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1. Introduction

A distinctive feature of the quantum kinetic theory of the condensed Bose gas arises from the cor-
relations between the superfluid component and the normal fluid part corresponding to the excita-
tions. This causes the occurrence of number-changing processes determining the relaxation to
equilibrium when excitations collide frequently. As a consequence, in the hydrodynamic regime, a col-
lision integral C12 describing 1 M 2 splitting of an excitation into two others in the presence of the con-
densate is needed. The specific form of such a term depends on the dispersion relation x(k) for the
energy of quasiparticles and on the matrix element M of the effective Hamiltonian describing the
interaction between them.

In a series of papers before the experimental realization of BEC, Kirkpatrick and Dorfman [1,2] have
derived a kinetic equation in a uniform Bose gas which includes these processes, and they have com-
puted explicit values for the transport coefficients of the two-fluid hydrodynamics. More recently,
Zaremba et al. [3] have extended the treatment to a trapped Bose gas by including Hartree–Fock
corrections to the energy of the excitations, and they have derived coupled kinetic equations for the
distribution functions of the normal and superfluid components. Many implications of their approach
c. All rights reserved.
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concerning transport coefficients and relaxation times have been thoroughly reported in Ref. [4],
mainly when kBT� gnc, where g = 4pam�1 is the interaction coupling constant in terms of the s-wave
scattering length a, and nc is the condensate density. In this regime the dispersion law approaches the
free particle law x(k) � k2/(2m). In the opposite low temperature limit kBT� gn, the relevant part of
the excitation spectrum is x(k) � ck, where c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gnm�1

p
is the sound speed near zero temperature and

n is the particle density. The kinetic equation in this regime has been derived in Ref. [5], but its fea-
tures have been less considered. Due to the absence of studies on the eigenvalue problem posed by
the linearized kinetic equation, little is known about the time behavior of the solutions of kinetic equa-
tions in both regimes.

This paper is devoted to deriving some results on the free evolution of initial perturbations of ther-
mal equilibrium as described by the three-excitation collision term near the critical and near zero
temperature. By making appropriate approximations of the kinetic equation we shall see that the
problem becomes analytically tractable in some limits, and hence the asymptotic behavior of the solu-
tions for large time may be evaluated. In the first regime, kBT� gnc, we consider the small momentum
limit where the equilibrium distribution function obeys the condition n0(k)� 1. By approximating the
full linearized kinetic equation in this limit we obtain an integro-differential equation which, after
integration by parts, agrees with linearized evolution equation of wave turbulence [6,7] with the
appropriate indices. This result is not a priori obvious when one starts from the full kinetic equation,
because of the strong singularity of the integrand. At low temperature, kBT� gn, we consider two
opposite regimes n0(k)� 1 and n0(k)� 1. By performing a low momentum approximation, ck� kBT,
we will show that the wave turbulence framework still emerges but in a form not consistent with en-
ergy conservation, so an additional improvement is needed in order to restore this conservation law.
In the opposite regime near zero temperature, where ck� kBT, we shall consider an approximation
based on the dominance of Beliaev damping processes.

A notable feature of the linearized collision terms in the wave limit is the homogeneous depen-
dence on the momentum. Such a property furnishes a systematic way to compare the relative orders
of different collision integrals at low momentum. This is achieved by simply considering the degrees of
homogeneity, since their values depend on some indices related to the dispersion law, the scattering
amplitude and the number of bodies in the collision. Thus one can see the dominance of C12 over the
binary collision term C22.

The plan of the paper is the following. In Section 2 we discuss the general form of the linearized
kinetic equation as written in terms of irreducible components of the perturbation. Section 3 is first
devoted to deriving the low momentum approximation of the evolution equation below the critical
temperature. Then, once we show that the wave turbulence picture is recovered, we briefly review
the general procedure for solving this kind of equation, we apply these techniques to the present
context and we determine the asymptotic behavior of the perturbation for large time. Anisotropic
perturbations are also discussed. In Section 4 we derive the evolution equation in the thermal
regime, with particular attention to the requirement of energy conservation, and we deal with
the issue of the dominance of C12 over C22. In Section 5 we consider the case of very low tempera-
ture and derive some asymptotic results specific for this regime. Section 6 contains some concluding
remarks.

2. Linearized collision integral in the Fredholm form

The form of the three-excitation collision integral
Please
C12½n� ¼
Z
½Rðk;k1;k2Þ � Rðk1;k;k2Þ � Rðk2;k1;kÞ�d3k1 d3k2 ð1Þ
depends essentially on the dispersion law x(k) and the matrix element M of the three-excitation
interaction. These quantities determine R by means of
Rðk;k1;k2Þ ¼ jMðk;k1;k2Þj2½dðxðkÞ �xðk1Þ �xðk2ÞÞdðk� k1 � k2Þ�
� ½n1n2ð1þ nÞ � ð1þ n1Þð1þ n2Þn�: ð2Þ
cite this article in press as: M. Escobedo et al., Ann. Phys. (2010), doi:10.1016/j.aop.2010.11.001

http://dx.doi.org/10.1016/j.aop.2010.11.001


M. Escobedo et al. / Annals of Physics xxx (2010) xxx–xxx 3
In this work we will consider two extreme regimes of the Bogoliubov dispersion law
Please
xðkÞ ¼ gn
m

k2 þ k2

2m

 !2
2
4

3
5

1=2

; ð3Þ
near the critical temperature and near zero temperature. In the first limit kBT� gnc the dispersion law
and the squared amplitude become [3]
xðkÞ � k2

2m
þ gnc; ð4Þ

jMðk;k1;k2Þj2 ¼
g2nc

2p2 ¼
8nca2

m2 ; ð5Þ
where nc is the superfluid density. Since in this regime the average value of the energy of a quasipar-
ticle is of order kBT the term gnc is subleading in Eq. (4). In the opposite limit kBT� gn we have [5]
xðkÞ � ckþ ak3
; ð6Þ

jMðk;k1;k2Þj2 ¼
9gkk1k2

64p2m2c
¼ 9ckk1k2

64p2mn
: ð7Þ
The amplitudesM can be derived heuristically by golden rule arguments from the effective Hamilto-
nians in these regimes [8]. Note that no distinction is made between n and nc in the scattering ampli-
tude valid at T ? 0, because we neglect the small low temperature depletion. Since we are interested
in the low momentum region, we shall retain the first term of the dispersion law. Here we will con-
sider the homogeneous regime where the distribution function is independent of the position.

The linearization of the kinetic equation @tn = C12[n] proceeds by the insertion of
nðk; tÞ ¼ n0ðxðkÞÞ þ n0ðxðkÞÞ½1þ n0ðxðkÞÞ�vðk; tÞ; ð8Þ
where n0(x(k)) is the Bose distribution function without chemical potential with the energy given by
the first term of Eqs. (4) or (6); the dimensionless function v(k, t) parametrizes the departure from
equilibrium for the noncondensate distribution function. The linearized kinetic equation adopts the
form
n0ð1þ n0Þ
@v
@t
¼ L½v�ðk; tÞ ¼

Z
Lðk;k0Þvðk0; tÞd3k0; ð9Þ
which must be completed with the linearized equation for the fluctuation of the condensate density
dnc,
ddnc

dt
¼ �dC12 ¼ �

Z
L½v�ðkÞ d3k

ð2pÞ3
: ð10Þ
The kernel L is symmetric in k and k0 and, due to the Bose functions, falls off sufficiently as k; k0 ! 1.
We may then introduce the following scalar product
ðv1;v2Þ ¼
Z

n0ð1þ n0Þv1ðkÞv2ðkÞd
3k; ð11Þ
and pose the eigenvalue problem
Z
Lðk;k0Þvjðk

0Þd3k0 ¼ �kjn0ð1þ n0ÞvjðkÞ: ð12Þ
The solution of the linearized equation would be formally written as the following series
vðk; tÞ ¼
X

j

cjvjðkÞe�kj t; ð13Þ
where the coefficients cj would be determined by the initial condition. In this work we do not intend to
follow this procedure since it is uncertain that there exists a spectrum of discrete eigenvalues for this
problem. This doubt is based on the observation that the lifetime of a long-lived well-developed sound
cite this article in press as: M. Escobedo et al., Ann. Phys. (2010), doi:10.1016/j.aop.2010.11.001
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mode of energy x = ck varies continuously with the momentum, s(k) / k�d, where d = 1 at T – 0 [9] or
d = 5 at T = 0 [10]. So, this property does not seem to be consistent with the discrete character of the
spectrum. Instead, we will try to find an expression for the action of the operator L[v] at low momen-
tum, and then solve the evolution equation found in this approximation.

