|[Z2 ) < R IIMOT1(@)|| L2 ) || M7 D[ L2 ()

2 ,.A/2
K 1:0

S Wl\h( Mg ey + 1M (T10)l 72wy

whence:

K2 A/2
- xZ
2 nae (- )2l fa @+~

2(% M7 (Tap)l| 2wy < oo W||h( Wie m)-

The result follows integrating in time and adding the corresponding inequality for ¢ = 0. The
proof of (3.25) is similar. We multiply the equation by —M?*@=1/2) A in L2 (R) to obtain:

2dt||( )1/2<P|@10—1/2 +5||A90||§1071/2 < ||l go—1r2]|Ap|| gro—1/2-

Using Young’s inequality and integrating in time we obtain (3.25).
We prove now (3.26). By definition:

0, T / K(€ —2) (W(22 R) — W(E &, R)) $(2)d=

where K (z) = 1)(z). Since the function n is C°°, for any m > 0 there is a constant C, such that:

Cn
Therefore:
2
152, = () [0, Tz, r) P[0 () = /Re_“mew(i)'(l +1¢17)? (€ —2)(W() —W(2)) ¢(z)dz| d§

13



We split the integral in two pieces:

152, R (8) [0 To. ) Bl 2o gy = /|s|<1[' LJdE+ /£>1[. e

The first term is estimated by:

‘/|5|<1 <C/|<1 (/ 1+|£7i ™ 1+l ()|dz)2

<c (/ O (s >|dz)2 < Cllgll=. (3.30)

11 2172

In the second term we have:

/ [“-}déS?/ e—“'ReW“>‘<1+|f|">2(/ [ ]dz2)*de +
1€1=1 |€1>1 |z|<1
2 —2t|ReW (&)] 1 o\2 . d 2d —J Jo.
wf (4162 felderae =g+,

|z[=1

We estimate J; follows:

C
J C 1+ 2
1 < ‘§‘>1( ‘€| ) (/l

<1 L+[§— 2™

1
<C / p(z
gj>1 (14 [§]Fm—127) < <1 ia

It only remains to estimate Js.

(L+[€1"%)1(2)| d2)*d

2
) dz) d¢é < Cllp||3z- (3.31)

Jo

IN

/|£|>1e—2t|ReW(£)|(1+ 1£]7)? ( | |>1K(§—z) (W(¢) —W(z))¢(z)dz> de

IN

ConllollFro—r %

e~ 2t|1ReW (€)| )2 (W) —W(z ))2 dz
) /|g|21 A+ k) </|z|21 (L+[€—2m)> (1+ |z|0—ﬂ)2> “

Using Lemma 3.6:

] €= 2P
J < C © a—p/ e 2t |ReW (§)| 1+ § AV / «
2 || ||H g1 ( | | ) 2|51 (1 I |€ _ Z|m)2

WP WP de
ST <1+|z|a—p>2>d5

IN

Cllgl oot

. L wer
“J o (/ A+ 16— 212 Pl 0+ |z|a—ﬂ>2> ¢

where we have used that, for all £ € R and all £ > 0:

2t IRW () |y()|2 < t%. (3.32)

Using now that |[W(2)|/|z| < |2|~'/? we deduce

1 1 dz
52 < Ol [ g2 ([ - de.
2 H ||H |§|21| | |31 <1+|§_Z‘m—1)2 |Z‘(x (1+|Z|0'—p>2
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We change the order of integration and rewrite the resulting integral as

€20 =B) d¢
= .d . 0d
/|§|>1 (1+]¢—z[m1)? /|§|>1, \E\SBIZI[ | £+/E>L |§|28\z\[ lat

= L+ Io.

In the second integral we have |£ — z| > C|€| and therefore:

[ PP de g2~ dg
€121, g2z (L 1€ =212 7 7 Jig>, =gz [§20m7Y

< C‘Z|2072ﬁ72m+3 < C|Z|2(07ﬂ)

9

assuming that m is large. In the first integral we have

/ |£|2(U_ﬁ) d§ < C|Z|2(U—5) / d§ )
€121, lel<sle] (L+ 1€ — 2712 = g1<1, lel<slz] (L€ —2m1)?

Then I + I, < C'|2]*(“=#) and

1 1 dz
2(0—8) / = de < C |7 1=B+2p g4,
fo ( o1 LFE— 27 TP 2o (1+Z|g_,,)2> A

This integral is bounded as soon as 2p < . This concludes the proof of (3.26).
In order to prove (3.27) we estimate its left hand side as:

1 t
/ dt/ ds/672(t75)ReW(§)(1+|£\20)|W(£)|2
0 0 R

arguing as in the proof of (3.30) and (3.31) we obtain that

2

dg

/R K( — 2)(W(E) — W(2)h(z, 5)d

1 t
—2(t—s)ReW (&) 20 2
/0 dt/o ds/Re (14 [E29) W ()2 (3.33)

2
X

1
/ﬂ{{lmin(I&I,\z\)gl(S,Z)K(ﬁ —2)(W(§) = W(2)h(z,8)dz| dE < C/O 1A ($)11Z2 gy ds.

On the other hand,
1 t
/ dt/ ds/ 6_2(t_S)R€W(€)(].+‘§|20)|W(§)‘2 %
0 0 [£]>1
2

X K(& = 2)(W(E) — W(2)h(z,5)dz

|z[>1

1 ¢
S/ dt/ ds/ e 2R () (1 4 (€27 x
o Jo Jig=

dg

2
X />1 |K (€ = 2)[|[W (&) = W()||W(2)||h(z,s)|dz| dE +
1 t
+/0 dt/o ds /§|>1 e*Q(tfs)ReW(E)(l_F |€|20’) %
) 2
<|[ K= DIWE - WPz 0)lds| dé =1+ Io
|2[>1

15



Arguing as in the derivation of (3.26) we obtain

11<C/ dt/ ds =5 T <>||HU<R><C/ T3 A(8) ey s (3.34)

On the other hand, in I we use (3.28) and formula (3.32), to obtain:

1 t
B [ dt [ ds|Th),-, [ e mnOgpege x
0 0 “ l€>1

x / €=zt WO W) dz
o (=22 [€# Jain [
20
/ dt/ ds || Tuh(s) Iy~ P/ (t§|8)45d€><
1 1 ‘z|2a—1
) </ a1 (€= z|”')2 |£]48 |Z4a+20'2pd2>

2p
/ dt/ ds 4/@HT1 ()”HG P/ |€||§3|+26 dg

<c / T () [0 ds (3.35)
O x

Combining (3.33), (3.34) and (3.35), (3.27) follows and then Proposition 3.5. (]

We will also use the following Lemma.
Lemma 3.7 Let a € C§°(0,+00) and €9 > 0 such that supp o C (xo — €9, %0 + €0) and

d™a(x)

n
€
dz™

0

< Cpeo, forallz>0 (3.36)

for some positive constant Cy, independent of 9. Then, there exists positive constants K and C.,,
with K independent of €y, such that

o fllze ey < Keo l|f |l @) + Ceollf I Lo r) (3.37)
| Tha fllge @) < Keo [|Tufllo@e) + Coll FllLoe @)- (3.38)
Proof of Lemma 3.7 Let us consider the function m(k) that will be equal to one in the proof of

(3.37) and |Re(W (k, ¢, R))| in the proof of (3.38) where W (k, e, R) is defined in (3.16). Due to the
hypothesis (3.36):

2
|a@ng1(%f0 for all k€ R (3.39)

+ |]€€0‘n

We proceed to estimate

J= /m IR [tk — &) 7 %‘M—/ yq&+/ [ Jdk=Ji+Js  (3.40)
[k|<1 |k|>1
The term J; is estimated as follows

|| < ClIflZ2m 1]l < Ceo |l flI72w) (3.41)
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for some positive constant C' independent on £y. On the other hand, we split J, as follows:

| 2| < Jag+Jap (3.42)
2
_ 21.120 ~1. Y
Joy = /M m(k)2IK /gglan &) Fe) de| ak (3.43)
2
_ 2|1.|20 ~L e\ T
Joy = /|k|>1 im(k) k| /£>1oz(k &) Fe) de| dn. (3.44)

To estimate Jz ;1 we use that, for |k| > 1 and [£] < 1, one has |m(k) — m(§)| < C(1 + m(k —€)).
We deduce that in the same range of k and &:

im(k)[E|7 = m(§)[E]7] < O+ [k = £|7) (1 +m(k =€)
Then, since |m(k —&)| < C(1 + /|k — £|) we obtain:

N 2
/()] /
J2,1 < C 7n/ / 7d§ dk < C n| f| L2(R 345)
P Dz \Vigza TR = eonll /2 (
where C¢, , and C{ , are constants depending on n and ¢ and using Young’s inequality in the

last step. Consider finally J2 5. To this end we notice that, using (3.28) for the case when m(k) =
|Re(W (k,e, R)):

—k
E|7m(k) — [€]7m ()] < |k|7[m(k) — m(E)] + k|7 — [€]7[m(§) < [k]7 |§|€ - |k —¢7m(E)
whence, using once again |k| < |k —&| + €],
k— o+1 k — o
7o) — eme) < ¢ (B + B 4 o) g
and then,
2
J. ak — 7 f(€) de| dk
e < /M /ml &k — &) m(e) |€|” F(€) de| dk +
2
14 g7t o7
Cop S i de| dk.
e [N SR @ e de
Using Young’s inequality we obtain
J22 < Keo||T1fll o) + CeollT1f | ro-v4 gy if m(k) = |ReW| (3.46)
Toz < Koo | flle ) + Coallfllo-rrs gy i (k) = 1. (3.47)

Combining (3.41), (3.45), (3.46), (3.47) and a classical interpolation argument to estimate the
norm H(~D+(R) by the L>® and H°(R) norms the Lemma follows. (]

Lemma 3.8 Letn be a C°° compactly supported function in RY. Then, for any o > 0 there exists
a positive constant C' such that for any h € H°(R), for any R > 0 and any & > 0:

where ®(y, R, ) is defined by (3.2).

< C|h[| o ®)-
Ho+1/2(R)

/ T b — ) () — e — ) By, Roe) dy‘

17



Proof of Lemma 3.8 We define three functions M (z,y), P(z,y, R,¢) and Q(z, R, ) as follows

z)—n(x—y
Q) =y ¥y 1), Mlay) = L=
P(z,y) = (n(z) —n(z —y)) 2y, R,e) = M(z,y) Q(y)- (3.48)
Where the dependence of P and @ on R and ¢ is not explicitly written by shortedness. Notice that
M(z,y) € C>®(R x R). If we suppose that the support of 7 is contained in an interval I C R*,
then the support of M is such that:
supp (M) C I x R* U {(z,y) e R" xR*; z —y e I}. (3.49)

Our goal is then to estimate estimate the the H°+/2 norm of

5 = | T b — ) ((x) — n(x — ) Dy, Rue) dy

which we write:

1B = [ (7 RIBR R de
B© = 5 [ [ [ e ity dnds
. /Rﬁ(é—nm)ﬁ(n)dn
where
~ 1 i
P(Gi6) = 5 [ e Py dady (3.50)
R2

is the Fourier of the function P with respect to the two variables x and y.
Notice that:

2
1B zsrny = [+ 16722 [ Pl —mhimn) ae

We now proceed to estimate the function M. For any m = 0,1,--- there is a positive constant
Cin, independent of R and e, such that

lamM(x,y)‘ < _Cnm

S ST+l for all (z,y) € in supp(M). (3.51)

On the other hand, there exists a positive constant C' independent on R and e such that for all
y € RT:

|Q(y, R, e)| < (3.52)

c
varl
Combining (3.48), (3.50), (3.51) and (3.52) we deduce that P(z,y) is integrable in R? and then P
is a well defined and bounded function on R2.

Moreover, we can also deduce decay estimate for P for |¢1] + |¢2| — +oo. To this end we
integrate by parts in formula (3.50)

1
2 (7

P(1,Ga) /0 e VQ(y, R,£)S,(C1, y)dy (3.53)

18



where

o O M
Sn(C,y) = / emicie M) o (3.54)
R aw”
Differentiating (3.54) with respect to y and integrating by parts, it easily follows that the function
Sy, are such that, for allm =0,1,---, k= 0,1,--- there is a positive constant C}, ,, ,,, independent
on R and ¢ satisfying, for all (; € R* and y € R*:
ST, 5 C m,n
‘ (il y)‘ < k,m, (3.55)
dy I+ @ +IGh™
Let us consider the behaviour of P with respect to (o. Using (3.53)
~ € 1
D _ —iC2y S, d
(€1, ¢2) 27ri”C{”‘/o e 1/2 (C1,y)dy +

1-¢ ! )
+ 2(m'n§)n / eIy RN YA £ (Ry) S, (G ) dy
1

1

g | QW RS Gy
T Cl 1

In order to estimate the term J; we rewrite it as follows:

1 1
no= e s [ _my (Sn(G1,9) = SulG1,0))dy

Su(¢1,0) [ ;. d g
g ey KT SRR

The integral f02 e 7 ‘ffz is uniformly bounded for ¢ € R. On the other hand, due to (3.55) we
have that

1
Gy (Ji+J2+J3).  (3.56)

5 (G -s.@o)| < 2

Integrating by parts we obtain the existence of a constant C' such that for all {;, € R:

1
—1C2
/(; Y 1/2( (Clv ) n(Cl,O))dy‘ < 1+|<2|

Therefore |J;| < ————.
Il TG

for all ¢, € R.

