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Abstract

In this paper we analyze the choice between two technologies for producing electricity. In particular, the
firm has to decide whether and when to invest either in a Natural Gas Combined Cycle (NGCC) power
plant or in an Integrated Gasification Combined Cycle (IGCC) power plant, which may burn either coal or
natural gas. Instead of assuming that fuel prices follow standard geometric Brownian motions, here they are
assumed to show mean reversion, specifically to follow an inhomogeneous geometric Brownian motion.

First we consider the opportunity to invest in a NGCC power plant. We derive the optimal investment
rule as a function of natural gas price and the remaining life of the right to invest. In addition, the analytical
solution for a perpetual option to invest is obtained.

Then we turn to the IGCC power plant. We analyse the valuation of an operating plant when there are
switching costs between modes of operation, and the choice of the best operation mode. This serves as an
input to evaluate the option to invest in this plant.

Finally we derive the value of an opportunity to invest either in a NGCC or IGCC power plant, i.e. to choose
between an inflexible and a flexible technology, respectively.Depending on the opportunity's time tomaturity, we
derive the pairs of coal and gas prices for which it is optimal to invest in NGCC, in IGCC, or simply not to invest.

Numerical computations involve the use of one- and two-dimensional binomial lattices that support a mean-
revertingprocess forcoal andgasprices.Basicparametervaluesare taken fromanactual IGCCpowerplant currently
inoperation.Sensitivityofsomeresultswith respect to theunderlyingstochasticprocess for fuelprice isalsochecked.
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1. Introduction

It is broadly accepted in the financial literature that traditional valuation techniques based on
discounted cash flows are not the most appropriate tool for evaluating uncertain investments,
especially in the presence of irreversibility considerations, or a chance to defer investment, or
when there is scope for flexible management. In these cases, it is usually preferable to use the
methods for pricing options, such as Contingent Claims Analysis or Dynamic Programming.

On the other hand, the energy sector is of paramount importance for the development of any
society. Besides, its specific weight both in the real and financial sectors of the economy cannot be
neglected. Therefore the use of inadequate instruments in decision making may be particularly
onerous. In addition, the high sums involved in the energy industry, its operating flexibility and
environmental impact, the progressive liberalization of the markets for its inputs and outputs
along with many types of uncertainties, all of them render this kind of investments a suitable
candidate to be valued as real options.

The aim of this paper is to use the real options methodology to assess decisions of investment
in power plants. In particular, our firm is going to decide simultaneously the time to invest and the
choice of technology. Specifically, we compare an inflexible technology (Natural Gas Combined
Cycle, or NGCC henceforth) with a flexible one (Integrated Gasification Combined Cycle, or
IGCC) which may burn either coal or natural gas. We derive the best mode of operation, the value
of the investments and the optimal investment rule when there is an option to wait. We consider a
mean-reverting stochastic process for fuel price, namely an Inhomogeneous Geometric Brownian
Motion (IGBM), and also switching costs between modes of operation. The output (electricity)
price, though, follows a deterministic path. Basic parameter values in our computations refer to an
actual IGCC power plant currently in operation.

Restricting ourselves to the energy industry, we would mention Paddock, Siegel and Smith
(1988) who apply real options theory to the valuation of undeveloped oil leases; they also provide
empirical evidence of the superiority of option values over those derived from standard Net
Present Value methods. Bjerksund and Ekern (1990) value an oil field when there is an option to
defer operation and abandon the site. Lund and Oksendal (1991) comprise several theoretical and
empirical studies on the valuation of oil investments and related issues. Kemma (1993) presents
some practical case applications, with a focus on the use of real options theory in capital
budgeting decisions by an actual oil firm. Ronn (2002) provides an array of applications of the
real options approach to the valuation of different flexibilities embedded in the operation of
energy assets by their owners.2

On the other hand, Bhattacharya (1978) investigates the accuracy of traditional methods of
valuation when cash flows follow a mean-reverting process, as opposed to the standard Geometric
Brownian Motion (GBM), and the ensuing biases in value. Laughton and Jacoby (1993, 1995)
and Hasset and Metcalf (1995), among others, discuss several, possibly conflicting, influences of
mean reversion on investment decisions; as they show, neglecting this pattern may bias
investment choices either way. First there is a “risk-discounting” effect: mean reversion reduces
the long-run uncertainty, and this should result in a lower risk premium or discount rate for cash
flows far into the future. Thus reversion tends to increase the value of any claim to cash flows that
increase with long-term prices. At the same time, though, lower uncertainty also tends to reduce
directly the value of long-term options of any type because of the so-called “variance” effect; this
in turn impinges on the “trigger” level to invest. But there is also a “realized-price” effect whereby
2 None of the chapters analyses the choice between competing technologies for power generation.
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investment would be less likely due to the fact that a lower variance means a lower probability for
the cash flows to reach that “trigger” level. Robel (2001) develops some features of the IGBM
process and analyses its implications on valuation. Insley (2002) assumes that timber prices
follow an IGBM process and values forestry investments. Sarkar (2003) adopts this same
stochastic process for analysing diverse investment decisions. Weir (2005) deals with the
valuation of petroleum lease contracts assuming also an IGBM process for crude oil prices.

Finally, several papers have analyzed different flexibility options concerning the types of
inputs or outputs involved, the mode of operation, or the kind of technology to adopt. First we
single out Herbelot (1992), who studies the fulfillment of restrictions on SO2 emissions either
through the purchase of emission permits, or changing the fuel, or deleting polluting agents in the
factory itself.3 He and Pindyck (1992) focus on the flexibility to produce either one of two
different products; the model can also be applied to the choice between alternative inputs. Kandel
and Pearson (2002) extend Pindyck's (1988) model by giving the firm access to a second, fully
reversible technology that requires no capital investment. This second technology produces the
same output, but at a higher marginal cost. The fully reversible technology may be interpreted
either as labour or as capital that may at any time be resold for its purchase price.4 On the other
hand, Kulatilaka (1988) develops a dynamic model that allows to value the flexibility in a flexible
manufacturing system with several modes of operation, using a matrix of transition probabilities
between states; in this paper, the importance of flexibility in the design of systems from the
viewpoint of both engineers and competitors is emphasized. Later on, Kulatilaka (1995) analyses
the choice between a flexible technology (fired by oil or gas) and two inflexible technologies to
generate electricity. Some numerical results appear in Kulatilaka (1993), where he normalizes the
gas price in terms of the oil price. A similar problem with two stochastic processes is dealt with in
Brekke and Schieldrop (2000). This is perhaps the closest work to ours. Specifically, they focus
on the choice between flexible and inflexible technologies when fuel prices are assumed to follow
standard GBMs; the firm has a perpetual option to invest, and the flexible technology involves no
switching costs. In contrast, the firm in our paper faces the choice of technology assuming that
fuel prices display mean reversion, changes in fuel inputs entail switching costs, and the
investment opportunity is available only for a finite time span (this requires a numerical solution
as opposed to an analytical one).

The paper is organized as follows. In Section 2 we briefly introduce the NGCC and IGCC
technologies. Section 3 presents the stochastic model for fuel prices (IGBM) and its main
features. Next the differential equation for the value of a power plant and that for an option to
invest in it are derived. In particular, first we consider a perpetual option to invest in an asset
the value of which depends on fuel price; we obtain a solution in terms of Kummer's
confluent hypergeometric function. Then we consider the case of a finite-lived option; the
binomial lattices for one and two variables that will be used below are also shown.5 The
numerical results for the perpetual option serve later on as a benchmark to verify how the
binomial lattices behave. In Section 4 we report some underlying parameter values which are
taken from an actual power plant. Then we value an operating NGCC plant and the option to
invest in it. We also value an operating IGCC plant (with switching costs between modes of
3 A brief summary of this work appears in Dixit and Pindyck (1994).
4 The latter interpretation does not seem to be the case in power generation, and the former one (labour) falls beyond

the scope of this paper. In fact, Kandel and Pearson (2001) and Chen and Funke (2004) apply Kandel and Pearson's
(2002) framework to the labour market.
5 The binomial lattice approach is followed because of its suitability and acceptance by the industry. See Mun (2002).
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operation) and the right to invest in this flexible technology. Finally we derive the optimal
investment rule when it is possible to choose between the NGCC and IGCC alternatives.
Since our assumption of mean reversion may be deemed inappropriate for the problem at
hand, Section 5 shows some computations assuming instead that fuel prices follow a standard
GBM. A final section with our main findings concludes.

2. The NGCC and IGCC technologies

2.1. Some features of electric power plants

The production of electricity can be viewed as the exercise of a series of nested real options to
transform a type of energy (gas, oil, coal, or other) into electric energy. There are two sets of
outstanding information. The first one has to do with the characteristics of the energy inputs used
in the production process. The second one comprises the operation features of the electric power
plants, among them: the net output, the rate of efficiency (“operating heat rate”), the costs to start
and stop, the fixed costs, the starting and stopping periods, and the physical restrictions that
prevent instantaneous changes between states. These factors determine the gap between the prices
of the energy consumed and produced.

