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Abstract

We consider a mean field type equation for ballistic aggregation of particles whose
density function depends both on the mass and impulsion of the particles. For the case
of a constant aggregation rate we prove the existence of self-similar solutions and the
convergence of more general solutions to them. We are able to estimate the large time
decay of some moments of general solutions or to build some new classes of self-similar
solutions for several classes of mass and/or impulsion dependent rates.

1 Introduction

The concern of this work is to establish quantitative estimates on the asymptotic be-
haviour of the solutions to some Smoluchowski like models for ballistic aggregation. By
ballistic aggregation, also (improperly) called kinetic coalescence in previous works [6, 11],
we mean aggregation phenomena taking place in a system of particles whose density func-
tion depends on mass and impulsion. It differs from the simplest aggregation mechanism
introduced by Smoluchowski [22] in whose model the particles density function only de-
pends on the mass.

In order to be more precise let us denote by P = Py with y = (m, p) a particle of mass
m > 0 and impulsion p ∈ Rd. The space of particles states is then Y = R+ × Rd and
the velocity of the particle Py is v = p/m. We assume that at a microscopic level (the
level of particles) the rate of collision of two particles P = Py and P ′ = Py′ is a given
nonnegative function a = a(y, y′) and when these two particles collide they join to form
one aggregated particle P ′′ = Py′′ in such a way that the mechanism conserves total mass
and total impulsion. In other words, the microscopic mechanism reads

Py + Py′
a(y,y′)−→ Py′′ ,
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with y′′ = (m′′, p′′) given by

m′′ = m+m′, p′′ = p+ p′.

It is worth mentioning that the above reaction dissipates kinetic energy since, denoting
E] = m] |v]|2/2 the kinetic energy of particle P ], we have

E ′′ − E − E ′ =
1

2

|p+ p′|2

m+m′
− 1

2

|p|2

m
− 1

2

|p′|2

m′

= −1

2

mm′

m+m′
|v − v′|2 ≤ 0.

At the mesoscopic (or statistical or mean field) level, the system is described at
time t ≥ 0 by the density function f(t, y) ≥ 0 of particles with state y ∈ Y . For a
given initial distribution fin, the evolution of the density f is described by the Smolu-
choswki/Boltzmann like equation:

∂tf = Q(f) in (0,+∞)× Y, (1.1)

f(0) = f in in Y. (1.2)

The collision operator Q(f) is given by Q(f) = Q1(f)−Q2(f), where

Q1(f)(y) =
1

2

∫
Rd

∫ m

0
a(y′, y − y′) f(y′) f(y − y′) dm′dp′, (1.3)

Q2(f)(y) =

∫
Rd

∫ ∞
0

a(y, y′) f(y) f(y′) dm′dp′. (1.4)

The two following examples of functions a have been considered in relation with models
in astrophysics [26, 1]:

a(y, y′) = aHS(y, y′) := (m1/3 +m′ 1/3)2 |v − v′|, (1.5)

a(y, y′) = aNP (y, y′) :=
m+m′

mm′
1

|v − v′|2
. (1.6)

This model is seen as a simple test case or elementary analog of more realistic situations
in fluid mechanics or astrophysics [4, 12]. We refer to the introduction of [20, 6, 11]
for an elementary introduction to physics motivation of such a model. We also refer to
[4, 12, 25, 26] and to the references quoted in [20, 6, 11] for a more detailed discussion on
the physics of aggregation.

In the context described above it is very natural to impose on the initial data fin to
have finite number of particles and momentum. This condition reads:

0 ≤ f in ∈ L1 (Y, (1 +m+ |p|) dydp) . (1.7)

Existence of solutions under that condition has been proved in [20, 6, 11]. It has also been
proved that

f(t, ·)→ 0 in L1(Y ), as t→ +∞, (1.8)

that is that the total number of particles tends to 0. This is a first result on the long time
asymptotic behaviour of the solutions but still very partial.
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A more detailed description of the asymptotic behaviour of the solutions may be ob-
tained by considering scaling properties of the equation (1.1)-(1.4) and the corresponding
self similar solutions. Suppose for example that given a solution f(t,m, p) of (1.1)-(1.4),
the function fr(t,m, p) = r−λf(rt, r−µm, r−νp) is still a solution for any r > 0 and for some
exponents λ, µ, ν. A self similar solution is then a solution f such that f = fr for all r > 0.
It is easy to check that such a function must be of the form f(t,m, p) = tλf(1, tµm, tνp).
These particular solutions may describe sometimes the long time asymptotic behaviour
of the solutions of the equation for a suitable family of initial data. The existence of
such self similar solutions may still be a delicate problem, see for example [8, 10] and the
references therein for recent results in that direction for the Smoluchowski equation. We
are very far from being able to treat the general case, when the aggregation kernel a(y, y′)
actually depends on both mass and momentum of the two colliding particles, or even in
the case where the aggregation kernel a(y, y′) only depends on the momentum of the two
colliding particles. We may then be less ambitious and try only to partially improve on
the convergence result (1.8). We may imagine to do so in several ways, listed below by
order of accuracy. Let us just define before the moment Mα(f) of order ᾱ of a function
f . It is done, depending on the model considered, as follows:

• when f = f(y) with y = m ∈ Y = (0,∞) or y = p ∈ Y = Rd, then ᾱ = α ∈ R and

Mᾱ(f) = Mα(f) =

∫
Y
|y|α f dy; (1.9)

• when f = f(y) with y = (m, p) ∈ Y = (0,∞)× Rd, then ᾱ = (α, β) ∈ R2 and

Mᾱ(f) = Mα,β(f) =

∫
Y
mα |p|β f dy. (1.10)

The answers may then be:

• Answer 1. Upper bound on moment: ∃ ᾱ, ∃ ν, C ∈ (0,∞) such that

Mᾱ(f(t, .)) ≤ C

tν
∀ t ≥ 1.

• Answer 2. Upper and lower bound on moments: ∃ ᾱ, ∃ νi = νi(ᾱ), Ci = Ci(ᾱ) ∈
(0,∞), such that

C1

tν1
≤Mᾱ(f(t, .)) ≤ C2

tν2
∀ t ≥ 1.

• Answer 3. Existence of self-similar solution: there exists some profile function
ϕ∞ : Y → R+, some exponents λ, µ, ν ∈ R such such that the function

ϕ(t,m, p) := tλ ϕ∞(tµm, tν p)

is a solution to equation (1.1), (1.3), (1.4).

• Answer 4. Self-similar behaviour: for any given solution f there exists a self-
similar solution ϕ such that f ∼ ϕ as t→∞, in a sense to be specified.
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Depending on the type of aggregation kernel a(y, y′) that we consider, we are able to prove
one type of answer or another. The results obtained in this work, still very partials, may
be classified as follows.

In Section 2 we consider the case of the kernel aHS(y, y′) (which depends on both mass
and momentum) and the only result that we are able to prove is an upper estimate on
some moments (that is a result of type “Answer 1”).

In the remainder of the paper, we focus our attention on easier cases where the ag-
gregation rate a only depends upon the impulsion or the mass, namely a(y, y′) = a(p, p′),
a(y, y′) = a(m,m′) or even a(y, y′) ≡ 1. In Section 3 we consider kernels a only depending
on the momentum p and p′. A similar case has been considered in [24]. After integration
of the particle density function f(t,m, p) with respect to m, the resulting equation may
be seen as describing a set of identical particles moving ballistically and such that when
two particles moving with velocities v1 and v2 collide they form an aggregate particle
moving with velocity v = v1 + v2. This simplified situation has been considered in [25].
We establish several moment estimates of type “Answer 2” when a(p, p′) = |p − p′|γ and
deduce that when γ = 2 equation (1.1), (1.3), (1.4) has no self-similar solutions of the
form described above. This may suggest perhaps the non existence of self similar solutions
neither in the case of the mass and impulsion hard spheres kernel.

Examples where a ≡ 1 or a ≡ a(m,m′) have already been treated in the literature
as simplified models (see for example [19] and [12] for a = a(m,m′) and [13] for a = 1).
When a = a(m,m′) it is possible to reduce the original equation (1.1), (1.3), (1.4) to
the classical Smoluchowski equation for the zero order moment of the density functions.
That type of aggregation rates is sometimes obtained assuming that the velocity v of the
particles is determined by their mass m. We treat in Section 4 the case where the kernel
depends only on the masses m and m′ of the colliding particles and we exhibit a new class
of self-similar solutions (that is an “Answer 3” type result). Finally, in Section 5 the case
of constant kernel is treated, for which results of type “Answer 3” and “Answer 4” are
established.

We end this introduction by some remarks and open questions. A common feature of
these equations is that

M1,0(t) ≡M1,0(0) and M0,0(t)→ 0 as t→∞,

and when the cross-section a is homogeneous of order γ̄ (which belongs to R or R2) it is
likely that

Mγ̄(t) ≡ 1

t
as t→∞, (1.11)

a result which is also known to be true for the coagulation equation (see [10, 9, 8]) and for
the inelastic Boltzmann equation (see [16] and the references therein). The identity (1.11)
has been established when the aggregation rate depends only on the impulsion or on the
mass. But only one side of such identity is proved in the case of the true hard spheres
aggregation rate, that depends both on the mass and the impulsion of the particles. We
ask then.

Open question 1. Is it true that the asymptotic identity behavior (1.11) holds for some
true mass and impulsion depending aggregation rate?

An other interesting question should be to establish some asymptotic behavior of typical
velocity or impulsion depending quantity. A way to express that in mathematical terms

4



is the following:

Open question 2. Is it possible to exhibit some moment Mᾱ for which we may determi-
nate the long time behavior of Mᾱ/M0 (even just saying that it converges as t→ +∞)?

2 Mass and impulsion dependence case: a remark on the
hard spheres model.

We start recalling an existence result for initial data fin satisfying the symmetry property
fin(p) = fin(−p) for all p ∈ Rd. The functions satisfying that property will be called even
functions in all the remaining of this paper.

Theorem 2.1 (cf. [11, Theorem 2.6, Theorem 2.8 and Lemma 3.3]) Assume that the
aggregation rate a satisfies

0 ≤ a(y, y′) = a(y′, y) ≤ kS(y) kS(y′), ∀ y, y′ ∈ Y,
a(m,−p,m′,−p′) = a(m, p,m′, p′) ∀ (m, p), (m′, p′) ∈ Y,
a(m, p,m′, p′) ≤ a(m, p,m′,−p′) ∀ (m, p), (m′, p′) ∈ Y s.t. 〈p, p′〉 > 0,

with kS(y) := 1 +m+ |p|+ |v|. Then, for every non negative and even (in the p variable)
initial condition fin ∈ L1(Y ; k2

S(y) dy), there exists a unique solution of (1.1)-(1.4) f ∈
C([0, T );L1(Y ; kS(y) dy)) ∩ L∞(0, T ;L1(Y ; k2

S(y) dy)) ∀T > 0, satisfying furthermore:∫
Y
f(t, .)mdy ≡ Cst, (2.1)

f(t, .) is even, so that

∫
Y
f(t, .) p dy ≡ 0, (2.2)∫

Y
f(t, .) |v|k dy ≤

∫
Y
fin |v|k dy, ∀ k > 0, (2.3)∫

Y
f(t, .) |p|2 dy ≤

∫
Y
fin |p|2 dy, (2.4)∫

Y
f mα dy → 0 when t→∞, ∀α < 1. (2.5)

Remark 2.2 (i) It is worth mentioning that the hard spheres collision rate aHS does
satisfy the assumption of Theorem 2.1, but not the Manev rate aNP .

