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a b s t r a c t

This letter is devoted to results on intermediate asymptotics for the heat equation. We
study the convergence towards a stationary solution in self-similar variables. By assuming
the equality of some moments of the initial data and of the stationary solution, we get
improved convergence rates using entropy/entropy-productionmethods.We establish the
equivalence of the exponential decay of the entropies with new, improved functional
inequalities in restricted classes of functions. This letter is the counterpart in a linear
framework of a recent work on fast diffusion equations; see Bonforte et al. (2009) [18]. The
results extend to the case of a Fokker–Planck equation with a general confining potential.

© 2010 Elsevier Ltd. All rights reserved.

Consider the heat equation in the Euclidean space,

∂u
∂t

= ∆u t > 0, x ∈ Rd, (1)

with an initial condition u0 ∈ L1(Rd). By writing u = u+ − u− where u+ and u− are respectively the positive and negative
parts of u and solving (1) with initial data (u0)+ and (u0)−, wemay reduce the problem to the case of a nonnegative function,
corresponding to a nonnegative initial condition u0, without restriction. The heat equation being linear, we can assume
without loss of generality that u0 is a probability measure so that in the sequel of this note


Rd u0 dx = 1 =


Rd u(t, x) dx

for any t ≥ 0. Getting decay rates and even an asymptotic expansion for large values of t is completely standard; see for
instance [1]. However, a few details and some notation will be useful for later purpose.

First of all, as a straightforward consequence of the expression for the Green function, G(t, x, y) := (4π t)−d/2 e−
|x−y|2

4t ,
any solution u of (1) can be written as u(t, x) =


Rd u0(y)G(t, x, y) dy and therefore uniformly decays like O(t−d/2) since,

as t → ∞, u(t, x) ∼ G(t, x, 0). It is also classical to estimate the decay of u(t, ·) − G(t, ·, 0) in various Lp(Rd) norms. Such
estimates are called intermediate asymptotics estimates. The point is to determine the first term of an asymptotic expansion

✩ This work was partially supported by the Fondation Sciences Mathématiques de Paris and by the ANR projects CBDif-Fr, EVaMEF and Evol.©2010 by the
authors. This paper may be reproduced, in its entirety, for non-commercial purposes.
∗ Corresponding author.

E-mail addresses: bartier@ceremade.dauphine.fr (J.-P. Bartier), adrien.blanchet@univ-tlse1.fr (A. Blanchet), dolbeaul@ceremade.dauphine.fr
(J. Dolbeault), miguel.escobedo@ehu.es (M. Escobedo).

0893-9659/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2010.08.020

http://dx.doi.org/10.1016/j.aml.2010.08.020
http://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
mailto:bartier@ceremade.dauphine.fr
mailto:adrien.blanchet@univ-tlse1.fr
mailto:dolbeaul@ceremade.dauphine.fr
mailto:miguel.escobedo@ehu.es
http://dx.doi.org/10.1016/j.aml.2010.08.020


J.-P. Bartier et al. / Applied Mathematics Letters 24 (2011) 76–81 77

of the solution as t → ∞. For instance, as we shall see below, it can be proved that ‖u(t, ·) − G(t, ·, 0)‖L1(Rd) = O(t−1/2) as
t → ∞.

The entropy method can be used among various other approaches to obtain such an estimate. It relies on the logarithmic
Sobolev inequality and goes as follows. First consider the time-dependent rescaling

u(t, x) = R−d v(log R, x/R) with R = R(t) :=
√
1 + 2 t, t > 0, x ∈ Rd. (2)

If u is a solution of (1), then v solves the Fokker–Planck equation

∂v

∂t
= ∆v + ∇ · (x v) (3)

with the same initial condition v(t = 0, ·) = u0. Let v∞(x) := (2π)−d/2 e−|x|2/2 be the unique stationary solution
of (3) with mass 1, and define dµ := v∞ dx as the Gaussian measure. We denote by Lp(Rd) and Lp(Rd, dµ) the Lebesgue
spaces corresponding respectively to Lebesgue’s measure and to the Gaussian measure. Understanding the intermediate
asymptotics for u amounts to studying the convergence of v to v∞, as t → ∞. Define the entropy by E1[w] :=


Rd

w logw dµ. Let v be a solution of (3) and definew(t, ·) := v(t, ·)/v∞,w0 := w(t = 0, ·). Then d
dt E1[w(t, ·)] = −I1[w(t, ·)]

where I1 is the Fisher information defined by I1[w] :=


Rd w |∇ logw|
2 dµ. Gross’s logarithmic Sobolev inequality exactly

amounts to E1[v/v∞] ≤
1
2 I1[v/v∞] and so it follows that

E1[w(t, ·)] ≤ E1[w0]e−2t
∀t ≥ 0.