We use similar arguments to estimate Jo that we write as follows

1
T = 8,(GL0) [ e (RGN fy(Ry) ) dy
0

1
+ / e (REFN/2 Y102 £ (Ry) ) (S0(Cry) = S(Gr,0)) dy = I + Lo,
0

The term > may be estimated as above since (3.55) gives:

;y [(R(3+/\)/2 JUNM2 f (Ry)) (Sn(C1,y) — Sn(gl,o))H <Cy 2, ye[0,1]
using that
a% {(R(3+A)/2 A2 fo(Ry)> (Sn(C15y) = SnlCa, 0))]

= (Sn(G1,9) — SulG1,0) a% [(ROHV2 2 g (Ry) )| +
(RN 2 fo(9)) 5L [(50(6008) = ,(61,0)
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C

1+ |G|
We use in I; the change of variables n = (oy and the auxiliary function g(y) = y'**/2 fo(y) to

obtain
R1/2 C2 Rn) R1/2 C2 ) R 1%77
I, = e g dn = — / e " -1 ( ) d
! G2 /o < Go T G2 Jo ( )CQ G2 7

after integrating by parts. Then, there is a positive constant C' independent on R and € such that
for all ¢ € R |I1] <

as well as the bounds on fy and fj. We deduce |I2| <

W Combining the estimates for I; and I5:

C

J - -
B g

C
We estimate J3 integrating by parts and using (3.55) to obtain |J3] < Al whence
2

C
(T4 |G ™) (1 + [¢2]H2)

|P(¢1,¢)| <

To conclude the proof of Lemma 3.8 we bound the norm of B(h) in H7+/2(R) as follows:

2

1By < [ (16722 | [ Ple—nmhiman) de
h(n)
1+ [gloF1/2 dn| d
< [y (= e+ ¢
2
(1+ [*)h)
—d ————dn| d
(et -

< IR A+ ™)@y + C Al 10+ 1 7™ g

where we have used Young’s inequality in the last step. (]

4 Proof of Theorem 3.1.

We start with the proof of Theorem 3.1.

Proof of (i) of Theorem 3.1. We apply now the classical method of freezing coefficients.
To this end let us call y a C*° function such that
1 ifxe(5/8,11/8),

x(r) = (4.1)
0 if z¢(1/2,2).
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We define f(z) = x(z) f(z). Then, for all z € R:

aa—{ = KT r(My)of) + & /Oo(x —y)M2f(z —y) (x(x) — x(x — ) B(y, R,e)) dy +
0
+x(z) Q + x(z) P
= &I p(Myof) +Q+P

@ = @1 + @2

Q1 = f@'/o (x—y)M?f(z —y) (x(z) — x(x — ) B(y, R,e) dy

Q: = x()Q

P = x()P.

Using the change of variables z —y — ¥ in the definition of @, in order to compute its derivatives
differentiating the function ® and using the fact that (x (z) — x (y)) vanishes if y is near = we
obtain:

Q10 ywrem) < CrIlfllLe(a/a2)x0.1) (4.2)

Equation (3.5) may be written as
O _ 2 Tor (f)+6Ter ((Myyo— M f)+Q+P 4.3
5 = %0 kTer [)+rTor ((Myj2 — Myj20)f) +Q+ (4.3)

Where M)\/Q)o,]?(fﬁ) - $3/2 f(ZIJ)

Fix now a new cutoff function n such that
1 if|l‘—$0‘ S(S,

n(x) = (4.4)
0 if |x —xo] >26.

with & such that |2/2 — x3/2| < g, for [x— x| <25 and o small enough to be chosen later. If
we multiply the equation (4.3) by n and denote f = nf we obtain:

O KT () = k(@) (Maga — Maya)f) +0()(@ + P)

) / " e — ) () — (e — ) By, Roe) dy (4.5)

We have the following representation formula for the solution f of (4.5) in L>((1/4,2) x (0,1)) N
L2(0,1; HY2(1/4,2)) N HY(0,1; L2(1/4,2)) :

Fat) = /Otss,w(ts))n(x) (Qs)+ P(s)) ds + (4.6)
o [ 'St — 8)) [1)Ten (a2 — Mo F) (9)] ds

+ral? / Se lA(t - 5)) / " e —y.5) (n(@) — (e — y)) By, R, ) dy ds

= ?l(xvt) +?2(.%',t) + ?3<$,t) (4'7)

for all z € R. This follows from the fact that the unique solution f in the space L>°((1/4,2) x
(0,1)) N L2(0,1; HY?(1/4,2)) N H'(0,1; L*(1/4,2)) of:

O KT R() = Gl 1) (43)
f(oa ZE) =0,
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where G € L*>((0,1) x (0,400) and f and G compactly supported in (1/4,2) x (0,1), is given
by Duhamel’s formula. The uniqueness of f can be obtained by taking the difference of two such
solutions and taking the scalar product of (4.8) with that difference in L2. Such computations are
possible by the regularity that is assumed on the solutions.

t t
17l y < C/O 11 Q- ryds1 + C /O Se,r(K(t — s))n(x) P(s) ds (4.9)

H7(R)
Let us estimate the second term in the right hand side of (4.9). Formulas (3.1) and (3.4) imply:
‘ 2

/ Senlelt— @) Byds|| <

He (R)

t —
/ e VAU S 20 P(e )] ds(1 + [¢]°)?
0

1 1 _ C 1 -
L0t < € [ Qe+ g [ 1 PO (4.10)

2

L2(R)

/Ot e—erAl=s) £y (77 ]5) ds

2

He (R)

Integration in time and (3.25) yields:

In order to estimate the term corresponding to f, we first write

n(2)Ter ((MA/2 - MA/z,o)f) =T.r (77(33) (My/2 — M/\/Q,o)f) + [0, 1% k] ((MA/z - MA/Q,o)f)
where [n,T; gr] is the conmutator of T, g and the multiplication by n

[0, Te,r] (0)(2) = 0(2) T2 r(¢)(x) — Te.r (N ) (2)

Therefore
— t —
fa = K /0 Se.r(K(t — s)) [T&R ((MA/Q — M,\/Q,O)f) (s)} ds
t ~
+ K / Ser(K(t = 8)) [0, T, R] ((M,\/z - M/\/z,o)f) ds
— 0 —
= fo1+ [fap (4.11)
where we have used that nf: f. Let us denote
U(z,s) = (My/2 — M/\/2,0)7(8) (4.12)

1 .
and define the operator M as M = —/ B(€)| ' ®¢ dE. Then:
P () 7oz ) 12(E) 3
_ t ot .
’?271(5)’2 < CmQ/ / eré/zn(tfsl)Tl(5)613/211(25751)T2(E)T(\Ij)(57Sl) %
0o Jo

p—

xR T O ema PRt DO (T(W) (¢, 52) ) disy d

2

t 5 o
< C(n/ o0/ PR(t=8)T1(8) ’T(@)(f,s)‘ds)
0
t x/2 2
< Clk / e’ "= O 7y (M(W))(s)ds
0
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where we have used that |W (€, e, R)| < C|ReW (£, ¢, R)| = C T1(£). Therefore using (3.24):

1
/O Pl 20e ey lt

A/2

1 t
C / I / e HR=SITLE) . Ty (M () )| By g
0 0

IN

IN

1 1
c / M ()30 s = C / ] 270 e .

The function ¥ may be written as ¥(z,t) = a(z) f(z,t) with a(z) = 7j(x) (/2 — 1‘8\/2) where 77 is
a cutoff supported in the interval |z — zg| < ¢ and 7(x) = 1 in |z — x| < 26 where § is given in
(4.4). Notice that o may be assumed to satisfy condition (3.36). Lemma 3.7 then implies:

|| r) < K eol| fllae + ClIfl| Lo ®x(0,1)) (4.13)

where the constant C' here and until the end of the Proof of Theorem 3.1 may depend on ¢y but
K is independent on it. We have then obtained:

1 1
/0 Pl 2o gy it < Koo / 720 gy A5 + CIITIE (4.14)

We consider now f, 5. Using, (3.26) we have:

t
Foollur < CrP / (t = 5) 21 (Maya — Mosa) Fll oo ds

and by (4.13) with o replaced by o — p :

t
aalluze < € [ (=)W llgz rey ds+ €2 I lm@non (415)
Squaring and integrating (4.15) and adding to the results for 8 small, we obtain
1 1 1
[ 1T gmds < a0 [ 1T @ ds+C [ 1Femo ds

+CIf|% (4.16)

The last term f5 is estimated as follows. Using Lemma 3.8 we obtain

Then, (3.23) in Lemma 3.5 and an interpolation argument yield:

[ fe s o) a2 R B]| <Ol (D)
0 H (R)

t
||f3||H;(R) < C’/{/O Hf(S)HH(G—1/2)+(R)dS5

whence
1 o 1 B N
| 1T gmds < €k [ UFGE 0msn ds+ O IF I (4.18)

Adding (4.10), (4.16) and (4.18) and using p < 1/2, we deduce:
1 1 t
/O 1F()le (2 360/0 Hf(S)HiIo(R)JrC/O Lf () rro=o(ryds

1 1
- - C -
+C [ 1 Qllo ayts + O~ exoan + 7z | 19 POIroose
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Choosing ¢ small enough:
1 _ t _ 1 . .
/0 T () e zy < C / 1F(3) oo ydls + C / 11§12 gy ds + ClITI12 = oy

C 1 ~ 5
o [ PO

Using a partition of the unity (7;);en of the interval (1/2, 2), and adding the contributions of all
the terms we obtain:

1 t 1
/0 17 )2 ey < C / 1F() oo yds + C / 101210 gy + ClL I o e 0.0y +

c s
. P2 1 4.1
+52R2/0 P 5701/ (4.19)

where the constants C depend on §. An interpolation argument then implies:

1 t 1
/0 2oy < € / 1F() 2o gy ds + C / 131210 5 + ClIFI e o0
c [t~
/0 1) oo

+
€2 k2

whence part (i) of Theorem 3.1 follows.
Remark 4.1 Notice that in (4.14), we estimate the H norm offm in terms of the H° norm of
f, not of f

Remark 4.2 In the estimates of ?j, 7 =1,2,3 the term ?2,1 is the only one where we are using
the continuity in the freezing coefficients argument to obtain (4.14).

Proof of (ii) of Theorem 3.1. In order to prove part (ii) we first notice that the equation
satisfied by f is:

af M2
ot 0

vyl [ Fo ) (1(a) =t~ ) 900, Boe)dy  (alo.) = alt) T (4.20)

Ter (f) +at) f = n(2)Ter ((MA/z - M/\/z,o)f) +n(2)Q + n(z)P

where z¢ and 7 have been chosen as before and where a(t) = a(zg,t). Then:

Fa) = [ w(t.)Sen(t = 5) (1) Qo) + (@) P(s)) s+
+ [t 9)Sen(t =9 [ne)Ten (00372 = My 0)])] ds+
+a)? [t s)Son(t=9) [ Fw =99 (@) = (e~ ) Dy, Roe) dy s

- /0 Wt 5)S. n(t — s)(a(w, ) — a(t)) F(s) ds
= ?1 ($7 t) + ?2(1, t) + ?3(%, t) + ?4(1" t)
where we have defined:

w(t,s) =e” Jia)dx (4.21)
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We estimate first the term with f;. If 7 < 1, then the same argument of the proof of point (i)

shows that
T+1 o 1/2 2
(/ Ifl(t>||?qut> < ([ 1m0 a)
T 0
1/2

sc(/02||©<t>|zgdt)1/2+§(/02||ﬁ<t>|zgdt) )

If T > 1, using the change of variables t = (T' — 1) + 7 we write

. 1/2
( [0 [t 9eatt ot (@06)+ 7o) ds||%{adt>

1/2

T

o

T+1 t _ _ 1/2
+ ( / w(t,8)S-,n(t = s)n(x) (Qs) + P(s)) ds||%adt>

|
T 7]
= L+ L.