(ii) As a consequence of (2.1), (2.3), (2.4) and (2.5) we deduce that

Mα,β(t) :=

∫
Y
f(t, y)mα |p|β dy → 0 as t→∞ (2.6)

whenever (α, β) belongs to the region

{β ∈ [0, 2], α < 1− β/2} ∪ {β ≥ 2, α < 2− β}.

In the case of the hard spheres model we are able to quantify the rate of decay of one
of the moment functions of the solution. More precisely, we have the following result.
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Lemma 2.3 Assume that a = aHS and the assumption of Theorem 2.1 hold true. Then
the solution f of (1.1)-(1.4) is such that A−1 := M−1/3,1(0) <∞ and

M−1/3,1(t) ≤ 1

A+ t/4
∀ t ≥ 0. (2.7)

Proof of Lemma 2.3. Notice first that M−1/3,1(0) <∞ because

m−1/3 |p| = m2/3 |v| ≤ m4/3 + |v|2 ≤ 2 k2
S .

Now, from the expression (1.1)-(1.2) of the collision kernel we have∫
Y
Q(f, f)m−1/3 |p| dy =

1

2

∫
Y

∫
Y

∆−1/3, 1 f f
′ dydy′,

with

∆−1/3, 1 = [(m+m′)−1/3 |p+ p′| −m−1/3 |p| − (m′)−1/3 |p′|] [r + r′]2 |v − v′|.

On one hand −∆−1/3, 1 ≥ 0 because

(m+m′)1/3

(
|p|
m1/3

+
|p′|

(m′)1/3

)
≥ |p|+ |p′| ≥ |p+ p′|.

On the other hand, if we only take into account the values of v and v′ where v · v′ < 0 and
suppose that, for example, |p| = min(|p|, |p′|) we have

−∆−1/3, 1 ≥
(
|p|
m1/3

+

(
|p′|

(m′)1/3
− |p′|

(m+m′)1/3

))
[r2 + (r′)2] [|v|+ |v′|]

≥
(
|p|
m1/3

)
[(r′)2] [|v′|] =

|p|
m1/3

|p′|
(m′)1/3

.

Whence, using that f is even:

d

dt

∫
Y
f
|p|
m1/3

dy ≤ −1

2

∫
Y 2, v·v′<0

|p|
m1/3

|p′|
(m′)1/3

f f ′ dydy′

≤ −1

4

(∫
Y
f
|p|
m1/3

dy

)2

,

from which (2.7) straightforwardly follows. �

Remark 2.4 As it has already been noticed (cf. for example [2], [3], [23]), if the aggre-
gation rate is of the form a(y, y′) = A(m,m′)B(v, v′) (as in aHS or aNP ) and we assume
that f(t,m, p) is a solution of (1.1), (1.3), (1.4) of the form F (t,m)ϕ(pm−θ) for some
function ϕ such that

∫
ϕ(p)dp = 1 and θ ∈ R, then F (t,m) satisfies a Smoluchowski equa-

tion with a coagulation rate given by A(m,m′)C(m,m′) with C depending on the function
ϕ and on B:

∂F

∂t
(t,m) =

1

2

∫ m

0
F (t,m−m′)F (t,m′)A(m−m′,m′)C(m−m′,m′) dm′ −

−
∫ ∞

0
F (t,m)F (t,m′)A(m,m′)C(m,m′) dm′ (2.8)

C(m,m′) = m−6θ

∫
R3

∫
R3

ϕ
( p

mθ

)
ϕ

(
p′

m′θ

)
B

(
p

m
,
p′

m′

)
dp dp′. (2.9)
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Conversely, consider any ϕ for which the kernel C(m,m′) is well defined, and F a solu-
tion of the Smoluchowski equation (2.8) with coagulation rate A(m,m′)C(m,m′), where
C(m,m′) is given by (2.9). Then, the function f(t,m, p) = ϕ(mp−θ)F (t,m) satisfies a
kind of averaged (in v) version of (1.1), (1.3), (1.4), namely:

∂t

∫
R3

f(t,m, p) dp =

∫
R3

(Q1(f)−Q2(f))(t,m, p) dp. (2.10)

Of course all the available results on coagulation equation may be applied to (2.8). But
the function f does not satisfies the equation (1.1), (1.3), (1.4) unless B ≡ 1 since it is
not possible to find any function ϕ such that:

m−3θ

∫
R3

ϕ

(
p′′

mθ

)
B

(
p′′

m
,
p′

m′

)
dp′′ = B

(
p

m
,
p′

m′

)
.

Notice that, since no uniqueness result of the solutions to the Cauchy problem for (2.10)
is known, we can not even know if the function F (t,m) solving (2.8) (2.9) coincides with
the “v-average” of the solution f(t,m, p) of (1.1), (1.3), (1.4). The case B ≡ 1 is treated
in Section 4.

3 The impulsion dependence case a = a(p, p′)

We consider now the equation (1.1), (1.3), (1.4) with a collision kernel a independent of
the mass of the colliding particles. We may then integrate the equation with respect to the
mass and obtain that the function of t and p,

∫∞
0 f(t,m, p) dm, that we shall still denote

f , satisfies the equation:

∂tf = Q(f, f) in (0,+∞)× Rd, (3.1)

f(0) = fin in Rd, (3.2)

the collision operator Q(f) is given by Q(f, f) = Q1(f, f)−Q2(f, f), where

Q1(f, f)(y) =
1

2

∫
Rd
a(p′, p− p′) f(p′) f(p− p′) dp′, (3.3)

Q2(f, f)(p) =

∫
Rd
a(p, p′) f(p) f(p′) dp′. (3.4)

We focus on the cases

a(p, p′) = |p− p′|γ , γ ∈ [0, 2], d ∈ N∗. (3.5)

Before stating our main result we need some definitions and notations. We say that a
function f on Rd is radially symmetric if

f(Rp) = f(p) ∀ p ∈ Rd, R ∈ SO(d)

where SO(d) stands for the group of rotations on Rd. For any weight function k : Rd → R+

we define the “moment of order k” of the non negative density measuref ∈M1
loc(Rd) by

Mk(f) :=

∫
Rd
k(p) f(dp),
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and we define M1
k as the set of Radon measures µ such that Mk(|µ|) <∞. For any α ∈ R+

we use the shorthand notation

Mα :=

∫
R
f(p) |p|α dp,

that is Mα = Mk(f) for k(p) = |p|α and the shorthand notation M1
α = M1

` for `(p) =
1 + |p|α.

Theorem 3.1 Consider the aggregation rate (3.5).

(i) For any even initial datum fin ∈ M1
2α, α ∈ N\{0, 1}, there exists a unique even

solution f ∈ C([0, T );M1(Rd)− weak) ∩ L∞(0, T ;M1
2α(Rd)) to equation (3.1)–(3.4). For

any α ∈ [0, 1] the function t 7→ Mα(t) is decreasing and f(t, .) is radially symmetric for
any t ≥ 0 if furthermore fin is radially symmetric.

(ii) Moreover, the solution f(t, .) satisfies

1

Mγ(0)−1 + k1 t
≤Mγ(t) ≤ 1

Mγ(0)−1 + k2 t
∀ t ≥ 0, (3.6)

for some constants ki = ki(γ, d) ∈ (0,∞).

One of the main tools in order to establish that result is to consider the equations satisfied
by the moments of the solution f . Using the classical argument for the coagulation equa-
tion, and one more change of variable p′ → −p′, it is easy to check that any even solution
f to equation (3.1)–(3.4) satisfies (at least formally) the fundamental moment equation

d

dt
Mα =

1

2

∫
Rd

∫
Rd
f f ′ a(p, p′) [|p+ p′|α − |p|α − |p′|α] dpdp′

=
1

4

∫
Rd

∫
Rd
f f ′

{
a(p, p′)

[
|p+ p′|α − |p|α − |p′|α

]
+ a(p,−p′)

[
|p− p′|α − |p|α − |p′|α

] }
dpdp′. (3.7)

We consider in this Section the case γ ∈ (0, 2) and d ∈ N∗, the case γ = 1 and d = 1
and the case γ = 2 and d ∈ N∗. The case γ = 0 and d = 1 is treated in Section 5.

3.1 Proof of the existence and uniqueness part in Theorem 3.1.

We prove in this subsection a uniqueness and existence result for a general class of aggre-
gation rates by adapting some arguments from [14, 11], see also [18]. We then deduce the
existence and uniqueness part in Theorem 3.1.

Lemma 3.2 Consider a continuous aggregation rate a : R2d → R+ which satisfies

a(−p,−p′) = a(p, p′) ∀ p, p′ ∈ Rd, (3.8)

a(p, p′) ≤ a(−p, p′) ∀ p, p′ ∈ Rd, p · p′ > 0, (3.9)

and an even weight function k : Rd → R+. We define

∆k(p, p
′) := a(p, p′) [k(p′′) + k(p′)− k(p)], ∆̃k(p, p

′) = ∆k(p, p
′) + ∆k(−p, p′).

8



and assume that

a(p, p′) ≤ C k(p) k(p′) and ∆̃k(p, p
′) ≤ C k(p) k(p′)2. (3.10)

Then, for any given even initial data fin ∈M1
k (Rd) there exists at most one even solution

f ∈ C([0, T );M1
k (Rd)) ∩ L∞(0, T ;M1

k2(Rd)) to equations (3.1)–(3.4).

Remark 3.3 (i) The same result holds without the assumption that the initial density
function fin is even when the second condition in (3.10) is replaced by

∆k(p, p
′) ≤ C k(p) k(p′)2.

The same kind of results was obtained in [14, 11] in the L1 framework. The same result
also holds for radially symmetric solutions when we assume that

a(Rp,Rp′) = a(p, p′) ∀ p, p′ ∈ Rd, R ∈ SO(d), (3.11)

and the second condition in (3.10) is replaced by∫
R∈SO(d)

∆(p,R p′)dR ≤ C k(p) k(p′)2.

(ii) The same kind of result holds for aggregation rate defined on Y 2 with Y = (0,∞)×Rd
as it is the case when particles are identified by their mass and impulsion, see [11].

