Unified representability of total preorders, semiorders, and interval orders through scales and a single map

Javier Gutiérrez García

Departament of Mathematics, UPV-EHU

(joint work with Esteban Induráin, UPNA)

definitions

・ロン ・回 と ・ ヨン・

Let X be a set and \mathcal{R} a reflexive binary and complete relation on X (\mathcal{R} is said to be complete if for each $x, y \in X$ either $x\mathcal{R}y$ or $y\mathcal{R}x$).

definitions

イロン イロン イヨン イヨン 三日

Let X be a set and \mathcal{R} a reflexive binary and complete relation on X (\mathcal{R} is said to be complete if for each $x, y \in X$ either $x\mathcal{R}y$ or $y\mathcal{R}x$).

The asymmetric part \mathcal{P} of \mathcal{R} is defined as $x\mathcal{P}y \iff (x\mathcal{R}y)$ and $(\neg(y\mathcal{R}x))$.

definitions

イロン イロン イヨン イヨン 三日

Let X be a set and \mathcal{R} a reflexive binary and complete relation on X (\mathcal{R} is said to be complete if for each $x, y \in X$ either $x\mathcal{R}y$ or $y\mathcal{R}x$).

The asymmetric part \mathcal{P} of \mathcal{R} is defined as $x\mathcal{P}y \iff (x\mathcal{R}y)$ and $(\neg(y\mathcal{R}x))$. We also have $x\mathcal{R}y \iff \neg(y\mathcal{P}x)$.

definitions

Let X be a set and \mathcal{R} a reflexive binary and complete relation on X (\mathcal{R} is said to be complete if for each $x, y \in X$ either $x\mathcal{R}y$ or $y\mathcal{R}x$).

The asymmetric part \mathcal{P} of \mathcal{R} is defined as $x\mathcal{P}y \iff (x\mathcal{R}y)$ and $(\neg(y\mathcal{R}x))$. We also have $x\mathcal{R}y \iff \neg(y\mathcal{P}x)$.

(i) \mathcal{R} is a total preorder (or preference) if it is transitive i.e. if for every $x, y, z \in X$ ($x\mathcal{R}y$) and ($y\mathcal{R}z$) \Longrightarrow ($x\mathcal{R}z$).

definitions

Let X be a set and \mathcal{R} a reflexive binary and complete relation on X (\mathcal{R} is said to be complete if for each $x, y \in X$ either $x\mathcal{R}y$ or $y\mathcal{R}x$).

The asymmetric part \mathcal{P} of \mathcal{R} is defined as $x\mathcal{P}y \iff (x\mathcal{R}y)$ and $(\neg(y\mathcal{R}x))$. We also have $x\mathcal{R}y \iff \neg(y\mathcal{P}x)$.

- (i) \mathcal{R} is a total preorder (or preference) if it is transitive i.e. if for every $x, y, z \in X$ ($x\mathcal{R}y$) and ($y\mathcal{R}z$) \Longrightarrow ($x\mathcal{R}z$).
- (ii) \mathcal{R} is a semiorder if for every $x, y, z, t \in X$ $(x\mathcal{R}y)$ and $(y\mathcal{R}z) \implies (x\mathcal{R}t)$ or $(t\mathcal{R}z)$ and $(x\mathcal{R}y)$ and $(z\mathcal{R}t) \implies (x\mathcal{R}t)$ or $(z\mathcal{R}y)$.

definitions

Let X be a set and \mathcal{R} a reflexive binary and complete relation on X (\mathcal{R} is said to be complete if for each $x, y \in X$ either $x\mathcal{R}y$ or $y\mathcal{R}x$).

The asymmetric part \mathcal{P} of \mathcal{R} is defined as $x\mathcal{P}y \iff (x\mathcal{R}y)$ and $(\neg(y\mathcal{R}x))$. We also have $x\mathcal{R}y \iff \neg(y\mathcal{P}x)$.

