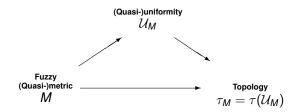
Hutton [0, 1]-(quasi-)uniformities induced by fuzzy (quasi-)metric spaces

J. Gutiérrez García and M.A. de Prada Vicente

Universidad del País Vasco-Euskal Herriko Unibertsitatea

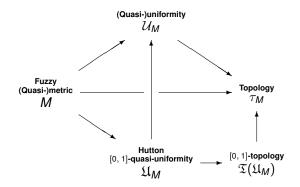
Almería, 7 de junio de 2005

Original diagram



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Our diagram



æ

ヘロト 人間 とくき とくきとう

A *Menger probabilistic metric space* is a set *X* and a mapping \mathfrak{F} from $X \times X$ to the set of all nonnegative probability distribution functions with the following properties (we shall denote $\mathfrak{F}(x, y) = \mathfrak{F}_{xy}$): (for all $x, y, z \in X$ and $r, s \ge 0$) (PM1) $\mathfrak{F}_{xy}(r) = 1$ for all r > 0 if and only if x = y; (PM2) $\mathfrak{F}_{xy} = \mathfrak{F}_{yx}$; (PM3) $\mathfrak{F}_{xz}(r+s) \ge \mathfrak{F}_{xy}(r) * \mathfrak{F}_{yz}(s)$. where $*: [0, 1] \times [0, 1] \rightarrow [0, 1]$ is a *t*-norm.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The strong uniformity is defined through the uniform basis

$$\mathcal{U} = \big\{ U(\varepsilon) \, : \, \varepsilon > \mathbf{0} \big\},$$

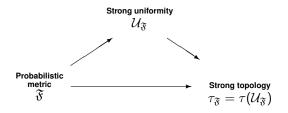
where $U(\varepsilon) = \{(x, y) \in X \times X : \mathfrak{F}_{x,y}(\varepsilon) > 1 - \varepsilon\}.$

The *strong topology* or (ε, λ) -*topology* is the topology induced by the strong uniformity, i.e. it is defined through the following neighbourhood base:

$$\mathcal{N}_{x} = \{ N_{x}(\varepsilon, \lambda) : \varepsilon > 0, \lambda \in (0, 1] \},$$

where $N_{x}(\varepsilon,\lambda) = \{y \in X : \mathfrak{F}_{x,y}(\varepsilon) > 1 - \lambda\}.$

Strong uniformity and strong topology (II)



There are two properties essential to obtain a topological space derived from a probabilistic metric space:

(i) \$\vec{s}_{x,y}(t) > r ⇒ ∃t' < t\$ such that \$\vec{s}_{x,y}(t') > r\$ (it follows from left-continuity of the distribution function);
(ii) ∀r ∈ [0, 1) ∃t < 1\$ such that t * t ≥ r (it follows from sup t * t = 1; t<1\$ a consequence of * being left- continuous).

In the nineties, George and Veeramani introduced a notion of *fuzzy metric* as follows:

Given a continuous *t*-norm *, a fuzzy metric *M* on a set *X* is a fuzzy set in $X \times X \times (0, +\infty)$ satisfying the following conditions: (for $x, y, z \in X$ and all r, s > 0) (FM1) M(x, y, r) > 0; (FM2) M(x, y, r) = 1 for all r > 0 if and only if x = y; (FM3) M(x, y, r) = M(y, x, r); (FM4) $M(x, z, r + s) \ge M(x, y, r) * M(y, z, s)$; (FM5) $M(x, y, \cdot)$ is continuous.

By dropping axiom (FM3), Gregori and Romaguera defined and studied the notion of a *fuzzy quasi-metric space*.

This notion is proved to be closely related to that of probabilistic metric spaces. The technical support for this relation is the *exponential law*, which allows to consider a function $M: X \times X \times (0, +\infty) \rightarrow [0, 1]$ as a function $\mathfrak{F}: X \times X \rightarrow [0, 1]^{(0, +\infty)}$, defined by $\mathfrak{F}(x, y)(t) = \mathfrak{F}_{xy}(t) = M(x, y, t)$.

It deserves to be mentioned here that the difference between fuzzy metric spaces and probabilistic metric spaces is that \mathfrak{F}_{xy} is strictly positive in $(0,\infty)$ and continuous (not only left-continuous) and the condition $\lim_{t\to\infty} \mathfrak{F}_{xy}(t) = 1$ is not necessarily satisfied.

Let us recall that a binary operation $*: [0, 1] \times [0, 1] \rightarrow [0, 1]$ is a *(left-)continuous t-norm* provided that it satisfies the following conditions:

- (i) * is associative and commutative;
- (ii) * is (left-)continuous;

(iii)
$$a * 1 = a$$
 for every $a \in [0, 1]$;

(iv) $a * b \le c * d$ whenever $a \le c$ and $b \le d$.