2.2. Natural Gas Combined Cycle (NGCC) technology

It is based on the employment of two turbines, one of natural gas and another one of steam.6

The exhaust gases from the first one are used to generate the steam that is used in the second
turbine. This system allows to reach a relatively high net efficiency.7

An NGCC power plant can be designed as a base load plant or as a peak plant; in the latter
case, it only operates when electricity prices are high enough (usually during periods of strong
growth in demand). We assume below that the firm runs a base load plant on a continuous basis.

The advantages of a NGCC power plant are (ELCOGAS, 2003):

a) Lower emissions of CO2, estimated about 350 g/kW h, which allow an easier fulfillment of the
Kyoto protocol;

b) Higher net efficiency, between 50% and 60%;
c) Low cost of the investment, about 500 €/kW installed;
d) Less consumption of water and space requirements, which allow to build in a shorter period of

time and closer to consumer sites;
e) Lower operation costs, with typical values of 0.35 cents €/kW h.

On the other hand, it has some disadvantages:

a) The higher cost of the natural gas fired in relation to coal's;
b) The insecurity concerning gas supplies, since reserves are more unevenly distributed over the

world;
c) The strong rise in the demand for natural gas, which can cause a consolidation of prices above

historical levels.
6 It is also known as Combined Cycle Gas Turbines or CCGT.
7 The net efficiency refers to the percentage of the heating value of the fuel that is transformed into electric energy.
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2.3. Integrated Gasification Combined Cycle (IGCC) technology

It is based on the transformation of coal into synthesis gas.8 After the stage of gasification,
it is time to clean the gas by means of washing processes with water and absorption with
dissolvers. Thus an IGCC plant has significantly lower emissions of SO2, NOx and particles
than standard coal-fired power plants. The emissions of CO2 per kW h are also lower, but in
this case the improvement derives mainly from the higher net efficiency of the cycle (typical
current values approach 42%, though this technology is still in its first stages). Right now, the
emissions of CO2 from an IGCC power plant (about 725 g/kW h) are 20% lower than those
from a coal plant. However, they are clearly higher than those emanating from an NGCC
plant (around 350 g/kW h). Needless to say, the units for gasification, purifying, and other
auxiliary systems raise the initial outlay and imply higher operation costs.

From the viewpoint of real options, it is necessary to stress that:

a) The investment in an IGCC plant can be considered as a strategic investment in a new
technology; the ultimate results will depend on its final success or failure;

b) The IGCC power plant is a flexible technology concerning the possible fuels to use; apart from
the synthesis gas, it may fire oil coke, heavy refinery liquid fuels, natural gas, biomass, and
urban solid waste, among others. In this way, at any time it is possible to choose the best input
combination according to relative prices.

2.4. The spark spread

Whatever the technology adopted, the firm earns a profit which is a function of the difference
between power price and fuel costs; in the case of natural gas, this is known as the spark spread.
Even though we model fuel costs as following a mean-reverting stochastic process, electricity
price will be assumed to be deterministic. This may seem odd, so perhaps an explanation is in
order.

First, electricity prices do not only reflect input prices but market forces and the institutional
setting as well. Foreseeing what changes in technology, regulation, supply and demand will take
place during the plant's useful life seems to be no easy task.

We consider a firm that decides simultaneously the time to invest and the choice of
technology. Thus the firm can use either a pure technology that fires only natural gas or a
flexible technology that can switch between coal and gas. Since both NGCC and IGCC
power plants are assumed to be equal-sized and to produce only electricity, it is not obvious
to us why a given (uncertain) behaviour of electricity price should favour one technology to
the detriment of another.

Our firm is assessing the opportunity to build a base load power plant, i.e. one that operates in
almost any plausible scenario. The plant has a deterministic useful life of 25 years. As a long-lived
investment, it is an estimate of the average electricity price during the asset's life what actually
matters, instead of short-term swings.

Empirical evidence supporting this view can be found, for instance, in Elliott et al. (2002):
“The final major element of our analysis (for the electricity market in Alberta, Canada) is the
8 This is mainly composed of carbon monoxide (CO) and hydrogen (H2). It has several applications: (a) generation of
electric energy in IGCC power plants; (b) production of hydrogen for diverse uses, like fuel cells; (c) as an input to
chemical products, like ammonia, for manufacturing fertilizers; (d) as an input to produce sulphur and sulphuric acid.
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mean reversion of the deseasonalised price. We find a very strong mean reversion, with a
half-life measured in hours rather than days or months… This reduces the price risk
considerably”.

We have undertaken some preliminary work on the monthly average price (spikes included) in
the Spanish wholesale electricity market (OMEL). Our results show that this price follows an AR
(1) model with strong mean reversion (these results are available from the authors upon request).
Therefore we have used the estimated ‘equilibrium’ price as a realistic estimate of the
deterministic mean electricity price. Occasionally, we also consider a (deterministic) rate of
growth of electricity price.

3. The stochastic model for the fuel price

Research on the behaviour of commodity prices has been intense for decades. Yet there is
hardly a universal consensus on the stochastic process that best fits it. We provide below a few
references that support our choice.

The starting point might be stated following Dixit and Pindyck (1994): “Are the prices of
raw commodities and other goods best modeled as geometric Brownian motions or as mean-
reverting processes? One way to answer this is to examine the data for the price variable in
question”. Unfortunately stationarity tests have fairly low power and unless a large number of
observations are available over a long time period it is difficult to reject the hypothesis of a
random walk, even if the series is in fact mean reverting. “As a result, one must often rely on
theoretical considerations (for example, intuition concerning the operation of equilibrating
mechanisms) more than statistical tests when deciding whether or not to model a price or
another variable as a mean-reverting process”.

At the same time, as Baker et al. (1998) point out: “Many commodities have traded futures
or forward contracts, and the price series for these contracts are additional sources of
information about the dynamics of the underlying spot price of the commodity. Even when
data on spot prices does not provide clear evidence of reversion, data on futures prices often
strongly supports the hypothesis that there is reversion in commodity prices”. More recently,
Cortazar and Schwartz (2003) share this view: “[The] random walk specification for
commodity prices was used until a decade ago, when mean reversion in spot prices began to
be included as a response to the evidence that volatility of futures returns declines with
maturity”. Note also that futures contracts typically trade with maturities far shorter than a
power plant's life span.

As a consequence, Ronn (2002) concludes: “Empirically, spot prices for natural gas,
electricity, industrial metals, and other commodities display mean reversion”. And
Pilipovic (1998) claims: “Energy markets require mean-reverting models. In fact, the
price mean-reverting model turns out to do the best job of capturing the distribution of
energy prices”.

Anyway, we will have more to say on this issue in Section 5. In the end, one may always ask
whether the results of the analysis are likely to change very much depending on the stochastic
process for fuel price.

3.1. The Inhomogeneous Geometric Brownian Motion (IGBM)

In a model for long-term valuation of energy assets, it is convenient to keep in mind that prices
tend to revert towards levels of equilibrium after an incidental change. Among the models which
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display mean reversion, we have chosen the Inhomogeneous Geometric Brownian Motion (or
IGBM) process:9

dSt ¼ k Sm−Stð Þdt þ rStdZt; ð1Þ
where:

St the price of fuel at time t.
Sm the level to which fuel price tends in the long run.
k the speed of reversion towards the “normal” level. It can be computed as k=log 2 / t1 / 2,

where t1 / 2 is the expected half-life, i.e. the time required for the gap between St and Sm
to halve.

σ the instantaneous volatility of fuel price, which determines the variance of St at t.
dZt the increment to a standard Wiener process. It is normally distributed with mean zero and

variance dt.

Some of the reasons for our choice are:

a) This model satisfies the following condition (which seems reasonable): if the price of one unit
of fuel reverts to some mean value, then the price of two units reverts to twice that same mean
value.

b) The term σStdZt precludes, almost surely, the possibility of negative values.
c) This model admits as a particular solution dSt=αStdt+σStdZt when Sm=0 and α=−k;

therefore it includes GBM as a particular case. In our opinion, this greater generality is by itself
an advance over previous works.

d) The expected value in the long run is: E(S∞)=Sm; this is not so in Schwartz (1997) model,
where E Slð Þ ¼ Sm e−r2

4k

� �
:

3.2. The fundamental pricing equation

For our valuation purposes below we will adopt the risk-neutral valuation principle. The
change from an actual process to a risk-neutral one is accomplished by replacing the drift in the
price process (in the GBM case, α) with the growth rate in a risk-neutral world, r−δ where r is
the riskless interest rate and δ denotes the net convenience yield.

In order to obtain the risk-neutral version of the IGBM process, we simply discount a risk
premium (which, according to the CAPM, is)

qr/S ð2Þ
to its actual rate of growth. In this expression, ρ is the correlation coefficient between the returns
on the market portfolio and the fuel asset, and / denotes the market price of risk, which is defined
as:

/u
rM−r
rM

; ð3Þ
9 This seems to be a well suited model for natural gas futures contracts traded at NYMEX (Pilipovic, 1998 chapter 4). It
is also known as Integrated GBM or geometric Ornstein–Uhlenbeck process. See Bhattacharya (1978), Robel (2001),
Insley (2002), Sarkar (2003), Weir (2005).
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where rM is the expected return on the market portfolio and σM denotes its volatility. Now let Ŝt
denote the risk-neutral version of St; then:

d ̂St ¼ k Sm− ̂St
� �

−qr/ ̂St
� �

dt þ r ̂StdZt: ð4Þ
If certain “complete market” assumptions hold, it can be shown that the value of an investment

V(S,t), which is a function of fuel price and calendar time, follows the differential equation:

1
2
r2S2

B2V
BS2

þ k Sm−Sð Þ−qr/S½ �BV
BS

þ BV
Bt

−rV þ C S; tð Þ ¼ 0; ð5Þ

where C(S,t) is the instantaneous cash flow generated by the investment.10

3.3. Valuation of the option to invest

Next we want to derive the value F of an opportunity to invest in a project the value of which V
depends on the price of an asset S that follows an IGBM process.

