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Consider the heat equation in the Euclidean space,

]
M Au t>0 xer, (1)
at

with an initial condition uy € L'(RY). By writing u = u, — u_ where u, and u_ are respectively the positive and negative
parts of u and solving (1) with initial data (ug) and (up)_, we may reduce the problem to the case of a nonnegative function,
corresponding to a nonnegative initial condition ug, without restriction. The heat equation being linear, we can assume
without loss of generality that ug is a probability measure so that in the sequel of this note f]Rd ugdx = 1= fmd u(t, x) dx
for any t > 0. Getting decay rates and even an asymptotic expansion for large values of t is completely standard; see for
instance [1]. However, a few details and some notation will be useful for later purpose.
2

First of all, as a straightforward consequence of the expression for the Green function, G(t, x, y) = (4rmt)~%? e_%,
any solution u of (1) can be written as u(t, x) = fRd uo(y) G(t, x, ) dy and therefore uniformly decays like O(t~%/?) since,
ast — oo, u(t, x) ~ G(t, x, 0). It is also classical to estimate the decay of u(t, -) — G(t, -, 0) in various [P (R?) norms. Such
estimates are called intermediate asymptotics estimates. The point is to determine the first term of an asymptotic expansion
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of the solution as t — oco. For instance, as we shall see below, it can be proved that [Ju(t, -) — G(t, -, 0)[| 1 gd) = ot~ '2) as
t — oo.

The entropy method can be used among various other approaches to obtain such an estimate. It relies on the logarithmic
Sobolev inequality and goes as follows. First consider the time-dependent rescaling

u(t,x) = R%v(logR, x/R) withR=R(t) :=+1+2t, t > 0, x € R%. (2)

If u is a solution of (1), then v solves the Fokker-Planck equation

av
— =Av+ V- (xv) (3)
at

with the same initial condition v(t = 0,-) = uo. Let veo(x) = (27)~%2e"X?/2 be the unique stationary solution

of (3) with mass 1, and define diu := vo dx as the Gaussian measure. We denote by [P(R?) and LP(R?, du) the Lebesgue
spaces corresponding respectively to Lebesgue’s measure and to the Gaussian measure. Understanding the intermediate

asymptotics for u amounts to studying the convergence of v to v, as t — oo. Define the entropy by &;[w] := fRd
w log w due. Let v be a solution of (3) and define w(t, -) := v(t, -)/Vso, Wo := w(t = 0, -). Then % Elw(t, )] = —dlw(t, )]
where J; is the Fisher information defined by 4;[w] = fRd w |V log w|? du. Gross’s logarithmic Sobolev inequality exactly

amounts to 81[v/vs] < % J1[v/veo] and so it follows that

&lw(t, )] < &{wole™ Ve > 0.

By the Csiszdr-Kullback inequality (see for instance [2]), we get ||v(t, -) — voo||f1 @ = % &1[w(t, -)] and deduce that

1
lv(t, ) — voolligay < 5V & [wole™ Vt >0.
Undoing the change of variables (2) and observing that u. (t, x) := R(t) ™ veo (X/R(t)) = G(t + 1/2, -, 0), we finally get

1 [&1[wo]

luct, ) — too(t, )l gey < 5 vVt > 0,

1+2¢ -
which establishes the claimed estimate, namely: [u(t, -) — G(t, x, 0) || ;1 ey < O(t~?)ast — oo. Such an estimate is quite
classical. The above method is known as the Bakry-Emery method or entropy/entropy-production method and also provides a
proof of the logarithmic Sobolev inequality. See [3,4] for some references on this topic, in the context of partial differential
equations.