Proof of Lemma 3.2. Step 1. We claim that for any gin ∈ M1
k there is a unique

g ∈ C([0, T );M1
k − weak), G ∈ L1(0, T ;M1

k ) and b ∈ C((0, T )× Rd;R+) such that

∂tg = G− b g in the sense of D′([0, T )× Rd),
g(0 = gin in M1

k .

and that, the differential inequality

d

dt
‖g k‖M1 ≤ ‖Gk‖M1 − ‖b g k‖M1 (3.12)

holds in the sense of D′([0, T )). First, it is clear using a classical duality argument that
equation (3.12) has at most one solution. Suppose indeed, g1, g2 ∈ C([0, T );M1

k − weak)
are two such solutions. For any t ∈ (0, T ), and any ϕ ∈ C0(Rd) the function ϕ(t, p) =
ϕ(p) exp

∫ t
t b(s, p) ds satisfies ϕ(t, ·) ∈ C0(Rd) for all t > 0, solves the dual homogeneous

equation ∂tϕ = b ϕ in R × Rd and ϕ(t) = ϕ. Let finally be ψn ∈ C0([0, T )) such that
ψn(t) = 1 on t ∈ [0, t], ψn(s) → 1[0,t](s) for all s ∈ [0, T ) and ψ′n → −δt as n → +∞.
Then, on the one hand:

(∂t(g1 − g2), ϕψn) = −
∫ T

0

∫
Rd

(ψnϕ)t d(g2(s)− g1(s))(p) ds

= −
∫ T

0

∫
Rd

ϕt ψn d(g2(s)− g1(s))(p) ds−
∫ T

0

∫
Rd

ψnt ϕd(g2(s)− g1(s))(p) ds

= −
∫ T

0

∫
Rd

b ϕψn d(g2(s)− g1(s))(p) ds−
∫ T

0

∫
Rd

ψnt ϕd(g2(s)− g1(s))(p) ds.
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And on the other hand,

(∂t(g1 − g2), ϕψn) = − (b (g1 − g2), ϕψn) = −
∫ T

0

∫
Rd

b ϕψn d(g2(s)− g1(s))(p).

We deduce that, for all n ≥ 1:∫ T

0

∫
Rd

ψnt ϕd(g2(s)− g1(s))(p) ds = 0

and passing to the limit n→ +∞, using that gi ∈ C([0, T ),M1
k − weak):∫

Rd
ϕd(g2(t)− g1(t))(p) = 0.

In order to show the existence of a solution g ∈ C([0, T );M1
k − weak) of (3.12) we notice

first that, for any gε(0) ∈ CKε := {u ∈ C(Rd); suppu ⊂ Kε}, with Kε ⊂ Rd a compact,
and any Gε ∈ L1(0, T ;CKε) there exists a (unique) solution gε ∈ C([0, T );CKε) to equation
(3.12) which furthermore satisfies

d

dt

∫
Rd
|gε| k dy =

∫
Rd

(Gε − b gε) signgε k dy

≤
∫
Rd
|Gε| k dy −

∫
Rd
|gε| b k dy. (3.13)

Here, signgε = 1 if gε > 0, signgε = 0 if gε = 0, signgε = −1 if gε < 0. Finally, we can build
(by a standard truncation and regularization by convolution process) the sequences (Gε)
and gε(0) such that furthermore Gε ⇀ G, gε(0) ⇀ g(0) in the weak sense of measures in
M1
k , ‖Gε(s)‖M1

k
≤ ‖G(s)‖M1

k
for a.e. s ∈ (0, T ), ‖gε(0)‖M1

k
≤ ‖g(0)‖M1

k
. By the previous

uniqueness argument we have gε ⇀ g in the weak sense of measure and we get (3.12) by
passing to the limit in (3.13). This ends the proof of Step 1.

Step 2: End of the proof of Lemma 3.2.
Consider two even solutions f1, f2 ∈ C([0, T );M1

k (Rd)) ∩ L∞(0, T ;M1
k2(Rd)) and let us

denote D = f2 − f1, S = f1 + f2. By a standard algebraic computation D satisfies the
following equation

∂tD = Q̂(f2, f2)− Q̂(f1, f1) = Q̂(D,S)

= Q̂1(D,S)− S L(D)− L(S)D,

where

Q̂i(ϕ,ψ) =
1

2
(Qi(ϕ,ψ)−Qi(ψ,ϕ)), L(ϕ) :=

∫
Rd
a(p, p′)ϕ(p′) dp′.

Because of the assumption made on a and f we have D ∈ C([0, T ];M1
k − weak), G :=

Q̂1(D,S) − S L(D) ∈ L∞(0, T ;M1
k ) and 0 ≤ b := L(S) ∈ C([0, T ] × Rd) so that the first

step implies

d

dt
‖D‖M1

k
≤ ‖(Q̂1(D,S)− S L(D)) k‖M1 − ‖DkL(S)‖M1

≤ 1

2

∫ ∫
a [k′′ + k′] |D(dp)|S(dp′)− 1

2

∫ ∫
a k |D(dp)|S(dp′)

≤ 1

4

∫ ∫
Ã |D(dp)|S(dp′) ≤ C

4
‖S‖M1

k2
‖D‖M1

k
.

Uniqueness follows by using the Gronwall lemma. �
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Lemma 3.4 Consider a continuous aggregation rate a : R2d → R+ which satisfies (3.8)
(resp. (3.11)), (3.9) and such that, for some positive constant C:

a(p, p′) ≤ C (k(p) + k(p′)) ∀ p, p′ ∈ Rd, (3.14)

for the weight function k(p) = 1 + |p|2. Then, for any given even (resp. radially symmet-
ric) initial datum fin ∈ M1

2α(Rd) there exists at least one even (resp.radially symmetric)
solution f ∈ C([0, T );M1(Rd)−weak)∩L∞(0, T ;M1

2α(Rd)) to equation (3.1)–(3.4). This
solution also satisfies that the map t 7→Mβ(t) is decreasing for any β ∈ [0, 1].

Remark 3.5 It is likely that by adapting some arguments introduced in [17], see also [7,
14], for any even (resp. radially symmetric) initial datum fin ∈ L1

2α(Rd) the approximating
solution fn(t, .) built in the proof below is a Cauchy sequence in C([0, T ;L1(Rd)) so that
we may conclude f ∈ C([0, T );L1(Rd)) ∩ L∞(0, T ;L1

2α(Rd)).

Proof of Lemma 3.4. We define the sequence of bounded aggregation rates an := a∧n,
for which classically fixed point argument (see for instance [11] which deals with some
similar situation) implies the existence of a unique even (resp. radially symmetric) solution
fn ∈ C([0, T );L1

2α(Rd)) to equation (3.1)–(3.4) associated with an for any initial datum
fin,n ∈ L1

2α+2(Rd), α ∈ N, α ≥ 2. Then, we have for any β ∈ N∗, β ≤ α

d

dt

∫
fn (1 + |p|2β) =

1

2

∫
fn f

′
n an

[
(|p|2 + 2 p · p′ + |p′|2)β − |p|2β − |p′|2β − 1

]
=

∫
fn f

′
n an

[
2β p · p′ |p|2(β−1) − 1/2

]
+
∑

µβ1,β2,β2

∫
fn f

′
n an (p · p′)β1 |p|2β2 |p|2β3 ,

where in the last sum the integers β1, β2, β3 are such that β1 + β2 + β3 = β and must
satisfy also: either β1 ≥ 2, or β2 ≥ 1 and β3 ≥ 1. This implies: |p · p′|β1 |p|2β2 |p|2β3 ≤
|p|2β′ |p′|2 (β−β′) with 1 ≤ β′ ≤ β − 1. Since we also have∫

fn f
′
n an p · p′ |p|2(β−1) =

=

∫
p·p′>0

fn f
′
n (a(p, p′) ∧ n− a(−p, p′) ∧ n) p · p′ |p|2(β−1) ≤ 0,

we conclude with

d

dt

∫
fn (1 + |p|2β) ≤

∑
1≤β′≤β−1

µβ′

∫
fn f

′
n a |p|2β

′ |p′|2 (β−β′). (3.15)

When β = 1 the set of admissible values of β′ is empty, and we recover a result from [8]

d

dt

∫
fn (1 + |p|2) ≤ 0,

so that
sup
[0,T ]
‖fn‖L1

k
≤ ‖fin,n‖L1

k
. (3.16)
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When β ≥ 2, gathering (3.14), (3.15) and (3.16), we easily conclude by a iterative argument
that

sup
[0,T ]
‖fn‖L1

kβ
≤ CT (β, ‖fin,n‖L1

kβ
). (3.17)

Considering a sequence (fin,n) such that fin,n ⇀ fin in the weak sense of measure and
‖fin,n‖L1

kβ
remains bounded, we easily pass to the limit in the equation satisfied by fn

thanks to (3.17). The fact that t 7→Mβ(t) is decreasing follows from the fact that p 7→ |p|β
is a sub-additive function when β ∈ [0, 1], so that ∆β ≤ 0 and then d/dtMβ(t) ≤ 0. �

Proof of the existence and uniqueness part in Theorem 3.1. It is clear that
a(p, p′) = |p− p′|γ satisfies (3.8), (3.9), the first inequality in (3.10) and (3.14). Moreover,
the second inequality in (3.10) holds since we have

∆̃2(p, p′) = |p− p′|γ (|p+ p′|2 + |p′|2 − |p|2 + 1) + |p+ p′|γ (|p− p′|2 + |p′|2 − |p|2 + 1)

= 2 (|p− p′|γ − |p+ p′|γ) p · p′ + (|p− p′|γ + |p+ p′|γ) (2 |p′|2 + 1),

where the first term in non positive and the second term is bounded by say 8 (k′)2 k, using
that |p± p′|γ ≤ 2 (|p|γ + |p′|γ). We conclude by using Lemma 3.2 and Lemma 3.4. �

3.2 Proof of the rate decay part in Theorem 3.1 when γ < 2.

For an even initial datum fin ∈ M1
4 (Rd) we consider the unique even solution f ∈

C([0, T );M1−weak)∩L∞(0, T ;M1
4 ), ∀T , given by Theorem 3.1(i). It satisfies the moment

equation
d

dt
Mγ =

1

2

∫
Rd

∫
Rd
f f ′∆γ dpdp

′ =
1

4

∫
Rd

∫
Rd
f f ′ ∆̃γ dpdp

′, (3.18)

with
−∆γ(p, p′) = |p− p′|γ [|p+ p′|γ − |p|γ − |p′|γ ]

and

−∆̃γ(p, p′) = |p− p′|γ
[
|p+ p′|γ − |p|γ − |p′|γ

]
+ |p+ p′|γ

[
|p− p′|γ − |p|γ − |p′|γ

]
. (3.19)

We split the proof of Theorem 3.1(ii) in several steps.