Starting from Eq. (5) above, in general F will depend on S and t. Since the option confers no
cash flow to its owner, its value will satisfy:

1
2
r2S2

B2F
BS2

þ k Sm−Sð Þ−qr/S½ �BF
BS

þ BF
Bt

−rF ¼ 0: ð6Þ

3.3.1. Analytical solution to the perpetual investment option
In this case the term Fτ disappears in Eq. (6), which now can be expressed as:

1
2
r2S2FWþ k Sm−Sð Þ−qr/S½ �F V−rF ¼ 0: ð7Þ

This equation may be rewritten as:

S2FWþ aS þ bð ÞF V−gF ¼ 0; ð8Þ
where the following notation has been adopted:

au−
2 k þ qr/ð Þ

r2
; bu

2kSm
r2

; gu
2r

r2
:

10 This expression may be expressed in perhaps more familiar, yet equivalent, terms. For simplicity, define α≡ (1 /S )(E
(S ) /dt) and assume there is a rate of return shortfall (or the so-called convenience yield) δ. Thus μ=α+δ denotes the
total expected rate of return. Now “this expected return must be enough to compensate the holders for risk. Of course it is
not risk as such that matters, but only nondiversifiable risk. The whole market portfolio provides the maximum available
diversification, so it is the covariance of the rate of return on the asset with that on the whole market portfolio that
determines the risk premium. The fundamental condition of equilibrium from the CAPM says that μ= r+ϕσρ” (Dixit and
Pindyck, 1994, pp. 115). Hence, α+δ=μ= r+ϕσρ. This implies that α−ϕσρ= r−δ. Therefore the differential equation
for the value of the investment V can be equivalently stated in terms of the actual growth rate minus the risk premium, or
the riskless interest rate minus the rate of return shortfall (or convenience yield). Eq. (5) shows the first choice (see also
Trigeorgis, 1996 Section 3.8; or Hull, 1993 Appendix 12B). Note, though, that in our case δ is not constant; if we equate
(r−δ) Ŝ t to the coefficient of dt in Eq. (4) the resulting expression for δ is a function of Ŝt.
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To find a solution to this equation, we define a function h(βS−1) by

F Sð Þ ¼ A0 bS−1
� �h

h bS−1
� �

; ð9Þ
where A0 and θ are constants that will be chosen so as to make h(•) satisfy a differential equation
with a known solution. This function turns out to be (details of the proof are available from the
authors):

h bS−1
� � ¼ A1U a; b; zð Þ þ A2M a; b; zð Þ; ð10Þ

where a=θ, b=2θ+2−α, and z=(βS−1).11 Now U(a, b, z) is Tricomi's or second-order
hypergeometric function, and M(a, b, z) is Kummer's or first-order hypergeometric function.
Therefore, the general solution to Eq. (9) will be

F Sð Þ ¼ A0 bS−1
� �h

A1U a; b; zð Þ þ A2M a; b; zð Þð Þ: ð11Þ

The boundary conditions will determine whether A1 or A2 in Eq. (11) are zero. In our case, S
refers to a fuel input so the firm faces stochastic costs. An increase in S entails a reduction in
profits, so F(∞)=0 and z=0, then A1=0 and the term in Kummer's function remains.12 The
solution is:

F Sð Þ ¼ Am bS−1
� �h

M a; b; zð Þ; ð12Þ
with Am≡A0A2. The constant Am and the critical fuel price S⁎ below which it is optimal to invest
must be jointly determined by the remaining two boundary conditions:

a) Value-matching: F(S⁎)=V(S⁎)− I(S⁎),
b) Smooth-pasting: F′(S⁎)=V′(S⁎)− I′(S⁎).

3.3.2. Numerical solution to the non-perpetual option to invest
In this case F satisfies the partial differential Eq. (6) which now must be solved by numerical

procedures. Given the American type of the options involved and the low number of sources of
uncertainty the binomial lattice approach is used.

The time horizon T is subdivided into n steps, each of lengthΔT=T /n. Starting from an initial
value S0, at time i, after j positive increments (each of size u), the value of the fuel input is given
by S0u

jdi− j, where d=1 /u.
Consider an asset whose risk-neutral price follows the stochastic differential Eq. (4):

d ̂S ¼ k Sm− ̂S
� �

−qr/ ̂S
� �

dt þ r ̂SdZ:

Adopting the transformation X=ln Ŝ and following standard procedures it can be shown that
upward movements must be size DX ¼ r

ffiffiffiffiffi
Dt

p
; therefore u ¼ er

ffiffiffiffi
Dt

p
and d ¼ e−r

ffiffiffiffi
Dt

p
: The

probability of an upward movement at node (i, j) is

pu i; jð Þ ¼ 1þ
̂l i; jð Þ ffiffiffiffiffi

Dt
p

; ð13Þ

2 2r

11 Taking the first and second derivatives of F(S) and substituting them into Eq. (8) yields: θ2+θ(1−α)−γ=0. This
quadratic equation allows to determine the positive value of θ, since the remaining parameters are known constants.
12 U(a, b, 0)=∞ if b > 1; this will be shown to hold with our parameter values below.
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where

̂l i; jð Þu k Sm− ̂S i; jð Þ� �
̂S i; jð Þ −qr/−

1
2
r2: ð14Þ

Now consider two assets the prices ofwhich are governed by the following risk-neutral processes:

d ̂S1 ¼ k1 Sm1− ̂S1
� �

−q1r1/ ̂S1
� �

dt þ r1 ̂SdZ1; ð15Þ

d ̂S2 ¼ k2 Sm2− ̂S2
� �

−q2r2/ ̂S2
� �

dt þ r2 ̂SdZ2; ð16Þ

dZ1dZ2 ¼ q12dt: ð17Þ
Defining X1= lnŜ1 and X2=lnŜ2, it may be shown that

DX1 ¼ r1
ffiffiffiffiffiffi
Dt;

p
ð18Þ

DX2 ¼ r2
ffiffiffiffiffiffi
Dt;

p
ð19Þ

puu ¼ DX1DX2 þ DX2 ̂l1Dt þ DX1 ̂l2Dt þ qr1r2Dt
4DX1DX2

; ð20Þ

pud ¼ DX1DX2 þ DX2 ̂l1Dt−DX1 ̂l2Dt−qr1r2Dt
4DX1DX2

; ð21Þ

pdu ¼ DX1DX2−DX2 ̂l1Dt þ DX1 ̂l2Dt−qr1r2Dt
4DX1DX2

; ð22Þ

pdd ¼ DX1DX2−DX2 ̂l1Dt−DX1 ̂l2Dt þ qr1r2Dt
4DX1DX2

: ð23Þ

In the above expressions, pud stands for the risk-neutral probability of an upward movement in gas
price and a simultaneous downward movement in coal price at a certain node; similarly for the
probabilities puu, pdu and pdd.

The branches of the lattice have been forced to recombine by taking constant incrementsΔX1 and
ΔX2 once the step lengthΔt has been chosen. Thus it is easier to implement the model in a computer.
Nevertheless the probabilities change from one node to another by depending on μ̂1 and μ̂2 (see
Eq. (14)). Besides, at any time the four probabilities must take on values between zero and one.

4. Valuation of alternative technologies

4.1. Representative underlying parameters adopted

By assumption, the firm is assessing the opportunity to build a base load power plant. We have
used the standard values that appear in Table 1 (ELCOGAS, 2003).



Table 1
Basic underlying parameters

Concepts Coal plant IGCC NGCC

Plant Size size Mw (P) 500 500 500
Production factor (%) (FP) 80% 80% 80%
Net efficiency (%) (RDTO) 35% 41% 50.5%
Unit investment cost €/Kw (i) 1186 1300 496
O&M cts. €/kW h (CVAR) 0.68 0.71 0.32
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The Production Factor is the percentage of the total capacity used on average over the year.
Using these data, the heat rate, the plant's consumption of energy, and the total production of
electricity can be computed:

Heat rate: HR=3600 /RDTO/1,000,000, in GJ/kW h.13

Investment cost I=1000⁎ i⁎P, in Euros.
Total annual production: A=1000⁎P⁎365⁎24⁎FP in kW h.
Fuel energy needs: B=1000⁎P⁎365⁎24⁎FP⁎HR, in GJ/year.
Now with these formulae we estimate the parameters in Table 2.

4.2. Value of an operating NGCC plant

Our first purpose is to determine the value of a NGCC operating facility. The revenues are the
receipts from the electricity generated, whereas the costs refer to the initial investment, the average
operation costs and those of the fuel consumed, in this case natural gas.We consider a deterministic
evolution of electricity prices and variable costs, both of which would grow at a constant rate ra.