IN

T+1 n 1/2
/ + ||/n_1w(t7s)SE’R(t_S)n(m) (@(s)—i—ﬁ(s)) d8||?{adt>

T

The estimate of the term I5 follows as in the proof of point (i) of the Theorem and gives

T+1 1/2 C TH1
zzsc</T IIQ(S)II%a> +(/T |P<s>||ip_m)

To estimate I; we argue as follows. Changing the time variable ¢ as t = 7 + (T’ — n) and obtain:

1/2

(7] nt1 n
L = i (/n i ||/n_1w(7+(T—n),s)SE’R((T—n)—i—T—s)x
< n(w) (Q(s) + P(s)) dslffoar)
-y ([0 [ ot (015t = snto) (@) + Plo)) aslear)

n=1

1/2

since ||Sc(T — n) h||ge < ||h||ge because T — N > 0. We use now that for each n

n+1 n _ _
[ wtrs @m0 Seatr = ) (@) + P)) dslfyedr

n+1 _17'
<[ N[ el =) )8l = s)ala) x
XL 1(5) (QUs) + P(s)) dslf3odr

n+1 .
< Ce2AT—n) ( / L1y (5) w(n )10 20 ds+
n

-1
1 n+1

N 1<n1,n><s>w<n,s>||ﬁ||§,m)

-2
€ n—1
0672A(T7n)

< Ce2A(T—n) / H@H%a ds + 672/ ||ﬁ||?{ﬂ—1/2 ds,
n—1 n—1
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whence:

[T] no 1/2 T+1 1/2
L +1,< CZe_A(T_") (/ Q1%+ ds) +C </[ ] ||Q(s)||§,[,> +
n=1 n—1 T
C (7] ( ) n " 1/2 C T+1 1/2
—A(T—n 2 2
— Pll50-1,2d - P .
o S ([ i) o ([ )

T+1 1/2 C T+1 1/2
< C sup (/ Q1%+ ds) + —  sup (/ [|1P|)370-1/2 ds)
0<T<Tmae \JT € 0<T<Tmax \JT

and

min (T41, T az) . 1/2
sup (/ |f1<s>||%pds> <

OSTST’VYLO/I‘ T

min (T+1,Tpmaz) 1/2
<C s / 103 ds |+

0<T<Tmax T

c min (T41,Tpas) 1/2
+—  sup / |P|135 12 ds (4.23)

€ 0<T<Tmaa T

The term f, is written as fo, = ?2’1 + ?272 where ?271 and ?272 are defined as in (4.11). We first
estimate ?2,1- Consider then

T41 ¢ 1/2
( / I / Wt 8)Snt — 5) [To¥(z, 5)] ds||§iadt>
0

T

[T] T+l m 1/2
< Z(/ \|/ w(t,8)Se.r(t — ) [Te.rY(z,5)] ds|§{(,dt)
n=1 T n-1
T+1 ¢ 1/2
+</ | [ lt9)Sen(t = 5) T.p¥(a,5) dsma)
T [T]
= I; + Is.

Arguing as in the derivation of (4.14) we obtain that there exists a positive constant ¢ that can
be chosen arbitrarily small if ¢ is small enough, and such that:

min (T41,Tnae) 1/2 B
nea [ FENGe ) +CITIR- (424)
In the first term I;, we change the time variable t as t = 7 + (T' — n) and obtain:
(7] ntl1 n 1/2
I < Z (/ [l w(t+ (T —n),8)Se,r(t+ (T —n) —s) [T rY(x,s)] ds||?qu7')
n=1 n n—1
1/2

< i ( / I / "1w<7 (T — ), ). p(r — 5) [To ¥z, 5)] ds||%lad7)
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Arguing again as in the derivation of (4.14) we obtain, for £ defined as above:

n+1
/ [ o+ (T =n),8)S. n(r — ) [To.p0(x, 5)] ds|[%ndr
- / I / T+ (T — 1), 8)8e (7 — ) [Te.r (L1 ()¥ (2, 5))] ds| o dr

< (—2A-m) ( / 17 11%- ds+0|flioo) :
n—1

Therefore
(7] no 1/2 (7] B
Li<egy en ™ (/ 7o d5> +C e AT
n=1 n—1 n=1
min (T+1,Tae) 1/2 i
<ey sup </ IIfII?qad8> + C|fllpee,
0<T<Tmax T
whence

min (T4+1,Tyaz) B 1/2 o
L+bh<z sup / Fl2eds)  +C|Fll~

0<T<Tmax T

We then obtain the estimate:

min (T+1,Tpnae) 1/2
sup / Tt ()] 1o ds
0<T<Tmaxz T

min (T4+1,Tyax) . 1/2 o
<eo sup / FlZeds | +ClFll~.  (4.25)

0<T<Tmaa\JT

A similar argument using the contractivity of S, r in the spaces H? gives for f272 and f:

min (T4+1,Tmaz) 1/2
sup / Fan(®)l32t

0<T<Tmax T
min (T+17Tmam) ~ 1/2 ~
<0 sw / 2 pds)  +ClIflle (4.26)
0<T<Tmaxz T
min (T4+1,Traz) 1/2
T 2
([ 73005
OSTST’VYLaf T
min (T+1,Tmaz) 1/2 ~
<C  sup / F2oseds | +Cl il (4.27)
0<T<Tmaxz T

We now estimate f, :

T+1 1/2
( / ||f4(5)|%radt>
T

[T]

T+1 1/2
< Z(/ ||/n lt,)52 at = 5)(a (:vt)—a())f(S)dSII?{adt>

1

T+1 ¢ /2
( w(t, s)Se,r(t — s)(a(z,t) — a(t)) f(s)ds||§{g> =I5+ L.
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We use now the continuity of the semigroup S¢ g in H?, the fact that a € H(R) and since o > 1/2,
the imbedding of H? into C(R) is continuous to obtain the existence of a positive constant &g,
which can be made arbitrarily small if ¢ is sufficiently small, such that

1Se.r(t = s)(a(x,t) — a()) F(s)l|me < I(a(z,t) — a(t)) F(s)llme < (eol [fllae + ClIflloc) llallag-

Arguing as in the derivation of (4.25) we obtain

min (T+1,Tmaz) 1/2
sup / ||f4(8)|?{~ds>

0<T<Tmax T

min (T4+1,Traqx) B 1/2 B
<eo  sup / Fl2eds)  +ClFl~.  (4.28)

0<T<Tmac\JT

Adding formulas (4.23), (4.25)—(4.28) we obtain:

min (T+1,Tmaz) 1/2 min (T+1,Tmax) /2
sup / FO)Bzdt ) <= sup / 720 ds

0<T<Tmax \JT 0<T<Tpmax\JT

min (T+1,Tmae) 1/2 .
+C  sup (/ |f||§1vnd5> + Cl fllLee

OSTST’VYLO/I T

min (T+1,Trmas) 1/2 c T+1 1/2
4O sup / 10|2mds| +<  sup / 1BI[2,0 12 ds
0<T<Tmaax T € 0<T<Tmax T

where we have used that || ||z~ < |||/~ and p < 1/2. Then,

min (T+1,Trmaz) 1/2 min (T+1,Trmas) 1/2
sw ([ FOlzit) <o | [ Ui ds

0<T<Tmaz \JT 0<T<Tmaz \JT

_ min (T+1,Tmaz) 1/2
+0lfll~ € sup ( / 121 ds)
0< T

—_ _TMraz
. o 1/2
+¢ ap / IP|Pyeryeds | (4.29)

€ 0<T<Tmae \JIT

Using a partition of unity as in the derivation of (4.19), we arrive at

min (T41,Tas) 1/2 min (T+1,Tmas) 1/2
sup / FO)E=dt)  <C  sup / 17120 ds

0<T<Tmaxz T 0<T<Tmax T
B min (T+1,Tras) 1/2
+Cllfl=+C s ([ Q12 ds
0<T<Tmaz \JT
T41 1/2
C ~ 2
+—  sup / || P||570-1/2 ds (4.30)
6 OSTSTWLQI T
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where the constants C' > 0 depend on §. An interpolation argument yields

min(T+1,Tmaz) 12
sup / 1F O3 dt | <

0<T<Tmaz T

min(T+1,Tmaz) 1/2 ~
¢ sup (/ IIQ(t)I%rodt> + Ol

0ST<Tmas \JT

c T41 1/2

+—  sup (/ |P|§{gl/2ds> (4.31)
€ 0<T<Tmax T

Using that x =1 in the interval (5/8,11/8) we have:

Hf||HU(3/4,5/4) < HJ?HH" (4~32)

Part (ii) of Theorem 3.1 then follows combining (4.31) and (4.32).
Proof of part (iii) of Theorem 3.1. The equation satisfied by f is now (4.20) with P = 0
and ¢ = 0. Then:

Tty = [l ). nt=sna) Qo) ds
+/0 w(t,s)Se r(t —s) [W(QT)TE,R ((MA/Q - Mx/g,o)f)] ds
+ x3/2/0 w(t,)Se,r(t = 8)/0 Fl@ =y, s) (n(x) = n(w = ) ®(y, R,e) dy ds

- /O Wt 5)Sen(t — s)(alw,t) — a(t)) F(s) ds
= fi(zt) + fo(m, ) + fa(a,t) + fa(z,t)

where w is given by (4.21). The term f, is estimated using (3.24) for 7' < 1. Then,

</TT+1 ||T1(f1)(t)||§{gdt> v ([ Im @)

If T > 1, using the change of variables t = (T’ — 1) + 7 we write

T+t t 1/2
</T + |71 (/0 w(t,s)Se r(t — s)n(x) @(s)ds) |?qut>
u ! " 1/2
i ( / i |l T (Senlt = nla) Q) dsugp,dt)

T
T+1 t 1/2
- ( [ )T (Sanlt = 9)n() Q) ds||%{sdt>

1/ 1/2

<o (/ 2 @0lgar) (439

IN

T
= L +1I5.

~ 1/2
The estimate of the term Iy can be made as in (4.33) to obtainly < C (fTT—H \|Q(s)||%,c,> . To
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estimate I; we argue as follows. We change the time variable ¢ as t = 7 + (T'— n) and obtain:

(T] 1/2

I = Z (/n”“ I ' wr+ (T —n), )11 Se r(T —n)+7—25) (77(3:) @(s)) ds|%{ad7>

n—1

< é ([0 ot () o0y Sents =) (0601 @06 sl

where we have used ||S:(T — n) h||ge < ||h||g-. We notice now that, for each n

n=1
1/2

n+1 n ~
[l (=), TaSnt = 5)(nta) Q) dslitr
n+1 T .
<[l (T ) w0 T Sl = )00 Lo (5) Q00) dly

n+1 _ n .
< Cem2Am ( / L1, (5) w(n, 9)|1Ql e ds) < Qe AT / Q117 ds.
n—1 n—1

whence:
[T n _ 1/2 T+1 1/2
L+l < CY AT (/ IIQII%adS) +0</ |Q<s>|%p>
n=1 n—l (T]
T+1 1/2
< C sup (/ IQI?{gds>
0<T<Tmax T
and
min (T41,Trmaq) . 1/2 min (T+11T'm,a:r,)~ 1/2
sup (/ ||T1(f1)(8)llizod5> < C sup ( / IIQII%ad8>(4-34)
0ST<Tmaz \JT 0ST< e \JT

The term f, is written as fo = fo | + foo where fy | and f, , are defined as in (4.11). We first
estimate 7271 . Consider then

T+1 t 1/2
</ ||T1/ w(t, $)Ser(t — ) [Te.r¥(z, s)] ds||2HUdt>
0

T

£

n=1

IN

T+1 n 1/2
/ I / w(t,$)T1 Se n(t — ) [To. ¥ (, )] ds||?{odt>
n—1

T

I
T 7]
= I +1I5.

T41 ¢ 1/2
+ (/ w(t,s)Th Se,.r(t — s) [Te.r¥(z, s)] ds||§io>

Arguing as in the derivation of (4.14), but using (3.38) instead of (3.37) we obtain that there exists
a positive constant £y that can be chosen arbitrarily small such that:

min (T+1,Tmaz) . 1/2 _
I <e (/ |11 f(s)ﬁﬁ) +C[fl[ - (4.35)

T
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In the first term I;, we change the time variable t as t = 7 + (T' — n) and obtain:

1/2

[T] n+1 n
L < z_:l (/n I /n,lw(TJF (T'=n),s)T1 S r(T + (T' = n) = 5) [T rY(z, 5)] dSI%radT)

1/2

[T n+1 n
< Z (/ I / w(T+ (T —n),s)Th Se,r(7 — 3) [T, rY(x, s)] ds|fqad7)
n—=1 n n—1
Arguing again as in the derivation of (4.14) we obtain, for £y defined as above,
n+1 n
/ ||/ w(T+ (T —n),8)T1 Se g(1 — 5) [Te.rY (2, 8)] ds||3-dT
n n—1

< ¢—2A(T-n) <50/ |71 f113- ds + C||f||2L°°) :
n—1

Therefore
(7] n B 1/2 (7] B
L <e) o720 (/ [l ds) +C Y e AT
n=1 n—1 n=1
min (T4+1,Traz) o 1/2 _
<&y sup (/ Ty fll e ds + | fllpe-,
0<T<Tmax T
whence

min (T4+1,Trmax) o 1/2 _
L+h<ez sup / T TR ds | +C|Fll
0<T<Tmax T

and therefore

min (T4+1,Tmas) 1/2
sup / Ty Ty (5)| %o s
0<T<Tmax T

min (T4+1,Tyaz) B 1/2 i
<ep  sup / T Feds|  +C|[Fllee.  (4.36)
0<T<Trmaz\JT

A similar argument using the contractivity of S, g in the spaces H? and formula (3.27) gives

min (T4+1,Tmax) o 1/2
sup / T3 Foro (1) 2z

min (T+1,Tmax) - 1/2 ~
<C s (/ TFBe vds)  +Clfll~ (437

0<T<Tmax T

To estimate f; we combine (3.24) and (4.17) to obtain

min (T+1,Tmaz) _ 2
. ( / ||T1f3(t)||?q;dt>

0<T<Tmax \JT

min (T4+1,Tmaz) _ 1/2 ~
<O sup / Fseds | +ClI e (438)

0<T<Tmax T
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We now estimate f, :

T+1 1/2
( L ||T1f4(8)||%radt>

£

n=1

IN

T+1 n 12
/ | / _1w(t,s)T1 SE,R(t—s)(a(x,t)—a(t))f(s)d3||%{0dt>

T

T4 gt B 1/2
+ (/ w(t, s)T1 Se,r(t = s)(a(z,t) — a(t)) f(S)dSH?{v)

|
T (7]
= L + L.