Note that left-continuity of * implies that * is distributive over arbitrary sups, i.e. for $\alpha \in [0, 1]$ and $\{\beta_i\}_{i \in J} \subset [0, 1]$

$$\alpha * \left(\bigvee_{i \in J} \beta_i \right) = \bigvee_{i \in J} \left(\alpha * \beta_i \right).$$

A strictly two-sided, commutative quantale (or a an integral, commutative cl-monoid) is a triple $(L, \leq, *)$ such that:

- (L, \leq) is a complete lattice.
- (*L*, *) is a commutative monoid such that the universal upper (resp. lower) bound ⊤ (resp. ⊥) acts as unit (resp. zero) element.
- * is distributive over arbitrary joins in (L, \leq) , i.e.

 $\alpha * \left(\bigvee_{i \in J} \beta_i \right) = \bigvee_{i \in J} (\alpha * \beta_i) \quad \text{for all } \alpha \in L \text{ and } \{\beta_i\}_{i \in J} \subset L,$

where J stands for any index set.

Every commutative quantale $(L, \leq, *)$ is *residuated* - i.e. there exist a binary operation \rightarrow on *L* satisfying the following axiom

$$\alpha * \gamma \leq \beta \quad \Longleftrightarrow \quad \gamma \leq \alpha \stackrel{*}{\rightarrow} \beta$$

for $\alpha, \beta, \gamma \in L$.

In particular the *implication* $\stackrel{*}{\rightarrow}$ is given by

$$\alpha \xrightarrow{*} \beta = \bigvee \{ \gamma \in \mathcal{L} : \alpha * \gamma \leq \beta \}$$

for all $\alpha, \beta \in L$.

In the case of the fundamental continuous *t*-norms \land , Prod and T_m (defined as $T_m(\alpha, \beta) = \max\{\alpha + \beta - 1, 0\}$ for each $\alpha, \beta \in L$), the corresponding implications are defined, respectively, as

$$\alpha \xrightarrow{\wedge} \beta = \left\{ \begin{array}{ll} \beta, & \text{if } \alpha > \beta; \\ \mathbf{1}, & \text{if } \alpha \le \beta; \end{array} \right. \quad \alpha \xrightarrow{\text{Prod}} \beta = \left\{ \begin{array}{ll} \frac{\beta}{\alpha}, & \text{if } \alpha > \beta; \\ \mathbf{1}, & \text{if } \alpha \le \beta; \end{array} \right.$$

and

$$\alpha \xrightarrow{T_m} \beta = \begin{cases} \beta - \alpha + 1, & \text{if } \alpha > \beta; \\ 1, & \text{if } \alpha \le \beta; \end{cases}$$

Let X be a set and (L, \leq) a complete lattice. We denote by $\mathcal{H}_{L}(X)$ the collection of all enlarging and *arbitrary* join-preserving mappings from L^{X} into L^{X} , i.e. $\mathcal{H}_{L}(X)$ is that subset $(L^{X})^{L^{X}}$ whose members W satisfy for each $a \in L^{X}$ and $\{a_{i}\}_{i \in J} \subset L^{X}$: (W1) $W(a) \geq a$ (Enlarging) (W2) $W(\bigvee_{i \in J} a_{i}) = \bigvee_{i \in J} W(a_{i})$ (Join-preserving) and $W(1_{\varnothing}) = 1_{\varnothing}$.

Note that if $L = \mathbf{2} = \{0, 1\}$, $\mathcal{H}_L(X)$ can be identified with the collection of all subsets of $X \times X$ containing the diagonal.

Let (L, ≤, ') be a complete lattice. A *Hutton L-quasi-uniformity* on X is a nonempty subset U of H_L(X) such that
(HU1) if U ∈ U, U ≤ V and V ∈ H_L(X) then V ∈ U;
(HU2) if U, V ∈ U, there exists W ∈ U such that W ≤ U and W ≤ V;
(HU3) if U ∈ U, there exists V ∈ U such that V ∘ V ≤ U (where ∘ denotes the usual composition of functions).

A Hutton *L*-quasi-uniformity is called a *Hutton L-uniformity* if it additionally satisfies:

(HU4) if $U \in \mathcal{U}$, then $U^{-1} \in \mathcal{U}$.

Construction: Let (X, M, *) be a fuzzy quasi-metric space, $\varepsilon \in (0, 1]$ and t > 0 and define $W_{\varepsilon, t}^M : [0, 1]^X \to [0, 1]^X$ as

$$W^{M}_{\varepsilon,t}(lpha * \mathbf{1}_{\{x\}})(y) = lpha * ((1 - \varepsilon) \to M(x, y, t))$$

for each $x \in X$ and $\alpha \in (0, 1]$ and

$$W^{M}_{\varepsilon,t}(a) = \bigvee_{x \in X} W^{M}_{\varepsilon,t}(a(x) * \mathbf{1}_{\{x\}})$$

for each $a \in [0, 1]^X$. (Where by $\alpha * 1_{\{x\}} \in [0, 1]^X$ we denote the mapping defined as α in x and 0 otherwise).