The time-0 value of revenues over a finite number of periods is computed according to the
following formula:

PVR ¼ A:E:
1−e−s r−rað Þ� �

r−ra
; ð24Þ

and variable expenditures amount to:

PVCvar ¼ A:Cvar:
1−e−s r−rað Þ� �

r−ra
; ð25Þ

where:

A annual production : 3504 million kW h.
E current electricity price : 0.035 €/kW h.
ra growth rate of electricity price and variable costs: 0%, for now.
r riskless interest rate: 5%.
Cvar unit variable costs: 0.0032 €/kW h.
τ estimated useful life of the power plant upon investment: 25 years.
13 One kW h amounts to 3600 kilo joules (kJ), and one Giga joule (GJ) is a million kJ.



Table 2
Resulting parameter values

Concepts Coal plant IGCC NGCC

Heat rate GJ/kW h 0.0103 0.0088 0.0071
Total Investment (mill€) (I ) 593 650 248
Annual production (mill kW h)(A) 3504 3504 3504
Fuel Energy (GJ/year) (B) 36,041,143 30,766,829 24,979,010
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The cost of the initial investment I is 248 million €. Thus:

PVR−PVCvar−I ¼ 1; 342; 055; 454 €: ð26Þ
With regard to fuel costs, first we compute the present value of one fuel unit consumed per year

over the whole life span of the plant (see Eq. (34) in the Appendix). Then multiplying by annual
consumption we get the present value of fuel costs:

PVC ¼ B
kSm 1−e−rsð Þ
r k þ qr/ð Þ þ

S− kSm
kþqr/

r þ k þ qr/
1−e− rþkþqr/ð Þs

� �" #
; ð27Þ

where B is the annual fuel energy needed (GJ) and S stands for the natural gas price (€ /GJ).
Assuming the additional values: Sm=3.25 € /GJ, ρ=0, ϕ=0.40, k=0.25, σ=0.20, the fuel cost
per unit consumed yearly during the facility's life is: 35.5498+3.3315S. Now multiplying this by
annual consumption, B, we get: 887,999,971+83,217,315S. For the specific value S=5.45€/GJ,
we finally compute:14

NPV NGCCð Þ ¼ PVR−PVCvar−I−PVC ¼ 521; 120 €: ð28Þ

4.3. Valuation of the opportunity to invest in a NGCC plant

4.3.1. The perpetual option
Consider the case of the NGCC plant described in Table 1. As already seen, the present value

of revenues minus the investment outlay and the present value of variable costs amounts to
1,342,055,454 €, whereas the present value of fuel costs is 887,999,971+83,217,315S. Thus the
value of the investment if realized now is: V(S )− I=454,055,483−83,217,315S.

In this case, the boundary conditions are the following:

a) Value-matching: F(S⁎)=Am( β (S⁎)
−1)θM(a, b, β (S⁎)−1)=454,055,483−83,217,315S⁎=V

(S⁎)− I(S⁎)

b) Smooth-pasting: F V S⁎
� � ¼ Am b S⁎

� �−1� �h
−h S⁎

� �−1
M a; b; b S⁎

� �−1� �
−

ab

b S⁎ð Þ2 M aþ 1;ð
	

bþ 1; b S⁎
� �−1Þ� ¼ −83; 217; 315 ¼ V V S⁎

� �
−I V S⁎

� �

14 The prices chosen derive from a cursory look at NYMEX Natural Gas futures contracts on October 18th 2004. In
particular, Sm is approximated by the contract with the longest maturity, and S by that with the closest maturity. These
contracts trade in US dollars per 10,000 million British thermal units.
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From the specified parameter values we compute α=−12.5, β=40.625, γ=2.5, and
θ=0.1827; then we derive a=0.1827 and b=14.8654.

Thus we have a system of two equations that will allow us to determine Am and S⁎.
Substituting Am ( β (S⁎)−1)θ from the first condition into the second one we get an equation in S⁎

which has as its solution S⁎=2.7448. Next it is easy to determine that Am=94,394,000. Finally,
the value of the option to invest for a gas price S is given by:

F Sð Þ ¼ 94; 394; 000
40:625

S


 �0:1827

M 0:1827; 14:8654;
40:625

S


 �
:

In our case, for S=5.45, initially the option to invest is worth 153,870,000 €. Since NPV=
521,120 €, it is optimal to wait.

If there were no other option but to invest now or never, the hurdle price would result from V
(S⁎⁎)= I(S⁎⁎); hence we get S⁎⁎=5.4563. However, when the option is infinitely lived it is
preferable to wait, since in the long run natural gas price is going to decrease from S=5.45 and
swing around Sm=3.25, and then keep on waiting until it reaches S⁎=2.7448 or below, so that the
option value equals the net value of the investment. When the option's maturity is finite the
threshold S⁎ will take on a value between 5.4563 and 2.7448.

4.3.2. The non-perpetual option
Now we want to determine the value of an option to invest and the optimal investment rule in a

NGCC facility when the opportunity is only available from time 0 to T.
The cost of the initial investment is Ierbt, with 0 ≤ t ≤ T, where I is the initial disbursement at

time t=0 and rb is its rate of growth (both electricity price and variable costs are now supposed to
be constant: ra=0).

At the option's maturity, t=T, there is no other choice but to invest right then or not to invest. The
decision to undertake the investment is adopted if the present value of revenues exceeds that of costs:

NPV ¼ PV Revenuesð Þ−PV Expendituresð Þ > 0:

We set up a binomial lattice with the following values in the final nodes:

W ¼ Max NPV; 0ð Þ:
At previous moments, 0 ≤ t ≤ T, depending on current fuel prices, we compute the present

value of exercising the option to invest (NPV) and that of keeping the option alive. Then we
choose the maximum value:

W ¼ Max NPV; e−rDt puW
þ þ pdW

−ð Þ� �
:

The lattice is solved backwards, and the solution provides the time-0 value of the option to
invest. If we compare this with the value of an investment made at the outset, the difference will
be the value of the option to wait. This option's value will always be nonnegative.

Concerning the investment rule, by changing the initial price of a fuel unit it is possible to
determine the fuel price at which the option value switches from positive to zero. This will be the
optimal exercise price at t=0. Similarly, arranging a binomial lattice for an investment
opportunity with maturity t < T and changing the fuel price, the optimal exercise price for
intermediate moments is determined.

At time t=T, since there is no chance for further delay, investment is realized only if NPV> 0. The
optimal rule to invest is found by computing the gas price for which NPV=0; we have already seen



Table 3
Trigger price S⁎ with finite time to maturity

Term ra=0, rb=0 ra=0, rb=0.025 ra=0, rb=0.05

0 5.4563 5.4563 5.4563
½ 3.3268 3.5587 3.7823
1 3.2200 3.4417 3.6503
2 3.0864 3.3035 3.5107
3 3.0040 3.2250 3.4394
4 2.9480 3.1751 3.3982
5 2.9079 3.1413 3.3731
6 2.8782 3.1179 3.3575
7 2.8557 3.1012 3.3481
8 2.8386 3.0893 3.3423
9 2.8253 3.0808 3.3392
10 2.8151 3.0746 3.3378
∞ 2.7448 – –
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that (for ra=rb=0) this price is S0⁎=5.4563. In the opposite case of an unlimited possibility to defer,
with ra=rb=0, we know that S∞⁎=2.7448, which comes from the analytical solution to the perpetual
option. These results appear in Table 3. Critical fuel prices for intermediate maturities are derived
from a binomial latticewith 1200 time steps in any case. They converge toward those of the perpetual
option as the maturity of the investment opportunity increases.

The value of the option to invest increases with the option's maturity. In order to be exercised
optimally, a longer-lived option requires a lower critical price for the fuel resource. It can also be
observed that a higher investment growth rate, rb, ceteris paribus quickens the time to invest: a
higher S⁎ means a less stringent hurdle to overcome.

Next we analyse the optimal choice between investing or waiting as a function of the initial fuel
price when the investment opportunity is available for 5 years. In principle, a lower fuel price ceteris
paribus will render the power plant more valuable; this in turn will increase the value of the option to
invest. Thus it is not obvious whether a cheaper natural gas will hasten the investment decision or not.
As shown in Table 4, when S0=5.45 the NPV is very low and the option to invest is worth more than
119million€. AsS0 decreases, the investment option increases its value but less than theNPV,with the
equality being reached when S0=2.9079. For lower gas prices, it is preferable to invest immediately.

As is well known, the solution derived from binomial latticesmay be very sensitive to the number
(or length) of time steps considered. Now we analyse the convergence of S⁎ and also the robustness
Table 4
NPV and option value (thousand €) with T=5 years

S0 NPV Option value Max (NPV, option) Optimal decision

5.45 521 119,170 119,170 Wait
5.00 37,969 129,040 129,040 Wait
4.50 79,578 141,640 141,640 Wait
4.00 121,190 156,820 156,820 Wait
3.50 162,790 176,420 176,420 Wait
3.00 204,400 205,010 205,010 Wait
2.9079 212,070 212,070 212,070 Indifferent
2.50 246,010 245,900 246,010 Invest
2.00 287,620 287,450 287,620 Invest



able 5
onvergence and sensitivity analysis of S⁎

teps S⁎ k S⁎ Sm S⁎ σ S⁎

20 2.9451 0.10 2.6668 2.75 2.8964 0.10 3.3005
40 2.9294 0.20 2.8555 3.00 2.9085 0.15 3.1042
200 2.9079 0.25 2.9079 3.25 2.9079 0.20 2.9079
,000 2.8981 0.30 2.9468 3.50 2.8732 0.25 2.7132
0,000 2.8963 0.40 3.0072 3.75 2.7576 0.30 2.5242
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with respect to changes in k, Sm and σ. We restrict ourselves to the case of the option with 5 years to
expiration.