Formally, the operator L is decomposed in two types of contributions
Please
L½v� ¼ �NðkÞvðk; tÞ þ
Z
Uðk;k0Þvðk0; tÞd3k0; ð14Þ
where the function U is given by
Uðk;k0Þ ¼ ½2jMðk;k0;k� k0Þj2dðxðkÞ �xðk0Þ �xðk� k0ÞÞ
� nðxÞ½1þ nðx0Þ�½1þ nðx�x0Þ� þ ðk$ k0Þ� � 2jMðkþ k0;k;k0Þj2dðxðkÞ þxðk0Þ
�xðkþ k0ÞÞ � ½1þ nðxÞ�½1þ nðx0Þ�nðxþx0Þ; ð15Þ
and the explicit form of the coefficient NðkÞ will be not required.
The conservation laws of energy and momentum imply the presence of zero modes of L propor-

tional to the energy and the momentum, v(k, t) /x(k),h(t) � k. In particular,
L½bxðkÞ� ¼ �NðkÞbxðkÞ þ
Z
Uðk;k0Þbxðk0Þd3k0 ¼ 0: ð16Þ
Thus, the linearized collision operator can be written as
L½v� ¼
Z
Uðk;k0Þ vðk0; tÞ � bxðk0Þvðk; tÞ

bxðkÞ

� �
d3k0; ð17Þ
which suggests to introduce a dimensionless variable A(k, t) defined as
Aðk; tÞ ¼ vðk; tÞ
bxðkÞ : ð18Þ
In terms of A, the linearized kinetic equation has the form
n0ð1þ n0ÞbxðkÞ@tAðk; tÞ ¼
Z
Uðk;k0Þbxðk0Þ½Aðk0; tÞ � Aðk; tÞ�d3k0: ð19Þ
The rotational invariance of the kernel Uðk;k0Þ may be exploited by expressing the perturbation as a
superposition of angular momentum eigenstates
Aðk; tÞ ¼
X
l;m

Almðk; tÞYlmðk̂Þ: ð20Þ
Using the addition theorem for spherical harmonics one arrives at the equation
n0ð1þ n0ÞbxðkÞ@tAlmðk; tÞ ¼ Kl½Alm�ðk; tÞ; ð21Þ
where the operator Kl adopts the Fredholm form
Kl½A�ðk; tÞ ¼
4p

2lþ 1

Z 1

0
U lðk; k0Þbxðk0Þ½Aðk0; tÞ � Aðk; tÞ�k02dk0

� 4pAðk; tÞ
Z 1

0
U0ðk; k0Þ �

U lðk; k0Þ
2lþ 1

� �
bxðk0Þk02dk0: ð22Þ
Here U lðk; k0Þ is the l-coefficient in the series of Legendre polynomials of U:
Uðk;k0Þ ¼
X1
l¼0

U lðk; k0ÞPlðcos hkk0 Þ: ð23Þ
Next we derive two approximations to Kl½A�ðk; tÞ at low momentum valid near the critical temper-
ature and low temperature. They must formally satisfy energy conservation which is achieved if
d
dt

Z 1

0
n0ð1þ n0ÞbxðkÞA00ðk; tÞxðkÞk2dk ¼

Z 1

0
K0½A00�ðk; tÞxðkÞk2dk ¼ 0: ð24Þ
cite this article in press as: M. Escobedo et al., Ann. Phys. (2010), doi:10.1016/j.aop.2010.11.001
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Clearly, in view of Eq. (22), the symmetry of the kernel U0ðk; k0Þ is sufficient in order to accomplish this
requirement, so such a property must not be lost in the approximated kernel.

3. Dynamics near the critical temperature

3.1. The linearized equation at low momentum

In this section we consider the regime kBT� gnc near the critical temperature. Here the dispersion
is well approximated by x = k2/(2m), and the squared amplitude by jMj2 ¼ 8nca2m�2. The low
momentum approximation to U0ðk; k0Þ is obtained by the rescaling k! �k; k0 ! �k0 and the expansion
around � = 0. This gives
Fig. 1.
betwee

Please
U0ðk; k0Þ 	
128m2a2nc

b3

hðk� k0Þ
k3k0ðk4 � k04Þ

þ hðk0 � kÞ
kk03ðk04 � k4Þ

 !
; k! 0; k0 ! 0: ð25Þ
The kernel U lðk; k0Þ has a non-integrable singularity proportional to jk� k0j�1 as k0 ! k (see Fig. 1). In
order to manage carefully this singularity, it is convenient to integrate by parts in the exact expression
of Kl½A� given by Eq. (22). It helps to write
Aðk0; tÞ � Aðk; tÞ ¼
Z k0

k
dq@qAðq; tÞ; ð26Þ
and to perform the change of the order of integration. This yields
Kl½A�ðk; tÞ ¼
Z k

0
dqJ<l ðk; qÞ@qAðq; tÞ þ

Z 1

k
dqJ>l ðk; qÞ@qAðq; tÞ

� 4pAðk; tÞ
Z 1

0
U0ðk; k0Þ �

U lðk; k0Þ
2lþ 1

� �
bxðk0Þk02dk0; ð27Þ
where
J<l ðk; qÞ ¼ �hðk� qÞ 4p
2lþ 1

Z q

0
U lðk; k0Þbxðk0Þk02dk0; ð28Þ

J>l ðk; qÞ ¼ hðq� kÞ 4p
2lþ 1

Z 1

q
U lðk; k0Þbxðk0Þk02dk0; ð29Þ
and h(x) is the unit step function.
The kernel U0ðk; k0Þk04 for k
ffiffiffiffiffiffiffiffiffiffi
b=m

p
¼ 1=2 near the critical temperature. For this value there is no appreciable difference

n the graphs of the exact kernel and the approximation of Eq. (25). The singularity at k0 ¼ k is not integrable.

cite this article in press as: M. Escobedo et al., Ann. Phys. (2010), doi:10.1016/j.aop.2010.11.001
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The behavior of the first term in the right hand side of Eq. (27) as k ? 0 is derived by determining
the leading behavior of J<l ðk; qÞ as both arguments k,q ? 0. With respect to the second term in Eq. (27)
it is far from obvious that the limit q ? 0 of J>l ðk; qÞmust be incorporated since q runs from k to1. The
key idea emerges by noting first that the considered scattering amplitude involves the assumption
that all three momenta are of the same order. It is then expected to be adequate to take the limit
q ? 0 when k ? 0 in J>l ðk; qÞ. Another more formal justification arises from the fact that J>l ðk; qÞ di-
verges as ln(q � k) as q ? k. Therefore, by assuming that @qAðq; tÞ falls off sufficiently to insure inte-
grability, the main contribution to the second term in Eq. (27) as k ? 0 comes from the region where q
is also close to zero. The leading behavior of the integral in the last term of Eq. (27) as k ? 0 is easily
determined since the singularities of ð2lþ 1ÞU0 and U l cancel each other.