- (i) \mathcal{R} is a total preorder (or preference) if it is transitive i.e. if for every $x, y, z \in X$ ($x\mathcal{R}y$) and ($y\mathcal{R}z$) \Longrightarrow ($x\mathcal{R}z$).
- (ii) \mathcal{R} is a semiorder if for every $x, y, z, t \in X$ $(x\mathcal{R}y)$ and $(y\mathcal{R}z) \implies (x\mathcal{R}t)$ or $(t\mathcal{R}z)$ and $(x\mathcal{R}y)$ and $(z\mathcal{R}t) \implies (x\mathcal{R}t)$ or $(z\mathcal{R}y)$.
- (iii) \mathcal{R} is an interval order if for every $x, y, z, t \in X$ ($x\mathcal{R}y$) and ($z\mathcal{R}t$) \Longrightarrow ($x\mathcal{R}t$) or ($z\mathcal{R}y$).

definitions

Let X be a set and \mathcal{R} a reflexive binary and complete relation on X (\mathcal{R} is said to be complete if for each $x, y \in X$ either $x\mathcal{R}y$ or $y\mathcal{R}x$).

The asymmetric part \mathcal{P} of \mathcal{R} is defined as $x\mathcal{P}y \iff (x\mathcal{R}y)$ and $(\neg(y\mathcal{R}x))$. We also have $x\mathcal{R}y \iff \neg(y\mathcal{P}x)$.

- (i) \mathcal{R} is a total preorder (or preference) if it is transitive i.e. if for every $x, y, z \in X$ ($x\mathcal{R}y$) and ($y\mathcal{R}z$) \Longrightarrow ($x\mathcal{R}z$).
- (ii) \mathcal{R} is a semiorder if for every $x, y, z, t \in X$ $(x\mathcal{R}y)$ and $(y\mathcal{R}z) \implies (x\mathcal{R}t)$ or $(t\mathcal{R}z)$ and $(x\mathcal{R}y)$ and $(z\mathcal{R}t) \implies (x\mathcal{R}t)$ or $(z\mathcal{R}y)$.
- (iii) \mathcal{R} is an interval order if for every $x, y, z, t \in X$ ($x\mathcal{R}y$) and ($z\mathcal{R}t$) \Longrightarrow ($x\mathcal{R}t$) or ($z\mathcal{R}y$).

total preorder

definitions

Let X be a set and \mathcal{R} a reflexive binary and complete relation on X (\mathcal{R} is said to be complete if for each $x, y \in X$ either $x\mathcal{R}y$ or $y\mathcal{R}x$).

The asymmetric part \mathcal{P} of \mathcal{R} is defined as $x\mathcal{P}y \iff (x\mathcal{R}y)$ and $(\neg(y\mathcal{R}x))$. We also have $x\mathcal{R}y \iff \neg(y\mathcal{P}x)$.

- (i) \mathcal{R} is a total preorder (or preference) if it is transitive i.e. if for every $x, y, z \in X$ ($x\mathcal{R}y$) and ($y\mathcal{R}z$) \Longrightarrow ($x\mathcal{R}z$).
- (ii) \mathcal{R} is a semiorder if for every $x, y, z, t \in X$ $(x\mathcal{R}y)$ and $(y\mathcal{R}z) \implies (x\mathcal{R}t)$ or $(t\mathcal{R}z)$ and $(x\mathcal{R}y)$ and $(z\mathcal{R}t) \implies (x\mathcal{R}t)$ or $(z\mathcal{R}y)$.
- (iii) \mathcal{R} is an interval order if for every $x, y, z, t \in X$ ($x\mathcal{R}y$) and ($z\mathcal{R}t$) \Longrightarrow ($x\mathcal{R}t$) or ($z\mathcal{R}y$).

total preorder \Longrightarrow semiorder

definitions

Let X be a set and \mathcal{R} a reflexive binary and complete relation on X (\mathcal{R} is said to be complete if for each $x, y \in X$ either $x\mathcal{R}y$ or $y\mathcal{R}x$).

The asymmetric part \mathcal{P} of \mathcal{R} is defined as $x\mathcal{P}y \iff (x\mathcal{R}y)$ and $(\neg(y\mathcal{R}x))$. We also have $x\mathcal{R}y \iff \neg(y\mathcal{P}x)$.