According to the first two columns in Table 5, the value of the trigger price certainly changes
as the number of steps varies. However the change is not large: increasing the number of steps
from 120 to 10,000 (i.e. by a factor of more than 80) decreases S⁎ by less than 2%.

All the other columns have been derived with 1200 steps. Rises in reversion speed (k) somehow
entail lower uncertainty; as a consequence the decision to invest does not call for such a low fuel price.
Thus a four-fold increase in k increases S⁎ by 12% (fourth column). Therefore it looks unlikely that
mild errors in the choice of k will lead to dramatic changes in the value of S⁎. On the other hand, a
higher equilibrium fuel price in the long run makes investment less attractive, so the trigger price to
invest (sixth column) must be lower. A 36% increase in Sm induces a reduction in S⁎ of 5%. Finally,
the greater the uncertainty in fuel prices the lower the critical price to trigger investment. Thus a three-
fold increment in σ lowers S⁎ by 30% (last column).

4.4. Valuation of an operating IGCC plant

Now we must determine the value of an operating IGCC power station, both right upon the initial
outlay and at any moment along its useful life to derive its remaining value. The firm faces two
stochastic fuel prices, so there are two sources of risk and two-dimensional binomial lattices are needed.
We set up two two-dimensional binomial lattices which refer to initial states consuming either coal or
natural gas, respectively.

At the end of the plant's useful life its value is zero whatever the particular fuel that has been
fired in the last period:

Wc ¼ Wg ¼ 0;

where Wc and Wg stand for the plant's (gross) value at the nodes of the coal and gas lattices,
respectively.

At earlier times t we compute, for a time intervalΔt, the profits by mode of operation. These are
determined as the difference between electricity revenues and the sum of variable plus fuel costs:

pc ¼ A:E:erat
1−e−Dt r−rað Þ� �

r−ra
−BcDtSc−A:Cvarc :e

rat
1−e−Dt r−rað Þ� �

r−ra
;

pg ¼ A:E:erat
1−e−Dt r−rað Þ� �

r−ra
−BgDtSg−A:Cvarg :e

rat
1−e−Dt r−rað Þ� �

r−ra
;

ð29Þ

where:

πc Net profits from operating with coal.
πg Net profits from operating with natural gas.
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Sc current coal price (€/GJ).
Sg current natural gas price (€/GJ).

A:E:erat
1−e−Dt r−rað Þð Þ

r−ra value at time t of revenues from electricity over the period Δt.

A:Cvar:erat
1−e−Dt r−rað Þð Þ

r−ra
value at time t of variable costs incurred over Δt.

Bc the coal energy needed per year in GJ.
Bg the natural gas energy needed per year in GJ.
BcΔtSc Costs of coal consumed during Δt.
BgΔtSg Costs of natural gas consumed during Δt.
I(c → g)Switching cost from coal to gas.
I(g → c)Switching cost from gas to coal.

If initially the IGCC plant was consuming coal, the best of two options is chosen:15

a) continue: the present value of the coal lattice is obtained, plus the profits from operating in
coal-mode at that instant.

b) switch: the present value of the gas lattice is obtained, plus the profits from operating in gas-
mode at that instant, minus the costs to switching from coal to gas, I(c → g).

Thus the binomial lattices will take on the following values:16

Wc ¼Max pc þ e−rDt puuWcþþ þ pudWcþ− þ pduWc−þ þ pddWc−−ð Þ; pg−I cYgð Þþ�
þ e−rDt puuWgþþ þ pudWgþ− þ pduWg−þ þ pddWg−−ð ÞÞ: ð30Þ

Similarly, when the initial state corresponds to operating with natural gas, we would compute:

Wg ¼Max pc−I gYcð Þ þ e−rDt puuWcþþ þ pudWcþ− þ pduWc−þ þ pddWc−−ð Þ;�
pg þ e−rDt puuWgþþ þ pudWgþ− þ pduWg−þ þ pddWg−−ð ÞÞ: ð31Þ

Finally, at time zero the optimal initial mode of operation is chosen by:

Max Wc;Wgð Þ:
In this way, we have derived the value of a flexible plant in operation.

Note that, in this computation, the cost of the initial investment plays no role but it could be
included at the outset in order to compare this outlay with the present value of expected profits.

Table 6 shows the parameter values adopted in the base case.17 Some of them are taken from
Table 1 but are repeated here for convenience.

Table 7 shows the value of the plant as a function of switching costs. These figures have been
derived from a lattice with 300 steps (one for eachmonth of useful life) regardless of switching costs.
16 We follow a similar procedure to Trigeorgis (1996), pp. 177–184.
17 Volatility values for coal and gas prices, as well as their correlation coefficient, have been computed from yearly
average prices gathered by the US Energy Information Administration. Note that these prices are expressed in US dollars
per million Btu.

15 We have not considered the option not to operate, though it could be taken into account easily. It could be included by a third
lattice, corresponding to an idle initial state. At every timewe shouldmaximize over three possible values, taking into account the
switching costs between states. If we denote the idle state by p, in this case there could be a stopping cost, I(c→ p) or I(g→ p),
and a restarting cost, I( p → c) or I( p→ g). If restarting costs were very high, stopping could amount to abandonment.



Table 6
An IGCC power plant: base case

Concepts Coal mode Gas mode

Plant Size size Mw (P) 500 500
Production Factor (FP) 80% 80%
Net efficiency(%) (RDTO) 41.0% 50.5%
Unit Investment cost €/Kw (i) 1300 1300
Operation cost (€cents/kW h) (CVAR) 0.71 0.32
Fuel price (€/GJ) 1.90 5.45
Reversion value Sm(€/GJ) 1.40 3.25
Reversion speed (k) 0.125 0.25
Plant's useful life (years)(τ) 25 25
Risk-free interest rate (r) 0.05 0.05
Market price of risk (ϕ) 0.40 0.40
Volatility (σ) 0.05 0.20
Correlation with the market (ρ1, ρ2) 0 0
Correlation between fuels (ρ12) 0.15 0.15
Investment cost rate of growth (rb) 0 0
Electricity price rate of growth (ra) 0 0
Switching costs (€) 20,000 20,000
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When there are no switching costs, the value of the plant exceeds the initial disbursement
(650,000,000€) by 52,662,000€. Thus it is worth an 8.10%more than the amount disbursed. As
switching costs swell, the plant's value drops.

Now the value of flexibility may be computed as the difference between the net values with finite
and infinite switching costs. For example, when these are nil, flexibility is worth 10,675,000€, just
1.5% of the initial investment. Note that flexibility in the IGCC plant may be valuable because of
reasons other than harnessing at any instant the best fuel option. For instance, it may be due to
failures in elements that are necessary to operate in coal-mode but do not prevent the plant from
operating in gas-mode (thus averting the total stopping of the facility), or if there are problems
concerning supplies of a certain kind of fuel.

The plant's value as a function of coal and natural gas prices is shown in Fig. 1. It can be observed
that value drops as the price of either fuel rises. Also, for low gas prices, the value of the plant
decreases smoothly as coal price swells, since this is not the preferred fuel resource. However, for
high gas prices, the plant burns mainly coal; if this gets dearer, an abrupt fall in value ensues.

Table 8 shows the gross value of the plant as a function of its remaining life and the growth rate
of electricity price and variable cost (ra) in the base case with switching costs of 20,000€. For the
sake of consistence, we have used one step per month again.

Whatever the level of ra, the plant's value diminishes as its life span comes to an end. Note
also that at least two factors are at work here. For concreteness, consider the plant's value with 1
and 2 years to closure. Clearly the reversion effect is stronger over 2 years than over 1 year; thus
one would expect the plant's value with 2 years to be more than double that with 1 year to operate.
Yet the influence of the discount rate r=0.05 pushes against this trend. For constant electricity
prices (ra=0), the effect of time discounting prevails since 77,806,000 euros is less than 2 ×
39,044,000 euros. This is not the case, though, with rising electricity prices (ra=0.03), so now the
reversion effect more than offsets the discounting effect.

Concerning the convergence of our results, as alreadymentioned, figures in Table 7 correspond to a
lattice with 300 steps (regardless of switching costs). Take, for instance, switching costs of 20,000€;
the plant's net value amounts to 52,534,000 €. The first two columns in Table 9 show that if we



Table 7
Gross and net value (thousand €) of an IGCC plant

Switching costs (€) Plant's value Plant's value — initial investment

0 702,662 52,662
10,000 702,598 52,598
20,000 702,534 52,534
50,000 702,345 52,345
100,000 702,129 52,129
1,000,000 700,049 50,049
∞ 691,987 41,987
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consider 75 time steps the net value falls to 47,662,000 €, whereas with 1200 steps it rises to
53,693,000€. Thus a 16-fold increase in the number of steps increases the plant's NPV by 12.65%.