By combining L' (R?) and L (R%) estimates using Holder’s inequality, we get that

R
lu(t, ) — G(t, - 0) | peeay < Ot~ 27 TFOV Dy a5 5 o0,

In an L2(R%) framework, a much more detailed description can be achieved using a spectral decomposition. If v is a solution
of (3), then w = v/v is a solution of the Ornstein-Uhlenbeck equation

ow
— =Aw —Xx-Vw (4)
ot
with initial data wy = up/vs. Notice that fn@d wodu = 1and, as a consequence, fmd w(t,-)dpu = 1forallt > 0. Define
by (Hi)gend the sequence of Hermite type polynomials (see for instance [5]) acting on x = (xq, X3, ..., X) € RY, such that

Hi(x) = [Tiy i) where hy(y) := (=1)" (n!)~ 12 e"/2 & (e7¥/2),y € Rand k = (k1. ..., ks) € N These functions
provide an orthonormal family of eigenfunctions in L*(R?, du) which spans the eigenspaces of the Ornstein-Uhlenbeck
operator, that is —(AHy, — x - VHy) = |k| Hi, where |k| := Z}i:l k;. Up to a scaling, (hn)nen is the usual family of Hermite
polynomials on R.

If wy satisfies the orthogonality condition

/ woHydu =0 Vke N% such that 0 < |k| < n, (5)
R4

then an improved rate of convergence follows, in the sense that
lw(t, ) — l2gdq) < e " lwo — W2@day VYE=0.
If (5) initially holds, we do indeed have f]Rd w(t,)Hydw = 0 forany t > 0and any k € N? such that 0 < |k| < n. Then,

since % Jw(t,-) — 1||i2(Rd,d;/_) =-2 fRd [Vw(t, -)|* du, the conclusion holds using the following result.
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Proposition 1 (Improved Poincaré Inequality). Assume that w € L[*(R%) is such that .[Rd wdu = 1 and the condition
fRd w Hy dpe = 0 holds for any k € N such that 0 < |k| < n. Then the following inequality holds, with optimal constant:
w1 ) = ~ Vw2
W e an = 1V WIRERE 4
The proof is no more than a straightforward rewriting of the Rayleigh quotient || Vw||2 /llw — 1)) under the

12(RY, dp) 12(RY, dpu)
appropriate orthogonality condition. Notice that polynomials Hy, are of degree |k|, so Condition (5) can be rephrased in terms
of moment conditions. See [1,6] for further results in this direction.

It is natural to search for improved estimates of convergence also in I”(RY) with p € [1, 2) by looking for improved
functional inequalities whenever condition (5) is fulfilled. We may for instance quote [7] in which improvements on the
constant, but not on the rates, have been achieved forp = 1.

For any p € (1, 2], consider the generalized entropy

wP — 1
&lw] = du.
plw] /R : p—1 I
This definition is consistent with the definition of &; because, under the condition fRd wdu =1, §lw] = fRd ";p:]w du —
&[w] as p — 1. The functional &, controls the convergence in L? (RY, dp) using a generalized Csiszar-Kullback inequality.
In [8,9], it has been proved that |w — 1| %ZZ/P max{ |w|/%? 1} &,[w], for any p € [1,2]. Since

2 <
P®Y,dp) =

LP(RY, dp)’
lwllg1gd gy = 1, we have 1 < ||w||‘L’p(Rd,dm =1+ (p—1)&[w], andso
. 21/ 1-p/2
lw = 1, g0y < Ap(Ep[w]t)  with Ay(s) == %[1 +(p—1)s]' P2 (6)

Next, assume that fRd w Hy dpe = 0 for any k € N such that 0 < |k| < n and consider the generalized Poincaré inequalities,
with p € [1, 2], namely

&lw] < By / [VwP?12dp Yw € H'([®RY, dw). (7)
rA
Such inequalities have been established for n = 1 by Beckner in [10] with optimal constant 8, , = 2/p for the Gaussian

measure. By the same method, it has been shown in [11] that for a larger class of measures du, if (7) holds for p = 1 and
p = 2, for some positive constants 8B, 1 and 8B, ; respectively, then it also holds for any p € (1, 2) with

1
Bup= S 11— (@~ p)/p)®r1/ 2] g, 5. (8)

By the logarithmic Sobolev inequality and the improved Poincaré inequality (see Proposition 1), we know that 8, ; < 2 and