- (i) \mathcal{R} is a total preorder (or preference) if it is transitive i.e. if for every $x, y, z \in X$ ($x\mathcal{R}y$) and ($y\mathcal{R}z$) \Longrightarrow ($x\mathcal{R}z$).
- (ii) \mathcal{R} is a semiorder if for every $x, y, z, t \in X$ $(x\mathcal{R}y)$ and $(y\mathcal{R}z) \implies (x\mathcal{R}t)$ or $(t\mathcal{R}z)$ and $(x\mathcal{R}y)$ and $(z\mathcal{R}t) \implies (x\mathcal{R}t)$ or $(z\mathcal{R}y)$.
- (iii) \mathcal{R} is an interval order if for every $x, y, z, t \in X$ ($x\mathcal{R}y$) and ($z\mathcal{R}t$) \Longrightarrow ($x\mathcal{R}t$) or ($z\mathcal{R}y$).

total preorder \Longrightarrow semiorder \Longrightarrow interval order

examples (1)

FRIDAY 27 JUNE 2008

	Salón de Actos	Aula 0.0	Aula 0.1	Aula 0.2	Aula 0.3			
10:00-10:50	ANTONIO FERNÁNDEZ Representation of Banach lattices							
10:50-11:20	COFFEE BREAK							
11:20-12:10		ÁNGEL TAMARIZ-MASCARUA Spaces of continuous functions defined on Mrówka spaces						
	Salón de Actos	Aula 0.0	Aula 0.1	Aula 0.2	Aula 0.3			
12:20-12:40	B. Requejo Dimension on topological spaces	J. Marin Molina Weak bases and quasi- metrization of bispaces	H.W. Martin Lattices of Metrics on Cantor sets	F. Balibrea On Periodic-Recurrent property on Continua of low dimension	A. González Biorthogonal systems In WCG Banach spaces			
12:40-13:00	M. Mrsevic Some properties of hyperspaces of Cech closure spaces	J.M. Sánchez Álvarez Quasi-metrics and (monotone) normality	A. Le Donne On metric spaces and local extrema	J. Ferreira Alves Zeta functions and other topological invariants for time- periodic	V. Montesinos On bounded biorthogonal systems			
13:00-13:20	M.J. López Monotone and light induced maps on \$n\$- fold hyperspaces	O. Valero An extension of the dual complexity spaces and applications	G. Gutierres Totally bounded metric spaces and the Axiom of Choice	G. Soler López Minimal non orientable surfaces	J. Ferrer On a certain class of compacta separating chain conditions			
13:20-13:40	D. Herrera-Carrasco Dendrites without unique hyperspace	P. Tirado Fixed point theorems in stationary fuzzy quasi- metric spaces and [0,1]-fuzzy posets	D. Gauld Foliations and non- metrisable manifold	J.C. Valverde Near a local topological equivalence when a quasi- center like point appears	A. Kitover Almost homeomorphisms of compact Hausdorff spaces			
13:40-15:30			LUNCH					
15:30-15:50	J. Picado The real functions in pointfree topology	G. Bosi A note on continuous multi- utility representations of preorders	L. Ruza Separation Axioms and the Prime Spectrum of Commutative Semirings	J. S. Cánovas Topological entropy of continuous transitive real maps	J.C. Navarro Pascual Extremal structure and extension of uniformly continuous functions			
15:50-16:10	M.J. Ferreira Complete normality on locales	L.M. Brown Real Dicompactifications	A. Peña Maximal and Minimal Spectrum of Commutative Semirings	A. Nagar Dynamics of the Induced Shift Map	A. Jiménez Vargas The lattice carrier space of little Lipschitz functions			
16:10-16:30	E. Induráin Preorderable topologies	L.M. Brown Ditopological texture spaces and digital topology	J. Vielma On a question of Robert Gilmer	M.V. Ferrer Bounded Sets in Topological Groups	L. Dubarble Biseparating maps between vector-valued Lipschitz function spaces			
			Paraninfo					
16:40-17:10			COFFEE BREAK					
17:10-18:00		On the Kneser property for	JOSÉ VALERO the Navier-Stokes system ar	nd the Ginzburg-Landau equa	tion			
21:00			CONFERENCE DINNE	R				

examples (1)

	Salón de Actos	Aula 0.0	Aula 0.1	Aula 0.2	Aula 0.3
12:20-12:40	B. Requejo Dimension on topological spaces	J. Marín Molina Weak bases and quasi- metrization of bispaces	H.W. Martin Lattices of Metrics on Cantor sets	F. Balibrea On Periodic-Recurrent property on Continua of low dimension	A. González Biorthogonal systems in WCG Banach spaces
12:40-13:00	M. Mrsevic Some properties of hyperspaces of Cech closure spaces	J.M. Sánchez Álvarez Quasi-metrics and (monotone) normality	A. Le Donne On metric spaces and local extrema	J. Ferreira Alves Zeta functions and other topological invariants for time- periodic	V. Montesinos On bounded biorthogonal systems
13:00-13:20	M.J. López Monotone and light induced maps on \$n\$- fold hyperspaces	O. Valero An extension of the dual complexity spaces and applications	G. Gutierres Totally bounded metric spaces and the Axiom of Choice	G. Soler López Minimal non orientable surfaces	J. Ferrer On a certain class of compacta separating chain conditions
13:20-13:40	D. Herrera-Carrasco Dendrites without unique hyperspace	P. Tirado Fixed point theorems in stationary fuzzy quasi- metric spaces and [0,1]-fuzzy posets	D. Gauld Foliations and non- metrisable manifold	J.C. Valverde Near a local topological equivalence when a quasi- center like point appears	A. Kitover Almost homeomorphisms of compact Hausdorff spaces