In the case of infinite switching costs there is no scope for flexibility and the cheapest fuel
resource is used exclusively. Given current fuel prices, operation turns out to be only in coal-
mode. Thus the above formulas for the NGCC plant apply, but now they refer to coal. Again, the
value of the plant changes with the number of steps in the lattice. As shown in the central columns
of Table 9, with 3000 steps we reach a net value of 43,353,000 €, a figure which is very close to
43,594,000 € derived from an analytical procedure akin to that for a NGCC plant.

Finally let us consider a plant with 10 years to closure. According to Table 8, with 10 ×
12=120 monthly time steps, the gross value of the plant (ra=0:00) is 361,090,000 €. Again, the
last two columns in Table 9 show that the plant's value increases with the number of steps, but the
increase is not relatively large: with 1500 time steps it jumps to 362,050,000 €.

4.5. Valuation of the opportunity to invest in an IGCC plant

Let us assume that the investment opportunity is available from time 0 to time T (the non-
perpetual option). In this case, the procedure is very similar to that for the optimal timing to invest in a
Fig. 1. Gross value (€) of an IGCC plant (a=0.00, τ=25).



Table 8
Gross value (thousand€) of an operating IGCC plant as a function of the growth rate of electricity price and variable cost (ra)

Remaining life ra=0.00 ra=0.03

25 years 702,534 1,245,700
20 years 613,835 999,120
15 years 501,490 742,186
10 years 361,090 479,990
5 years 191,020 223,980
4 years 153,950 175,460
3 years 116,150 128,500
2 years 77,806 83,409
1 year 39,044 40,477
0 year 0 0
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NGCC plant. Yet it is much more time-consuming. The firmmust choose the optimal time to invest.
Thus at every moment between 0 and T it must compare the continuation value (i.e. that of the option
to invest when kept unexercised) and the value of an immediate investment. Since the firm can
decide to invest at any time given current fuel prices, the plant's useful life can start at anymoment at
the prevailing fuel prices. This implies that the above task of valuing an operating IGCC power plant
now must be solved at every node of the two-dimensional binomial tree.

At the option's expiration, the firm must decide whether to invest then (if the plant's net value
is positive) or not to invest:

W ¼ Max NPVigcc; 0
� �

:

Assuming again switching costs of 20,000€, Table 10 shows pairs of coal and natural gas prices
that imply an option value equal to zero (that is, the plant's value matches initial outlay) at maturity.

From the first two columns, if the IGCCplant is to beworthy for a very high coal price it is necessary
that natural gas prices remain below 0.9897 €/GJ. This is due to the fact that the reversion process
pushes gas prices towards 3.25€/GJ. However, if gas price were to grow arbitrarily high, the plant's
net value would reach zero for a coal price of 2.1410 €/GJ, which is above its reversion value (Sm=
1.40 €/GJ). For lower coal prices, its value would even switch to positive. This seems reasonable
since the IGCC plant is mainly designed to operate with coal. These values are shown in Fig. 2.

At previous moments, the best of the two options (to invest or to continue) has to be chosen:

W ¼ Max NPVigcc; e
−rDt puuW

þþ þ pudW
þ− þ pduW

−þ þ pddW
−−ð Þ� �

: ð32Þ

At t=0, the value obtained from the lattice is compared with that of an investment realized right
then. The difference is the value of the option to wait.
Table 9
Convergence analysis of gross and net values (thousand €)

Steps Net value (switch: 20,000 €) Steps Net value (switch: ∞) Steps Gross value (switch: 20,000 €)

75 47,662 300 41,987 120 361,090
300 52,534 3000 43,353 1500 362,050
1200 53,693 ∞ 43,594 3,000 362,090



Table 10
Critical boundary to invest in IGCC

At maturity (t=T ) 2 years to maturity (t=T−2)

Gas (€/GJ) Coal (€/GJ) Gas (€/GJ) Coal (€/GJ)

∞ 2.14 ∞ 1.57
5.4563 2.23 5.4563 1.56
5.45 2.23 5.45 1.56
5.00 2.24 5.00 1.56
4.50 2.26 4.50 1.56
4.00 2.30 4.00 1.56
3.50 2.37 3.50 1.56
3.25 2.45 3.25 1.57
3.00 2.58 3.00 1.57
2.50 3.07 2.50 1.59
2.00 4.06 2.25 1.85
1.50 6.26 2.00 2.98
1.00 18.92 1.50 5.15
0.9897 ∞ 0.96 ∞
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Using a lattice with quarterly steps for the option to invest, and one with monthly steps to value
the plant (300 as before), we get the valuations in Table 11 for the base case, as a function of the
time to maturity of the investment option.

The second column refers to the plant's value under the assumption of a “now or never”
investment in the flexible technology. It includes the value of the plant's flexibility. With 25 years
ahead in operation we have: 702,534,000−650,000,000=52,534,000 € (see Table 8).

The value of the option increases with its maturity, given the starting point of fuel prices (both
above their reversion levels). The highest yearly increase takes place in the first period (8,058,000€);
henceforth that increase is much lower since the reversion effect is stronger in the initial periods.

The optimal investment rule in an IGCC plant can be derived following a procedure akin to
that used for the NGCC technology. Nonetheless, in this case we have to compute the
combinations of coal price and gas price for which the option is worthless.

At any time t, a range of initial prices for natural gas is chosen; then, for each one of them, we
compute the coal price for which the option switches from positive to zero. For an option to wait
up to two years, we get the last two columns in Table 10. Again, the higher the price of one fuel,
the cheaper the other one: since coal and gas are substitute resources, there must be a trade-off in
their prices for the option's value to stabilize at a certain level (in this case, zero).

These results are shown in Fig. 2. It can be observed that the new boundary has shifted
downwards and to the left, in relation to the case in which there is no option to wait (the first two
columns in Table 10). In other words, it makes sense to give up (“kill”) the option to wait if fuel
prices are now relatively lower than before but not otherwise. The upper locus divides the price
space into two regions; above, the best decision is not to invest, and below it is optimal to invest.
Similarly, above the lower locus the firm should wait, but it should invest immediately if fuel
prices happened to fall below this locus.

Finally, let us consider for a moment the surface in Fig. 1. Fixing natural gas price at Sg=5.00€/
GJ, the resulting graphic would be a downward sloping curve in the plant's value /coal price plane.
Subtracting from these gross values the investment disbursement, and restricting coal prices to the
range from 1.4€/GJ to 1.9€/GJ, the lower locus in Fig. 3 arises. For convenience, in addition to the
plant's NPV, the value of the option to invest has also been drawn. It can be observed that optimal



Fig. 2. Optimal boundary between invest /not invest (upper locus, t=T) and invest /wait (lower locus, t=T−2) in an IGCC
power plant.
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exercise of the optionwill take place as soon as coal price falls to 1.56€/GJ. If this is higher, it will be
better to wait.

4.6. Valuation of the opportunity to invest in NGCC or IGCC

Up to now we have considered both the flexible and the inflexible technologies in isolation. When
there is an opportunity to invest in either one of the two technologies, at each moment we face the
choice:

a) to invest in the inflexible technology (NGCC),
b) to invest in the flexible technology (IGCC),
c) to wait and at maturity give up the investment.
Table 11
NPV and option value (thousand €) of an IGCC plant

Term (years) NPV Option value Option value — NPV

5 52,534 76,398 23,864
4 52,534 74,179 21,645
3 52,534 71,048 18,514
2 52,534 66,651 14,117
1 52,534 60,592 8,058
0.5 52,534 56,835 4,301
0 52,534 52,534 0



Fig. 3. NPVof the IGCC plant (for Sg=5.00 €/GJ) and value of the option to invest with 2 years to maturity, both as a
function of coal price.
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At expiration (t=T ), since there is no remaining option, the best alternative among the three
available ones is chosen:

W ¼ Max NPVigcc;NPVngcc; 0
� �

;

where the value NPVigcc at each node is derived from a two-dimensional binomial lattice with the
fuel prices at that node.

At time T, if the only possibility is to invest in the NGCC technology, the investment is realized
whenever natural gas price is lower than 5.4563€/GJ; see Table 3. Similarly, if the only alternative is
to invest in the IGCC technology, the plant is built when the pairs of gas price and coal price lay below
the boundary resulting from Table 10 (t=T ). Now Fig. 4 shows both decision rules, but it must be
remembered that, in this case, it is not possible to choose the best possibility. Thus, for Sg > 5.45€/GJ
it does not pay to invest in a NGCC plant. Concerning the IGCC facility, it is optimal to invest for
pairs of fuel prices below the decreasing locus, but not otherwise. Note from Table 10 (t=T ) that this
locus intersects the vertical border at a coal price Sc=2.23 €/GJ.

Now assume that it is possible to choose between the two alternatives (Fig. 5). Clearly, if both fuel
prices are relatively high, none of the technologieswill be adopted and therewill be no new investment
in these power plants. There are also many pairs (Sg, Sc) such that the value of the investment is
positive for both plants; consequently the plant with the highest value will be chosen. Thus, given a
high coal price, if Sg drops enough the NGCC will become the technology of choice. Alternatively,
given a high gas price, if Sc falls enough the IGCC technology will be preferred. This area will be
divided into two by a boundary starting at the point (Sg=5.4563, Sc=2.2325) and pointing towards the
origin; along this line there is indifference between investing in IGCC and NGCC.