Step 1. One the one hand, for any given A > 0 and any p, p′ ∈ Rd such that A−1 |p′| ≤
|p| ≤ A |p| we easily get

|∆γ(p, p′)| ≤ (|p|+ |p′|)γ max
[
(|p|+ |p′|)γ , |p|γ + |p′|γ

]
≤ 24 max(|p|, |p′|)2γ ≤ 24Aγ (|p| |p′|)γ . (3.20)

On the other hand, we define M := max(|p|, |p′|), m := min(|p|, |p′|), x := m/M ∈ [0, 1],
ε := p̂ · p̂′ ∈ [−1, 1] and we compute (in the first line we have assumed that |p| = M which
is not a restriction to the generality because of the symmetry of ∆̃γ)

−∆̃γ(p, p′) = M2γ
{
|p̂− x p̂′|γ

[
1 + xγ − |p̂+ x p̂′|γ

]
+ |p̂+ x p̂′|γ

[
1 + xγ − |p̂− x p̂′|γ

] }
= M2γ

{
(1 + xγ) [(1 + 2 ε x+ x2)γ/2 + (1− 2 ε x+ x2)γ/2]

−2 (1 + 2 ε x+ x2)γ/2 (1− 2 ε x+ x2)γ/2
}

= M2γ
{

2xγ +O(x2)
}
≤ 3M2γ xγ = 3 (|p| |p′|)γ (3.21)
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uniformly on ε ∈ [−1, 1] and x ≤ A−1
0 for A0 ≥ 1 large enough.

Using (3.20) and (3.21) we obtain

1

4
∆̃γ(p, p′) ≥ −k1 |p|γ |p′|γ ∀ p, p′ ∈ Rd,

with k1 := max(3/4, 23Aγ0)/4, and equation (3.18) then implies

d

dt
Mγ ≥ −k1M

2
γ .

The first inequality in (3.6) follows straightforwardly by integrating this differential equa-
tion.

Step 2. We still use the variables M , x, ε introduced in Step 1. We also define r > 0 and
u ∈ [0, 1] by setting r2 := |p|2 + |p′|2 and u := 2 p · p′/r2, so that |p ± p′|2 = r2 (1 ± u).
Splitting the positive and the negative terms in identity (3.19), we have

−∆̃γ(p, p′) = (|p|γ + |p′|γ) (|p− p′|γ + |p+ p′|γ)− 2 |p− p′|γ |p+ p′|γ

= r2γ

{
(|p|2)γ/2 + (|p′|2)γ/2

(|p|2 + |p′|2)γ/2

[
(1 + u)γ/2 + (1− u)γ/2

]
− 2 (1 + u)γ/2 (1− u)γ/2

}
.

Since γ/2 ∈ [0, 1], the map x 7→ xγ/2 is sub-additive, and we obtain

−∆̃γ(p, p′) ≥ r2γ
{[

(1 + u)γ/2 + (1− u)γ/2
]
− 2 (1 + u)γ/2 (1− u)γ/2

}
≥ M2γ (1 + u)γ/2 (1− u)γ/2 φ(u), φ(u) :=

[
(1− u)−γ/2 + (1 + u)−γ/2

]
− 2.

We easily verify that φ is increasing on [0, 1] so that φ(u) > φ(0) = 0 for any u ∈ [−1, 1],
u 6= 0. Coming back to the variables M , x and ε, that is φ(u) > 0 for any p, p′ ∈ Rd such
that the associated variables M , x and ε satisfy M > 0, x > 0 and ε 6= 0. Moreover, when
ε = 0 (p and p′ are orthogonal vectors) we also have

−∆̃γ(p, p′) = 2(|p|2 + |p′|2)γ/2
[
|p|γ + |p′|γ − (|p|2 + |p′|2)γ/2

]
≥ 2M2γ

[
1 + xγ − (1 + x2)γ/2

]
> 0

for any p, p′ ∈ Rd such that the associated variables M and x satisfy M > 0, x > 0, because
the function z 7→ zγ/2 is strictly sub-additive on R+, that is (z + z′)γ/2 < zγ/2 + (z′)γ/2

for any z, z′ > 0. From these two lower bounds on −∆̃γ , we obtain

−∆̃γ(p, p′) ≥M2 γ ψ(x, ε) (3.22)

with ψ(x, ε) > 0 for any x > 0 and ε ∈ [−1, 1].

Next, coming back to (3.21), we also deduce

−∆̃γ(p, p′) = M2γ
{

2xγ +O(x2)
}
≥M2γ xγ (3.23)

uniformly on ε ∈ [−1, 1] and x ≤ A−1
0 for A0 ≥ 1 large enough. We deduce from (3.22)

and (3.23) that for some constant k2 > 0 we have

∀ p, p′ ∈ Rd − 1

4
∆̃γ ≥ k2M

2γ xγ = k2 (|p| |p′|)γ ,
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and equation (3.18) then implies

d

dt
Mγ ≤ −k2M

2
γ .

The second inequality in (3.6) is again obtained by integrating this differential equation.

3.3 The case a(y, y′) = |p− p′|, d = 1.

In the particular case d = 1 and γ = 1, it is possible to estimate more precisely the decay
rate of the first moment M1. It is also possible to estimate the decay rates of several other
moments.

Lemma 3.6 Assume a(y, y′) = |p − p′| and d = 1. For any even initial data fin ∈
M1

3 (R) the unique solution f ∈ C([0, T ];M1(R)) ∩ L∞(0, T ;M1
3 (R)) of (3.1)-(3.4) given

by Theorem 3.1 satisfies for any t ≥ 0

max

(
M0(0)

(1 +M1(0) t/2)2
,

23/2M0(0)

(2 + 3M
1/3
3 (0) t)3/2

)
≤ M0(t) ≤ M0(0)

(1 +M1(0)t)1/2
(3.24)

1

M1(0)−1 + t
≤ M1(t) ≤ 1

M1(0)−1 + t/2
(3.25)

M2(0)

(1 +M1(0) t/2)2
≤ M2(t) ≤ M2(0) (3.26)

M3(0)

(1 +M1(0) t/2)2
≤ M3(t) ≤ M3(0). (3.27)

Remark 3.7 The estimate (3.25) on M1(t) gives the exact value of the power of t at
which the first moment decays for t large. That is not the case for the estimates on Mα,
α = 0, 2, 3 which are actually rather partial. They do not even allow to obtain the limit of
any of the quotients of moments Mα(t)/M1(t) for α = 0, 2, 3 as t→∞. The value of such
limits would indicate whether the solution f(t) has a tendency to concentrate or to spread
as t increases (see also below the discussion concerning the case γ = 2).

Remark 3.8 Let us perform the “Maxwellian approximation” as in [25], replacing the
collision rate a(p, p′) = |p−p′| by the “root mean squared” velocity V (t) :=

√
m2(t)/m0(t),

where here mk denotes the k-th moment of the solution of that modified equation. We easily
compute

m2(t) ≡ m2(0) and m0(t) =
1

(
√
m2(0) t/2 +m0(0)−1/2)2

.

It is worth emphasizing that M0(t) (the number of particles at time t for the equation with
rate a(p, p′) = |p− p′|) and m0(t) (the number of particles at time t for the equation with
rate a(p, p′) = V (t)) have definitely not the same long time behavior. As a conclusion, the
“Maxwellian approximation” is not a good approximation here.

Proof of Lemma 3.6. Let us denote M = max(|p|, |p′|) and m = min(|p|, |p′|). We
systematically exploit the differential equation

d

dt
Mα =

1

4

∫
R

∫
R
f f ′∆α dpdp

′ (3.28)
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with

∆α := [M −m] [(M +m)α −Mα −mα] + [M +m] [(M −m)α −Mα −mα].

Step 1: We suppose α = 1. In that case

∆1 = −2 (M +m)m,

from where we deduce

d

dt
M1(t) = −M

2
1 (t)

2
− B1(t)

2
, B1(t) :=

∫
R

∫
R
f f ′ {min(|p|, |p′|)}2 dpdp′.

Since 0 ≤ {min(|p|, |p′|)}2 ≤ |p| |p′|, we have 0 ≤ B1(t) ≤M2
1 (t) and therefore

−M2
1 (t) ≤ d

dt
M1(t) ≤ −M

2
1 (t)

2
, (3.29)

from where (3.25) follows.

Step 2: We suppose α = 0. Then, since

∆0 = −2M,

we have
d

dt
M0(t) = −B0(t)

2
, B0(t) :=

∫
R

∫
R
f f ′ max(|p|, |p′|) dpdp′. (3.30)

Using |p| ≤ max(|p|, |p′|) ≤ |p|+ |p′|, we deduce M0M1 ≤ B0 ≤ 2M0M1 and then

−M0M1 ≤
d

dt
M0 ≤ −

1

2
M0M1. (3.31)

By the previous estimate (3.25) on M1(t) we get

− M0(t)

M−1
1 (0) + t/2

≤ d

dt
M0(t) ≤ − M0(t)

2(M−1
1 (0) + t)

,

and we obtain the first lower estimate as well as the upper bound in (3.24).

Step 3: The case α = 2. We deduce from

∆2 = −4mM2

that:
d

dt
M2(t) = −B2(t), B2(t) :=

∫
R

∫
R
f f ′ min(|p|, |p′|) |p| |p′| dpdp′.

Using that 0 ≤ min(|p|, |p′|) |p| |p′| ≤ |p|2 |p′| together with (3.25), we obtain

−M2
1

M1(0)−1 + t/2
≤ −M2M1 ≤

d

dt
M2(t) ≤ 0,

and (3.26) follows.
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Step 4: The case α = 3. From the following estimates on ∆3

0 ≥ ∆3 = −2Mm3 − 2m4 ≥ −4Mm3 ≥ −4 |p|3 |p′|,

we deduce

0 ≥ d

dt
M3(t) ≥ −M1M3,

which again implies (3.27).

Step 5: Suppose α = 0 again. We complete now the lower estimate of M0 in (3.24). To
this end we write for any ε > 0

d

dt
M0 = −1

2

∫
R

∫
R
f f ′ |p′ − p| dpdp′

≥ −1

4

∫
R

∫
R
f f ′ (ε+

1

ε
|p− p′|2) dpdp′

≥ −ε
4
M2

0 −
2

ε
M0M2.

By interpolation we have M2(t) ≤ M
1/3
0 (t)M

2/3
3 (t). Since, by (3.27), M3(t) ≤ M3(0) for

all t > 0 we deduce M2(t) ≤M1/3
0 (t)M

2/3
3 (0). Therefore

d

dt
M0(t) ≥ −ε

4
M2

0 −
2

ε
M

4/3
0 M

2/3
3 (0)

We now chose ε ≡ ε(t) > 0 such that εM2
0 = 1

ε M
4/3
0 M

2/3
3 (0), or equivalently ε =

M
−1/3
0 M

1/3
3 (0). With that choice of ε(t) the equation reads

d

dt
M0(t) ≥ −9

4
M

1/3
3 (0)M

5/3
0 ,

and the second lower estimate in (3.24) follows. �

Remark 3.9 In the last step, we may also argue as follows. Combining the estimate
max(|p|, |p′|) ≥ (|p| |p′|)1/2, (3.27), the differential equation (3.30) and the interpolation

estimate M
5/2
1 ≤M2

1/2M
1/2
3 we obtain:

d

dt
M0 ≤ −

1

dt
M

1/2
3 (0)M

5/2
1 (t).