By the Csiszár–Kullback inequality (see for instance [2]), we get ‖v(t, ·) − v∞‖
2
L1(Rd)

≤
1
4 E1[w(t, ·)] and deduce that

‖v(t, ·) − v∞‖L1(Rd) ≤
1
2


E1[w0] e−t

∀t ≥ 0.

Undoing the change of variables (2) and observing that u∞(t, x) := R(t)−d v∞(x/R(t)) = G(t + 1/2, ·, 0), we finally get

‖u(t, ·) − u∞(t, ·)‖L1(Rd) ≤
1
2


E1[w0]

1 + 2 t
∀t ≥ 0,

which establishes the claimed estimate, namely: ‖u(t, ·)−G(t, x, 0)‖L1(Rd) ≤ O(t−1/2) as t → ∞. Such an estimate is quite
classical. The above method is known as the Bakry–Emery method or entropy/entropy-production method and also provides a
proof of the logarithmic Sobolev inequality. See [3,4] for some references on this topic, in the context of partial differential
equations.

By combining L1(Rd) and L∞(Rd) estimates using Hölder’s inequality, we get that

‖u(t, ·) − G(t, ·, 0)‖Lp(Rd) ≤ O(t−
1
2 p (1+(p−1) d)

) as t → ∞.

In an L2(Rd) framework, a much more detailed description can be achieved using a spectral decomposition. If v is a solution
of (3), then w = v/v∞ is a solution of the Ornstein–Uhlenbeck equation

∂w

∂t
= ∆w − x · ∇w (4)

with initial data w0 = u0/v∞. Notice that


Rd w0 dµ = 1 and, as a consequence,


Rd w(t, ·) dµ = 1 for all t ≥ 0. Define
by (Hk)k∈Nd the sequence of Hermite type polynomials (see for instance [5]) acting on x = (x1, x2, . . . , xd) ∈ Rd, such that
Hk(x) :=

∏d
j=1 hkj(xj) where hn(y) := (−1)n (n!)−1/2 ey

2/2 dn
dyn (e

−y2/2), y ∈ R and k = (k1, . . . , kd) ∈ Nd. These functions
provide an orthonormal family of eigenfunctions in L2(Rd, dµ) which spans the eigenspaces of the Ornstein–Uhlenbeck
operator, that is −(∆Hk − x · ∇Hk) = |k|Hk, where |k| :=

∑d
j=1 kj. Up to a scaling, (hn)n∈N is the usual family of Hermite

polynomials on R.
If w0 satisfies the orthogonality condition∫

Rd
w0 Hk dµ = 0 ∀k ∈ Nd such that 0 < |k| < n, (5)

then an improved rate of convergence follows, in the sense that

‖w(t, ·) − 1‖L2(Rd,dµ) ≤ e−nt
‖w0 − 1‖L2(Rd,dµ) ∀t ≥ 0.

If (5) initially holds, we do indeed have


Rd w(t, ·)Hk dµ = 0 for any t ≥ 0 and any k ∈ Nd such that 0 < |k| < n. Then,
since d

dt ‖w(t, ·) − 1‖2
L2(Rd, dµ)

= −2


Rd |∇w(t, ·)|2 dµ, the conclusion holds using the following result.
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Proposition 1 (Improved Poincaré Inequality). Assume that w ∈ L2(Rd) is such that


Rd w dµ = 1 and the condition
Rd w Hk dµ = 0 holds for any k ∈ Nd such that 0 < |k| < n. Then the following inequality holds, with optimal constant:

‖w − 1‖2
L2(Rd, dµ)

≤
1
n
‖∇w‖

2
L2(Rd, dµ)

.