At previous moments (t < T ), the choice is:

W ¼ Max NPVigcc;NPVngcc; e
−rDt puuW

þþ þ pudW
þ− þ pduW

−þ þ pddW
−−ð Þ� �

:



Fig. 4. Decision regions (t=T) when each technology is considered in isolation.
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This computing procedure is iteratively followed until the initial value is obtained. At that
instant, the NGCC technology will be adopted ifW=NPVngcc; similarly, the IGCC technology is
chosen if W=NPVigcc. If there is no investment at t=0, this means that the best decision is to
wait.

Along the optimal exercise boundary the value of the option drops to zero. In principle, there
may be two curves, one for the IGCC plant and another one for the NGCC plant. See Fig. 6 for an
Fig. 5. Investment /Continuation regions (t=T) when choosing between the two technologies.



Fig. 6. Investment /Continuation regions when both technologies are on offer and there is an option to wait up to 2 years.
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option to invest in either technology with 2 years to maturity; again, we set up a binomial lattice
with quarterly steps for this option to invest. It can be observed that:

a) In order to invest, prices must be rather lower than those when there is no option to wait. Thus
the new locus for the NGCC moves leftward from the vertical line at Sg=5.45 €/GJ before;
and the new locus for the IGCC moves downwards from the flat line at Sc=2.23 €/GJ. The
reversion effect, given initial fuel prices, promotes this behaviour.

b) For a very high natural gas price, there will be investment in an IGCC plant if coal price falls
below 1.57€/GJ; this is the same that we computed for the IGCC investment option when this
was the only technology available (Table 10, t=T−2).

c) Similarly, for a very high coal price, there will be investment in a NGCC plant if gas price is
lower than 3.17€/GJ. This value is slightly different from the homologous in Table 3, namely
3.0864 €/GJ, derived from a lattice with 1200 steps. Now only 8 quarterly steps are being
used, yet trigger prices differ by less than 3%.

d) For fuel prices close to the iso-value line between immediate investment in NGCC and IGCC,
now the best choice is just to wait and see how uncertainty unfolds. The waiting zone expands
into the regions of immediate investment driving a wedge along the indifference boundary (at
T) between NGCC and IGCC.

The shape of the three optimal regions in Fig. 6 somehow resembles that in Brekke and
Schieldrop (2000), which is derived as the analytic result of a perpetual option to invest. In our
case the solution is numerical because the option to invest is finite-lived.

5. A geometric Brownian motion for fuel price

All the above numerical results have been derived under the assumption that mean reversion in
fuel prices is relevant for the problem at hand. Towhat extent are they affected by it?Howwould they
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change if a standard GBM were instead adopted? These are legitimate concerns that we want to
address somehow. Below we show some computations under this new assumption that lend
themselves easily to comparison with former results.We do not seek to replicate all the analyses, but
to allow the reader to have a glimpse at this issue and judge by herself. The stochastic processes under
consideration are:

GBMð ÞdSt ¼ lStdt þ rStdZt;

IGBMð ÞdSt ¼ k Sm−Stð Þdt þ rStdZt:

Ideally the parameters of these processes should be estimated rigorously from actual fuel
prices. Instead we have approximated some numerical values for all of them bar one, μ.
Concerning its value, and in order for the comparisons to be meaningful, we adopt the following
criterion: the total cost of consuming one unit of fuel per year over the plant's useful life must be
the same regardless of the particular process that governs fuel price, be it GBM or IGBM. In the
simple case in which ϕ=0 or ρ=0 we have (see Appendix):

S 1−e− r−lð ÞT� �
r−l

¼ Sm 1−e−rTð Þ
r

þ S−Sm
r þ k

1−e− rþkð ÞT
h i

:

In the absence of a fully-fledged econometric estimation of μ from historical price series, we
compute the value of μ that makes both sides equivalent.

5.1. Only the NGCC technology available

In the case of natural gas the parameter values are: Sm=3.25 €/GJ, k=0.25, σ=0.20, T=25,
S=5.45 €/GJ and r=0.05. Hence: μ=− 0.04106216.18

Note that the above criterion impinges directly on the value of the operating NGCC plant.
Specifically, given that fuel costs are forced to remain the same and these are the only item assumed to
be stochastic, the net present value of the plant is not affected by the choice between the two processes.

The value of the option to invest, though, behaves differently. First we analyse the perpetual option
to invest in aNGCCplant. In this case, the option valuemust satisfy the following differential equation:

1
2
r2S2FWþ lSF V−rF ¼ 0:

The solution to this equation is:

F Sð Þ ¼ A1S
g1 þ A2S

g2 :

It may be argued that if fuel price grows arbitrarily high the option will be worthless, so A1=0 and
hence F(S )=A2S

γ2. Taking the first and second derivatives, and substituting F, F′ and F′′ into the
differential equation we get:

1
2
r2g22 þ g2 a−

1
2
r2


 �
−r ¼ 0:

This is a quadratic equation. For σ=0.20 the negative root turns out to be: γ2=− 0.671255612.
18 In fact, this value implies similar expected gas prices by the plant's mid life (t=12.5) under both stochastic processes:

GBMð ÞE Stð Þ ¼ S0elt ¼ 3:26;
IGBMð ÞE Stð Þ ¼ Sm þ S0−Smð Þe−kt ¼ 3:35:



Table 12
Trigger price S⁎ with finite time to maturity

Term ra=0, rb=0 ra=0, rb=0.025 ra=0, rb=0.05

0 5.4521 5.4521 5.4521
½ 2.7579 3.0118 3.2660
1 2.6757 2.9171 3.1497
2 2.5659 2.7820 2.9846
3 2.4886 2.6901 2.8815
4 2.4322 2.6258 2.8130
5 2.3900 2.5792 2.7648
6 2.3577 2.5442 2.7299
7 2.3326 2.5175 2.7038
8 2.3128 2.4966 2.6840
9 2.2970 2.4802 2.6688
10 2.2842 2.4671 2.6571
∞ 2.1898 – –
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The values of A2 and S⁎ remain to be determined. We resort to the value-matching and
smooth-pasting conditions:

F S⁎ð Þ ¼ V S⁎ð Þ−I S⁎ð Þ;
F V S⁎ð Þ ¼ V V S⁎ð Þ−I V S⁎ð Þ:

With regard to V, as before the present value of revenues minus that of variable costs and the
investment outlay amounts to 1,342,055,454 € (see expression (26)). Now the present value of
fuel costs must be deducted; in terms of fuel price, S, with our parameter values:

S 1−e− r−lð ÞT� �
r−l

B ¼ 246; 153; 090 S:

Thus the boundary conditions state that:

A2 S⁎ð Þg2¼ 1; 342; 055; 454−246; 153; 090 S;

A2g2 S⁎ð Þg2−1¼ −246; 153; 090:

It is straightforward to solve for the trigger price; now S⁎=2.1898 €/GJ (instead of 2.7448 when
the IGBM was assumed). Intuitively, mean reversion imposes narrower barriers to the price path
Table 13
NPV and option value (thousand €) with T=5 years

S0 NPV Option value Max(NPV, Option) Optimal decision

5.45 521 285,850 285,850 Wait
5.00 111,290 332,080 322,080 Wait
4.50 234,370 390,690 390,690 Wait
4.00 357,440 457,700 457,700 Wait
3.50 480,520 534,340 534,340 Wait
3.00 603,600 622,710 622,710 Wait
2.50 726,670 727,580 727,580 Wait
2.3900 753,750 753,750 753,750 Indifferent
2.00 849,750 849,660 849,750 Invest



Table 14
Gross and net value (thousand €) of an IGCC plant

Switching costs (€) Plant's value Plant's value — Initial investment

0 799,890 149,890
10,000 799,850 149,850
20,000 799,810 149,810
50,000 799,680 149,680
100,000 799,530 149,530
1,000,000 797,980 147,980
∞ 691,692 41,692
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than the GBM. In this sense the adoption of a GBM increases volatility. This in turn translates into
a lower fuel price for the option to be exercised.

As for the non-perpetual option, the starting point is the risk-neutral version of the GBM:

d ̂S
̂S
¼ l−qr/ð Þdt þ rdZ:

Define X=lnŜ ; then applying Ito's Lemma:

dX ¼ l−qr/−
1
2
r2


 �
dt þ rdZ ¼ ̂ldt þ rdZ:

It can be shown that DX ¼ r
ffiffiffiffiffiffi
Dt;

p
u ¼ er

ffiffiffiffi
Dt

p
and d ¼ e−r

ffiffiffiffi
Dt

p
: The probability of an upward

movement is given by pu ¼ 1
2 þ l ̂

ffiffiffiffi
Dt

p
2r ; where μ̂ is now a constant.

Table 12 below is the homologous to Table 3 under the GBM. Again, as the option's maturity
increases the trigger price decreases; also, this converges toward 2.1898 as maturity approaches
infinity. Finally, the values in Table 12 are lower than those in Table 3; in other words, the
conditions to exercise the option to invest are more stringent under the GBM.