T+1

Using (3.24) we get I < /
T

a > 0, we obtain,for ¢ sufficiently small

- B - 1/2
I<C ( [ olFOIBee + TR~ dt)

T

1/2
[l(a(z,t) — a(t))f||%,a(R)> . Since a € H°t! C OV for some

The term I; can be estimated similarly using the exponential decay of w(t, s) as in the previous
cases. Then

0<T<Tmax T

min (T'+1,Tmax) 1/2 _
<ep sup (/ 17117 d8> + O fllpe (4:39)

min (741, Tnae) 1/2
sup / T3 F o)) 3o ds

0<T<Tmax\JT

Adding formulas (4.23), (4.25)—(4.28) we obtain:

min (T+1,Tmae) 1/2 min (T+1,Tmas) 1/2
ap ([ 177 Olgdt) <=0 s ([ T3 7y ds

OSTSTWLaw T OSTST’VYL(I.T T
min (T+1,Tomaz) 1/2 _
+C o swp / 1A2esds|  +Cllfl
0<T<Tmaxz T
min (T+1,Taz) 1/2
+C sup / 1§12, ds
0<T<Tmaz T

where we have used that ||f||z~ < ||ﬂ|Loo and p < 1/2. Then,

min (T41, T az) B 1/2 min (T4+1,Tmaz) 1/2
w (f i) e o oy

0<T<Tmas \JT 0<T<Thmas \JT

N min (T+1,Tmaz) 1/2
+C|fllp= +C S (/ Q%+ dS) : (4.40)

<T<Tmax T
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Using a partition of unity as for the derivation of (4.19), we arrive at

min (T+1,Trmax) _ 1/2 min (T+1,Tmaz) 1/2
s ([ I F @l )  <c s (] 171130 ds

0<T<Tmax T 0<T<Tmax T

B min (T+1,Tmaz) 12
+C||fllp~ +C . sup (/ Q% d8> (4.41)

STST’NLCL(E T

where the constants C' > 0 depend on §. An interpolation argument yields

min(T+1,Tmas) _ 1/2 min(T+1,Tpnaz) 1/2
sup / T FO)edt) <C  sup / 1OWIE.dt)  +

0<T<Trmaz T 0<T<Tmax T
+C || fll e
Using that x =1 in the interval (5/8,11/8), we obtain
Ty f || e (3/4,5/4) < C|| Ty f]| o - (4.42)

On the other hand |[W(k, R,0)| < C'min{|k|, R}. Therefore estimate (3.10) holds. This concludes
the proof of part (iii) of Theorem 3.1. (]

5 Interior regularity estimates for the operator L.

The main result in this Section is the following result, which is basically a reformulation of Theorem
3.1 in a way that is more convenient to be applied to the solutions of (2.4)

Theorem 5.1 Suppose that o € (1/2, 2), v € L?(0,1; HI(1/4,4)), € € [0,1], K € L>((1/4,4) x
(0,1))NLZ(0,1; HZ(1/4,4)), and h € L>=((1/8,4)x(0,1))NL(0,1; H'/2(1/4,2))NH'(0,1; L*(1/4,2)),
W e L2(0,1; HZ/?(1/4,4)) satisfies :

/2 (0, \A/2 ) e N/2
oh 5/ (x —y)M2h(x —y) — M *h(x) N
0

ot y3/2
) z/2
H1= B [ (0= 9V 2h(o — ) = 2 h(a) ) (Ry) 2 fo(R) dy +
0
+K(z,t) h(z,t) + v(z, t) + W(a,t),
for all x € (1/4,4) and R > 1 and h(x,0) = 0. Then for any T € [0, 1]:
HhHLf(o,T;Hg(?/s,g/s)) <
1
C (|V||Lf(071;Hg(1/474)) + {12l Lo ((1/8,4)x (0,1)) + €||W||L§(0,1;Hg1/2(1/4,4))>

where the constant C' is independent of € and R but depends on || K ||~ ((1/2,2)x(0,1)) and
K| £2(0,1: 59 (1/4,4)) -

Proof of Theorem 5.1. Let x be a C*° function such that
1 ifzxe(1/2,2),

x(x) = (5.1)
0 if ¢ (1/4,4).
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We define h(z,t) = x(x) h(x). Then, for all z € R the function & satisfies

oh

= [ (b - ) - V2h) 00, RNy

+o0 B 5
[ (=0 he - ) - () Bl R 2y
z/2
x/2
+/O (@ =92 h(z —y) (x(@) = x(z —v)) D(y, R, ) dy
+K (x,t) h(z,t) + x(z) v+ x(z) W. (5.2)
where the function ®(y, R, ¢) has been defined in (3.2).

We write the equation (5.2) in terms of the new function h defined as:

?L(:ZE, t) _ e(j()t K(z,s) ds+co(s,R,m)t) E(l’, t)

with ¢g(e, R, x) = ac’\/Q/ D(y, R, e) dy:
z/2

Oh —
e Ter (Myj2h) + Q1+ Q2+ Qs+ Q4
where T; g has been defined in (3.1) and
+o00o o
@ - - |, R el Redy
x/2
—(fg K(2,5) ds+2v/2eta*~1)/2) v/ A/2

Qo = e Vot ; (z =) Wz —y) (x(2) — x(z —y)) ®(y, R,e) dy
QS _ e—(f(;' K(z,s) ds+co(a,R,w)t) X(i’?) v, Q4 _ e—(f(;’ K(z,s) ds—i—co(e,R,w)t) X(x) W,

These terms are estimated as follows:

Q1L (0,1;w1.5 ((1/4,4))) + Q2| Loe (0,112 ((1/4,9))) C||h]| oo ((1/8,4)x (0,1))
Cllv| |L$(0,1;Hg(1/4,4))a

W[,

11Q3l2 (0,157 (1/4,4))

IAIACIA

|‘Q‘*‘|L%<0,1;H:‘”2(1/4,4)) (0,1;HS ~?(1/4,4))

where 6 = min{o, 1}.
If 1/2 < 0 <1 Theorem 3.1 immediately yields:

HE|\L§(0,1;H;{(3/4,5/4)) < C <||V||L$(0,1;Hg(1/4,4)) + ||hHL°°((1/8,4)><(0,1))) +
C
Wl o071 (1,07
If 0 > 1 we apply Theorem 3.1 with ¢ = 1 to obtain:
||E||L$(o,1;H;(3/4,5/4)) < C (||V||L$(o,1;Hg(1/4,4)) + ||h||L°°((1/8,4)><(0,1))) =+

(5.3)

C
Wl 011720 /0.0

Since Q1 and Q3 involve integrals of the function h, (5.3) provides better estimates on Q; and Qs
although on the smaller interval (3/4,5/4):

[|Q1llLo<0,1:07((3/4,5/4)) + 11Q2l|z(0,1:H7((3/4,5/4))) < C’||E||Lg(o,1;H;(3/475/4))
< C (\|V||L§(o,1;Hg(1/4,4)) + HhHLOO((l/SA)x(O,l))) .
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Using again the Theorem 3.1 with o < 2:

IRl 20,017 (7/s0/8) < C (||V|‘Lf(071;H§(1/4>4)) + ||h||L°°((1/874)X(0*1>>) *
C
+€||W‘|L%<o,1;H:*1/2<1/4,4>>‘

This ends the proof of Theorem 5.1. (]

6 Estimating the difference between £ and L.

In this Section we estimate the operator £ — L which appear in the equation (1.7).

(L—=L)()(x,t) = A1+ A,
z/2
Mz) = / (H(z — y) — H(x) ™ 2(y, t)dy
—H(z Y )y — 22 o(z, t OOH d 6.1
()/my o(y,t)dy o( )(/M2 () y) (6.1)
z/2
Aw) = [ (=0 =) =M optan) Hdy (62)

Hy) = v foly) —y~/2 (6.3)

Since it will be needed in the Section 6, we shall actually estimate more general operators where
the function A, has the more general form:

z/2
As () /0 ((:C —y)M?p(z —y,t) — 2 p(x, t)) H.(z,y)dy (6.4)
He($7y) = y)\/2 fO(y) - m (65)

Notice that € = 0 corresponds to the functions Ay and H defined in (6.2) and (6.3). We will need
to assume in many of the following estimates that ¢ > 1+ §. Notice that, by reducing the value
of 4, it is possible to obtain estimates for all o > 1.

In the two following Lemmas we estimate the two terms A; and A, . assuming some conditions
of the function fj.

Lemma 6.1 Suppose that fo satisfies conditions (2.1), (2.2) and |||o|[|3/2,(341)/2 < 00. Then

[1A1ll[3/2,245 < Clllellls/z, 34272

Proof of Lemma 6.1. The estimate on A;(z) for 0 < x < 1 is immediate:

x/2 z/2
/ (H(z —y) — H(2))y *p(y)dy| < |||90|H3/2,(3+)\)/2/ |H(x —y) + H(x)| y 3N/ 2dy
0 0
< Clllelllz/2,31x)/2 x5/ (6.6)
H(x) / V) < Ol vz (6.7)
2 < W (v) dy) o(@)| < Clllelllsyz,4r2 2272 < Clllelllasz@en2e” 2 (6.8)
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Let us consider the case when x > 1. In order to estimate the first term in the right hand side of
(6.1) we write:

1
Ha=y)~ H@) =y [ H(o- 050
0
where
A o _ 3+ _ _

HI(Z)Z 5Z(/\ 2)/2(]00(2)_2 (3+/\)/2)+2)\/2(f(l)(z)+ 5 P (3+X)/2 1)

By assumptions (2.1) (2.2), for all z > 1:
/ A —5/2—46
In particular, for all y < #/2 and 0 < § < 1 we have z — 0y > x/2 and so, if z > 2:
1
H(e =)~ HG@)| = |y [ (= opas| < Oy
0

and

z/2
/ (Hz —y) - H@) 9 o@)dy| < Cllilllaa, ginyse (6.9)
0

In order to estimate the second term in (6.1) we use:
T)==x o) —Gx)| < Cax?z™ N or r >
H(x)| = 22 | fo(x) — G(@)] < CaM2a V20 for 251

whence, for z > 1:

‘H(w) /Z ¥ 2o (y)dy

< 95—3/2_6// v 2p(y)dy < C [@llls/2, 3+x)/2 x 7270, (6.10)
x/2

The third term of (6.1) is bounded by
22| p(z)| // y 0y = Cllllllssa, siaypz 20 for 2> 1. (6.11)
x/2

Lemma 6.1 then follows combining (6.6)-(6.11). (]

Lemma 6.2 Let 0 <T < 1. Then, there exists a constant C > 0 such that, for any ¢ € Er,, and
for all to € (0,T) :

R** Ny (Ar; R, to) < Clll¢ll], VR > 1,
R*2 My, (A1; R) < Clllglll, YV 0<R< L.
Proof of Lemma 6.2. For R > 1 we write p(z,t) = > 7 x(2/2") p(x,t) where x € C§°,

suppx C (1/2,2). Let us consider R = 2", z € (R/2,2R) and rescale x = RX, y = RY,
7= (t —to)RAD/2 p(x,t) = R-GHN/2y(X, 1), A1 (X, T) = Ay (x,t) to obtain:

X/2
R4 (X, 7)| = /0 Hr(X —Y) — H(X)] Y2 p(Y,7) dY — (6.12)

—Hp(X) / TRy aY - XX [ He(Y)dy
X/2 X/2
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where the function Hg is defined as follows:
Hyp(X) = (R(SH)/QX’VQ fo(RX) — X*3/2> R, (6.13)

and satisfies |Hg(z)| + [Hy(x)| + |Hf(z)| < C for some positive constant C' and all z € (1/2,1).
Since |||¢]|[3/2,(3+2)/2 < 00, we have the following bound on ¢ (X, 7)

) R)\/Q 1
) < Cnin {3 St Pl llz oo (6.14)

for all X >0 and 7 € (0,7 R*~1/2). Using this estimate it then follows that the integrals in the
right hand side of (6.12) are convergent. Moreover, using conditions (2.1) and (2.2) we obtain:

1 9 1/2
IF+5<A m1KM|DgAﬂA;ﬂPdXdT> <Clllglll, VR> 1, (6.15)

For R € (0,1) we scale the variables x € (R/2,2R) and ¢ as + = RX, y = RY, ¢(x,t) =
R73/2(X,t), A1 (X,t) = A;(x,t) to obtain in this case:

R A (X )] = AwﬂHﬂX—Yﬁ—HﬂXﬂY”%ﬂKﬂdY— (6.16)
-ﬂﬂm/mywwxﬂw>XWwMﬁ " Hp(v)ay

X/2 X/2

Using again (2.1), (2.2) and (6.14) we deduce

. ) 1/2
R2M? </ dT/ |DJAL(X, T)|2dXdT> < Olllglll, VR e (0,1). (6.17)
0 1/2
Lemma 6.2 follows from (6.15) and (6.17). o

The following two technical Lemmas will be needed in order to estimate A .