The evaluation of the integrals in that limit can be carried out analytically, and they assume the
scaling form
Please
J<l ðk; qÞ 	
k�2

q
H<

l
k
q

� �
hðk� qÞ; k; q! 0; ð30Þ

J>l ðk; qÞ 	
k�2

q
H>

l
k
q

� �
hðq� kÞ; k; q! 0: ð31Þ
Explicit expressions of H<;>
l ðxÞ will be given below. In this approximation the action of the operator Kl

is written as
Kl½A�ðk; tÞ 	 k�2
Z 1

0
Hl

k
q

� �
@qAðq; tÞ

dq
q
� k�3I lAðk; tÞ; k! 0; ð32Þ
where
HðxÞ ¼ H>
l ðxÞhð1� xÞ þ H<

l ðxÞhðx� 1Þ: ð33Þ
Note that I0 ¼ 0. Since the right side of Eq. (21) behaves as @tA=ðbxÞ, the kinetic equation will be
approximated by
@tAðk; tÞ ¼ bxðkÞKl½A�ðk; tÞ; k! 0: ð34Þ
The integral operator that we have obtained in Eq. (32) is slightly different from those that appear
in the linearization of the kinetic equation of wave turbulence. However, by assuming the validity of
integration by parts and noting that n0 	 (bx(k))�1 at low momentum, the kinetic equation (21)
adopts the form
@tAðk; tÞ ¼ bxðkÞKl½A�ðk; tÞ ¼ k�h
Z 1

0
V l

k
q

� �
Aðq; tÞdq

q
; k! 0; ð35Þ
where h = 1. The kernel V lðxÞmay include a term proportional to d(x � 1), but in our case this does not
occur. Essentially, such an equation is the final result of the linearization procedure of the nonlinear
equation of wave turbulence [7], which may be obtained from the original (1) by keeping the leading
part of the integrand when n� 1 [11]. Nevertheless, in the absence of the large momentum part of the
distribution functions assuring the fall off of the integrand at large momentum, the naive justification
of this procedure may be inappropriate and a more delicate approach is required. That is the reason
why we have addressed the linearization of the full quantum kinetic equation preserving suitable
integrability properties.

In the remainder of this section we shall focus on the solutions of Eq. (34) with Kl approximated by
Eq. (32).

3.2. Evolution of perturbations close to Tc

In order to obtain the characteristic time scale of the kinetic equation, it is convenient to introduce
the dimensionless momentum variable �k ¼ k

ffiffiffiffiffiffiffiffiffiffi
b=m

p
; the scale (m/b)1/2 corresponds to the average
cite this article in press as: M. Escobedo et al., Ann. Phys. (2010), doi:10.1016/j.aop.2010.11.001
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value of the momentum carried by a quasiparticle in the weakly interacting gas. It turns out that the
right side of Eq. (34) reads
Please
@tAð�k; tÞ ¼
1
s

Z 1

0
Hl

k
q

� �
@�qAð�q; tÞ

dq
q
� I l

s�k
Að�k; tÞ; ð36Þ
where s�1 sets the inverse time scale corresponding to the scattering rate involving three excitations
in the presence of the (small) condensate. It is given by
1
s ¼

32pnca2ffiffiffiffiffiffiffi
bm
p : ð37Þ
Here b may be replaced by the inverse critical temperature of the ideal gas bc = mf(3/2)2/3/(2pn2/3)
since the above expression is linear in the small depletion nc/n. We set �t ¼ t=s for the reduced variable
time. The explicit form of H0ðxÞ is derived in the Appendix (the computations for the cases l = 1, 2 pro-
ceed in an analogous way). The results for l = 0, 1, 2 are
H0ðxÞ ¼ hð1� xÞ1
x

ln
1þ x2

1� x2

� �
þ hðx� 1Þ1

x
ln 1� 1

x4

� �
; ð38Þ

H1ðxÞ ¼ hð1� xÞ1
x

ln
1þ x
1� x

� �
þ hðx� 1Þ 2

x2 �
1
x

ln
xþ 1
x� 1

� �� �
; ð39Þ
H2ðxÞ ¼ � hð1� xÞ 1
2x

ln½ð1þ x2Þð1� x2Þ2�

þ hðx� 1Þ 3
2x3 �

1
2x

ln
x4 þ x2

ðx2 � 1Þ2

 !" #
; ð40Þ
I0 ¼ 0; ð41Þ
I1 ¼ 2� ln 16; ð42Þ

I2 ¼
3
2
� 1

2
ln 256: ð43Þ
Hereafter in this section we will drop the lines over the reduced momentum variables.
The most efficient way to manage the convolution integral of the kinetic equation is to use the

Mellin transform with respect to momentum and the Laplace transform with respect to time. If
Fðs; kÞ denotes the image of Aðk;�tÞ,
Fðs; kÞ ¼
Z 1

0
d�te�k�t

Z 1

0
Aðk;�tÞks�1 dk; ð44Þ
the evolution equation becomes
kFðs; kÞ ¼WHl
ðsÞ½�ðs� 1ÞFðs� 1; kÞ� � I lFðs� 1; kÞ þWðsÞ; ð45Þ
or alternatively
kFðsþ 1; kÞ ¼WV l
ðsÞFðs; kÞ þWðsþ 1Þ; ð46Þ
where
WVl
ðsÞ 
 �sWHl

ðsþ 1Þ � I l: ð47Þ
Here WHl
ðsÞ and W(s) are the Mellin transforms of HlðxÞ and the initial condition Aðk;0Þ, while WVl

ðsÞ
denotes the Mellin image of the kernel V lðxÞ in Eq. (35). We will assume that Aðk;0Þ has compact sup-
port to assure that W(s) is an entire function. Let us first concentrate in the l = 0 case. From Eq. (38) we
see that the Mellin function is given by
WV0 ðsÞ ¼ �2cE � 2w
s
2

� �
� p cot

ps
4

� �
; Re s 2 ð�2;4Þ; ð48Þ
where cE is the Euler constant and wðzÞ ¼ C0ðzÞ=CðzÞ is the digamma function. Note the reflection prop-
erty WV0 ð1þ sÞ ¼WV0 ð1� sÞ, in accordance with the symmetry of U0ðk; k0Þ. The fundamental strip
cite this article in press as: M. Escobedo et al., Ann. Phys. (2010), doi:10.1016/j.aop.2010.11.001
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where WV0 ðsÞ is analytic is Re s 2 (�2, 4), and contains two simple zeros at s = 0, 2. It is important for
what follows to introduce the winding number of the Mellin function WVl

ðsÞ as the increment divided
by 2p of the argument of WV l

ðsÞ as s moves from r � i1 to r + i1 along the line Res = r. In the l = 0
case, one can check numerically that the winding number j(r) of the Mellin function vanishes when
r 2 (0,2).