Using (3.25) we recover the second lower estimate in (3.24).

3.4 The case a = |p− p′|2

When γ = 2 and d ∈ N∗, the family of moment equations may be closed, for all the “even”
moments M2α, α ∈ N. This allows to prove a non existence result of self similar solutions
in that case. We first obtain in the next lemma the exact expressions of the even moments
of order less that or equal to four of the solutions to the equation (3.1)-(3.4).
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Lemma 3.10 Assume a(y, y′) = |p − p′|2and d ∈ N∗. Then, there exist numerical con-
stants kd ∈ (0,∞), k1 := 2, such that for any radially symmetric initial datum fin ∈
M1

6 (Rd) the unique radially symmetric solution f ∈ C([0, T ];M1(Rd))∩L∞(0, T ;M1
6 (Rd))

of (3.1)-(3.4) given by Theorem 3.1 satisfies for any t ≥ 0

M0(t) =
M0(0)

(M2(0)−1 + 2 kd t)1/(2kd)
(3.32)

M2(t) =
1

M2(0)−1 + 2 kd t
(3.33)

M4(t) = M4(0) (M2(0)−1 + 2 kd t)
1
kd
−2
. (3.34)

Proof of Lemma 3.10. We proceed in several steps.

Step 1: If α = 2. Using the fact that f is radially symmetric (so that the odd moments of
f vanish) and the notations p = r σ, r = |p|, p′ = r′ σ′, r′ = |p′|, the fundamental moment
identity (3.7) implies

d

dt
M2 =

1

2

∫
Rd

∫
Rd
f f ′ [|p|2 − 2 p · p′ + |p′|2] (2 p · p′) dpdp′

= −2

∫
Rd

∫
Rd
f f ′ [p · p′]2 dpdp′

= −2

∫ ∞
0

∫ ∞
0

f(r) f(r′) rd+1 (r′)d+1 drdr′ ×
∫
Sd−1

∫
Sd−1

[σ · σ′]2 dσdσ′

= −2 kdM
2
2 ,

with

kd := ω−2
d

(∫
Sd−1

∫
Sd−1

[σ · σ′]2 dσdσ′
)

= ω−1
d

∫
Sd−1

σ2
1 dσ.

We compute k1 = 1, k2 = 1/2. The expression (3.33) immediately follows by integrating
that ODE.

Step 2: If α = 0. In that case the fundamental moment identity (3.7) and the fact that f
is radially symmetric imply

d

dt
M0 =

1

2

∫
Rd

∫
Rd
f f ′ [|p|2 − 2 p · p′ + |p′|2] (−1) dpdp′

= −M2M0.

Integrating that ODE with the help of (3.33) we get (3.32).

Step 3: If α = 4. When α = 4, the fundamental moment identity (3.7) and the fact that
f is radially symmetric imply

d

dt
M4 =

1

2

∫
Rd

∫
Rd
f f ′ [|p|2 − 2 p · p′ + |p′|2] [4 (p · p′)2 + 8 |p|2 (p · p′) + 2 |p|2 |p′|2] dpdp′

=
1

2

∫
Rd

∫
Rd
f f ′

{
[2 |p|2] [4 (p · p′)2 + 2 |p|2 |p′|2]− 16 |p|2 (p · p′)2

}
dpdp′

= 2

∫
Rd

∫
Rd
f f ′

{
|p|4 |p′|2 − 2 |p|2 (p · p′)2

}
dpdp′

= (2− 4 kd)M2M4.
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Integrating that ODE with the help of (3.33) we get (3.34). �

Remark 3.11 It is straightforward to check that if Φ(t,m, p) solves (1.1), (1.3), (1.4)
with a(y, y′) ≡ |p− p′|γ, so does

Φρ(t,m, p) = ρ−λf(ρ t, ρ−δm, ρ−ν p) (3.35)

for all ρ > 0, whenever the exponents satisfy:

λ = ν(γ + 1) + δ − 1. (3.36)

This may suggest the existence of self similar solutions of (1.1), (1.3), (1.4) with a(y, y′) ≡
|p− p′|γ of the form :

Φ(t,m, p) = tλΘ
(
tδm, tν p

)
(3.37)

for some function Θ. Therefore the function

g(t, p) =

∫
Rd
tλΘ

(
tδm, tν p

)
dm = tλ−δ

∫
Rd

Θ (m, tν p) dm

=: tµG (tν p) (3.38)

with µ = λ−δ = ν(γ+1)−1 would be a self similar solution of (3.1)-(3.5) and its moments
of order α ∈ R, would then be:

Mα(g(t, .)) = Mα(G) tµ−(d+α) ν , (3.39)

On the other hand, by Lemma 3.10, when γ = 2 the solutions f of equation (3.1)-(3.4)
with initial data fin ∈M1

6 (R) satisfy

M0(f(t, .)) ∼ C ′0 t
− 1

2kd , M2(f(t, .)) ∼ C ′2 t−1, M4(f(t, .)) ∼ C ′4 t
1
kd
−2
. (3.40)

as t → +∞ for some positive constants C ′0, C ′2 and C ′4. It is easy to check that to have
both (3.39) and (3.40) requires :

(3− d) ν − 1 = − 1

kd
; (1− d) ν − 1 = −1; −(1 + d) ν − 1 =

1

kd
− 2

that is impossible. We deduce that when γ = 2, the equation (3.1)-(3.5) has no self similar
solution of the form (3.38) with self-similar profile G ∈ M1

6 (R). Therefore the equation
(1.1), (1.3), (1.4) with a(y, y′) ≡ |p − p′|2 has no self similar solution of the form (3.37)
with Θ such that M1,0(Θ) <∞ and M0,6(Θ) <∞.

Remark 3.12 Consider again any solution f of (3.1)-(3.4) with initial data fin ∈ M1
6

and suppose, only for the sake of simplicity, that we are in the case d = 1. Then the
moments Mγ(f(t)) for 0 ≤ γ ≤ 2α satisfy:

d

dt
M2α =

α−1∑
β=1

(
2α
2β

)
M2βM2(α+1−β) −

α−1∑
β=0

(
2α

2β + 1

)
M2β+2M2(α−β).
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In particular:
d

dt
M6 = 3M2M6 − 5M2

4 .

When M2(0) = 1/2 (only for the sake of simplicity again), the solution is

M6(t) =

(
M6(0)− 2M4(0)2 +

2M4(0)2

(1 + t)5/4

)
(1 + t)3/2 ∀ t ≥ 0,

with, by Holder’s inequality, M6(0)− 2M4(0)2 > 0. It then follows that the moments of f
satisfy the following

M0(t) ∼ κ0 t
−1/2,

M2(t)

M0(t)
∼ κ1 t

−1/2,
M6(t)

M0(t)
∼ κ2 t

3/2, (3.41)

as t → +∞, for some positive constants κi, i = 0, 1, 2. We notice that the “mean second
moment” tends to 0 as t → +∞. The behavior of the mean second moment M2/M0 is
then comparable with the behaviour of the energy (second moment) of the solutions to the
inelastic Boltzmann equation that decreases as t → +∞. The opposite will be true for a
model considered in section 4. On the other hand, (3.41) shows that the behaviour of the
mean sixth moment M6/M0 is similar to that of the high moments of the solutions of the
Smoluchoski equation that increase as t→ +∞.

4 The mass dependence case a = a(m,m′)

Consider now the problem (1.1)-(1.4) where the kernel a(y, y′) only depends on the masses
of the particles, namely

a(y, y′) = a(m,m′), (4.1)

and introduce the associated Smoluchowski equation

∂F

∂t
(t,m) =

1

2

∫ m

0
F (t,m−m′)F (t,m′) a(m−m′,m′) dm′

−
∫ ∞

0
F (t,m)F (t,m′) a(m,m′) dm′. (4.2)

For any function ψ ∈ L1(R3) we define the Fourier transform F and the inverse Fourier
transform F−1 by

ψ̂(η) = (Fψ)(η) =

∫
R3

ψ(p) e−i p·η dp, (F−1ψ)(p) = (2π)−3

∫
R3

ψ(η) ei p·η dp.

Theorem 4.1 For any continuous function a on R3, homogeneous of degree θ−1, θ ∈
(0,∞), and such that ϕ := F−1(e−a(·)) ≥ 0, and for any solution F ≡ F (t,m) to the
coagulation equation (4.2) with coagulation kernel a(m,m′), the function f(t,m, p) defined
by

f(t,m, p) = m−3 θ F (t,m)ϕ
( p

mθ

)
, (4.3)

is a solution of the equation (1.1), (1.3), (1.4) for the same aggregation kernel.
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Remark 4.2 The functions defined on Rd that are the Fourier transform of non nonnega-
tive measures are, by a theorem of S. Bochner (see for example [21]), the so called positive
definite functions. Examples of such functions are e−β |p|

r
for all β > 0 and r ∈ (0, 2].

We deduce that a(p) = |p|1/θ, with θ ≥ 1/2 are admissible examples in Theorem 4.1. For
θ = 1/2 the velocity distribution function is then of Maxwellian type. In the case θ = 1
the velocity distribution function is of the type Lynden-Bell obtained in [15]. Another

example is a(p) = |p1|+ |p2|+ |p3| for which θ = 1.

Remark 4.3 Notice that the initial data of the solutions (4.3) in Theorem 4.1 are of
the form f(0,m, p) = m−3θFin(m)ϕ

(
p/mθ

)
for some Fin. Theorem 4.1 is not therefore

a general existence result of solutions to the Cauchy problem associated to (1.1), (1.3),
(1.4).

Proof of Theorem 4.1. We have to check that the function f(t,m, p) defined by (4.3)
solves (1.1), (1.3), (1.4). We start with writing

∂f

∂t
= m−3θϕ

( p

mθ

) ∂F
∂t

= m−3θϕ
( p

mθ

)[1

2

∫ m

0
F (t,m−m′)F (t,m′) a(m−m′,m′) dm′

−
∫ ∞

0
F (t,m)F (t,m′) a(m,m′) dm′

]
. (4.4)

On the one hand, using that∫
R3

ϕ(p) dp = F(ϕ)(0) = e−a(0) = 1,

the last term in (4.4) gives

m−3θϕ
( p

mθ

)∫ ∞
0

F (t,m)F (t,m′) a(m,m′) dm′ =

= m−3θϕ
( p

mθ

)
F (t,m)

∫ ∞
0

a(m,m′)F (t,m′)

∫
R3

(m′)−3θϕ(
p′

m′θ
) dp′

= f(t,m, p)

∫ ∞
0

∫
R3

a(m,m′) f(t,m′, p′) dp′. (4.5)

On the other hand, let us define the function

g(m, p) = m−3 θϕ(p/mθ).