The proof is no more than a straightforward rewriting of the Rayleigh quotient ‖∇w‖
2
L2(Rd, dµ)

/‖w − 1‖2
L2(Rd, dµ)

under the
appropriate orthogonality condition. Notice that polynomialsHk are of degree |k|, so Condition (5) can be rephrased in terms
of moment conditions. See [1,6] for further results in this direction.

It is natural to search for improved estimates of convergence also in Lp(Rd) with p ∈ [1, 2) by looking for improved
functional inequalities whenever condition (5) is fulfilled. We may for instance quote [7] in which improvements on the
constant, but not on the rates, have been achieved for p = 1.

For any p ∈ (1, 2], consider the generalized entropy

Ep[w] :=

∫
Rd

wp
− 1

p − 1
dµ.

This definition is consistent with the definition of E1 because, under the condition


Rd w dµ = 1, Ep[w] =


Rd
wp

−w
p−1 dµ →

E1[w] as p → 1. The functional Ep controls the convergence in Lp(Rd, dµ) using a generalized Csiszár–Kullback inequality.
In [8,9], it has been proved that ‖w − 1‖2

Lp(Rd, dµ)
≤

1
p 22/p max{ ‖w‖

2−p
Lp(Rd, dµ)

, 1} Ep[w], for any p ∈ [1, 2]. Since
‖w‖L1(Rd, dµ) = 1, we have 1 ≤ ‖w‖

p
Lp(Rd, dµ)

= 1 + (p − 1) Ep[w], and so

‖w − 1‖Lp(Rd, dµ) ≤ Ap(Ep[w]t) with Ap(s) :=
21/p

√
p

[1 + (p − 1) s]1−p/2√s. (6)

Next, assume that


Rd w Hk dµ = 0 for any k ∈ Nd such that 0 < |k| < n and consider the generalized Poincaré inequalities,
with p ∈ [1, 2], namely

Ep[w] ≤ Bn,p

∫
Rd

|∇wp/2
|
2 dµ ∀w ∈ H1(Rd, dµ). (7)

Such inequalities have been established for n = 1 by Beckner in [10] with optimal constant B1,p = 2/p for the Gaussian
measure. By the same method, it has been shown in [11] that for a larger class of measures dµ, if (7) holds for p = 1 and
p = 2, for some positive constants Bn,1 and Bn,2 respectively, then it also holds for any p ∈ (1, 2) with

Bn,p =
1

p − 1
[1 − ((2 − p)/p)Bn,1/(2Bn,2)]Bn,2. (8)

By the logarithmic Sobolev inequality and the improved Poincaré inequality (see Proposition 1), we know that Bn,1 ≤ 2 and
Bn,2 = 1/n. Hence it follows that Bn,p ≤

1
p−1 [1− ((2− p)/p)n ]

1
n . On the other hand, as in [4], if w is a solution of (4), then

d
dt

Ep[w(t, ·)] = −
4
p

∫
Rd

|∇wp/2
|
2 dµ. (9)

If (5) is satisfied, we conclude using (7) and (6) that any solution of (4) with initial data w0 satisfies

Ep[w(t, ·)] ≤ Ep[w0]e−2λ(n,p)t and ‖w(t, ·) − 1‖Lp(Rd,dµ) ≤ Ap(Ep[w0])e−λ(n,p)t
∀t ≥ 0,

with λ(n, p) :=
2
p n (p − 1)[1 − ((2 − p)/p)n]−1. The last estimate holds because, for any t ≥ 0,

‖w(t, ·) − 1‖Lp(Rd,dµ) ≤ Ap(Ep[w(t, ·)]) ≤ Ap(Ep[w0]e−2λ(n,p)t) ≤ Ap(Ep[w0])e−λ(n,p)t .

Notice that λ(1, p) = 1 and λ(n, 2) = n. Nothing is gained as p → 1, since limp→1 λ(n, p) = 1 is independent of n.
On the other hand, by Hölder’s inequality, we have ‘‘for free’’ that ‖w − 1‖Lp(Rd, dµ) ≤ ‖w − 1‖L2(Rd, dµ). Hence, if w is

a solution of (4) with initial data w0, we know that ‖w(t, ·) − 1‖Lp(Rd, dµ) ≤ e−n t
‖w0 − 1‖L2(Rd, dµ) as t → ∞, for any

p ∈ [1, 2], if (5) is satisfied. By interpolation, we recover the rates of [1,6]. However, this is not satisfactory since neither
‖w0−1‖Lp(Rd, dµ) nor Ep[w0] is involved in the right hand side of the above estimate.