To proceed further one must solve Eq. (46) for Fðs; kÞ. (In this paragraph we will assume an arbi-
trary non-negative value for h.) This can be accomplished by following the method of Ref. [12], briefly
reviewed in the sequel. These authors have shown that when an interval of zero winding exists within
the fundamental strip, (r�, r+) � (a, b), then Eq. (46) has a unique solution. It can be constructed using
a particular solution BðsÞ of the homogeneous equation
Please
Bðsþ hÞ ¼ �WðsÞBðsÞ; Re s 2 ða; bÞ; ð49Þ
whose requisite properties have been described in Ref. [12]. The most important features of BðsÞ are
the meromorphic property in the strip Res 2 (a, b + h), and its analyticity and absence of zeros in the
strip Res 2 (r�, r+ + h). The location of the poles and zeros of BðsÞ outside that interval is dictated by
the set of zeros of the Mellin function within the fundamental strip. They determine the asymptotic
properties of the solution. In particular, it turns out that the pole of BðsÞwith maximal real part deter-
mines the asymptotics of Aðk;�tÞ as k ? 0. Now, by expressing the Mellin image of the perturbation as
Fðs; kÞ ¼ BðsÞf ðs; kÞ; ð50Þ
the function f satisfies the inhomogeneous difference equation with constant coefficients
kf ðs; kÞ þ f ðs� h; kÞ ¼ WðsÞ
BðsÞ ; Re s 2 ðr�;rþ þ hÞ ð51Þ
which has an inverse Mellin image given by
ðkþ k�hÞaðk; kÞ ¼ QðkÞ ¼ 1
2pi

Z rþi1

r�i1

WðsÞ
BðsÞ k�sds; r 2 ðr�;rþ þ hÞ: ð52Þ
The end step is to write the convolution corresponding to Eq. (50) and to invert the Laplace transform.
This yields the solution
Aðk;�tÞ ¼
Z 1

0
Z k

q

� �
expð�q�h�tÞQðqÞ dq

q
; ð53Þ
in terms of the inverse Mellin transform of the base function
ZðkÞ ¼ 1
2pi

Z rþi1

r�i1
BðsÞk�sds; Re s 2 ðr�;rþ þ hÞ: ð54Þ
Notice that when h > 0 the asymptotic expansion of the solution (53) as �t !1 requires the determi-
nation of the leading behavior of Q(k) as k ?1. According to Eq. (52), this comes from the zero of BðsÞ
with minimal real part.

Next we turn to the l = 0 case. Due to the presence of the zero of WV0 ðsÞ at s = 0, the function B0ðsÞ
has a sequence of simple poles at s = 0, �1,�2, . . . , with the behavior
BðsÞ 	 � Bð1Þ
W 0
V0
ð0Þ

1
s
; s! 0; ð55Þ
then
ZðkÞ 	 � Bð1Þ
W 0
V0
ð0Þ

; k! 0; ð56Þ
where Bð1Þ is an arbitrary constant. This leads to a behavior independent of k at low momentum
Aðk;�tÞ 	 � Bð1Þ
W 0
V0
ð0Þ

Z 1

0
expð��t=qÞQðqÞdq

q
; k! 0: ð57Þ
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Note that Bð1Þmust cancel another similar factor arising from Q(q). On the other hand, the zero of BðsÞ
with minimal real part is at s = 3, and it comes from the zero of WV0 ðsÞ at s = 2. Using
Bðsþ 2Þ ¼WV0 ðsþ 1ÞWV0 ðsÞBðsÞ when s ? 1 we obtain
Please
BðsÞ 	 Bð1ÞWV0 ð1ÞW
0
V0
ð2Þðs� 3Þ; s! 3: ð58Þ
This zero determines the high momentum limit of Q(k) in the form
QðkÞ 	 � Wðs ¼ 3Þ
Bð1ÞWV0 ð1ÞW

0
V0
ð2Þ

1

k3 ; k!1; ð59Þ
so, the long time behavior of the solution is given by
Aðk;�tÞ 	 � Wðs ¼ 3Þ
Bð1ÞWV0 ð1ÞW

0
V0
ð2Þ

Z 1

0
Z k

q

� �
expð��t=qÞdq

q4 ;
�t !1; ð60Þ
which possess the self-similarity property
Aðk;�tvÞ ¼ 1
�t3
A k

�t
;v

� �
: ð61Þ
Finally, it is easy to derive in closed form the asymptotics in the more restricted regime k! 0;�t !1
either from Eq. (57) combined with (59), or from Eq. (60) combined with (56). The result is
Aðk;�tÞ 	 2Wðs ¼ 3Þ
W 0
V0
ð0ÞWV0ð1ÞW

0
V0
ð2Þ

1
�t3
; k! 0; �t !1; ð62Þ
where
W 0
V0
ð0ÞWV0 ð1ÞW

0
V0
ð2Þ ¼ p4

144
ðp� ln 16Þ: ð63Þ
The source term dC12 only receives contribution from the l = 0 component,
dC12 ¼
d
dt

Z
n0ð1þ n0Þvðk; tÞ

d3k

ð2pÞ3

¼ 1
4p5=2

d
dt

Z 1

0
n0ð1þ n0ÞbxðkÞA00ðk; tÞk2dk; ð64Þ
or using the above low momentum approximation
dC12 	
1

4p5=2

d
dt

Z 1

0

A00ðk; tÞ
bxðkÞ k2dk

¼ m3=2

2p5=2b3=2s
d
d�t
Fðs ¼ 1;�tÞ; ð65Þ
which contains the partial Mellin transform of A00ðk;�tÞ for s = 1. From the convolution in Eq. (53) one
finds
Fðs;�tÞ ¼ BðsÞ
Z 1

0
expð��t=qÞQðqÞqs�1dq: ð66Þ
The substitution of the large momentum behavior of Q(k) given in Eq. (59) yields the asymptotics
Fðs;�tÞ 	 �BðsÞ Wð3ÞCð3� sÞ�ts�3

Bð1ÞWV0ð1ÞW
0
V0
ð2Þ

; �t !1; Re s < 3: ð67Þ
Combining this with Eq. (65) then gives the long-time behavior of the source term
dC12 	
m3=2Wð3Þ

p5=2b3=2sWV0ð1ÞW
0
V0
ð2Þ

1
�t3
; �t !1: ð68Þ
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Since the energy of the perturbation is proportional to Fðs ¼ 3;�tÞ, we see that
Please
Fðs ¼ 3;�tÞ ¼ Wð3Þ; �t !1; ð69Þ
in accordance with energy conservation.
What about the non-isotropic perturbations? The Mellin functions corresponding to the l = 1, 2 har-

monics are
WV1 ðsÞ ¼ �2cE þ
2

s� 1
� w

1þ s
2

� �
� w

1� s
2

� �
; Re s 2 ð�1;3Þ; ð70Þ

WV2 ðsÞ ¼ � 2cE þ ln 16þ 6
sðs� 2Þ � p cot

ps
2

� �
þ p

2 sin ps
2

	 
� 2w
s
2

� �
; Re s 2 ð�2;4Þ: ð71Þ
Now WV1 ðsÞ has a double zero at s = 1, and the winding number j does not vanish on the entire strip of
analyticity; the corresponding values are 1, (�1) if Res 2 (1,3), (Res 2 (�1,1)). For l = 2, the winding
number does not assume the value zero either, but now j = 1 on the entire interval (�2, 4), and the
Mellin function does not vanish in the strip of analyticity. In these situations of absence of an interval
of zero winding, Balk and Zakharov [12] have shown that the initial value problem for Aðk;0Þ is not
well posed, signaling the non-uniqueness of the solution when j > 0 on the entire interval (as in
the l = 2 case), or a strong instability of exponential growth if j ? 0 (as in the l = 1 case). In terms of
the Mellin function, we have WV1;2 ð0Þ > 0, which at least is a sufficient condition [12] for the instability
of the Rayleigh–Jeans spectrum n / k�2 under anisotropic perturbations. Thus, it seems praiseworthy
to assign this property to the Bose–Einstein equilibrium solution of the kinetic equation with a colli-
sion term given by Eqs. (4) and (5).