Using the definition of ϕ and the homogeneity of a, it satisfies for any 0 < m′ < m

ĝ(m, η) = ϕ̂(mθ η) = exp(−a(mθ η)) = exp(−ma(η))

= exp(−m′ a(η)) exp(−(m−m′) a(η))

= ĝ(m′, η) ĝ(m−m′, η),

or coming back to the origin function

g(m, p) =

∫
R3

g(m′, p′) g(m−m′, p− p′) dp′.
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Using that identity in the first (gain) term in (4.4), we get

m−3θϕ
( p

mθ

)∫ m

0
F (t,m−m′)F (t,m′) a(m−m′,m′) dm′ =

= g(m, p)

∫ m

0
F (t,m−m′)F (t,m′) a(m−m′,m′) dm′

=

∫
R3

∫ m

0
F (t,m−m′)g(m−m′, p− p′)F (t,m′)g(m′, p′) a(m−m′,m′) dm′dp′

=

∫
R3

∫ m

0
f(t,m−m′, p− p′) f(t,m′, p′) a(m−m′,m′) dm′dp′. (4.6)

We conclude that f satisfies (1.1), (1.3), (1.4) by gathering (4.4), (4.5) and (4.6). �

Remark 4.4 Solutions of the form n(m, t)ϕ(m, v) or n(t,m) e−m|v|
2

(which corresponds
to θ = 1/2) have been considered in previous references as for example [2], [3], [23].
Sometimes this form is obtained from physical arguments, sometimes it is postulated as a
simplifying ansatz.

The previous Theorem is useful in order to prove the existence of self similar solutions
for some kernels a(m,m′) as it is seen in the following corollary.

Corollary 4.5 Suppose that a and θ are as in Theorem 4.1. Assume further that F is
a self similar solution of the coagulation equation with coagulation kernel a(m,m′). Then
the function f defined by (4.3) is a self similar solution of (1.1), (1.3), (1.4).

Proof of Corollary 4.5. The hypothesis on F means that for some functions Φ, ν(t)
and µ(t) it may be written as:

F (t,m) = ν(t)Φ(µ(t)m).

Therefore f is a self-similar function since it may be written as

f(t,m, p) = m−3θ ν(t)Φ(µ(t)m)ϕ
( p

mθ

)
= ν(t)µ(t)3θ (µ(t)m)−3θ Φ(µ(t)m)ϕ

(
µ(t)θ p

(µ(t)m)θ

)
= ν(t)µ(t)3θ Ψ

(
µ(t)m,µ(t)θ p

)
with Ψ(M,P ) = M−3θ Φ(M)ϕ

(
P/M θ

)
. �

Remark 4.6 The existence of self similar solutions of (1.1), (1.3), (1.4) corresponding
to the case θ = 1/2 of Corollary 4.5 had already been proved in [11].

Remark 4.7 Self similar solutions of the coagulation equation are well known to exist for
the cases a(m,m′) = 1, a(m,m′) = m + m′ and a(m,m′) = mm′. Their existence has
been proved in [9] and [10], for several other kernels with homogenetity λ < 1. In that
case they are of the form:

F (t,m) = t−
2

1−λΦ

(
m

t
1

1−λ

)
. (4.7)
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We deduce that, under the assumption of the Corollary 4.5, and for these kernels a(m,m′)
with homogeneity λ < 1,

f(t,m, p) = t−
2

1−λm−3θ Φ

(
m

t
1

1−λ

)
ϕ
( p

mθ

)
. (4.8)

is a self similar solutions to equation (1.1), (1.3), (1.4). A straightforward calculation
yields

Pk(t) =

∫
Rd

∫ ∞
0
|p|k f(t,m, p) dmdp = t−

1−kθ
1−λ

∫
Rd
|P |kϕ(P )dP

∫ ∞
0

Mkθ Φ(M) dM. (4.9)

As a consequence, we have P0 → 0, P1 → 0 and more generally Pk → 0 whenever k < θ−1

but Pk/P0 → ∞ for any k > 0 and Pk → ∞ whenever k > θ−1. The interpretation in
terms of the model is that the total number of particles in the gas and the total impulsion
of the gas decrease and tend to zero, while, for instance, the mean second moment P2/P0

tends to infinity as t tends to infinity. This behavior is quite similar to that of the solutions
to the Smoluchowski equation (where the mean impulsion moment Pk/P0 → ∞ for any
k > 0) and is completely different to that discussed in Remark 3.11.

5 The constant case a = 1

We consider in this Section the aggregation kernel a = 1. Equation (1.1), (1.3) (1.4) reads
then:

∂tf(t,m, p) =
1

2

∫
Rd

∫ m

0
f(t,m−m′, p− p′) f(t,m′, p′)dm′ dp′

−f(t,m, p)

∫
Rd

∫ ∞
0

f(t,m′, p′) dm′ dp′. (5.1)

The first result is on the existence of self similar solutions.

Theorem 5.1 Let Φ ∈ C1(R) such that:

lim
ζ→0, ξ→0

ζΦ

(
ξ2

ζ

)
= 0 (5.2)

and suppose that

g(y, x) = F−1
ξ L

−1
ζ

 2

2 ζΦ
(
ξ2

ζ

)
+ 1

 (5.3)

satisfies g ∈ L1(R+ × R). Then, for all real positive numbers βi, i = 1, · · · , d the function

t−
d+4
2 g

(
m

t
, β1

p1√
t
· · · , βd

pd√
t

)
. (5.4)

is a self similar weak solution to (1.1), (1.3), (1.4) with a = 1. If moreover g ∈ C1(R+×R)
then it is a classical solution.
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Remark 5.2 As it will be seen in the Remark 5.3 below, it is easy to obtain different self
similar solutions of the equation (5.1) using Theorem 5.1. Notice nevertheless that these
self similar solutions are not necessarily non negative.

Proof of Theorem 5.1.
The formal argument leading to the expression (5.3) and condition (5.2) is the follow-

ing. If we look for a self similar solution of (5.1) of the form (5.4) the function g must
then solve:

−d+ 2

2
g − y∂yg −

1

2
x · ∇xg =

1

2

∫
R

∫ y

0
g(y − y′, x− x′) g(y′, x′)dy′ dx′ −

−g
∫
R

∫ ∞
0

g(y′, x′)dy′ dx′. (5.5)

We integrate this equation with respect to x and y and obtain∫
R

∫ ∞
0

g(y′, x′)dy′ dx′ = 2. (5.6)

We now Fourier transform with respect to x and Laplace transform with respect to y:

ζ∂ζ ĝ +
1

2
ξ · ∇ξ ĝ =

1

2
ĝ2 − ĝ. (5.7)

We divide by ĝ2 and define G = 1/ĝ:

ζ∂ζG+
1

2
ξ · ∇ξG = G− 1

2
. (5.8)

The function G may then be any function of the form:

G(ζ, ξ) = ζΦ

(
|ξ|2

ζ

)
+

1

2
(5.9)

for any arbitrary, derivable function Φ. Therefore we should have:

ĝ(ζ, ξ) =
2

2 ζΦ
(
|ξ|2
ζ

)
+ 1

, (5.10)

with, due to (5.6):

lim
ζ→0, ξ→0

2

2 ζΦ
(
|ξ|2
ζ

)
+ 1

= 2⇐⇒ lim
ζ→0, ξ→0

ζΦ

(
|ξ|2

ζ

)
= 0.

It is then straightforward to check that, given any function Φ ∈ C1(R) satisfying (5.2) the
function G defined by (5.9) is such that G−1 satisfies (5.7). Therefore, if (5.3) defines a
function g ∈ L1(R+ × R), the function g satisfies (5.5) in the weak sense of distributions
in R+ × R and the function (5.4) is a weak solution of (5.1). �
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Remark 5.3 If Φ(z) = z + 1,

ĝ(ζ, ξ) =
2

2 ζ
(
|ξ|2
ζ + 1

)
+ 1

=
2

2 (|ξ|2 + ζ) + 1

= L

F
e− y2 e− |x|24y

√
2
√
y

 .

and then,

f(t,m, p) = t−(d+4)/2 1√
2
√
m
e−

m
2 t e−

1
4m

∑d
i=1 β

2
i p

2
i (5.11)

is a self similar solution of (5.1). This is, up to a constant, the profile of the self similar
solution that appears in Theorem 5.4 below. It is possible to obtain other self similar
solutions of (5.1). Some of them are explicit others are not. If, for example, Φ ≡ 1
then g(y, x) = e−y

2
δx=0. Another explicit example is for Φ(z) = z which gives g(y, x) =

√
πδy=0e

− |x|√
2 . Notice that in all these three examples the solution g is non negative. On

the other hand, if we take Φ(z) =
√
z, the inverse Laplace transform, let us call it h(y, ξ),

is still explicit:

h(y, ξ) = L−1
ζ

(
2

2
√
ζ ξ2

+ 1

)
=

√
ξ2√

π
√
y
− e

y

ξ2Erfc
(√

y
ξ2

)
4ξ2

. (5.12)

It remains to check that h(y, ·) has an inverse Fourier transform with respect to the variable
ξ. It is easily checked that, for all y > 0 fixed:

h(y, ξ) = O
(

ξ

y3/2

)
, as ξ → 0

h(y, ξ) =

1√
π

√
ξ2

y − 1

4ξ2
+O

(
y

ξ2

)
as |ξ| → +∞.

This function is then in L2(R) with respect to the ξ variable and has then an inverse
Fourier transform with respect to ξ which is g(y, x):

g(y, x) = F−1
ξ (h(y, ·))(x).

Moreover, for all y > 0, g(y, ·) ∈ L2(R) and the convolution of g(y, ·) with itself is well
defined

F
(
g(y − y′, ·) ∗ g(y′, ·)

)
(ξ) = h(y − y′, ξ)h(y′, ξ)

and ∫ y

0
F
(
g(y − y′, ·) ∗ g(y′, ·)

)
(ξ)dy =

∫ y

0
h(y − y′, ξ)h(y′, ξ) dy.

Therefore,∫
R

∣∣F (g(y − y′, ·) ∗ g(y′, ·)
)

(ξ)
∣∣ dξ ≤ ∫ y

0

∫
R

∣∣h(y − y′, ξ)h(y′, ξ)
∣∣ dξ dy =

6∑
k=1

Ik,
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with

I1 :=

∫ y/2

0

∫
|ξ|≤y′1/2≤(y−y′)1/2

∣∣h(y − y′, ξ)h(y′, ξ)
∣∣ dξ dy′,

I2 :=

∫ y/2

0

∫
y′1/2≤|ξ|≤(y−y′)1/2

∣∣h(y − y′, ξ)h(y′, ξ)
∣∣ dξ dy′,

I3 :=

∫ y/2

0

∫
y′1/2≤(y−y′)1/2≤|ξ|

∣∣h(y − y′, ξ)h(y′, ξ)
∣∣ dξ dy′,

I4 :=

∫ y

y/2

∫
|ξ|≤(y−y′)1/2≤y′1/2

∣∣h(y − y′, ξ)h(y′, ξ)
∣∣ dξ dy′,

I5 :=

∫ y

y/2

∫
(y−y′)1/2≤|ξ|≤y′1/2

∣∣h(y − y′, ξ)h(y′, ξ)
∣∣ dξ dy′,

I6 :=

∫ y

y/2

∫
(y−y′)1/2≤y′1/2≤|ξ|

∣∣h(y − y′, ξ)h(y′, ξ)
∣∣ dξ dy′.