B, = 1/n.Hence it follows that 8B, , < zﬁ [1-(@2-p)/p)"] % On the other hand, as in [4], if w is a solution of (4), then
d 4
Getea==> [ vura. o)
de P Jrd

If (5) is satisfied, we conclude using (7) and (6) that any solution of (4) with initial data wy satisfies
Elw(t, )] < &lwele ™™V and [w(t, ) — |p@d . < Ap(Eplwol)e™™PC vt >0,

with A(n, p) == % n(p— 1[1— (2 —p)/p)"1~". The last estimate holds because, for any t > 0,

lw(t, ) — Upgd.an < Ap(Elw(t, ) < Ap(Elwole P < sy (&,[wol)eMPL.

Notice that A(1, p) = 1and A(n, 2) = n. Nothing is gained as p — 1, since lim,_,; A(n, p) = 1is independent of n.

On the other hand, by Holder’s inequality, we have “for free” that [|[w — 1|t g4y < Ilw — 12, g,)- Hence, if w is
a solution of (4) with initial data wo, we know that [[w(t, -) — 1llpgd g, < €7 Hlwy — 12, gy as £ — 00, for any
p € [1, 2], if (5) is satisfied. By interpolation, we recover the rates of [1,6]. However, this is not satisfactory since neither
lwo—1llp g, 4y DOT E[wo] is involved in the right hand side of the above estimate.

Consider first the case p = 1. An alternative approach is suggested by the method of [12,13], which applies to the fast
diffusion equation 3—;’ = Au™form < 1.Byassuming some uniform bound on the initial data, which is preserved throughout
the evolution, it is possible to relate the asymptotic rate for intermediate asymptotics with the spectrum of the linearized
operator. We can indeed observe that ||wg—1 ”fZ(Rd, an < [lwo— 1l ge, 4y lwo— 1l oo me, gy < %«/81 [wolllwo— 1100 rd, dy)
using Holder’s inequality and the Csiszar-Kullback inequality. This proves that

1 _
lw(t, ) — ]Hfl(Rd,dM) < 5||wo — 1l g, qpy v E1lwol €™ ast — oo
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if (5) is satisfied initially. Still, this provides neither an estimate of de w(t, -) log w(t, -) du nor a functional inequality which
improves upon the logarithmic Sobolev inequality. To prove such an inequality, we keep following the strategy of [13]. A
simple but key idea is to observe that the functions defined for any p € [1, 2] by h,(0) = 1, h,(1) = p/2, and for any
s € (0,1)U(1,00) by hy(s) :=[s* — 1 —p(s — DI/[(p — DIs — 112]if p > 1, hy(s) := [slogs — (s — D]/|s — 1], are
continuous, nonnegative, decreasing on R* and achieve their maximum at 0. Define on L™ (R?) the functional
hp(inf w(x)).

xeRrd

Hylw] = [lw]’5 SUDh W) = [wll}>

L® (Rd ) L® (JRd )

Theorem 2 (Improved Logarithmic Sobolev Inequality). Assume that w € LY (RY) is such that fIRd wdp = 1 and satisfies the
condition fRd w Hydp = 0 for any k € N? such that 0 < |k| < n. Then the following inequality holds, with optimal constant:

FH Vuw|?
/ wlogwdufﬂ/ V] d
R4 n Rrd w

Proof. We may indeed observe that by the Poincaré inequality and using the definition of #¢;, we get

[Vwl|? 1 5 n
dp = VwPduy > ——— [ |w—17du > wlogw dpu.
rd W ||w||L°°(Rd) Rd “w”LOO(JRd) RA }(1 w] Jrd

The optimality of the constant can be checked by a lengthy but elementary computation using the positive functions
wk == (1 + e He(x)) x (xe'/@V) + C¥ for some smooth truncation function x such that0 < x < 1, x = 10nB(0, 1)
and x = 0inR?\ B(0, 2). Here k € N” s such that |k| = n and the constant C¥ is chosen such that [, wfdu =1. O

As a consequence of the Maximum Principle applied to the heat equation (1) and the fact that to uy = v there
corresponds a self-similar solution of (1), namely u(t, x) = G(t + % x, 0), we have the estimate

Hilw(t, )] < Hi[wo] Vt > 0.