Finally, it may be instructive to compare these findings with those of Ref. [13]. The application of
the methods of wave turbulence theory to the study of the binary collision term C22, approximated
when n0� 1, showed the Mellin function W22(s) to be symmetric with respect to s = 3/2, reflecting
the symmetry of the corresponding kernel U0. At the same time, it was shown that W22(s = 0) > 0 while
W22(s = 1) = 0. As a consequence, such approximated form of C22 destroyed energy conservation but
was consistent with particle number conservation. By simply shifting the minimum of W22(s) one
can get W22(s = 0) = 0 and W22(s = 1) – 0. So that another approximated form of C22, which conserves
the energy but destroys the conservation of the particle number, appears as possible. However, given
the reflection property of W22(s) and the location of its zeros, it does not seem possible to get a low
momentum approximation maintaining both conservation laws.
4. Evolution of perturbations in the thermal regime bck� 1

In this section we consider the regime x(k)� kBT� gn, where the energy of quasiparticles is x =
ck, with c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gnm�1

p
. Their low-energy interactions are well described by the squared amplitude jMj2

given by Eq. (7). By ignoring the next positive contribution (8m2c)�1k3 in the dispersion law all U l be-
come equal to ð2lþ 1ÞU0, due to the collinearity of wave vectors in the collision integral. Therefore in
this approximation, the kinetic equation is the same for all values of l. The low momentum limit of this
kernel is
U0ðk; k0Þ 	 �
9

32p2mnb3c3

hðk� k0Þ
k

þ hðk0 � kÞ
k0

� �
; bck! 0; bck0 ! 0: ð72Þ
A comparison between the exact and the approximated kernels is shown in Fig. 2. Our first task is to
find an evolution equation consistent with energy conservation. When Eq. (72) is substituted into
Eq. (22), the latter turns into
cite this article in press as: M. Escobedo et al., Ann. Phys. (2010), doi:10.1016/j.aop.2010.11.001
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Fig. 2. The kernel U0ðk; k0Þ in the low temperature regime when bck� 1. The continuous line corresponds to the exact kernel for
bck = 1/4. The dashed line is the kernel obtained with Uðk; k0Þ approximated by Eq. (72) for bck = 1/4.
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Please
K½A�ðk; tÞ ¼ � 9k3

8pmnb3c3

Z 1

0

k04

k4 hðk� k0Þ þ k03

k3 hðk0 � kÞ
 !

Aðk0; tÞdk0

k0

þ 9k3

8pmnb3c3

K3

3k3 �
1

12

 !
Aðk; tÞ; ð73Þ
where we have introduced an ultraviolet cutoff K� k in the integral which gives the coefficient of
Aðk; tÞ. We left for the moment this term undetermined. The well-defined convolution term in the
above equation determines the (provisional) class of admissible solutions of the approximated evolu-
tion equation. Such a class would be formed by functions Aðk; tÞ which grow as k ? 0 more slowly
than k�4, and fall off faster than k�3 as k ?1. In accordance with that, the integral for the Mellin
transform of the gain term
�
Z 1

0
½x�4hðx� 1Þ þ x�3hð1� xÞ�xs�1dx ¼ 1

ðs� 3Þðs� 4Þ ; ð74Þ
is convergent for 3 < Res < 4. Note however that the analytic continuation of this integral to s = 0 is the
value of the gain term formally evaluated for Aðk0; tÞ ¼ 1. Based on energy conservation, we may insist
on considering the functions A ¼ constant within the admissible class of solutions, so the loss term
must cancel out this value 1/12. Therefore, the replacement K3/(3k3) � 1/12 ? �1/12 produces such
a cancellation.

The approximated evolution equation obtained in this way reads
@tAðk; tÞ ¼ �
9k4

8pmnb2c2

Z 1

0

k04

k4 hðk� k0Þ þ k03

k3 hðk0 � kÞ
 !

Aðk0; tÞdk0

k0

� 3k4

32pmnb2c2
Aðk; tÞ; ð75Þ
which again has the form of a linearized kinetic equation of wave turbulence, where the degree of
homogeneity is now h = �4. In fact, we will find that the above equation still introduces a conflict with
energy conservation. This defect is repaired by adding a source term independent of k to the right-
hand side of Eq. (75). It has the form
UðtÞ ¼ 9
8pmnb2c2

Z 1

0
Aðk0; tÞk03dk0; ð76Þ
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and produces a partial cancellation of the integral term of Eq. (75) with the result
Please
@tAðk; tÞ ¼ �
3k4

32pmnb2c2
Aðk; tÞ

þ 9k4

8pmnb2c2

Z 1

k

k04

k4 �
k03

k3

 !
Aðk0; tÞdk0

k0
: ð77Þ
This implies that the class of solutions of the improved equation must be changed. Such a class is
formed indeed by functions which fall off faster than k�4 as k ?1. In order to understand the role
of the source term and how it arises, it is convenient first to discuss the solution of the wrong evolu-
tion based on Eq. (75).

By introducing the function
VðxÞ ¼ �dðx� 1Þ � 12x�4hðx� 1Þ � 12x�3hð1� xÞ; ð78Þ
we define the Mellin function corresponding to Eq. (75) as
WVðsÞ ¼
Z 1

0
VðxÞxs�1dx ¼ � sðs� 7Þ

ðs� 3Þðs� 4Þ ; Re s 2 ð3;4Þ; ð79Þ
which has zero winding in the entire strip of analyticity, and WVðsþ 7=2Þ ¼WVð7=2� sÞ. The corre-
sponding difference equation for the Laplace–Mellin image of A becomes
kFðs� 4; kÞ ¼ vWVðsÞFðs; kÞ þWðs� 4Þ; Res 2 ð3;4Þ; ð80Þ
where v = 3/(32pmnb2c2). The method used to solve Eq. (80) is the same as before. We seek an appro-
priate solution of Bðs� 4Þ ¼ �WVðsÞBðsÞ for Res 2 (3,4), and we write the solution in the factorized
form
Fðs; kÞ ¼ BðsÞ
Z 1

0

QðkÞ
vk4 þ k

ks�1dk; ð81Þ

QðkÞ ¼ 1
2pi

Z Re sþi1

Re s�i1

WðsÞ
BðsÞ k�sds: ð82Þ
In view of Eq. (80) and such a factorization, we need a solution BðsÞ which has neither zeros nor poles
when Res 2 (�1,4). We can write the required function as
BðsÞ ¼
C 7�s

4

	 

C 1þ s�3

4

	 

C 4�s

4

	 

C 1þ s

4

	 
 ¼ 3� s
s

sin ps
4

	 

sin p

4 ðsþ 1Þ
	 
 : ð83Þ
The other solutions of the homogeneous difference equation in terms of products and fractions of C-
functions, such as
C � s
4

	 

C 1þ s�4

4

	 

C 3�s

4

	 

C 1þ s�7

4

	 
 ¼ 3� s
s

sin p
4 ð1þ sÞ
	 

sin p

4 s
	 
 ; ð84Þ

C 7�s
4

	 

C � s

4

	 

C 3�s

4

	 

C 4�s

4

	 
 ¼ C 1þ s�3
4

	 

C 1þ s�4

4

	 

C 1þ s�7

4

	 

C 1þ s

4

	 
 ¼ s� 3
s

; ð85Þ
are not appropriate for the present problem since they have a pole at s = 0 within the strip Re-
s 2 (�1,4). In accordance with the factorization of Fðs; kÞ, one finds the solution as the convolution
Aðk; tÞ ¼
Z 1

0
Z k

q

� �
expð�vq4tÞQðqÞ dq

q
; ð86Þ
where ZðkÞ and Q(k) are given by the integrations in Eqs. (54) and (52) with r 2 (�1,4). Thus, to derive
the asymptotics of the perturbation as t ?1, we must evaluate the low momentum behavior of Q(k).
This is dictated by the pole of BðsÞ�1 at s = �4 which leads to
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Please
QðkÞ 	 �27=2Wð�4Þ
7p

k4
; k! 0: ð87Þ
If Fðs; tÞ denotes the Mellin image of the solution Aðk; tÞ, the above result permits the calculation of
the leading behavior of the quotient Fðs; tÞ=BðsÞ as t ?1. It reads
Fðs; tÞ
BðsÞ ¼