Lemma 6.3 For any given function h € H°(R) supported in (1/2,2), with o > 1+ 6, and
§ € [0,min(1/2,0 — 1)) there holds:

5/8
/ WX — Y) — h(X)| Y3233y < C|[h] |-
0

Proof of Lemma 6.3. Using

h(X) = = [ Becae

we obtain

5/8 1/2 ~ )
/ WX —Y)—h(X)| Y329y <C / [h(€)] |e=Y — 1| Y=3/27%d¢dy
0 R

0
N 1/2 5/8 o s 2 2 1/2
<o [@rasiera) ([ e —apysear]
R R |Jo | | (L4 [€*)
Using the change of variables {y = z we arrive at
5/8, ) 56/8 d
/ o—iEY) _ 1’ y3/2-6qy < 051/2+5/ =iz 1 . < e/,
0 0 23/2+8
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and

2
dg / 1426 d§
— < — < X0
T = S

5/8 ieY) 3/2—6
ei6Y) _ 1‘ y—3/2-3qy
/0 | L+ [€P7)

J

since o > 1+ 4. o

Lemma 6.4 Consider the operators Wgr and Wy defined as:

z/2
Wr(h) = RE+V/2 /0 (@@= 920 —y) =2 n(@)) 2 fo(Ry)dy  (6.18)

x/2
Woo(h) = / (2= 92 =) =2 2h(a) ) y=2dy (6.19)

z/2 d
_ A2 N A2 Y
Weo, o (h) = /O ((:17 WM h(z —y) — h(x)) ST 7T (6.20)

Then, for anyn € C*(R) of compact support contained in (1/2,3/2) such thatn =1 on (3/4,5/4),
and for all o > 1/2, there exists a positive constant C, depending only on the function n and its
derivatives, such that for all ¢p € H?(R):

[Woo ) lere-172) + IWR (1) o-1/2(m) + [[Woo,e (1) go-1/2m) < ClIn¢llma(®)-
(6.21)

Moreover, for all h € H°(R) fized:

lim ||’I] . (Woo’g - Woo) (7’] h)HH“*Uz(R) =0. (622)

e—0

Proof of Lemma 6.4. The function Wg (n4) can be written as follows

z/2
RO [ (@ =yt - ) vla = ) = (@)oo 12 ol Ba)dy
0
=Toro My (nv)+ 2
with || Z||ze < ClnY||m-.
Using now the fact that the operator Ty g is the multiplier by a function bounded by [£ |'/2 and

My 2 h is the product of h by 2*/2 which is a smooth function in the interval (1/2, /2) the result
follows. The same argument yields the estimate for We,:

[Woe )| o172y < Clinllae. (6.23)
The third operator W, . may be written as a pseudo differential operator with symbol
I GRS

Therefore,

17+ Woo,e = Wao) (1 B)|[30-1/2(m) = Adk(l + (k|72 /Rd/ﬁ (k) x

X /dez P(ka) Ze(ky, ko, k)
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where

Zs(kl,kg,;ﬂ) :/dSCl/dl‘g[Ps(ilfl,kl)fpo(ﬂil,kl)] X
R R
X [Pe(x2, ko) — Po(a, ko)) e 1R o e =i (ke =R aagy () )y ()

We now show:

N k 1/2 k 1/2
‘Zg(kl,kg,k)‘ < Ml Pkl . (6.25)
(L |k = Fa[™) (X + [k = ka|™)
To this end we notice that we may write:

oo " 53/2Z‘3/2
_ _ —iky _
P.(x, k) — Py(x, k) /0 dy (e 1) V2372 1 e3/25372)

whence,

- e [T -1
[ b Pty - P e = [ eitbe [T R (Y ydedy
R R 0 Yy /

EX
(6.26)
1

RE) = BRI

For |k — l;:| < 1 we immediately obtain from (6.26) that, for some positive constant C independent
of e:

<C (6.27)

/]R =i =B) (P (3. k) — Py(a, k) n(x)de

On the other hand, using e ~**—*)z — ﬁa%

right hand side of (6.26) we obtain that for any m € N there exists a positive constant C,, such
that

(e*i(k*k)z) and integrating by parts m times in the

~ —i(k=kz p (Y d ‘ < _ O 6.28
e x)dx —. .
/ (&)t < (6.25)
1
In the derivation of (6.28) we have used gR (i) =——¢R (&) with & = (i) and the fact that
Oxr \ex x Ex

the function £ R’ (€) has the same structure than R(¢). Namely, it is a rational function of £3/2
decreasing as & — oo like £73/2. This is also true for all the derivatives of higher order. Moreover,
since supp(n) C (1/2,2), the term n(z)/x is uniformly bounded in R.

Define now the function

. 1 [ .
k)= — —i(k—k)z Y
My, k—k) e /0 e R <5x> n(z)dx

An integration by parts yields:
/ (™™ — DM (y, k — k)dy = —ik / e thy / Mo,k — k) dody. (6.29)
0 0 Yy

This identity still holds in the straight lines I' of the complex plane defined by

[Im(y) = eo|Re(y)|, sign(Im(y)) = —sign(k)
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Using then (6.28) we obtain:

, o0 - |k ! k|12
ik/e_““y/ M(a,k—k)dady‘ < Omlkl / 73 Ol
r y 1+ |k — k™ Jrlyl 1+|k; km’

Using (6.30) twice, estimate (6.25) follows. Therefore,

/d%(1+|’;|2)a_1/2/dk1 &(kl)/dk2$(k2)zs(’f17k2,]~f)‘
R R R

I. 7.12yo—1/2 N - |k1|1/2“€2|1/2
< [ dk(1+ [k[7) dki (k1) | dka (ko) =
R R R

(14 [k — k)™ (1 + |ky — k)™

Using that |k| < |ky| 4 |k — k1| we have:

/ (1 + |]~€‘2)071/2d]; -c (1 + |k1|)20—71
R (14 |ky — k)™ (L4 ke — k)™ = (14 [k — ko)™

for some m’ < m. Using (6.32) in (6.31) and Cauchy-Schwartz’s inequality we obtain:

‘/ die(1+ |k|?)°~ 1/2/dk1¢(k1)/dk2¢(k2) (K1, ko, k) ‘ <

/dk [Ral 21+ )24 k) |

< o dk 7
< lollaecey [ Fur

ﬂwmwém

(1+ o)1)
/de T ——T

for some m” < m/. Young’s inequality then implies:

AR+ FP [ i TGk [ ks D0 220 b >'<c||w||Ho
R R R
and therefore

117 Weo,e = Woo) )| gro-1/2y < ClIY|| 1o ()

Combining (6.23) and (6.35) we obtain the estimate for Wy, (nh) in (6.21).

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

It remains to prove that (6.22) holds true. By the estimate (6.25) in Z. (K1, ko, k) this is reduced
to prove that for any ki, ks and k, Z. (K1, kz,k) — 0 as € — 0. This follows from the fact that
the support of 1 is compact and that P.(z,k) = Po(z, k) as e — 0 as it follows from the explicit

expressions (6.24) .
If y = et, we obtain,

—zket
(2, k) \[/ 13/2 ¢ 43/2 :r3/2 dt
Therefore it follows that, for some positive constant C' independent of € > 0 and x > 0:
|P.(z, k)| < C|k|*?, Ve >0, V& >0

and (6.22) follows.
We have the following estimate for Ay . in (6.4).
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Lemma 6.5 Suppose that fo satisfies conditions (2.1), (2.2) and 0 > 1+ 0, then

sup sup R2+6N00(A2,5; to, R) < C|||¢lll, (6.36)
to€(0,T) R>1
sup sup R? Ny oo (Ag)g; to, R) < C|ll¢lll, (6.37)
to€(0,T) R>1
sup  R*TM2 Moo (Ases R) < Clllell, (6.38)
0<R<1
sup R*M2M,, , 1 (Asc; R) < Cllglll, (6.39)
0<R<1 2

where the functions Noo(-; to, R), Na, (3 to, R), Moo(-; R) and Ma.,(-; R) are defined in (2.9) -
(2.12).

Proof of Lemma 6.5. For R > 1 we write

t) = x(@/2") p(x,1)
n=0

where x € C§°, suppx C (1/2,2)

no+1

s ()] < /

n=ng—2

xr — X _ _
)M o(x -y, t)x (Zny> — 2 2p(x, b)x (27) ' y =2 0dy.

Let us consider R = 2", x € (R/2,2R) and rescale x = RX, y = RY, 7 = (t — tg)R*~1/2
o(z,t) = R-CHN/24(X 1), Ay (X, 7) = Ag.(,) to obtain:

|.A2 E(X T)| < R 279 x

. Z /X/Q

{=—-2

X-Y X
X-Y )\/QQ/J(X _ Y;T)X ( > ) _ XA/Z’(/J(X,T)X <2g> ’ Y_3/2_6d}/.

Using Lemma 6.3, we deduce, for X € (3/4,5/4):

| A2, (X, 7)] < Rt o (||¢(7)HL°°(1/8,8) + ||1/’(T)HHU(1/8,8))

whence:
min(1, RA~D/2(T—t,)) 1/2
R0 </0 |A2,s(t)||2Lw(3/4,5/4)d7>
<C sup (7)o (1/8,8) +
0<7<min(1, RA=1/2(T—tg))
min(1, RA™D/2(T—t4)) 12
ol 1O B jssydr |
Therefore,

R*°Noo(Agesto, R) < CROTVZ sup (O] Lo (r/s.87)+
to<t<min(to+R~(A~1/2.T)
3
+ 3 Nao(pito,2°R)| < Clllll,
{=-3

and (6.36) follows.
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We now prove (6.37). To this end notice that:

1

X/2
A (X,7) =R /
t=—2"70

(- vv2uee - v (F50) - 02 (5 ) ) et vay

where H.(X,Y) = R3*2H_(z,y). The integrals in the right hand side of this formula can be written
in term of the operators Wr, Wy in (6.18), (6.20). Using Lemma 6.4 we obtain:

, min(1, RA~D/2(T—¢y)) ) 1/2
R / Az, (D)o -1/25 0.5y 7

0
min(1, RA=1Y/2(T—t,))
<C / [ HHU(Ugg)dr
Mz

IA

0
+C sup ||'l)/J T ©(1/8,8)"
0<7<min(1, RA=1/2(T—ty))
Therefore
3
R7MNy o1 (Ascito, R) < CREPHV/ [Z Noo (5 to, 2°R)+
l=—3
+ sup |S0(t)|Loo(R/s,8R)] :
to<t<min(to+R~-(A=1/2T)

whence (6.37) follows.
We consider now the case where 0 < R < 1. The arguments are very similar to those used in

the previous case. In order to prove (6.37) we write ¢(x,t) Z x(2" x) p(z,t) where x € C§°

and suppx C (1/2,2). Then

no+1

Aze(z,t)] < C Z / DM 2o(x —y, t)x (2" (z — y)) — 2 2oz, t)x (2" x)| y~>/2dy.

n=ng—2

Let us consider R = 2", z € (R/2,2R) and rescale © = RX, y = RY, o(x,t) = R_S/QQMX, t),
Az (X, t) = Ay (2, ) to obtain:

(X)) € RVEEY /

{=—2

X/2
‘(X CY)PM2(X - Yty (24X — V) — XM2(X, t)x (20 X) ’ Y324y,
Using Lemma 6.3 we deduce that for X € (3/4,5/4):

[Ao,o (X, )] < R272 C ([0t oo 1/8,8) + [0l -1 /8.8))

whence,

T 1/2
R ( / ||A2,E<t>||%x<3/4,5/4>dt> <C sup []6(E)ajms +
0 0<t<T

T 1/2
c(/ |¢<t>||§{a(1/8,8)dt> -
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Therefore
3

sup )| 00 + My, o 2'R
OStST”‘P()”L (R/8,8R) e;g 20 (¢ )

R*AM2M(Asc, R) < C RY? < Clllell

and (6.38) follows.

We now prove (6.39). Since:

1 X/2
Az (X, t) = RT3 /
0

=—2

((X —Y)M2Y(X - Y, t)x (29X - Y)) — XM 2(X, t)x (2° X)) H.(X,Y)dY

where H.(X,Y) = R*?H_(z,y). Rewriting the integrals in the right hand side of this formula in
term of the operators Wg, Wy and using Lemma 6.4 we obtain:

T 1/2 T 1/2
R (/ |A2,e<t>||i,a_1/2(3/4,5/4>dt> < c(/ ||w<t>||%p(l/&g>dt>

+C sup |[[Y()|[Loe(1/8,8)-
0<t<T
Therefore

R* M, , 1 (A3 R) < CRY?

3
3" Moo (932  R) + sup |lo(t)l|1=(ryssm | -
—_3 0<t<T

whence (6.39) follows. (]

7 Regularity for some auxiliary evolution equations

The following result has been proved in [4]:

Proposition 7.1 The fundamental solution g(t,x,xo) of the operator L defined in (1.3) such that
g(0,2,20) = §(x — o) satisfies:

1 - z
9(t,2,20) = =g (txﬁﬁ 1)/2’550’1> (7.1)
lg(t,,1)| < Ctaz=3/2 forall 0<t<1,0<z<1/2, (7.2)
lg(t,z,1)| < Cta=GtN2 forall 0<t<1,z> 3/2,
—1
lg(t,z,1)| < Ct 2o <:ct2 > , forall0<t<1,1/2<z<3/2, (7.4)
where,
1
o) = prel (7.5)
Moreover
g(t, @, 20) < CtYO V=312 forall t>1,0<0 <1, (7.6)
lg(t,x,1)| < Ct2ADg=GHN2 forall t > 1,0 > 1, (7.7)
with
o=tA"Dy, (7.8)
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sup

Lemma 7.2 For T € (0,1] there is a constant C > 0 such that, for all ||V||X3/2,2+,;(T)
< CTB||VHX3/2,2+5(T)
0<t<T

¢
/ G(t—s)v(s)ds
0 3/2, 32

[ = min (1,)\2_61>.