Consider first the case p = 1. An alternative approach is suggested by the method of [12,13], which applies to the fast
diffusion equation ∂u

∂t = ∆um form < 1. By assuming someuniformbound on the initial data,which is preserved throughout
the evolution, it is possible to relate the asymptotic rate for intermediate asymptotics with the spectrum of the linearized
operator.We can indeed observe that‖w0−1‖2

L2(Rd, dµ)
≤ ‖w0−1‖L1(Rd, dµ)‖w0−1‖L∞(Rd, dµ) ≤

1
2

√
E1[w0]‖w0−1‖L∞(Rd, dµ)

using Hölder’s inequality and the Csiszár–Kullback inequality. This proves that

‖w(t, ·) − 1‖2
L1(Rd, dµ)

≤
1
2
‖w0 − 1‖L∞(Rd, dµ)


E1[w0] e−nt as t → ∞
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if (5) is satisfied initially. Still, this provides neither an estimate of


Rd w(t, ·) logw(t, ·) dµ nor a functional inequalitywhich
improves upon the logarithmic Sobolev inequality. To prove such an inequality, we keep following the strategy of [13]. A
simple but key idea is to observe that the functions defined for any p ∈ [1, 2] by hp(0) = 1, hp(1) = p/2, and for any
s ∈ (0, 1) ∪ (1, ∞) by hp(s) := [sp − 1 − p(s − 1)]/[(p − 1)|s − 1|2] if p > 1, h1(s) := [s log s − (s − 1)]/|s − 1|2, are
continuous, nonnegative, decreasing on R+ and achieve their maximum at 0. Define on L∞(Rd) the functional

Hp[w] := ‖w‖
2−p
L∞(Rd)

sup
x∈Rd

hp(w(x)) = ‖w‖
2−p
L∞(Rd)

hp( inf
x∈Rd

w(x)).

Theorem 2 (Improved Logarithmic Sobolev Inequality). Assume that w ∈ L∞
+

(Rd) is such that


Rd w dµ = 1 and satisfies the
condition


Rd w Hk dµ = 0 for any k ∈ Nd such that 0 < |k| < n. Then the following inequality holds, with optimal constant:∫

Rd
w logw dµ ≤

H1[w]

n

∫
Rd

|∇w|
2

w
dµ.

Proof. Wemay indeed observe that by the Poincaré inequality and using the definition of H1, we get∫
Rd

|∇w|
2

w
dµ ≥

1
‖w‖L∞(Rd)

∫
Rd

|∇w|
2 dµ ≥

n
‖w‖L∞(Rd)

∫
Rd

|w − 1|2 dµ ≥
n

H1[w]

∫
Rd

w logw dµ.

The optimality of the constant can be checked by a lengthy but elementary computation using the positive functions
wk

ε := (1 + ε Hk(x)) χ(x ε1/(2n)) + Ck
ε for some smooth truncation function χ such that 0 ≤ χ ≤ 1, χ ≡ 1 on B(0, 1)

and χ ≡ 0 in Rd
\ B(0, 2). Here k ∈ Nd is such that |k| = n and the constant Ck

ε is chosen such that


Rd wk
ε dµ = 1. �

As a consequence of the Maximum Principle applied to the heat equation (1) and the fact that to u0 = v∞ there
corresponds a self-similar solution of (1), namely u(t, x) = G(t +

1
2 , x, 0), we have the estimate

H1[w(t, ·)] ≤ H1[w0] ∀t ≥ 0.

By applying Theorem 2, we obtain a new result of decay for E1[w(t, ·)], with a constant which is exactly E1[w0], at the price
of a rate which is less than 2 n.

Corollary 3 (Improved Decay Rate of the Entropy). Let w be a solution of (4) with nonnegative bounded initial datum w0 ∈

L1(Rd, dµ) such that


Rd w0 dµ = 1 and (5) is satisfied. Then

E1[w(t, ·)] ≤ E1[w0]e−n t/H1[w0] ∀t ≥ 0.