Z 1

0
expð�vk4tÞQðkÞks�1dk

	 �23=2Wð�4Þ
7p

C 1þ s
4

� �
ðvtÞ�1�s=4

; t !1; Re s > �4: ð88Þ
We can see now the violation of energy conservation. In the approximation where n0� 1 this requires
for any time that
dE
dt
¼ 1

4p5=2b
d
dt

Z 1

0
A00ðk; tÞk2dk ¼ 1

4p5=2b
d
dt
Fðs ¼ 3; tÞ ¼ 0; ð89Þ
or Fðs ¼ 3; tÞ ¼ Fðs ¼ 3; t ¼ 0Þ ¼ Wð3Þ, since W(3) corresponds to the energy of the initial perturba-
tion. But, in accordance with the above asymptotics, the quantity Fðs ¼ 3; tÞ assumes a value propor-
tional to Wð�4ÞBð3Þt�7=4 for large time, so dE/dt – 0. Another indication that Eq. (75) is conflicting
comes from the fact that, in order to check energy conservation, the integration of both sides after
multiplication by k2 leads to
d
dt

Z 1

0
Aðk; tÞk2dk ¼ v

Z 1

0
Aðq; tÞq6dq

Z 1

0
VðxÞx6dx; ð90Þ
which does not converge for the class of functions considered up till now.
To obtain an improved evolution equation, let us consider a factorized solution Fðs; tÞ for a differ-

ent base function respecting energy conservation. If we assume that Q(k) 	Dka as k ? 0, then the limit
behavior of Fðs; tÞ as t ?1 is
Fðs; tÞ ¼ BðsÞ
Z 1

0
expð�vk4tÞQðkÞks�1dk

	 D
4
BðsÞC sþ a

4

� �
ðvtÞ�ðsþaÞ=4

; Reðsþ aÞ > 0: ð91Þ
Since energy conservation requires that Fðs ¼ 3; t ¼ 1Þ ¼ Wð3Þ, we see that a = �3, and BðsÞ must
possess a simple zero at s = 3 in order to cancel the pole of the gamma function. Furthermore, to
accomplish the low momentum behavior of Q(k), the prescription for Res in
QðkÞ ¼ 1
2pi

Z Re sþi1

Re s�i1

WðsÞ
BðsÞ k�s ds; ð92Þ
and the analog of (54) must be Res > 3. Clearly, if the base function assumes the value
BðsÞ ¼ s� 3
s

; Res > 3; ð93Þ
which was discarded before, the requirement Fðs ¼ 3; tÞ ¼ Wð3Þ is accomplished for large time.
Some features of the solution generated by this base function are the following. The inverse images

of WðsÞ=BðsÞ and BðsÞ are simply
QðkÞ ¼ Aðk;0Þ þ 3

k3

Z 1

k
Aðq;0Þq2 dq; ð94Þ

ZðkÞ ¼ dðk� 1Þ � 3hð1� kÞ; ð95Þ
and the behavior of Q(k) as k ? 0 reads
QðkÞ 	 3Wð3Þk�3
; k! 0: ð96Þ
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Hence the corresponding solution is written as
Please
Aðk; tÞ ¼
Z 1

0
Z k

q

� �
expð�vq4tÞQðqÞdq

q
;

¼ expð�vk4tÞQðkÞ � 3
Z 1

k
expð�vq4tÞQðqÞdq

q
;

ð97Þ
which for large t assumes the value
Aðk; tÞ 	 expð�vk4tÞQðkÞ; t !1: ð98Þ
Similarly, the behavior or the source term as t ?1 becomes
dC12 ¼
1

4p5=2bc

Z 1

0
@tA00ðk; tÞkdk

¼ v
4p5=2bc

�
Z 1

0
expð�vk4tÞk5QðkÞdkþ 3

Z 1

0

dq
q

expð�vq4tÞq4QðqÞ
Z q

0
k dk

� �

¼ v
8p5=2bc

Z 1

0
expð�vk4tÞk5QðkÞdk; ð99Þ
so the insertion of Eq. (96) produces
dC12 	
v1=4Cð7=4ÞWð3Þ

8p5=2bct3=4 ; t !1: ð100Þ
We can check directly energy conservation for any time,
Z 1

0
@tAðk; tÞk2dk ¼ �v

Z 1

0
expð�vk4tÞk6QðkÞdk

þ 3v
Z 1

0

dq
q

expð�vq4tÞq4QðqÞ
Z q

0
k2dk ¼ 0: ð101Þ
It remains to derive the resulting evolution equation satisfied by Aðk; tÞ given in Eq. (97). From the
homogeneous difference equation evaluated for BðsÞ in Eq. (85) it follows that
WVðsÞBðsÞ ¼ �Bðs� 4Þ ¼ �1þ 3
s� 4

; Re s 2 ð3;4Þ: ð102Þ
Applying the inverse Mellin transform we obtain
Z 1

0
V k

q

� �
ZðqÞdq

q
¼ �dðk� 1Þ � 3

k4 hðk� 1Þ

¼ �k�4ZðkÞ � 3

k4 : ð103Þ
The origin of the extra term proportional to k�4 is the pole of BðsÞ at s = 0. With this result at hand, the
integral term of Eq. (75) evaluated for Aðk; tÞ in Eq. (97) becomes
Z 1

0
V k

q

� �
Aðq; tÞdq

q
¼ 1

vk4 @tAðk; tÞ �
3

k4

Z 1

0
expð�vq4tÞQðqÞq3dq

¼ 1

vk4 @tAðk; tÞ �
3

k4

Fðs ¼ 4; tÞ
Bðs ¼ 4Þ

¼ 1

vk4 @tAðk; tÞ �
12

k4

Z 1

0
Aðq; tÞq3dq: ð104Þ
The last term can be understood as a self-consistent source which restores energy conservation. In
consequence, if one uses the partial cancellation produced by this term, the corrected evolution equa-
tion adopts the form
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Please
@tAðk; tÞ ¼ vk4
Z 1

0
V k

q

� �
Aðq; tÞdq

q
; ð105Þ
where
VðxÞ ¼ �dðx� 1Þ � 12x�3hð1� xÞ þ 12x�4hð1� xÞ; ð106Þ
which gives rise to the same Mellin function as before
WVðsÞ ¼ �
sðs� 7Þ

ðs� 3Þðs� 4Þ ; Re s > 4; ð107Þ
but with a different strip of analyticity. The relevant interval of zero winding is now Res 2 (7,1) and
the base function BðsÞ has neither zero nor poles in the corresponding strip Res 2 (3,1). We expect
that the evolution equation obtained in this way captures the essential features of the low momentum
regime at low temperature.

Dominance of C12 over C22. To conclude this section, it is interesting to observe that the collision
term that we have considered in this and the previous section is the prevailing summand in the
sum C12 + C22 in the low momentum regime, n0(k)� 1. This is based on the rules of power counting
for the degrees of homogeneity h of the linearized collision integral which have been given in Ref. [12].
These authors have shown that when the dispersion law has the form x(k) / kd, and the scattering
amplitudes of C12 and C22 scale according to
Mðek; ek1; ek2Þ ¼ egMðk;k1;k2Þ; ð108Þ
Mðek; ek1; ek2; ek3Þ ¼ ejMðk;k1;k2;k3Þ; ð109Þ
the index h is given by
h½C12� ¼ d� 2g� dþ m; ð110Þ
h½C22� ¼ d� 2j� 2dþ 2m; ð111Þ
where d is the spatial dimension, and m is the exponent in a solution n0(k) / k�m of C[n0] = 0.
Near the critical temperature, the scattering amplitude involving four excitations comes from the

term g(w�w)2 in the effective Hamiltonian, where w�(w) creates (destroys) excitations, while terms as
g
ffiffiffiffiffi
nc
p

wyww give rise to the scattering amplitude involving three excitations. In both cases j = g = 0
sinceM4;3 / g; g

ffiffiffiffiffi
nc
p

. The insertion into Eq. (111) of d = 2, j = 0, d = 3, m = 2 produces h[C22] = 0, while
h[C12] = 1. Thus, we can neglect the contribution of C22 in the linearized description at low momentum.