By applying Theorem 2, we obtain a new result of decay for &;[w(t, )], with a constant which is exactly &;[wy], at the price
of a rate which is less than 2 n.

Corollary 3 (Improved Decay Rate of the Entropy). Let w be a solution of (4) with nonnegative bounded initial datum wy €
LY(RY, dp) such that [,q wodu = 1and (5) s satisfied. Then

&lw(t, )] < &{wple ™ /7lwol e > 0,

This result is actually equivalent to Theorem 2, as follows by differentiating the above inequality at t = 0 (for which
equality is trivially satisfied) and using the fact that — [, |Vwo|?/wodu = %Sl[w(t, Mit=o < 81[w0]%e*”f/”1[w0]|[:o.
What we have achieved is a global, improved exponential decay of the entropy &; in a restricted class of functions. To
simplify even further, for any ¢ € (0,1) and n € N¥, consider the set X = {w € L'®Ri,dp) : 1—¢ < w <
1+ ¢ a.e. and the condition fRd w Hy dpe = 0 holding for any k € N¢ such that 0 < |k| < n}, which is appropriate for handling
the optimality case corresponding to ¢ — 0. The best constant in Theorem 2 is indeed asymptotically equivalent to the
sharp rate of convergence in Corollary 3, in the sense that lim,_, ¢, infy,con n/#;[w] = lim,_o, n/[(1+&)h(1—¢)] =2n.

For simplicity, we have considered only the case p = 1, but the method also applies to any p € (1,2). We
obtain an improved version of (7) under the restriction that w € L'(R?, du) is bounded nonnegative and the condition
f]Rd wHydyw = 0 holds for any k € N? such that 0 < |k| < n. With Bn1 = 4F[wl/nand B,, = 1/n, we get
Bnp < KIn,p,w] == (n(p — 1))"'[1 — ((2 — p)/p)**11*1] by (8). Using the entropy/entropy-production identity (9),
the fact that X [n, p, w(t, -)] < X[n, p, we] and the generalized Csiszar-Kullback inequality (6), we obtain

4t ___ 2t
&lw(t, )] < glwele P¥mPmol and  f|w — 1lprd, gy < Ap(Eplwo]) € PFIProl Wt > 0. (10)
Alternatively, an elementary computation as in the proof of Theorem 2 gives a similar result:

4 -
7[ |pr/2|2 du = / wP 2|Vw|2 du > — / A% u)| du
p* Jrd Rd [wil

Lo (RA)

zp /Iw—1| du_%[] plw]

L°° (RY)

if /Rd wdp = 1 and the condition fmd w Hy de = 0 holds for any k € N? such that 0 < |k| < n. This proves that

4 Hylw
iut = 5720 [ v au,
p n Rd
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Using (9) and (6), this proves that any solution of (4) with initial datum wq € L' N L®°(R?, du) satisfies

Elw(t, )] < Elwole P /"%l and |lw — 1]l pgd gu) < Ap(Eplwo])e ™ /EolwoD vt >0, (11)
Comparing the rates of (10) and (11) is naturally of interest. In the limit ¢ — 0, inf,,cxn Hp[w] ~ sup,,exn Hplw] — p/2
and it follows that lim,_, o m = g np—1/[1-(2=p)/p)P] <2n=lim,_ %';#Ol. Hence, at least in the regime

& — 0,(11)is a better estimate in terms of rates than (10). Undoing the change of variables (2), we have achieved a detailed
result on an improved u.