This result is actually equivalent to Theorem 2, as follows by differentiating the above inequality at t = 0 (for which
equality is trivially satisfied) and using the fact that −


Rd |∇w0|

2/w0 dµ =
d
dt E1[w(t, ·)]|t=0 ≤ E1[w0]

d
dt e

−n t/H1[w0]
|t=0.

What we have achieved is a global, improved exponential decay of the entropy E1 in a restricted class of functions. To
simplify even further, for any ε ∈ (0, 1) and n ∈ N∗, consider the set Xn

ε := {w ∈ L1(Rd, dµ) : 1 − ε ≤ w ≤

1+ ε a.e. and the condition


Rd w Hk dµ = 0 holding for any k ∈ Nd such that 0 < |k| < n}, which is appropriate for handling
the optimality case corresponding to ε → 0+. The best constant in Theorem 2 is indeed asymptotically equivalent to the
sharp rate of convergence in Corollary 3, in the sense that limε→0+

infw∈Xn
ε
n/H1[w] = limε→0+

n/[(1+ ε) h(1− ε)] = 2 n.
For simplicity, we have considered only the case p = 1, but the method also applies to any p ∈ (1, 2). We

obtain an improved version of (7) under the restriction that w ∈ L1(Rd, dµ) is bounded nonnegative and the condition
Rd w Hk dµ = 0 holds for any k ∈ Nd such that 0 < |k| < n. With Bn,1 = 4H1[w]/n and Bn,2 = 1/n, we get

Bn,p ≤ K[n, p, w] := (n (p − 1))−1
[1 − ((2 − p)/p)2H1[w]

] by (8). Using the entropy/entropy-production identity (9),
the fact that K[n, p, w(t, ·)] ≤ K[n, p, w0] and the generalized Csiszár–Kullback inequality (6), we obtain

Ep[w(t, ·)] ≤ Ep[w0]e
−

4 t
pK[n,p,w0] and ‖w − 1‖Lp(Rd, dµ) ≤ Ap(Ep[w0]) e

−
2 t

pK[n,p,w0] ∀t ≥ 0. (10)

Alternatively, an elementary computation as in the proof of Theorem 2 gives a similar result:

4
p2

∫
Rd

|∇wp/2
|
2 dµ =

∫
Rd

wp−2
|∇w|

2 dµ ≥
1

‖w‖
2−p
L∞(Rd)

∫
Rd

|∇w|
2 dµ

≥
n

‖w‖
2−p
L∞(Rd)

∫
Rd

|w − 1|2 dµ ≥
n

Hp[w]
Ep[w]

if


Rd w dµ = 1 and the condition


Rd w Hk dµ = 0 holds for any k ∈ Nd such that 0 < |k| < n. This proves that

Ep[w] ≤
4
p2

Hp[w]

n

∫
Rd

|∇wp/2
|
2 dµ.
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Using (9) and (6), this proves that any solution of (4) with initial datum w0 ∈ L1 ∩ L∞(Rd, dµ) satisfies

Ep[w(t, ·)] ≤ Ep[w0]e−n p t/Hp[w0] and ‖w − 1‖Lp(Rd,dµ) ≤ Ap(Ep[w0])e−np t/(2Hp[w0]) ∀t ≥ 0. (11)

Comparing the rates of (10) and (11) is naturally of interest. In the limit ε → 0, infw∈Xn
ε
Hp[w] ∼ supw∈Xn

ε
Hp[w] → p/2

and it follows that limε→0
4

pK[n,p,w0]
=

4
p n (p − 1)/[1 − ((2 − p)/p)p] < 2 n = limε→0

n p t
Hp[w0]

. Hence, at least in the regime
ε → 0, (11) is a better estimate in terms of rates than (10). Undoing the change of variables (2), we have achieved a detailed
result on an improved u0.

Corollary 4 (Improved Intermediate Asymptotics for the Heat Equation). Let p ∈ [1, 2] and assume that u0 is a probability
measure such that w0 = u0/v∞ is bounded and satisfies the condition


Rd u0 Hk dx = 0 for any k ∈ Nd such that 0 < |k| < n.

If u is the solution of (1) with initial condition u0, then

‖u(t, ·) − u∞(t, ·)‖Lp(Rd) ≤ (2π)
−

d
2 (1− 1

p )Ap(Ep[w0])(1 + 2 t)−
n p

4Hp[w0]
−

d
2 (1− 1

p )
∀t ≥ 0.