Proof of Lemma 7.2. We assume first that

where

R-(A-1)/2 <t.

Let us suppose that

Using Proposition 7.1:

/ Gt —s)v(s,y ds—/ ds/ dyv(s,y)g ((t—s)y 217x>dy
vy, vy
A—-1 X dy
g A—1 dS (S7y)g (t_S)y 2 )y -
t—R”™ "2 |lz—y|<R/2 vy, vy
A—1
t—R~ "2z
+/ dS/ v(s,y)g ((t— S)yt,x) ay
|lz—y|<R/2 Yy Y
A-1 T dy
/dS/ v(s,y)g (t—S)yz,
ly|I<R/2
A
ly|>2R

=T+ + 13+ 14

To estimate Z; we use the fact that (7.4) implies:

for 0<s<1,2z€(1/2,3/2).

' v(s,y) v~ \dy
7| < 0/ _st/ 2q>( i “>
t—R™ "2 le—yl<r/2 (t—95)y = ) (t—s)?y Yy

t
C / a—1 ||V<S)||LOO(R/2,2R)dS.
t—R™ 2

IN

where we have used (7.10) in the last inequality. Using Holder’s inequality we deduce:
1Zi| < CR YN (vit, R)

whence:

‘Il| < CR7(3+/\)/2 R76 [R2+6 NOO(I/;to,R)} < CR™ (34+X)/2 t26/ (A-1) |HV|||X3/2 .
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We consider now the term Zs:
A—1

t—R™ "2
— d
IQ:/ ds/ v(y)g ((t—s)y%l’x) 7@/
0 lz—y|<R/2 Yy, v

In the region of integration we have (¢ — s)y% > 1. Using then (7.7) we deduce

D2 gy
‘9 ((t )y ’y)’ <COt—s) >t 2(BtN)/2

for s > 1 and 1/7 < |z| < 7. Therefore:

t
- _A
Z,] < R (3+X)/2 /R—*—l [v(t = s)|| Lo (r/2,2m) S~ > 1ds
2

[t RA-1/2)

IN

< CR™CVERTIYlIxy 0y < CRTEVZ2EEV O],

where we have used (7.10) in the last step.
We next consider the term Zs.

¢ A-1 X d
Iz = / ds/ v(y)g ((t — s)yA2 ,) Y _
0 ly|<R/2 v,y

t $—2/(A=1)
0 0

X

v(y)g ((t _ sy, y) deJ .

t R/2 A—-1 T d
+/ dS/ v(y)g ((t -8y 7, ) gy =131+ 13-
0 t

—2/(X—1)

Y

We can use (7.3) in the region of integration of Zs ;. Therefore:

‘g ((t _ s)y%, 3:) ’ < Ot — ) = BN/ 241,

Yy
Then:
' 2/ (=)
Tl < o @2 [ase—s) | v(y)ly*dy
0 0
t 1 =2/ -1
= Ca O [ ( | wwiay+ [ |u<y>ywy>
0 0 1
= 1311 +131,2-
o0 t
Tsi1 < Cx—(3+/\)/2z2—n(/\+1)/ ds(t—s)||1/(s)\|Loo(27<n+1)724)
n=0 0
< Cx—(3+)\)/2t3/2 Z 2—n()\+1)MOO (V; 2—n)

n=0

[e.¢]
< OOy, ., S0 27O

n=0
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CR7(3+)\)/2 Z R()x+1)/2n7()\+1)/()\7I)Rf()\fl)/2Noo(V; an(/\fl)/27 R)
n=1

(7.15)

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)

(7.21)



s [t(2n)<x\—1)/2] min{27"(>‘71)/2 (6+1),t}
I31, < CaGHV/2¢ Z / V()| (2n, an+1yds
2

0<an<t—2/0-1) (=1 TS/

on

(A — 1)/2
[t(2") min{2~"*A=1D/2 (441 ¢}

D> / o ds x
= oc(2n72n+1)
0<2n<t—2/(A=1) (= 272
9n(A+1)
[t (2n)(>\71)/2]
< Cz 3+)\)/2 Z Z 2771(/\71)/2 % Noo(’/, 2771(/\71)/2& 2n)d8 2n()\+1)
0<2n<t—2/(A=1) £=0
3 B B L $26/(A—1)
S Czx (3+A)/2t2H|V|||X3/2)2+5(t 2/(\ 1)))\ 1 6:CWH‘V|||X3/22+5 (722)
On the other hand:
R/2 - d
1327/d5/ g<(t5)yleam> Y
t—2/(A— 1) Yy Yy
R/2 toy=A=1)/2 o
— . y ; v(y,s)g | (t—s)y 2 ’g ds +
R/2 d t .
v [ vl (6= 97 2 ) s
t=2/0-1 Y Ji_y—(x-1)/2 Y
=T321 + 13,2, (7.23)
In the term Z3 91 we use (7.15) that gives
R/2 t—y~ (A D/2
|Z32,1] < x_(3+’\)/2/ o dy/o (t — )" OOy, 5)|ds
=2/ (0

[t(2")(k’1)/2} gn+1 2=mO =172 (g4

< Cgp B2 Z Z / dy ds

0<an<t—2/(A=1) =1 on 2-n(A=1)/2p
—(A+1)/(A—1) |I/( t—8)|

[t (2n,)(k 1)/2]

< O BtN/2 2l X5 0045 Z (2m)~° Z ¢~ (FD/(A=1)
0<2n<t—2/(A=1) —1
= O G+N/2 |||V|||X3/2,2+,;t26/(>\_1) (7.24)
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In the term Z3 5 2, we use (7.19) which gives:

R/2 d t
< x_(3+,\)/2/ y M1 y/ (t —s)|v(y,s)|ds
t=2/(=1) t—y=(A-D/2
on+1 d
o 1)<2"<R/2 t—2—n(A—1)/2
< Cz~ G+ /2H|V|||X3/2 245 Z 27
+=2/(A=D <2 <R/2
< o O]y, 25O, (72

Estimates (7.24) and (7.25) yield

T3] < Cx=C V26351 |10]l1x, 10 01s- (7.26)
Then, using also (7.18) and (7.20), we deduce that

T3] < Ca= G245 ||| || x, 5 0 (7.27)

We estimate now the term Z4. To this end we have:

/ot o /y>2R Yw)g ((t SR x) Y < = dyy/oty _ [~ ]ds +

/ / [--]ds =Z41 +ZLy.
>2R Y Ji—y-(-1)/2

We split Z4,; in two pieces as follows:

—(x-1)/2 —(A-1)/2

t—x d t—y
/ / -]ds+/ —y/ [--]ds
>2R Y y>2R Y Ji—a-(x-1/2

= 1411 +Z412- (7.28)

Zya

In the term Z41,; we are in the region where (7.7) holds. Then, we use (7.15) to obtain:

t
Zs1a] < Cﬂﬁ_(SH)/Q/ dy/ s~ IO (y, (¢ - 5))|ds
yZQR r—(A=1)/2
< CI7(3+)\)/2 Z 2n()\+1)/22n Z g*()Hrl)/()\fl)x
2n>2R = (A=1)/2<2-n(A=1)/2¢<¢
X2_n()\_1)/2NOO(V; t— 2—71()\—1)/26, 271)

< Ol‘_(3+A)/2H‘V|||X3/2,2+6 Z 27

2" >R
< Co ||, L B < Cam |, L 207D (7,29

In the integral Zy 1,2 we use (7.6) to obtain:

anwy2y)<a ) YO y 32, (7.30)
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This yields,

|Z41,2]

IN

IN

IN

IN

—()\ 1)/2

cx*3/2/ / sTHVO Dy, (t — s))|ds
>2R (A=1)/2

2"*1
Cx=3/? Z /

2n>2R

g—n(r— 1)/2(“_1
X / _1/()\_1)||V(t—S)||Loo(2n72n+l)d8
1<0<2~ "“ /2 /2D

<g— (=172

C.’L‘_3/2 Z 22n2_n>\/2Noo(V,t _ 2—n(/\—1)/2€’ 2n)
2n>2R

Ca PRVl s D 27 < Cam OVl s 2070 (7.31)
2n>2R

using (7.10) in the last step.
In the term Z4 o we use (7.2) to obtain,

and then

g(<t—s>y2 y)|<c< &) Y2 512 (7.32)

d t
sl < Co®? / Y220 / (t — )l(y, 5)|ds
>2R y y (A—1)/2
gntl t
< Oz 32 Z / A/2dy/ (t —s)|v(y, s)|ds
{—y—(A=1)/2

2" >2R

S Cl'_3/2 Z 2_n(>\_1)2n>\/22nNoo(V’ t— 2—n()\—1)/2, ZTL)
2">2R

< Cxm G22I 10][x, 5 50 (7.33)

where we have used (7.10) in the last inequality.

Estimates (7.29), (7.31) and (7.33) give

‘I4| < CR_(3+>\)/2 t25/()\_1) |||V|HX3/2,2+57 (734)

which, combined with (7.14), (7.16) and (7.27) yields,

RB+N/2

< CEYOIN1x, 0, 45 (7.35)
L>=(R/2,2R)

/Ot Gt —s)v(s)ds

for R > ¢—2/(A=1),

We assume now:

1< R<t2/01 (7.36)
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Then,

t <y<
A d

+/ dS/ v(s,9)g ((t— sy =, x) &
0 ly|>5R/4 y) y

=h+J+ T3+ Ts (7.37)

In the term J; we use again (7.13) to obtain

z _1 d
|71 < C/dS/ aC 3 (I)( _yzA—l)y
a—yl<r/2 (E—s)y 7 )2 \(t=9)%y 4
. 1/2
< C/O d8|V(5)|Lw(R/2,2R)§Cﬂ(A ds||”(5)|2Loo(R/2,2R))
< CR-(3+N/2 [\/iR(A_l)/4R_6:| H|V|||X3/2,2+5

< CRZEVEZONMx, 0 (7:38)
We estimate J2 using (7.19) and therefore:

t oo 27"
| 72| < Cf(?’“w/ dSZ|IV(S)IILoo(2—<n+1>,z—n)(t*5)/ ydy
o = 2—(n+1)
< Cmf(3+/\)/2tZ2fn(k+1)\/£Moo(V;0’2771)’
n=0
< Ca Ny, S gm0/, (7.39)
n=0
We use also (7.19) in J3. Then:
t 5R/4
Bl < 0ot [ase—s) [ Pty
1
2n+1
< Ca G2 / ds(t = 5) ||z [ v dy
1<2”<5R/4
< Cx—(3+)\)/2t3/2 Z 2”()\—&-1)2—n()\—1)/4]voo(y7 0, 2n>
1<2n<5R/4

< Cam BRI, ,  REIOTDT < Cam GV |ly|||x, ,, 1577 (7.40)

In the term Jj,

gy (-0 )
Js = / ay + dsv(s,y)g ((t — S)y%, x) +
wizsr/a Y Jo Y
d ¢ -
/ - dsv(s,y)g <(t —SyT, ) = TJa1 + Jaz. (7.41)
lyl>5R/4 Y (tﬂf(xfl)/z)+ y
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In the first term at the right hand side of (7.41) we are in the region where (7.6) holds and then
we have (7.30) to obtain:

(t-
|Tu1| < Cx_?’/?/ dy/
ly|>5R/4 0

Notice that this integral is nonzero if and only if y > ¢t=2/(A=1)_ In that case:

—(A=1)/2
Y +

(t =)V (y, 5)|ds.

gntt t
Ful < Ca S [y [ Ot 9l gnrnyds
an>t-2/-1>Rp 72" y= (=172
< Cz7? > S gng—n(A=1)p=1/(A=1)gn/2 o
oan>t=2/A-1)>R 1 < p<o—(A=1)/2
T et
X Noo(vst — 27"07D/2¢, 2m) (7.42)

< a2 [Wllxy s PVOTIRN < Clllxy gy 2 OVREN2(7.43)

In the integral 742, we are in a region where (7.2) holds true. Then we may use (7.32) to get:
t
sl a2 [ gy [ ds (¢ = 9)w(y, )|
|>5R/4 (t—y=(r=D/2)

ly
The last integral is bounded as follows:

=2/ (-1) ¢
|Ja2| < Cx‘3/2/ ywdy/ ds (t — s)|v(y, s)| +
5R/4 0
oo t
L CaP2 / M 2dy / ds (t — )|w(y, 5)
t—2/(A—1) (t,yf(xa)/z)Jr

S 01,73/2153/2 Z (2n))\/2+127n()\71)/4N00(V;072n)_|_
R<2n<t—2/(A—1)
+Cx—3/2 Z 22%2—TLA/2NOO(V; t _ 2—%()\—1)/27 2”)
2n>=2/(A-1)
— — _ 2 301
< CaPPRAZER||]||x, ), , 00 5T

+ Pl YR 3D 2T = CREEIV ][, 82O,
on>¢—2/(A-1)

This yields,
|Tazl < CRTCHVEZEIOD ]|, 4., (7.44)
which, combined with (7.44) gives
| Tal < CRTCENEZICODN||x, , ., (7.45)
Adding (7.38), (7.39), (7.40) and (7.45):
RO (22 m) < CE OV 01 (7.46)

for all R > t~2/(A=1) Adding (7.35) and (7.46) yields, for all R > 1:

; G(t—s)v(s)ds

RB+N/2 < C’tQ‘;/(’\*l)\||z/|||X3/212+5. (7.47)

L>~(R/2,2R)

50



We now counsider the region where 0 < R < 1. Then, for |z — R| < R/S8:

- d
/Gt—s syds</ds/ sy|g((t—s) 27>y
y<3R/4 vy, vy
/dS/ Sy9<(t—5) ;171')y
y>5R/4 Yy, y
1 d
+/ dS/ v(s,y)g <(t8)y2,w> &
0 |z—y|<R/2 vy, y

=K1 +Ks+ K3

(7.48)

The last integral in the right hand side of (7.48) is estimated as follows. Since in that term (7.4)

holds we still have (7.13) and then

IN

t 1 T—y
oo ¢
ol < 0 [ I@llmmaamds [ e () @

IN

Using (7.3) we deduce that, in the integral K; the following estimate holds:

g ((t _ s)y()\—l)/2’ CU) <Ot —s)y A1, —(3+0)/2
Y

Using this estimate we deduce:

K|

IN

.
G Y / ds/ S mco = 5)dy

2-"<R

S Ox7(3+)\)/2t Z 27 ()\+1)\/£ Moo(l/’27n)
2-n<R

< Cam OVEERl|x, 00, BYY2 < Cam? 20210l xy 2100

for x € (R/2,2R). We are then left with the term |KCol.