We must verify that each term is finite. Indeed, we have

I1 ≤ C

∫ y/2

0

∫
|ξ|≤y′1/2≤(y−y′)1/2

ξ2

y′3/2(y − y′)3/2
dξ dy′

≤ C

∫ y/2

0

min{y′3/2, (y − y′)3/2}
y′3/2(y − y′)3/2

dy′ <∞;

I2 ≤ C

∫ y/2

0

∫
y′1/2≤|ξ|≤(y−y′)1/2

|ξ|
(y − y′)3/2

(
1√
y′ |ξ|

+
1

ξ2
+O

(
y′

ξ2

))
dξ dy′

≤ C

y3/2

∫ y/2

0

∫
y′1/2≤|ξ|≤(y−y′)1/2

(
1√
y′

+
1

|ξ|
+ 1

)
dξdy

≤ C

y3/2

∫ y/2

0

∫
y′1/2≤|ξ|≤(y−y′)1/2

(
2√
y′

+ 1

)
dξdy <∞;

I3 ≤ C

∫ y/2

0

∫
y′1/2≤(y−y′)1/2≤|ξ|

(
1√
y′ |ξ|

+
1

ξ2
+O

(
y′

ξ2

))
×

×
(

1√
y − y′ |ξ|

+
1

ξ2
+O

(
y − y′

ξ2

))
dξ dy′

≤ C

∫ y/2

0

∫
y′1/2≤(y−y′)1/2≤|ξ|

(
1√

y′
√
y − y′ |ξ|2

+
1

|ξ|3

(
1√
y − y′

+
1√
y′

)
+

+
1

ξ4
+O

(
y′√

y − y′|ξ|3

)
+O

(
y − y′√
y′|ξ|3

)
+O

(
y + y2

|ξ|4

))
dξdy

≤ C
√
y

∫ y/2

0

1√
y′

∫
y′1/2≤(y−y′)1/2≤|ξ|

dξ

|ξ|2
dy +

+C

∫ y/2

0

(
1
√
y

+
1√
y′

)∫
y′1/2≤(y−y′)1/2≤|ξ|

dξ

|ξ|3
dy +

+C

∫ y/2

0

∫
y′1/2≤(y−y′)1/2≤|ξ|

dξ

|ξ|4
dy
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≤ C
√
y

∫ y/2

0

dy
√
y′
√

(y − y′)
+ C

∫ y/2

0

(
1
√
y

+
1√
y′

)
dy

y − y′
+ C

∫ y/2

0

dy

(y − y′)2
.

Similar estimates show that the integrals I4, I5 and I6 converge. The function
∫ y

0 h(y −
y′, ξ)h(y′, ξ) dy is then in L1(R) and has then an inverse Fourier transform which is∫ y

0
(g(y − y′, ·) ∗ g(y′, ·))(ξ) dy.

In the second result of this Section we obtain solutions of (5.1) for a particular class of
initial data and we describe their long time asymptotic behaviour in terms of self similar
solutions (cf. Remark 5.5).

Theorem 5.4 Suppose that the initial data fin ∈ L1(Y ; k2
S(y) dy) is even, non negative

and such that ∫ ∞
0

∫
Rd
es0m fin(m, p) dp dm < +∞ (5.13)

for some s0 > 0. Suppose also that the function F0 defined as:

F0(ζ, ξ) =
1√
2π

∫ ∞
0

∫
R
e−i p ξe−mζfin(m, p) dp dm (5.14)

satisfies: ∫
Rd

∫ ∞
−∞
|F0(u+ iv, ξ)| dv dξ <∞ (5.15)

when u > s0. Then the function

f(t,m, p) = F−1
(
L−1F

)
(t,m, p) (5.16)

F (t, ζ, ξ) =
H2

0

(H0 + (t/2))2
(

1
F0(ζ,ξ) −

H0 t/2
H0+(t/2)

) , (5.17)

with H0 := M0,0(0)−1 as defined in (2.6), is such that f ∈ C1((0,∞);L1(R+ × Rd))
and satisfies (1.1), (1.2), (1.3) (1.4) with a(y, y′) ≡ 1 for all t > 0 and almost every
y ∈ R+ × Rd.

Furthermore, f satisfies

t(d+4)/2 f(t, tm,
√
t p) ⇀ ϕ∞(m, p) := C1

e−C2m

√
m

d∏
i=1

√
C3,i e

−C2
3,i
|pi|

2

m , (5.18)

= C1
e−C2m

√
m

(
d∏
i=1

√
C3,i

)
e−
∑d
i=1 C

2
3,i
|pi|

2

m (5.19)

in the weak sense of measures σ(M1(Y ), Cc(Y )), as t→ +∞, where

C1 =
4

(2π)d/2M1,0(fin)
, C2 =

2

M1,0(fin)
, (5.20)

C3,i =

√
2M1,0(fin)

M0,0(fin)Ni(fin)
, Ni(fin) =

∫ ∞
0

∫
Rd
p2
i fin(m, p) dp dm. (5.21)
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Remark 5.5 Theorem 5.4 shows that the solutions of (5.1), for the set of initial data
satisfying the hypothesis, behave asymptotically when t → +∞ as one of the self similar
solutions obtained in Theorem 5.1. Notice indeed that (5.18) means that the solution
f(t,m, p) behaves, in a weak sense, as the self similar solution:

t−(d+2)/2ϕ∞

(
m

t
, β1

p1√
t
, · · · , βd

pd√
t

)
as t→ +∞. Notice also that this self similar solutions is essentially the same as (5.11) in
Remark 5.3. It is also noteworthy that, among all the possible self similar solutions, the
solution f converges to one that is regular and non negative.

Proof of Theorem 5.4. By Theorem 5.4, there exists a unique solution f of the equation
(5.1) in C([0, T );L1(Y ; kS(y) dy)) ∩ L∞(0, T ;L1(Y ; k2

S(y) dy)) for all T > 0. Moreover, if
the initial data is non negative so is the solution for all time. It turns out that the equation
(5.1) may be explicitly solved using Fourier transform with respect to p ∈ R and Laplace
transform with respect to m > 0. Let us then consider such a transform defined as:

F (t, ζ, ξ) =
1

(2π)d/2

∫ ∞
0

∫
Rd
e−mζ e−i p ξf(t,m, p) dp dm. (5.22)

Due to the properties of the solution f we may then apply the transform (5.22) to both
sides of the equation (5.1) and obtain the following Bernouilli equation:

∂tF (t, ζ, ξ) =
1

2
F 2(t, ζ, ξ)−M0(t)F (t, ζ, ξ) (5.23)

M0(t) = F (t, 0, 0). (5.24)

We first notice, taking ζ = ξ = 0 in (5.23), that M0(t) satisfies d
dtM0(t) = −1

2M
2
0 (t) from

where

M0(t) =
1

H0 + t/2
. (5.25)

The unique solution of (5.23) is the function F (t, ζ, ξ) given by (5.17). On the one hand,
the function t 7→ (H0 t/2)/(H0 + t/2) is strictly increasing with limit in infinity equal to
H0, so that for any δ ∈ (0, 1) there exists T ∈ (0,∞)

∀ t ∈ [0, T ]
H0 t/2

H0 + t/2
≤ H0 (1− δ), (5.26)

and on the other hand

|F (0, ζ, ξ)| ≤
∫ ∞

0

∫
R
f(0,m, p) dmdp = H−1

0 . (5.27)

Gathering (5.26) and (5.27) the fraction in the right hand side of (5.17) is well defined for
all t > 0. More precisely for any t ∈ [0, T ] there is δ = δ(t) > 0 such that∣∣∣∣ 1

F (0, ζ, ξ)
− H0 t/2

H0 + (t/2)

∣∣∣∣ ≥ ∣∣∣∣ 1

F (0, ζ, ξ)

∣∣∣∣− H0 t/2

H0 + (t/2)

≥ |F (0, ζ, ξ)|−1 −H0 (1− δ) ≥ δ |F (0, ζ, ξ)|−1 . (5.28)
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By the hypothesis on fin, for any fixed ξ ∈ R the function F0(·, ξ) is analytic in the half
plane Re(ζ) > −s0, it tends towards zero when in the half plane Re(ζ) ≥ −s0/2, ζ tends
two-dimensionally towards infinity. It immediately follows from (5.17) and (5.56 ) that
F (t, ·, ξ) satisfies the same properties for all t > 0 and ξ ∈ Rd as well as∫

Rd

∫ ∞
−∞
|F (t, u+ iv, ξ)| dv dξ <∞ (5.29)

for all u > s0 for all t > 0. We deduce that for any t > 0 and almost every ξ ∈ Rd∫ ∞
−∞
|F (t, u+ iv, ξ)| dv <∞ (5.30)

and therefore the function F (t, ·, ξ) is the Laplace transform of the function:

L−1(F (t, ·, ξ))(m) =
1

2πi

∫ x+i∞

x−i∞
emζ F (t, ζ, ξ) dζ

the integral being independent of x > s0. Notice that we have, for any x > 0:

1

2πi

∫ x+i∞

x−i∞

∫
Rd
|emζ F (t, ζ, ξ)| dζ dξ =

exm

2π

∫ ∞
−∞

∫
Rd
|F (t, x+ iv, ξ)| dv dξ <∞.