The proof relies on the remark that ‖u(t, ·) − u∞(t, ·)‖Lp(Rd) ≤ ‖u∞(t, ·)‖
1− 1

p

L∞(Rd)
‖w(t, ·) − 1‖Lp(Rd, dµ) where u∞(t, ·) :=

G(t + 1/2, ·, 0). The conclusion holds using ‖u∞(t, ·)‖L∞(Rd) = (2π R2)−d/2 with R =
√
1 + 2 t .

Up to now, we have considered the simple case of the harmonic potential, V (x) =
1
2 |x|2. As in [11], the previous results

can be extended tomore general potentials as follows. Consider V ∈ W 1,2
loc ∩W 2,2

loc (Rd) such that


Rd e−V (x)dx = 1, and define
the probability measure dµ(x) := e−V (x)dx in Rd, which generalizes the Gaussian measure. Under the above conditions
on V , the logarithmic Sobolev inequality (resp. (7) for p = 1) holds for some positive constant (resp. for B1,1 > 0). The
Ornstein–Uhlenbeck operator N := −∆ + ∇V · ∇ is essentially self-adjoint on L2(dµ), has a non-degenerate eigenvalue
λ0 = 0 and a spectral gap λ1 > 0. According to [14, Theorem 2.1], N has a pure point spectrum without accumulation
points. Since limk→∞ λk = ∞, then by [15, Theorem XIII.64], the eigenfunctions of N form a complete basis of L2(Rd, dµ).
We shall denote the eigenvalues by λk, k ∈ N, and by Ek the corresponding eigenspaces.

Theorem 2 adapts without changes. Assume that w ∈ L∞
+

(Rd) is such that


Rd w dµ = 1. Then∫
Rd

w logw dµ ≤
H1[w]

λn

∫
Rd

|∇w|
2

w
dµ

under the orthogonality conditionw ∈ (
n−1

k=1 Ek)
⊥, that is


Rd w fk dµ = 0 for any fk ∈ Ek, k = 1, 2, . . . n−1. Next, consider

the solution w of the Ornstein–Uhlenbeck equation

∂w

∂t
= −N w = ∆w − ∇V · ∇w, (12)

with initial condition w0 ∈ (
n−1

k=1 Ek)
⊥

∩ L∞(Rd) such that


Rd w0 dµ = 1. With the same definition as above for Ep, for any
solution of (12) with initial datum w0, (11) is now replaced by

Ep[w(t, ·)] ≤ Ep[w0]e−λn p t/Hp[w0] and ‖w − 1‖Lp(Rd,dµ) ≤ Ap(Ep[w0])e−λn p t/(2Hp[w0]) ∀t ≥ 0.

Let us conclude this letter by providing some comments and open questions. It is standard in entropy/entropy-production
methods that determining sharp rates of convergence in an evolution equation is equivalent to finding sharp constants in
functional inequalities, as we have seen in the case of the heat equation: the rate of convergence in L2(Rd, dµ) is given
by the Poincaré inequality, while the rate of convergence in entropy, which controls the L1(Rd, dµ) norm, is related to
the logarithmic Sobolev inequality. This is also true for nonlinear diffusion equations; see for instance [16]. In this case, a
breakthrough came from the observation that uniform norms can also be used (see [17,12,13]), at the price of a restricted
functional framework. This allows one to relate nonlinear quantities of entropy type to spectral properties of the linearized
problem, in an appropriate functional space and, again, to relate sharp rateswith best constants; see [18]. As long as nonlinear
evolution problems are concerned, only a few invariant quantities are usually available: the mass and the position of the
center ofmass of the solution, for instance. In linear evolution problems,we can impose an arbitrary number of orthogonality
conditions, which are preserved throughout the evolution. Improved rates of convergence are then expected, even when
measured with nonlinear quantities like the entropy. Fixing the center of mass and the variance matrix of the Gaussian
measure has been considered in [7], without requiring Hp[w] to be small. Such ideas have also been partially explored by
McCann, including in the linear case (see [19]), on the basis of considerations on an appropriateHessianmatrix. Our approach
provides a simpler and elementary answer under restrictions which are natural in view of [13]. It also raises a number of
questions concerning the optimality of the new functional inequalities, the convergence of minimizing sequences and the
symmetry of the eventual minimizers.
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