Corollary 4 (Improved Intermediate Asymptotics for the Heat Equation). Let p € [1, 2] and assume that uq is a probability
measure such that wy = ug/ v is bounded and satisfies the condition fRd o Hy dx = 0 for any k € N? such that 0 < |k| < n.
If u is the solution of (1) with initial condition uy, then

d 1 np d
u(t, ) — too(t, Mipey < 2m) 72 79 AL (E[wol) (1 + 2 1) “olvol 2

-1
The proof relies on the remark that [[u(t, -) — Uso(t, ) llpga) < Iltoo(t, ')”waued) lw(t, ) — pgd 4, Where us(t, -) =

G(t + 1/2, -, 0). The conclusion holds using [[ue (¢, ) |00 rd) = (27 R2)™¥2 with R = /1 + 2t
Up to now, we have considered the simple case of the harmonic potential, V(x) = % |x|2. As in [11], the previous results
can be extended to more general potentials as follows. Consider V € le)’cz N Wlf,’cz (RY) such that ., e™®dx = 1, and define

the probability measure du(x) = e™V®dx in RY, which generalizes the Gaussian measure. Under the above conditions
on V, the logarithmic Sobolev inequality (resp. (7) for p = 1) holds for some positive constant (resp. for 8;; > 0). The
Ornstein-Uhlenbeck operator N := —A + VV . V is essentially self-adjoint on L?(d/), has a non-degenerate eigenvalue

Mo = 0 and a spectral gap A; > 0. According to [14, Theorem 2.1], N has a pure point spectrum without accumulation
points. Since limy_, o Ax = 00, then by [15, Theorem XIIL.64], the eigenfunctions of N form a complete basis of L*(R¢, du).
We shall denote the eigenvalues by A, k € N, and by E; the corresponding eigenspaces.

Theorem 2 adapts without changes. Assume that w € L’ (RY) is such that fRd wdp = 1. Then

F1[w] |Vw|?
wlogwdu < —— du
Rd An Rd W

under the orthogonality condition w € (UZ;} Ep)* thatis [, w fid = Oforany fy € Ex,k = 1,2, ...n—1.Next, consider
the solution w of the Ornstein-Uhlenbeck equation

ow

with initial condition wq € (UZ;} E)*+ NL®(RY) such that fRd wo dp = 1. With the same definition as above for &, for any
solution of (12) with initial datum wg, (11) is now replaced by

Elw(t, )] < gp[wo]e_k” P/ Hplwol and  flw — Ulpgd g = eAp(("3;;[11)0])6_)"1 P/Q@HplwoD yp > 0,

Let us conclude this letter by providing some comments and open questions. It is standard in entropy/entropy-production
methods that determining sharp rates of convergence in an evolution equation is equivalent to finding sharp constants in
functional inequalities, as we have seen in the case of the heat equation: the rate of convergence in L*(RY, dpu) is given
by the Poincaré inequality, while the rate of convergence in entropy, which controls the L'(R?, du) norm, is related to
the logarithmic Sobolev inequality. This is also true for nonlinear diffusion equations; see for instance [16]. In this case, a
breakthrough came from the observation that uniform norms can also be used (see [17,12,13]), at the price of a restricted
functional framework. This allows one to relate nonlinear quantities of entropy type to spectral properties of the linearized
problem, in an appropriate functional space and, again, to relate sharp rates with best constants; see [ 18]. As long as nonlinear
evolution problems are concerned, only a few invariant quantities are usually available: the mass and the position of the
center of mass of the solution, for instance. In linear evolution problems, we can impose an arbitrary number of orthogonality
conditions, which are preserved throughout the evolution. Improved rates of convergence are then expected, even when
measured with nonlinear quantities like the entropy. Fixing the center of mass and the variance matrix of the Gaussian
measure has been considered in [7], without requiring #,[w] to be small. Such ideas have also been partially explored by
McCann, including in the linear case (see [ 19]), on the basis of considerations on an appropriate Hessian matrix. Our approach
provides a simpler and elementary answer under restrictions which are natural in view of [13]. It also raises a number of
questions concerning the optimality of the new functional inequalities, the convergence of minimizing sequences and the
symmetry of the eventual minimizers.