At very low temperature, when the excitations are phonons, the effective description is made in
terms of a Hamiltonian H[n(x), h(x)] depending on the particle density n and the Goldstone mode or
phonon field h conjugate to n. Now, since each h-field carries the oscillator factor 1=

ffiffiffiffiffiffiffiffiffiffiffi
xðkÞ

p
, the con-

jugate field n goes with
ffiffiffiffiffiffiffiffiffiffiffi
xðkÞ

p
. Thus, a term in the Hamiltonian of order nN produces a scattering

amplitude MN proportional to
QN

i

ffiffiffi
k
p

i, where ki denotes the momentum of the quasiparticle i in the
process. This means that g = 3/2, according to Eq. (7), and j = 4/2 = 2. Therefore, with d = 1, m = 1,
we find h[C12] = �4 and h[C22] = �7, which shows that C12 prevails over C22.

5. Evolution of perturbations in the quantum regime bck� 1

In this section we consider the kinetic equation and its solutions when the term U0ðk; k0Þ of the col-
lision integral (22) is approximated in the quantum regime kBT� ck� gn. This proceeds by replacing
n0(1 + n0) ? e�bck on the right side of Eq. (21), while U0ðk; k0Þ is symmetrically approximated by its
leading behavior as bck ?1 (see Fig. 3),
U0ðk; k0Þ 	
9

64p2mn
ðe�bckðk� k0Þ2hðk� k0Þ

þ e�bck0 ðk� k0Þ2hðk0 � kÞÞ; bck!1: ð112Þ
The relative size of the second term is Oðe�bcðk0�kÞÞ. The corresponding subleading contribution to the
collision term may be evaluated by using the Watson’s lemma [14]
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Fig. 3. U0ðk; k0Þk03 in the quantum regime, bck� 1. The continuous line corresponds to the exact kernel for bck = 10. The dashed
line is the kernel obtained with U0ðk; k0Þ approximated by Eq. (112) for bck = 10.
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Please
9
16pmn

Z 1

k
e�bck0 ðk� k0Þ2k03ðAðk0; tÞ � Aðk; tÞÞdk0

	 27e�bckk3

8pmnb4c4
@kAðk; tÞ; b!1: ð113Þ
Although the approximation that arises by ignoring this contribution is necessarily non-energy con-
serving, it may be interesting to explore its consequences, since we would expect this drawback to
have a negligible effect as T ? 0. Therefore we consider the evolution equation
@tAðk; tÞ ¼
9

16pmn
1
k

Z k

0
ðk� k0Þ2k03ðAðk0; tÞ � Aðk; tÞÞdk0

¼ 9k5

16pmn

Z k

0

k0

k

� �6
k
k0
� 1

� �2

Aðk0; tÞdk0

k0
� 3k5

320pmn
Aðk; tÞ; ð114Þ
where, for convenience, we have written the gain term as a convolution. Unsurprisingly we see that
the loss term reduces to �CBðkÞAðk; tÞ where CB(k) = 3k5/(320pmn) is precisely the decay width of
Beliaev damping at T = 0 [10].

Although in this regime, n0 	 e�bck� 1, we are not in the vicinity of a power law spectrum as those
appearing in the wave turbulence framework, the above linear operator is homogeneous of degree
h = �5. Therefore, we can analyze the evolution equation with methods similar to the ones we have
described before. We define the Mellin function corresponding to Eq. (114)
WðsÞ ¼ �1þ 60
Z 1

1

ðx� 1Þ2

x6 xs�1dx

¼ � sðs2 � 15sþ 74Þ
ðs� 4Þðs� 5Þðs� 6Þ ; Res < 4: ð115Þ
The interval of zero winding within the strip of analyticity is (�1,0). Rewritten in terms of the Mellin–
Laplace image Fðs; tÞ of Aðk; tÞ and the Mellin image W(s) of the initial condition Aðk;0Þ, the evolution
equation reads
kFðs� 5; kÞ ¼ vBWðsÞFðs; kÞ þWðs� 5Þ; Res < 0; ð116Þ
where vB = 3/(320pmn). Now we seek an appropriate solution of the difference equation Bðs� 5Þ ¼
�WðsÞBðsÞ in the strip of zero winding, Res 2 (�1, 0), and we write the solution Fðs; kÞ in the
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factorized form (50). To establish this particular solution we require that BðsÞ has neither zeros nor
poles for Res 2 (�1, 0). This requirement is consistent with the location of the zero of the Mellin func-
tion at s = 0. It must produce only a simple pole of BðsÞ at s = 0 contained in the strip Re 2 (�1,0]. The
base function turns out to be
Please
BðsÞ ¼
C � s

5

	 

C 15

10� i
ffiffiffiffi
71
p

10 � s
5

� �
C 15

10þ i
ffiffiffiffi
71
p

10 � s
5

� �
C 4�s

5

	 

C 5�s

5

	 

C 6�s

5

	 
 ; ð117Þ
and the inverse images of B and 1=B are expressed as Mellin–Barnes integrals along a vertical path
with Res < 0. The inverse of BðsÞ may be computed by making the splitting ðBðsÞ � 1Þ þ 1 which pro-
duces a Meijer G function and a delta function:
ZðkÞ ¼ 5G0;3
3;3 k5 1; �5þi

ffiffiffiffi
71
p

10 ; �5�i
ffiffiffiffi
71
p

10

0; 1
5 ;� 1

5

�����
" #

þ dðk� 1Þ ¼ Z1ðkÞ þ dðk� 1Þ: ð118Þ
It remains to find the second factor Q(k) of the convolution which gives the solution of the initial value
problem
Aðk; tÞ ¼
Z 1

0
Z k

q

� �
expð�vBq5tÞ QðqÞdq

q
: ð119Þ
In particular, if the initial perturbation is Aðk; 0Þ ¼ Cdðk� k0Þ, the inversion of WðsÞ=BðsÞ yields Q(k) in
the form
QðkÞ ¼ 5C
k0

G0;3
3;3

k5

k5
0

0; 1
5 ;� 1

5

1; �5þi
ffiffiffiffi
71
p

10 ; �5�i
ffiffiffiffi
71
p

10

�����
" #

þ Cdðk� k0Þ ¼ Q 1ðkÞ þ Cdðk� k0Þ: ð120Þ
Since all singularities of BðsÞ and 1=BðsÞ are located in the half-plane Res P 0, the Meijer function
G0;3

3;3ðzÞ vanishes if 0 6 z < 1. Some explicit limiting forms are
G0;3
3;3 z

0; 1
5 ;� 1

5

1; �5þi
ffiffiffiffi
71
p

10 ; �5�i
ffiffiffiffi
71
p

10

�����
" #

	 �Mðz� 1Þ; z! 1þ; ð121Þ
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1; �5þi
ffiffiffiffi
71
p

10 ; �5�i
ffiffiffiffi
71
p
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5 ;� 1

5

�����
" #

	 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 2

ffiffiffi
5
pp

5 cosh
ffiffiffiffiffiffi
71
p

p=10
� � ; z!1; ð122Þ
where M � 0.48. Consequently, the solution may be rewritten as
Aðk; tÞ ¼
Z k