Ky = / dy dSV(S Y)g ((t—S)yV,;)

5R/4<y<2 Y
" ds v(s,y)g ((t —s)yT, x)

+ L5
>2 Y Yy
+ / / dsv(s,y)g ((t— s)yk21,x>
>2 Y Jp—y--1/2), Y

= Ko1+ Koo+ Kojs.

(t—y~(A=1/2),

In the term Ky 1, we may use (7.32) to obtain:

t
< Cx_3/2/ dyy/\/2/ ds|v(s,y)|(t — s)
R/4<y<2 0

< O$73/2t3/2 Z 27n(1+)\/2) Moo(l/a 2771)
n=0, R<2-"
C$73/2t3/2

IN

|HV|||X3/2,2+6'

o1

t
C/ (8|1 (ry2.2m) < CVEMoc(v; R) < CVERT2||I1]l1xy 5505
0

(7.49)

(7.50)

(7.51)

(7.52)



In a2, (7.30) holds and then,

(t—y= V72,

< Cx_3/2/ dy/ ds|v(s,y)|(t — s)~/ O~ (7.53)
>2  Jo

We notice also here that the last integral in the right hand side of (7.53) is nonzero only if y >
t=2/(A=1) Therefore

t
Koo < Ca™?? > 2"/ . 2dss—W—l)|\u(s)||Lm(2n72n+l)
n:LQnZt—Z/()\—l) ( )/
< C 32 Z 93n/2 Z ¢~/ A=Dg—n(A-1)/2 o
n=1,2n>t=2/(A-1) 0=1,2-n(A=1)/2 p<¢

X Noo (5t — 27MA=D/2 4 9m)

< Ca||VllIx, mnss > g (A2 )
n:LQnZt—Z/()\—l)
< Ca32||]||xy a7 V) (7.54)

In K2 3, we may use (7.32), whence
t
Kaal < Ca [y [ vy, )|(¢ - 5)ds
y>2 (t—y=(=1/2),

C$_3/2t Z 2n()\/2+1)2—n(/\—1)/2N00(V; t— 2—n(/\—1)/27 2n)

<
n=1
< Co Wllx, s 32D < Co 2l s (755)
n=1
By (7.51), (7.52), (7.54) and (7.55) we have
| < C 302 (t-i- t(26+/\)/(>\—1)> |||,/|||X3/2)2+5. (7.56)

Adding (7.49), (7.50) and (7.56) we obtain the following estimate for 0 < R < 1:

/Gt—s

The Lemma follows combining (7.47) and (7.57). (]

R*? S OV xs 2,045+ (7.57)

L>(R/2,2R)

Lemma 7.3 For all p € YSU/Q’(SJFA)/Q(T) witho >1+4+9,e>0and0<T < 1:

< CT7|||¢l|
3/2,(3+XN)/2

sup
0<t<T

/0 Gt — $)(£ — Lo)p(s)ds

for some constant C > 0 independent of T, of € and .

Proof of Lemma 7.3. By Lemma 7.2:

t

sup H G(t — S)Al (8)d$||3/2’(3+)\)/2 S CTBHAl

||X3 2,(3+2)/2(T)"
oceer ! /o /2,(340)/
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Moreover, for all h(tvx)vqap ||h||Xq‘p(T) S CSHpOStST |Hh(t)|||q7p
Using Lemma 6.1 T%||A1[|x, ,, oys)00) < CTP[l¢lll3/2,310)72 < Clllpll|. Whence
t
sup || [ Gt —)Ai(s)dslls/2,31/2 < CT? |lllll- (7.58)
o<t<T Jo

A similar argument is used for the term A; .. First, by Lemma 7.2,
t
sup || [ G(t —5) Az (s)ds||3/2,34x) /2 < CT?|| A2, clIxy jm. 510, 2(1)-
o<t<T Jo

Then, by Lemma 6.5,][ A2, c|[x, ,, 5,),2(1) < Clll¢ll| and

t

sup || [ G(t = 5)Az,=(s)dsl[3/2, (3402 < OT?|[| o] (7.59)
o<t<T  Jo
and Lemma 7.3 follows from (7.58) and (7.59). (]

Lemma 7.4 Suppose that o > 1+ 6. There exists a positive constant C such that, for all 0 <
T* <1, for all 0 € 0,1], for all v € Y, 5, 5(T) and all ¢ satisfying |||¢l|| < +oo and solving:

0
Ff —L(e)+0 (L—L)(¢)+v, >0, t e (0,T*) (7.60)
we have:
llelll < Cllivllvg, @

Remark 7.5 The result of Lemma 7.4 remains true if the space Y3”/2 2+6(T*) is replaced by
Yo o(T"). However, a solution of (7.60) satisfying |||¢||| < +oo does not exists in general if
Ve Y3‘7/272(T*).

Proof of Lemma 7.4. We first rewrite the equation (7.60) as follows:

dyp
22— (- 0)L(e) +0L(g) + v
Then, for x € (3R/4,5R/5) and R > 1 we define the new variables © = XR, y = YR, t =

(1/RO=D/2) and p(z,t) = R-GtN/2W(X, 7). Since t € (0,T,), 7 € (0, T, RA~1/2),

v , X/2
5 = (1—0)L(T)+6 R3/2/ ((XfY)’\/Z\I/(XfY)fX’VZ\I/(XD (Ry)M? fo(Ry) dY
0
—0 X2W(X) Y2 f0(RY)AY + i
X/2
= R*v(RX,7 R-A~D/2) L grBTN/2

x /X/z ((X —Y)M2f(R(X - Y)) — X*/sz(RX)) YN2G(y)dy
0

—0 X*2RBHN/2 £ (RX) /X/2 Y20 (Y)dY (7.61)
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Using the expression of the operator L given in (1.3)

ov X2 A/2 A/2 A/2y —3/2
5 = (-9 ((X—Y) V(X -Y)- X \I/(a:))Y Y =3/2dy
T 0
X/2
RO R [0 V)X - Y) - XV ) (R ol Ry) Y
0
oo
—2(1 — 0)vV2xPMD/2p(X) — g RETN/2 XA 2 (X) Y2 fo(RY)dY
X/2
41 + g
X/2
oy = (1-— 0)/ ((X Yy X*3/2) YM2Q(Y)dY —
0
—(1— 0)X*3/2/ Y20 (Y)Y (7.62)
X/2
We can rewrite the equation as
oW
o =Ti_¢ R (M)\/Q\I/) —a(X, )T 4+ Q (7.63)
a(X,t) = 2(1 — 0)V2X P 1/2 1 g RBHV/2 XW/ Y*2 fo(RY)dY (7.64)
X/2
Q = in + 1. (7.65)

Since |||¢]|[3/2,(3+2)/2 < 00, we can combine (3.7) in Theorem 3.1 with (6.14) to obtain:

min (T+1,T* R(A71>/2) 1/2
2
sup / N ()5rg 3/a5/mds | <C sup |llo()]lls/2,3+x)/2
0<T<R(A-1)/2 T 0<t<T*

min (T+1,7* RA~1/2) 1/2
+ sup (/ ||Q(5)||?{g(1/2,2)d5>

0<T<RO-1/2 \JT

Moreover, in order to estimate the norm of Q(s) we first notice that, using (6.14):
jox-> | YR g2 < OOz 0102+ O e 17501

The same estimate holds trivially for the term 6 X*/2RG+N/2 f(RX) f;;z YA2U(Y)dY in 7.

We are then left with the term fOX/2 (X —Y)™3/2 = X=3/2) YM2¥(Y)dY. Using that [¥(Y)| <
Y ~B+N/2 we deduce:

X/2
I / (X =¥)=22 = X2 Y M20(0)aY |lo 1/ < Cllle)ll3/2, 5422

+C||\Ij(3)|‘H<a*1>+(1/2,2)'

This gives
min (T+1,T. RA~D/2) 1/2
s (] 19O g arasnds ) <C sup lpllaaenye
0<T<T* RO-D/2 \JT 0<t<T*
min (T+1,T. RO~1/2) 1/2
C v o d C o
i OSTSTSPII;(Afl)/z /T I (S)HH; Dt (1/2,2)% +Clllyg, s
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A bootstrap argument then yields:

min (T4+1,T, RA—D/2) 1/2
sup / 1 ()| g (3/4,5/4)ds <
0<T<T. RA-1/2 \JT

(7.66)

< o *
< COSStUSPT* llellls/2.34x/2 + ClVllyg,, . @

(actually in an interval slightly smaller than (3/4,5/4), for example (7/8,9/8)).
We deduce,

sup sup (RGCHV/2N, iRt ><C’ su t + C'|v||ye < (7.67
s s 2olpiRet0) £Csup [l[p(Olllsjaorne+ C Il ,,re) (767

We consider now the case where 0 < R < 1. We rescale the equation for z € (3R/4,5R/5) and
R < 1. The new variables are now * = XR, y = YR, and ¢(z,t) = R~%/2¥(X,t). Arguing as
above, the function W satisfies now:

ov -1
5= R*T Ty g (My2¥) +Q

X/2
Q= R¥?v(RX,7)+ RA1/2 ((1 - 0)/ ((X — YY) X*3/2) YN29(Y)dy —
0

—(1— 9)X‘3/2/ YM2(Y)dY —2(1 — 0)v2X AD/2p(X) -
X/2

—(1—9)X‘3/2/ YWxIJ(Y)dY)
X/2

X/2
1o RMI / ((X CYPR2e(X —Y) - XA/Q\IJ(X)> v fo(Ry) dY
0

X/2
HORM! / ((X =Y fo(RIX = 1)) = XM2fo(RX) ) YM2W(Y)aY
0

0o X/2
70R)\/2 X)\/Q\I](X)/ y)\/Zfo(y)dereR)\/Z X)\/Q\I](X)/ Y/\/2 fO(RY) dY
0 0

—GRVZ’fo(RX)XA/Q/ yA/Q@(y,t)dy—(l—o)Xig/Q/ Pl Oy dy
0 0

- X/2
+R X3/ / T(Y)YM2ay. (7.68)
0

Where we have used that:

By Theorem 3.1 with k = RA~1D/2

||\I/||Lf(O,T*;HU(3/4,5/4)) < CHQHL?(O,T*;Hg(l/Z,Q))

We now have:

QI e (3/45/4) < C\|‘I’|\H<071>+(1/g gyt sup le@lll3/2,3+2/2) + C ||VHY"2 s s(D)
’ 0<t<T, 8/2 240
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As before, a bootstrap argument as in the case R > 1 gives
|22 0,1, H7 (3/4,5/4)) < CO<Stu<pT* He@®)l[3/2,:3+x)/2 + Cl[Vl]ye Y59 045(T)
and then, rewriting this estimate in the original variables
B Mo R) < (5w [10(0llniansye + Wl m ) (7.69
0<t<T.
Combined with (7.67) we deduce

sup sup (R(3+/\)/2N2;U(<,0;R,to))+ sup R*? My, 5(¢, R)

0<to<T* R>1 0<R<1
<o (s Molllyaaonye + g, , ) (7.70)
0<t<Ty,
and then
llelll <€ _sup ez +Cllvllg, ..