J.-P. Bartier et al. / Applied Mathematics Letters 24 (2011) 76-81 81

References

[1] J. Duoandikoetxea, E. Zuazua, Moments, masses de Dirac et décomposition de fonctions, C. R. Acad. Math. Sci. Paris 315 (6) (1992) 693-698.
[2] A.Unterreiter, A. Arnold, P. Markowich, G. Toscani, On generalized Csiszar-Kullback inequalities, Monatsh. Math. 131 (3) (2000) 235-253.
[3] G. Toscani, Sur I'inégalité logarithmique de Sobolev, C. R. Math. Acad. Sci. Paris 324 (6) (1997) 689-694.
[4] A.Arnold, P. Markowich, G. Toscani, A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type
equations, Comm. Partial Differential Equations 26 (1-2) (2001) 43-100.
[5] E. Weisstein, Hermite Polynomial. From Math World — A Wolfram Web Resource. http://mathworld.wolfram.com/HermitePolynomial.html, 2009.
[6] Y. Kim, W. Ni, Higher order approximations in the heat equation and the truncated moment problem, SIAM J. Math. Anal. 40 (2009) 2241.
[7] A. Arnold, J.A. Carrillo, C. Klapproth, Improved entropy decay estimates for the heat equation, J. Math. Anal. Appl. 343 (1) (2008) 190-206.
[8] M.J. Caceres, J.A. Carrillo, J. Dolbeault, Nonlinear stability in L? for a confined system of charged particles, SIAM J. Math. Anal. 34 (2) (2002) 478-494.
[9] J.-P.Bartier, J. Dolbeault, R. Illner, M. Kowalczyk, A qualitative study of linear drift-diffusion equations with time-dependent or degenerate coefficients,
Math. Models Methods Appl. Sci. 17 (3) (2007) 327-362.
[10] W. Beckner, A generalized Poincaré inequality for Gaussian measures, Proc. Amer. Math. Soc. 105 (2) (1989) 397-400.
[11] A. Arnold, J.-P. Bartier, J. Dolbeault, Interpolation between logarithmic Sobolev and Poincaré inequalities, Commun. Math. Sci. 5 (4) (2007) 971-979.
[12] A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo, J.-L. Vazquez, Hardy-Poincaré inequalities and applications to nonlinear diffusions, C. R. Math. Acad.
Sci. Paris 344 (7) (2007) 431-436.
[13] A. Blanchet, M. Bonforte, ]. Dolbeault, G. Grillo, J.-L. Vazquez, Asymptotics of the fast diffusion equation via entropy estimates, Arch. Ration. Mech.
Anal. 191 (2) (2009) 347-385.
[14] F.-Y. Wang, Functional inequalities for empty essential spectrum, J. Funct. Anal. 170 (1) (2000) 219-245.
[15] M. Reed, B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press [Harcourt Brace Jovanovich Publishers], New
York, 1978.
[16] M. Del Pino, ]. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl. (9) 81 (9)
(2002) 847-875.
[17] J.A. Carrillo, ]. Dolbeault, I. Gentil, A. Jiingel, Entropy-energy inequalities and improved convergence rates for nonlinear parabolic equations, Discrete
Contin. Dyn. Syst. Ser. B 6 (5) (2006) 1027-1050.
[18] M. Bonforte, ]. Dolbeault, G. Grillo, J.-L. Vazquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities,
in: Proceedings of the National Academy of Sciences. PNAS published ahead of print September 7, 2010, in press (doi:10.1073/pnas.1003972107).
[19] D. Cordero-Erauquin, RJ. McCann, Accelerated diffusion to minimum entropy, 2004 (unpublished).


http://mathworld.wolfram.com/HermitePolynomial.html
http://dx.doi.org/doi:10.1073/pnas.1003972107

	Improved intermediate asymptotics for the heat equation
	References