0
Z1

k
q

� �
expð�vBq5tÞQðqÞdq

q
þ expð�vBk5tÞQðkÞ

¼ C
k0
Z1

k
k0

� �
exp �vBk5

0t
� �

hðk� k0Þ þ expð�vBk5tÞQðkÞ

þ
Z k

0
Z1

k
q

� �
expð�vBq5tÞQ 1ðqÞ

dq
q
: ð123Þ
It is interesting to find the leading behavior of the last integral as t ?1. To apply the Watson’s lemma,
we use Eq. (121) and thus we obtain
Z k

0
Z1

k
q

� �
expð�vBq5tÞQ 1ðqÞ

dq
q
	�5CM

k0
Z1

k
k0

� �
hðk�k0Þ�

Z 1

k0

expð�vBq5tÞ q5

k5
0

�1

 !
dq
q

	�CM
k0
Z1

k
k0

� �exp �vBk5
0t

� �
v2

Bk10
0 t2

�hðk�k0Þ; t!1: ð124Þ
We see that this integral corresponds to a subleading term of O((CB(k0)t)�2) in the expression for
Aðk; tÞ. Noting that when k > k0 the second term in Eq. (123) proportional to Q1(k) is subleading
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with respect to the first one, we obtain the final result for the long time asymptotics of the
solution
Please
Aðk; tÞ 	 C
k0
Z1

k
k0

� �
exp �vBk5

0t
� �

hðk� k0Þ þ C exp �vBk5
0t

� �
dðk� k0Þ; t !1; ð125Þ
or
Aðk; tÞ 	 6C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 2

ffiffiffi
5
pp

k0 cosh
ffiffiffiffiffiffi
71
p

p=10
� � exp �vBk5

0t
� �

; t !1; k� k0: ð126Þ
6. Concluding remarks

In this paper we have studied the temporal evolution of a perturbation of the equilibrium distribu-
tion of noncondensate atoms in Bose gases as described by a kinetic equation including only collisions
between condensate and noncondensate atoms. Due to the difficulty to address this problem without
any simplification, we have considered some approximations to the kinetic equation in different tem-
perature regimes. The evolution equations that arise by approximating the full kinetic equation when
the energy of an excitation is small compared to the thermal energy turn out to have definite homo-
geneity properties, and may be regarded as kinetic equations for waves in the limit of large occupation
numbers. This occurs near the critical temperature when the dispersion law is quadratic, and near zero
temperature for Bogoliubov excitations of very low energy. Notably, by using the explicit expression
that determines the degree of homogeneity, one may easily show the dominance of C12 over the binary
collision term C22 at low momentum. This provides a justification to our approach (i.e. dealing only
with C12). In the opposite quantum regime where the occupation number of noncondensate atoms de-
creases exponentially with the momentum, we recover unexpectedly a kinetic equation of the same
type of the wave-turbulence equations in the previous situations.

To obtain the solution of the initial value problem in all cases, we have applied the method devel-
oped by Balk and Zakharov [7,12] to analyze the behavior of weak-turbulent media near Kolmogorov
spectra. This is a scarcely used technique due to the difficulties in the analytical calculation of the Mel-
lin function and the base function, mainly for binary processes 2 M 2 in turbulent media. Here, how-
ever, this task is made easier as we deal with splitting processes 1 M 2 and the background
distribution corresponds to thermal equilibrium.

Just below the critical temperature when the condensate is small, the isotropic perturbations and
the time derivative of the condensate density vanish for long time according to power laws, while
anisotropic perturbations are unstable. In the thermal regime at low temperature, the requirement
of energy conservation leads to a modification of the naive form of the evolution equation, and indeed
an additional source term is needed. All solutions of the correct equation decay exponentially for large
time and the time derivative of the condensate density tends to zero according to a power law. In the
quantum regime at very low temperature the large time behavior of perturbations for the non-con-
densed dynamics turns out to be exponentially decaying due to Beliaev damping processes.

Finally, one may contemplate the possibility of using a similar analysis to that we have presented in
this paper to evaluate estimations of the transport coefficients.
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Appendix. Low momentum analysis of the linearized Boltzmann equation

In this appendix we give some details about the derivation of the limiting form of the collision term
for small momentum. From Eq. (15) in the regime near the critical temperature, and setting
u ¼ cos hkk0 , the following expression for Uðk;k0Þ follows easily
Please
1
16nca2m�2 Uðk;k

0Þ ¼ n0ðxðkÞÞ½1þ n0ðxðk0ÞÞ�½1þ n0ðxðkÞ �xðk0ÞÞ�
�
�mhðk� k0Þ

kk0
d u� k0

k

� �
þ ðk$ k0Þ

�

� n0ðxðkÞ þxðk0ÞÞ½1þ n0ðxðkÞÞ�½1þ n0ðxðk0ÞÞ� �
m
kk0

dðuÞ; ðA:1Þ
where n0 is the Bose distribution function with zero chemical potential
n0ðxÞ ¼
1

ebx � 1
: ðA:2Þ
The coefficients U lðk; k0Þ are easily evaluated using the standard formula
U lðk; k0Þ ¼
2lþ 1

2

Z 1

�1
Uðk;k0ÞPlðuÞdu: ðA:3Þ
To extract the low momentum behavior of J<0 ðk; qÞ and J>0 ðk; qÞ we first perform exactly the integra-
tions of Eqs. (28) and (29). These may be expressed in closed form in terms of polylogarithmic func-
tions Lin(x), where x is an exponential of the some combination of reduced energies. As an example,
the expressions for J<;>0 ðk; qÞ near the critical temperature read
J<0 ðk; qÞ ¼ �
4pnca2

bm2

ebxðkÞ

ðebxðkÞ � 1Þ2k
� b2q4 � 4bmq2 ln

1� e�bðxðkÞ�xðqÞÞ

1� e�bðxðkÞþxðqÞÞ

�
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hðk� qÞ; ðA:4Þ
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#
hðq� kÞ:ðA:5Þ
The form of other kernels J>l ðk; qÞ with l – 0 are similar. If we substitute the asymptotic expansion of
Lin(x) near x = 1,
Li2ðxÞ 	
p2

6
þ lnð1� xÞ

X1
n¼1

ð1� xÞn

n
�
X1
n¼1

ð1� xÞn

n2 ; x! 1; ðA:6Þ
we obtain
J<0 ðk; qÞ 	 hðk� qÞ64pncma2
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1

k3 ln 1� q4

k4

� �
; k; q! 0; ðA:7Þ

J>0 ðk; qÞ 	 hðq� kÞ64pncma2

b2

1

k3 ln
q2 þ k2

q2 � k2 ; k; q! 0: ðA:8Þ
These results yield the expression of H0ðxÞ given in Eq. (38), once the factor 64pncma2=b2�ffiffiffiffiffiffiffiffiffiffi
b=m

p
� b=2m is extracted to define the time scale s in Eq. (36).

Near zero temperature the expression for Uðk;k0Þ reads
Uðk;k0Þ ¼ 9ðk� k0Þ2hðk� k0Þ
32p2mn

n0ðxÞ½1þ n0ðx0Þ�½1þ n0ðx�x0Þ� þ ðk$ k0Þ
" #

dðu� 1þ 0Þ

� 9ðkþ k0Þ2

32p2mn
n0ðxþx0Þ½1þ n0ðxÞ�½1þ n0ðx0Þ�dðu� 1þ 0Þ: ðA:9Þ
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We note that the d(u � 1 + 0) arise because the dispersion law x = ck + ak3 is not strictly linear and,
since a > 0, the angle between the wave vectors is close to zero. The above expression leads directly
to the limiting forms given in Eqs. (72) and (112).
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