The function ξ 7→ 1
2πi

∫ x+i∞
x−i∞ emζ F (t, ζ, ξ) dζ is then integrable and we have:

f(t,m, p) =
1

(2π)d/2

∫
Rd
eipξL−1(F (t, ·, ξ))(m)dξ

=
1

2πi

∫ x+i∞

x−i∞

∫
Rd
eipξ emζ F (t, ζ, ξ) dζ dξ. (5.31)

In order to study the behaviour of f(t,m, p) as t → ∞ it is a classical argument to
consider the rescaled function ϕ associated to f by the relation

ϕ(t,M, P ) := t(d+4)/2 f(t, tM,
√
t P ), (5.32)

so that

f(t,m, p) = t−(d+4)/2 ϕ

(
t,
m

t
,
p√
t

)
. (5.33)

Taking the Fourier and Laplace transform in both side yields

F (t, ζ, ξ) = t−1Φ(t, t ζ,
√
t ξ) (5.34)

with

Φ(t, ζ, ξ) =
tH2

0

(H0 + (t/2))2

(
1

F (0, ζ
t
, ξ√
t
)
− H0 t/2

H0+(t/2)

) . (5.35)
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Since we are interested in the long time behaviour of Φ(·, ζ, ξ) for all ζ and ξ fixed , we
may write:

1

F (0, ζt ,
ξ√
t
)
− H0 t/2

H0 + (t/2)
=

1

F (0, ζt ,
ξ√
t
)
−H0 +

H2
0

H0 + (t/2)

and consider the auxiliary function

Ψ(t, ζ, ξ) =
tH2

0

((t/2))2

(
1

F (0, ζ
t
, ξ√
t
)
−H0 +

H2
0

(t/2)

)
=

4H2
0

t

(
1

F (0, ζ
t
, ξ√
t
)
−H0 +

2H2
0
t

) . (5.36)

We perform the following expansion up to the order o(1/t):

1

F (0, ζt ,
ξ√
t
)
−H0 =

ζ

t

∂F−1

∂ζ
(0, 0, 0) +

ξ√
t
· ∇ξF−1(0, 0, 0) +

+
1

2 t

d∑
i,j=1

ξi ξj
∂2F−1

∂ξi ∂ξj
(0, 0, 0) + o

(
1

t

)
. (5.37)

Since by hypothesis f is even with respect to p, we have

∂F

∂ξk
(0, 0, 0) = −i

∫ ∞
0

∫
Rd
fin(m, p) pk dp dm = 0

and then:
∂F−1

∂ξk
(0, 0, 0) = − 1

F (0, 0, 0)2

∂F

∂ξk
(0, 0, 0) = 0. (5.38)

We also have

∂2F

∂ξi∂ξj
(0, 0, 0) = −

∫ ∞
0

∫
Rd

pi pj f(0,m, p)dpdm,

which with the help of (5.38) implies

∂2F−1

∂ξi∂ξj
(0, 0, 0) = −F−2(0, 0, 0)

∂2F

∂ξi∂ξj
(0, 0, 0)

= H2(0)

∫ ∞
0

∫
Rd

pi pj f(0,m, p)dpdm =: 2Bi,j . (5.39)

Since fin(m, p) is even with respect to the p variable we have Bi,j = 0 whenever i 6= j.
Similarly, we compute

∂F

∂ζ
(0, 0, 0) = −

∫ ∞
0

∫
Rd
mf(0,m, p)dpdm,
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which implies
∂F−1

∂ζ
(0, 0, 0) = − 1

F 2(0, 0, 0)

∂F

∂ζ
(0, 0, 0) =: A. (5.40)

Thanks to (5.37), (5.38), (5.39) and (5.40), we deduce that (5.36) reads now:

Ψ(t, ζ, ξ) =
4H2(0)(

ζ A+
∑

i Bi, ξ2
i + 2H2(0) + o(1)

)
from where

lim
t→+∞

Φ(t, ζ, ξ) = lim
t→+∞

Ψ(t, ζ, ξ) =
4H2(0)

A ζ +
∑

i Bi ξ2
i + 2H2(0)

=: Ψ∞(ζ, ξ). (5.41)

In order to come back to the original variables, we recall that from standard integral
calculus for any C,D > 0

1

(2π)1/2

∫ ∞
0

∫
R
e−mζ e−i p ξ

e−Cme−
|p|2

2Dm
√
Dm

dpdm =
1

ζ +D ξ2 + C
,

from where choosing C := 2H2
0/A and Di := Bi/A, we obtain

(F−1L−1) (Ψ∞) =
4H2

0

(2πm)1/2A
e−Cm

d∏
i=1

e
− |pi|

2

2Di m
√
Di

=
4H2

0A
d
2
−1

(2πm)1/2
e−Cm

d∏
i=1

e
− A

2m

∣∣∣∣ pi√Bi
∣∣∣∣2

√
Bi

= ϕ∞(m, p)

as defined in (5.18). Finally, (5.65) implies that ϕ(t, .) ⇀ ϕ∞ in the weak sense of
measures, which is nothing but (5.18). �

It is very easy to obtain a simplified version of Theorem 5.4 for the equation (3.1)-(3.4)
with a(p, p′) = 1:

Theorem 5.6 Suppose that the initial data fin ∈M1
2α(Rd), α ∈ N\{0, 1} is non negative

and satisfies fin(p) = fin(−p) and let F0 be its Fourier transform:

F0(ξ) = F (f) (ξ) =
1√
2π

∫
Rd
e−i p ξ fin(p) dp. (5.42)

Suppose moreover that ∫
Rd
|F0(ξ)| dξ < +∞ (5.43)

Then the function

f(t, p) = F−1 (F ) (t, p) (5.44)

F (t, ξ) =
H2

0

(H0 + (t/2))2
(

1
F0(ξ) −

H0 t/2
H0+(t/2)

) , (5.45)
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with H−1
0 := F0(0), is such that f ∈ C([0, T );M1(Rd) − weak) ∩ L∞(0, T ;M1

2α(Rd)),
f ∈ C([0,+∞);L∞(Rd)) ∩ C([0,+∞)× Rd) and satisfies (3.1)-(3.4) with a(y, y′) ≡ 1 for
all t > 0 and almost every y ∈ R+ × Rd.

Furthermore, f satisfies
td/2 f(t,

√
t p) ⇀ ϕ∞(p) (5.46)

in the weak sense of measures σ(M1(Y ), Cc(Y )), as t→ +∞ where

ϕ∞(p) = F−1(Ψ∞)(p) (5.47)

Ψ∞(ξ) =
4H2(0)∑d

i=1 Bi ξ2
i + 2H2(0)

(5.48)

Bi =

∫
Rd
p2
i fin(p) dp. (5.49)

In particular, when d = 1:

ϕ∞(p) = 2

√
2π

M2(fin)
e−C1 |p|. (5.50)

Proof of Theorem 5.6. The equation (3.1)-(3.4) may be explicitly solved using Fourier
transform with respect to p ∈ R. By Theorem 3.1 we already know the existence and
uniqueness of a solution f ∈ C([0, T );M1(Rd) − weak) ∩ L∞(0, T ;M1

2α(Rd)). Apply-
ing Fourier transform to both sides of the equation (3.1)-(3.4) we obtain the following
Bernouilli equation:

∂tF (t, ξ) =
1

2
F 2(t, ξ)−M0(t)F (t, ξ) (5.51)

M0(t) = F (t, 0). (5.52)

We first notice, taking ξ = 0 in (5.51), that M0(t) satisfies d
dtM0(t) = −1

2M
2
0 (t) from

where

M0(t) =
1

H0 + t/2
. (5.53)

It is then straightforward to solve (5.51) and obtain the function F (t, ξ) given by (5.45).
On the one hand, the function t 7→ (H0 t/2)/(H0 + t/2) is strictly increasing with limit in
infinity equal to H0, so that for any δ ∈ (0, 1) there exists T ∈ (0,∞)

∀ t ∈ [0, T ]
H0 t/2

H0 + t/2
≤ H0 (1− δ), (5.54)

and on the other hand

|F (0, ξ)| ≤
∫
Rd
f(0, p) dp = H−1

0 . (5.55)

Gathering (5.54) and (5.55) the fraction in the right hand side of (5.45) is well defined for
all t > 0. More precisely for any t ∈ [0, T ] there is δ = δ(t) > 0 such that∣∣∣∣ 1

F (0, ζ, ξ)
− H0 t/2

H0 + (t/2)

∣∣∣∣ ≥ ∣∣∣∣ 1

F (0, ζ, ξ)

∣∣∣∣− H0 t/2

H0 + (t/2)

≥ |F (0, ζ, ξ)|−1 −H0 (1− δ) ≥ δ |F (0, ζ, ξ)|−1 . (5.56)
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Therefore:

|F (t, ξ)| ≤ 1

δ
|F0(ξ)|

and (5.44) follows.

In order to study the behaviour of f(t, p) as t→∞ it is a classical argument to consider
the rescaled function ϕ associated to f by the relation

ϕ(t, P ) := td/2 f(t,
√
t P ), (5.57)

so that

f(t, p) = t−d/2 ϕ

(
t,
p√
t

)
. (5.58)

Taking the Fourier and Laplace transform in both side yields

F (t, ξ) = t−1Φ(t,
√
t ξ) (5.59)

with

Φ(t, ξ) =
tH2

0

(H0 + (t/2))2

(
1

F (0, ξ√
t
)
− H0 t/2

H0+(t/2)

) . (5.60)

Since we are interested in the long time behaviour of Φ(·, ξ) for all ξ fixed , we may write:

1

F (0, ξ√
t
)
− H0 t/2

H0 + (t/2)
=

1

F (0, ξ√
t
)
−H0 +

H2
0

H0 + (t/2)

and consider the auxiliary function

Ψ(t, ξ) =
tH2

0

((t/2))2

(
1

F (0, ξ√
t
)
−H0 +

H2
0

(t/2)

)
=

4H2
0

t

(
1

F (0, ξ√
t
)
−H0 +

2H2
0
t

) . (5.61)

We perform the following expansion up to the order o(1/t):

1

F (0, ξ√
t
)
−H0 =

ξ√
t
· ∇ξF−1(0, 0) +

1

2 t

d∑
i,j=1

ξi ξj
∂2F−1

∂ξi ∂ξj
(0, 0) + o

(
1

t

)
. (5.62)

Since by hypothesis fin is even with respect to p, we have

∂F

∂ξ
(0, 0) = −i

∫
Rd
fin(p) p dp = 0
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and then:
∂F−1

∂ξ
(0, 0) = − 1

F (0, 0)2

∂F

∂ξ
(0, 0) = 0. (5.63)

We also have

∂2F−1

∂ξi ∂ξj
(0, 0) = −

∫
Rd

pi pj f(0, p)dpdm,

which with the help of (5.63) implies

∂2F−1

∂ξi∂ξj
(0, 0) = −F−2(0, 0)

∂2F

∂ξi∂ξj
(0, 0)

= H2(0)

∫
Rd

pi pj f(0, p)dp =: 2Bi,j . (5.64)

Since fin(m, p) is even with respect to the p variable we have Bi,j = 0 whenever i 6= j. We
denote Bi,i = Bi. Thanks to (5.62), (5.63) and (5.64), we deduce that (5.61) reads now:

Ψ(t, ξ) =
4H2(0)(∑d

i=1 Bi ξ2
i + 2H2(0) + o(1)

)
from where

lim
t→+∞

Φ(t, ξ) = lim
t→+∞

Ψ(t, ξ) =
4H2(0)∑d

i=1 Bi ξ2
i + 2H2(0)

=: Ψ∞(ξ). (5.65)

and (5.65) implies that ϕ(t, .) ⇀ ϕ∞ = F−1(Ψ∞) in the weak sense of measures, which
is nothing but (5.46).

When d = 1, we recall from standard integral calculus that for any C > 0

1√
2π

∫
R
ei p ξ

dξ

1 + C ξ2
=

√
π

2C
e
−
∣∣∣ p√

C

∣∣∣
,

from where for C = B/2H2
0 we obtain

ϕ∞(p) = F−1 (Ψ∞) (p) = 2

√
π

B
H0 e

−
∣∣∣√2H0√

B
p
∣∣∣

and (5.50) follows. �
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[9] Escobedo, M., Mischler, S., Ricard, M. R.: On self-similarity and stationary prob-
lem for fragmentation and coagulation models. Ann. Inst. H. Poincaré Anal. Non
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