Similarly, Table 13 is the homologous to Table 4 under the GBM. The option to invest expires
in 5 years' time. As can be seen, greater uncertainty induces a higher option value. Under the
IGBM it was optimal to invest as soon as fuel price dropped to 2.9079 €/GJ. Now the price must
fall further, to 2.3900. In other words, there are less chances for the investment to be undertaken.
Table 15
Gross value (thousand €) of an operating IGCC plant as a function of the growth rate of electricity price and variable cost
(ra)

Remaining life ra=0.00 ra=0.03

25 years 799,810 1,367,700
20 years 674,270 1,074,300
15 years 528,270 775,860
10 years 363,940 484,820
5 years 186,770 219,870
4 years 150,370 171,940
3 years 113,650 126,020
2 years 76,503 82,109
1 year 38,689 40,122
0 year 0 0



Table 16
Critical boundary to invest in IGCC (t=T )

Gas price (€/GJ) Coal price (€/GJ)

∞ 2.03
5.45 2.55
5.00 2.69
4.50 3.00
4.00 4.39
3.90 5.71
3.81 ∞
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5.2. Only the IGCC technology available

Concerning the operating IGCC plant, the relevant parameters for coal are: Sm=1.40 €/GJ,
k=0.125, σ=0.05, T=25, S=1.90 €/GJ and r=0.05. With these values we compute: μ=
−0.01818148. Table 14 closely resembles Table 7, apart from the assumption of a GBM price
process. Again, at current fuel prices the value of the flexible plant is not very sensitive to
switching costs. Anyway the value is significantly higher than before; presumably flexibility is
more valuable when fuel prices are more volatile.

On the other hand, the value of the plant depends on its remaining useful life. Table 15 is
parallel to Table 8. As before, the value decreases as the plant approaches closure. This is so
regardless of the electricity price's growth rate. Nonetheless, there is a quirk: the GBM enhances
the plant's value when this has a long time ahead to operate; however, with 5 years or less before
closure, the plant is less valuable than under the IGBM. It is as if greater volatility spells greater
opportunities in the early years but becomes more of a threat in the final ones.

Last, consider the option to invest in an IGCC plant. At maturity, there is no further chance for
new information to be gained from waiting. Also, the above results show that a new operating
plant is more valuable under the GBM assumption. Thus it is not surprising that now there are
more pairs of fuel prices for which the optimal decision is to invest. Just compare Table 16 with
Table 10 (t=T). For a given gas price, the coal price that triggers investment is higher. In graphical
terms, the boundary that divides the prices space into two regions turns steeper and the “invest”
region becomes larger. From the numerical values, this shift appears to be significant.

6. Concluding remarks

Many investments in the energy sector can be conveniently valued as real options. Frequently
appearing features are the operating flexibility and the possibility to delay the investment or even
not to invest at the final moment. Special attention in the valuation must be paid to the nature of
the stochastic processes that govern the underlying variables.

In this paper we address the choice between competing technologies for producing electricity
under the assumption that input fuel prices follow a mean-reverting process, namely an IGBM. In
particular, we have analyzed the valuation of a non-perpetual opportunity to invest in an IGCC
power plant, as opposed to the alternative of an NGCC power plant. Actual parameters from an
operating plant have been used.

First we have computed the value of an operating NGCC plant. This is relatively easy since
there is no special flexibility in its usage. Then the value of a perpetual option to invest in it has
been derived. It serves as a benchmark or limiting case for the finite-lived option. This has been
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valued by means of a binomial lattice for different maturities and growth rates of electricity price
and investment outlay. The optimal investment rule for a given term as a function of natural gas
price has also been analyzed.

Second we have valued an IGCC plant in operation using two two-dimensional lattices,
depending on whether initially the plant burns coal or natural gas. The value of the plant has been
computed as a function of switching costs between modes of operation and for different useful life
spans with constant or growing electricity prices. The value of the operating flexibility in the
IGCC power plant seems to be low (at current fuel prices well above their long-run levels). Next
the non-perpetual option to invest in an IGCC plant has been considered, assuming again that this
is the only technology available. In this case, an optimal locus of fuel prices arises above which it
is optimal to wait. As could be expected, the longer the option's maturity the closer the locus is to
the origin in the fuel prices space.

Third we have assumed that both technologies are on offer. Since the firm has always the
opportunity to not invest, there are now three regions in the prices space. Obviously, there are
pairs of fuel prices such that the optimal decision remains the same whatever the time to the
option's expiration. In other cases, as maturity approaches waiting ceases to be optimal and the
firm chooses to invest. Decision regions are clear-cut anyway.

At this point several qualifications can be made. The choice of the appropriate stochastic
model for fuel prices has already been addressed to some extent. This is basically an empirical
matter, yet we have not run any kind of test on actual fuel prices series. Instead we have adopted
a relatively general stochastic process which encompasses more traditional specifications as
particular cases; as for the parameter values, we have taken hopefully sensible values used
elsewhere. In this sense the paper just shows how to apply a specific methodology to the
valuation and management of investments in certain power plants. With regard to the flexible
plant it must be stressed that we have restricted ourselves to flexibility on the input side; any
consideration about optional working units which may give rise to an array of final products has
thus been neglected (even though they may actually become additional sources of value). This
helps to keep matters simple in that there are only two sources of risk. On the other hand, power
utilities (at least in the European Union) now face a new carbon market which, regardless of
whether it is seen as a threat or an opportunity, no doubt will influence decision making
by utilities. Nevertheless carbon is not an issue in our choice between the aforementioned
technologies.

This paper may be extended in several ways. Whenever actual market data are available they
should be the natural starting point to check which stochastic process fits best and/or to get
numerical estimates of the parameter values. There are well developed markets for a number of
energy resources and also for electricity in some countries. Concerning the valuation model,
inclusion of more sources of risk could be justified to account for output price uncertainty,
or the uncertain price of carbon allowances, for instance. Obviously this would render
the numerical results more palatable. In doing so, though, binomial lattices are no longer a
workable approach and one must resort to other numerical techniques, probably involving
Monte Carlo simulation.
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Appendix. Valuation of an annuity under mean reversion

Our aim is to value an asset V which pays Zdt continuously over a finite number of periods τ
of remaining asset's life, with X following a mean-reverting process of the type:

dX ¼ k Xm−Xð Þdt þ rXdZt:

It can be shown that the asset A satisfies the differential equation:

1
2
VXXr

2X 2 þ k Xm−Xð Þ−qr/Xð ÞVX−rV−Vs ¼ −X ; ð33Þ

where it is assumed that the existing traded assets dynamically span the price X. As in Section 3,
let ρ denote the correlation with the market portfolio, and φ the market price of risk. The solution
V(X, τ) to the differential equation must satisfy the following boundary conditions:

a) At τ=0 the value must be zero: V(X, 0)=0.
b) Bounded derivative as X → ∞: VX (∞, τ) < ∞.
c) Bounded derivative as X → 0: VX (0, τ) < ∞.

Using Laplace transforms we get:

1
2
hXXr

2X 2 þ k Xm−Xð Þ−qr/Xð ÞhX−h r þ sð Þ ¼ −
X
s
:

Rearranging:

1
2
hXXr

2X 2− k þ qr/ð ÞXhX−h r þ sð Þ ¼ −kXmhX−
X
s
:

The general solution has the form:

h Xð Þ ¼ A1X
b1 þ A2X

b2 þ
X− kXm

kþqr/

s sþ r þ k þ qr/ð Þ þ
kXm

k þ qr/ð Þs sþ rð Þ :

The derivative is bounded; thus A1=0. Besides, h(0)=0; therefore A2=0.
The solution simplifies to:

h Xð Þ ¼
X− kXm

kþqr/

s sþ r þ k þ qr/ð Þ þ
kXm

k þ qr/ð Þs sþ rð Þ :

With the first and second derivatives, hx ¼ 1
s sþrþkþqr/ð Þ ; hXX=0, it is possible to show, by subs-

titution, that the differential equation applies.
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At this moment, the inverse Laplace transforms are taken. To do so we use formula 29.3.12 in
Abramowitz and Stegun (1972), the final result being:

V ¼ kXm 1−e−rsð Þ
r k þ qr/ð Þ þ

X− kXm
kþqr/

r þ k þ qr/
1−e− rþkþqr/ð Þs

� �
: ð34Þ

This formula may be useful to compute the present value of fuel costs over the whole life of a
plant with inflexible technology, like an NGCC or coal plant.19

A series of particular, frequently used, cases may be derived from the above general solution:

a) If ϕ=0 or ρ=0, then the formula reduces to

V ¼ Xm 1−e−rsð Þ
r

þ X−Xm

r þ k
1−e− rþkð Þs

� �
:

b) If τ → ∞:

V ¼ kXm

r k þ qr/ð Þ þ
X− kXm

kþqr/

r þ k þ qr/
: ð35Þ

In this case, it can be observed that the project value is the sum of two components: one related
to the reversion value and another one which is a function of the initial difference between the
observed value and the “normal” level of X.

c) When it is a perpetuity and also Xm=0 and k+ρσϕ=−α, then:

V ¼ X
r−a

: ð36Þ

d) When it is a perpetuity and also Xm=0 and k+ρσϕ=−r+δ, then:

V ¼ X
d
: ð37Þ
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