We use now
_o/Gt—s)(z: L)( ds+/Gt—s s) ds
which yields
mﬂﬂmpawp<c/ﬂmt—ﬂw L) (@)(6)ll3/2,654 2072 ds +

+ [ 60 = )6Vl
By Lemma 7.2 and Lemma 7.3:

* * «20(A—1
e ®)ll3/2,60072 < CTP@lll + (T + TV wllx, s (1)

and the result follows taking 7™ small enough. (]

8 Proof of Theorem 2.1.

We introduce the auxiliary operators L., for € > 0, defined as follows:

Lc(g)

x/2
/ ((95 —y) 2 w‘3/2) v 2g(y)dy
0

T R (P e By g
o vy Yy 9 Y32 § 23/2 1372
- a7 // v 2g(y)dy — 2v2:0 "D 2g(x). (8.1)
x/2

For all € > 0 the operator L. is more regular than L. Notice in particular that g and L.g have the
same regularity.
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Lemma 8.1 Let 0 <T < 1. Then, there exists a constant C' > 0 such that, for any ¢ € Er,,, for
all to € (0,T) and € > 0:

R% Ny, o175 (L= Lo)(9); R, to) < Clllglll, YR > 1, (8.2)
R¥ 2 My o 15 (L= Le)(9); R) < Clllglll, V0O< R < 1. (8.3)

Proof of Lemma 8.1. Notice that the operator (£ — L.) may be written as A; + Az . where
Ay and As . are defined in (6.1) and (6.4)-(6.5). Lemma 8.1 then follows using Lemma 6.2 and
Lemma 6.5. (]

Lemma 8.2 (i) There exists a constant C > 0 such that, for all e € (0,1], 8 € [0,1), ¢ € Erp
and u € Er,, satisfying:

dp=(1-0)L(p) +0L(p) + (L — Le) (u)
there holds:

C
el < C sup |llellls/z,a+x/2 + 7=l
0<t<T™ -

Proof of Lemma 8.2 The proof of this Lemma is similar to that of Lemma 7.4. The difference
comes from the fact that we must use the regularising effect of the operator 77_g r of Theorem
3.1. We then start by scaling the variables.

In the case R > 1 and for = € (3R/4,5R/5) we define the new variables: x = XR, y = YR,
t = (r/RA=Y/2) and p(z,t) = R-GCHN/2W(X, 7). Since t € (0,7.), 7 € (0,7, RA*~Y/2). The
function (X, 7) satisfies equations (7.63)-(7.65) with 7, and v are defined as in (7.61), (7.62) but
where v is now given by

v=(L- L) (u). (8.4)

Using Lemma 8.1 and Theorem 3.1 with e = 1 — 6, we obtain , arguing as in the proof of (7.66),

min (T+1,T. RA~D/2) , 1/2
0<T<:/§u11:a)<x_1>/z /T ||@(S)||H§‘(3/4’5/4)d8 =

C
<C sup |llolll3/2,3+r)/2 + mIHUIII (8:5)
0<t<T™

Notice that the only difference between the proof of (8.5) and that of (7.66) comes from the control
of the term v defined in (8.4). However that term is estimated as the term P in (3.5) with x = 1,
and € = 1 — 0 combined with (8.2).

We consider now the range R € (0,1) and rescale the equation for x € (3R/4,5R/5). The new
variables are now = XR, y = YR, ¢(x,t) = R~%/?¥(X,t) and u(z,t) = R~3/2U(X,t). Arguing
as above, the function ¥ satisfies now the same equation (7.68) where the term @ is defined in
(7.68) where here again v is given by (8.4). The term R3/?v(R, X,t) in (7.68) is rewritten using
(8.1) as follows:

RPu(R X t) = ROVP(L— L) (U) = Qo(X, 1) + Qu(X, )
where,
X/2 dY
_ A—1)/2 A/2 A/2
Qu(X,t) = RO/ /0 (& =20 =) = XNU)) G a7
X/2
01(X,t) = RWU/Q/ ((X Yy X*3/2) YMN2U(Y, £)dY
0

S /OO N 2u(y, t)dy — 2v/2RV-D/2 X A=D/2( X)),
RX/2
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and Q;(X,t) satisfies,|M2,(Q1;1)] < C||lu|||. Using now Theorem 3.1 with ¢ = 1 — 6 and
k= RA=1/2 and estimating all the remaining terms as in the proof of (7.69) we obtain

C
B2 Moo (3 B) £C_sup llglllssa,isn + 7 lulll (5.6)
0<t<T*

Combining (8.5) and (8.6) the Lemma follows. (]
Lemma 8.3 Let 0 < T < 1. Then for any ¢ € Ep,», for all to € (0,T) :
lim N2.0._1/2 ((L*Ls)(gﬁ), R, to) = 0, VR > ].,
e—0 ’
lim My, 12 (L— Lo)(@); B) = 0, VO<R<1,
e—0

Proof of Lemma 8.3. After rescaling the variables = RX, t = to + R~*~Y/27 and p(z,t) =
Y(X, 1), the two identities reduce to:

*

T

lim (L = Le) (@) (NIrg 12,2 dT = 0 (8.7)

e—=0 Jo

with 0 < 7% < 1. Using (1.3) and (8.1) we have

(L - Ls)(w) = (Woo - Woo,s)(w)

where Wy, and Wy, . are defined in (6.19) and (6.20). Therefore the Lemma follows combining
(6.22) and the Lebesgue convergence Theorem. (]

End of the proof of Theorem 2.1.

Our goal is to solve (1.7) for § = 1. To this end we use a continuation argument starting at
0=0.

For 6 = 0 equation (1.7) has a solution ¢ € Ep,,. This is a consequence of the results of [4] and
of Lemma 7.4 in Section 3 with 6 = 0.

Then, we define:

0* = sup {9 > 0; for all v € Y37y 5 5(T), there exists ¢ € &, solution of (1.7) } (8.8)

The Lemmas 7.3 and 7.4 show that there exists a constant C' > 0 such that, for any 6 < 6* and

for all v € Y7, 5, 5(T') there exists a function ¢ € Er;s such that

el < Clvllyg, . @

Suppose that 0* < 1. We will show that for all § > 6* with § — 0* sufficiently small and all
VEYTH ot (T) there exists a function ¢ € Er., and solving (1.7). This would give a contradiction.
To this end we use a fixed point argument.
Given ¢ € &7, and v € Y3"/272+5(T) we define ¢, , € 7., as the solution of

Oppen = (1= 0n) L(pe n) + 0n L(pen) + (0 — 0,) (L — Le) () +v (8.9)

where 6, is a sequence such that §,, < %, 8,, — 6* as n — +o00. The functions ¢, ,, are well defined
since 0, < 0. and (£ — L¢) (¢) € Y35 5, 5(T). Combining Lemma 7.4 and Lemma 8.2 we obtain:

—0,
e mlll < C(O0 = 6n) oS llellls/2, 34372 + C 7 92 Wl + Wllvg, .- (8.10)
Since ., satisfies equation (8.9) we have:
¢
Pen = / G(t =) [0n(L = L)(¢en) + (0 = 0n)(L — L)(#) + v]ds. (8.11)
0
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Using now Lemma 7.2 and Lemma 7.3 we obtain:

< CT? (|lleenlll + (O = ) RN+ [1711x4 2.2145) (8.12)

Therefore, using (8.10) and (8.12) for T small we obtain

9 9 (8.13)

3/z 245"

Moreover, given ¢ € €15, ¢’ € €., and denoting the corresponding solutions as ¢. , and ¢,
a similar argument yields:

lpen = otalll < T2 11~ Zl (314
By Lemma 8.3 we deduce that
5 linl, Ny o—1/2 ((Ler — L) (9); R, to) = 0, VR > 1, Vtg € (0,7),
. lérg My, o172 (Ler — Le)(9); R) = 0, VO<R<I, Vg € (0,7).

We use now the regularising effects obtained in Theorem 3.1 combined with the rescaling argument
that have already been used in the proof of Lemma 7.4, to obtain:

lim No, (Pen —@erm; R, to) = 0, VR>1,, Yty € (0,7),
g, e’—0
lim My, (pen—@ermn; R) = 0, VO<R<]I, Vi € (0,T)
g, e’—0
lim ||0en — @ermllLe(o,r)x[r/2,28)) = O0VR>0Vte (0,T).

e, e’—0

There exists then a function ¢, defined in R x [0, 7] such that

hm N2 . ((pe n— ¥n; R, to) = 0, VR>1,, Vtg € (O,T), (8.15)
e, /=0
lim My, (e —pn; R) = 0, VO<R<I, Vtg € (0,7), (8.16)
€, /=0
lim H(pem — gOnHLoo([o7T]><[R/272R]) = 0VR> 0, Vt € (O,T) (817)

e, e'—0

By (8.13) we have:

R(3+>\)/2 N2;U (We,n? R) tO) < V||Y/2 216" VR > La vtO € (O,T),
R3/2 My, ; (9en; R, to) < Gaarsr VO<R <L Vi€ (0,7)
max {2%/2, 2302 oo (2,1)] < Taas VT € (R/2,2R),
VR >0Vt € (0,T).

Taking limits as ¢ — 0:
RETN2 Ny (@n; R, to) < Saarsr VR> 1, Vi €(0,7),

9n
7 |||s0\|\+CHVIIY

0 —
R3/2 My, , (¢n; R, to) <Ci- YO<R<1, Vi, € (0,7),

3/2,2+46’

max {x3/2, x(3+)‘)/2} lon(z,t)| <

Va € (R/2,2R),

/2 245’

VR >0Vt e (0,T).
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whence ¢, € &7, and,

0—0,
1—-46,

llenlll <€ I+ v

3/2,2+46

A similar argument yields

0—0n, ~ ~
llen = @ulll < & == Mlle = I

Notice that ¢, € L*(0,T; Hf,.(RT)). Moreover, passing to the weak limit in the equation (8.9)

as € = 0 we obtain that ¢,, solves
8t§0n = (1 - en) L(@n) + Hn ‘C((pn) + (9 - en) (E - L) (6) +v (818)

in the sense of distributions. Then, ¢, € H'(0,T; Hf,.(R™)).
Formula (8.18) implies that the application @ — ¢, has a fixed point for any v € Yg"/2 2450
n sufficiently large and 6 — 8* > 0 sufficiently small. Let us denote by ¢ such a fixed point that

satisfies:
Oep = (1—0,) L(p) + 0n L(p) + (0 — 0n) (L — L) (¢) +v (8.19)

whence,
Op=(1—-60)L(p)+0L(p)+V (8.20)

and since 6§ > 6* this yields a contradiction. It then follows that 6* = 1. We prove now the
solvability of the equation for 6 = 1.
To this end consider a sequence 0, — 1 and the corresponding sequence of solutions ¢y € E7,5 to :

O = (1 = 0k) L(px) + 0k L(pk) + v. (8:21)

By Lemma 7.4 we have
lleelll < Cllvllvg, ... (8.22)

Therefore,
ROV Ny o (p1; R, to) < Cllvllyy,,.,» YR>1,, Vio € (0,T), (8.23)
R*? My, » (¢1; R, t0) < Cllvllyg, ,,,» VO<R<1, Vi€ (0,T) (8.24)
max {$3/27x(3+/\)/2} lpr (2, 1) < CHV||Y3U/2,2+5’ vz € (R/2,2R),

VR > 0Vte (0,T). (8.25)

The sequence {¢y}ren is then weakly compact in L2(to,to + R~A~1V/2T: {7 (R/2,2R)) for all
R > 0 and ty € (0,T]. Therefore, using a diagonal procedure, there exists a sub sequence, still
denoted {@k }ren, and a function ¢ defined in all RT x (0, 7] such that ¢ converges to ¢ weakly
in L2((0,T); H? (R1, Rs)) for all Ry > Ry > 0. Since the left hand sides in the inequalities (8.23)-
(8.25) are all of them convex functions of ¢, these inequalities are preserved under weak limits.
Therefore

RB+N/2 No.» (95 R, tg) < CHV||Y3"/2 prs? VR > 1, for a. e. tg € (0,7T), (8.26)
R My, (3 R, t0) < Cllvlyg, ., VO<R<1, fora. e to€(0,T) (8.27)
max {a%/2, 23N/ oz, 0] < Cllvllyg, , 0 Vo € (R/2,2R),

VR >0, for a. e. t € (0,7) (8.28)
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whence ¢ € Er,,.
On the other hand, it is possible to pass to the limit in the equation (8.21) in the weak

sense of L2(0,T; H’ (R, Rs)) for any Ry > Ry > 0 to obtain that ¢ € L?(0,7;Hf (RT)) N
H(0,T; HZ;UQ(R‘*‘)) is a solution of
0o = L(p) +v. (8.29)

in the sense of distributions.
Finally, in order to prove uniqueness let us assume that ¢; and @y are two solutions of (8.29).
Then, the function ¥ = @1 — @9 satisfies,

O = L), P(z,0)=0.
and Lemma 7.4 for 6 = 1 and v = 0 shows that ¥» = 0 and uniqueness holds. (]

Remark 8.4 In all this argument we have needed the condition o > 1 in order to estimate the
term Ay (cf. for example Lemma 6.5 and Lemma 7.3 ). On the other hand, the main property of
the spaces H? that is actually used is that they are an algebra, and this only requires o > 1/2. An
alternative approach, in order to avoid the more stringent condition o > 1 could be to estimate the
terms Ag in Section 6 using o Sobolev derivatives, with o € (1/2,1), and an almost half derivative
as does the norm [-] defined in (2.21) (2.20). On the other hand, the condition o < 2 has been
imposed only in order to avoid further technicalities.

9 Proof of Theorem 2.2

Consider the function Fg (X, 7) defined in (2.20). The function ¥(X,7) = RCTN/2Fp, (X, 7)
satisfies equation (7.64) with = 1. Then, using (3.10) we obtain

min(to+R~ /2 1) R 1/2
R(B+)/2 / / |Fr.t (k,7)|% k> min{|k|, R} dk, dt
to R
<C (H‘SDH' + ||1/||Y3/2,2+«5)
whence Theorem 2.2 follows. o
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