Result: The family $\mathfrak{B}_M = \{ W_{\varepsilon,t}^M : \varepsilon \in (0, 1], t > 0 \}$ is a base for a Hutton [0, 1]-quasi-uniformity on *X*.

We shall denote by \mathfrak{U}_M the quasi-uniformity generated by \mathfrak{B}_M and call it the *Hutton* [0, 1]-*quasi-uniformity induced by* M.

Moreover, in the particular case $* = T_m$, we have that $\left(W_{\varepsilon,t}^M \right)^{-1} = W_{\varepsilon,t}^M$ for each $\varepsilon \in (0,1]$ and t > 0 and consequently, if (X, M, T_m) is a fuzzy metric space, then \mathfrak{U}_M is a Hutton [0,1]-uniformity

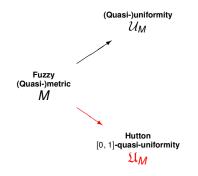
The study of the relation between classical and fuzzy structures of topological nature was initiated by Lowen. He introduced the well-known adjoint functors

 $\omega : \text{TOP} \rightarrow [0, 1] \text{-} \text{TOP}$ and $\iota : [0, 1] \text{-} \text{TOP} \rightarrow \text{TOP}.$

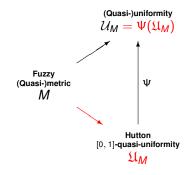
In what respects to [0, 1]-(quasi-)uniform spaces (in the sense of Hutton), it was Katsaras who explicit the relation between the category **(Q)UNIF** of (quasi-)uniform spaces and that of Hutton [0, 1]-(quasi-)uniform spaces, [0, 1]-**(Q)UNIF**. He defined the adjoint functors

 $\Phi: \textbf{(Q)UNIF} \rightarrow [0, 1]\textbf{-}\textbf{(Q)UNIF} \text{ and } \Psi: [0, 1]\textbf{-}\textbf{(Q)UNIF} \rightarrow \textbf{(Q)UNIF}.$

Result: Given a fuzzy (quasi-)metric space (X, M, *), the uniformity \mathcal{U}_M is precisely the image under Katsaras' functor of \mathfrak{U}_M , i.e. we have the following commutative diagram:



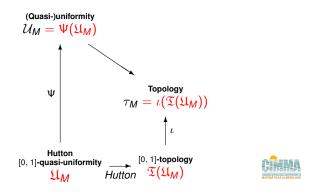
Result: Given a fuzzy (quasi-)metric space (X, M, *), the uniformity \mathcal{U}_M is precisely the image under Katsaras' functor of \mathfrak{U}_M , i.e. we have the following commutative diagram:



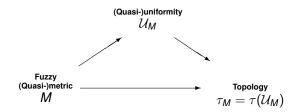
Result: Given a fuzzy (quasi-)metric space (X, M, *), the topology τ_M is precisely the image under Lowen's functor of the [0, 1]-topology induced by \mathfrak{U}_M , i.e. we have the following commutative diagram:



Result: Given a fuzzy (quasi-)metric space (X, M, *), the topology τ_M is precisely the image under Lowen's functor of the [0, 1]-topology induced by \mathfrak{U}_M , i.e. we have the following commutative diagram:

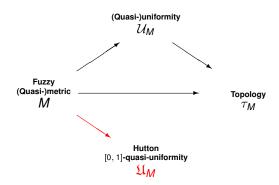


Original diagram



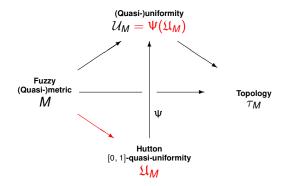
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Our construction



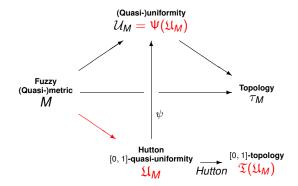
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Commutativity with Katsaras' functor



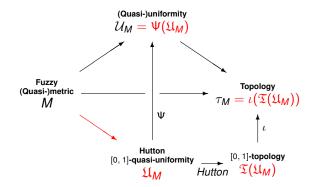
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Commutativity with Lowen's functor (I)



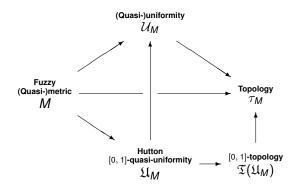
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Commutativity with Lowen's functor (II)



▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Final diagram



æ

ヘロト 人間 とくき とくきとう