examples (1)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

	Salón de Actos	Aula 0.0	Aula 0.1	Aula 0.2	Aula 0.3
12:20-12:40	B. Requejo Dimension on topological spaces	J. Marín Molina Weak bases and quasi- metrization of bispaces	H.W. Martin Lattices of Metrics on Cantor sets	F. Balibrea On Periodic-Recurrent property on Continua of low dimension	A. González Biorthogonal systems in WCG Banach spaces
12:40-13:00	M. Mrsevic Some properties of hyperspaces of Cech closure spaces	J.M. Sánchez Álvarez Quasi-metrics and (monotone) normality	A. Le Donne On metric spaces and local extrema	J. Ferreira Alves Zeta functions and other topological invariants for time- periodic	V. Montesinos On bounded biorthogonal systems
13:00-13:20	M.J. López Monotone and light induced maps on \$n\$- fold hyperspaces	O. Valero An extension of the dual complexity spaces and applications	G. Gutierres Totally bounded metric spaces and the Axiom of Choice	G. Soler López Minimal non orientable surfaces	J. Ferrer On a certain class of compacta separating chain conditions
13:20-13:40	D. Herrera-Carrasco Dendrites without unique hyperspace	P. Tirado Fixed point theorems in stationary fuzzy quasi- metric spaces and [0,1]-fuzzy posets	D. Gauld Foliations and non- metrisable manifold	J.C. Valverde Near a local topological equivalence when a quasi- center like point appears	A. Kitover Almost homeomorphisms of compact Hausdorff spaces

Author1 \mathcal{P} Author2 \iff Author1's talk ends before Author2's starts.

examples (1)

	Salón de Actos	Aula 0.0	Aula 0.1	Aula 0.2	Aula 0.3
12:20-12:40	B. Requejo Dimension on topological spaces	J. Marín Molina Weak bases and quasi- metrization of bispaces	H.W. Martin Lattices of Metrics on Cantor sets	F. Balibrea On Periodic-Recurrent property on Continua of low dimension	A. González Biorthogonal systems in WCG Banach spaces
12:40-13:00	M. Mrsevic Some properties of hyperspaces of Cech closure spaces	J.M. Sánchez Álvarez Quasi-metrics and (monotone) normality	A. Le Donne On metric spaces and local extrema	J. Ferreira Alves Zeta functions and other topological invariants for time- periodic	V. Montesinos On bounded biorthogonal systems
13:00-13:20	M.J. López Monotone and light induced maps on \$n\$- fold hyperspaces	O. Valero An extension of the dual complexity spaces and applications	G. Gutierres Totally bounded metric spaces and the Axiom of Choice	G. Soler López Minimal non orientable surfaces	J. Ferrer On a certain class of compacta separating chain conditions
13:20-13:40	D. Herrera-Carrasco Dendrites without unique hyperspace	P. Tirado Fixed point theorems in stationary fuzzy quasi- metric spaces and [0,1]-fuzzy posets	D. Gauld Foliations and non- metrisable manifold	J.C. Valverde Near a local topological equivalence when a quasi- center like point appears	A. Kitover Almost homeomorphisms of compact Hausdorff spaces

Author1 \mathcal{P} Author2 \iff Author1's talk ends before Author2's starts.

Author1 \mathcal{R} Author2 $\iff \neg$ (Author2 \mathcal{P} Author1)

 \iff Author1's talk starts before Author2's ends.

examples (1)

	Salón de Actos	Aula 0.0	Aula 0.1	Aula 0.2	Aula 0.3
12:20-12:40	B. Requejo Dimension on topological spaces	J. Marín Molina Weak bases and quasi- metrization of bispaces	H.W. Martin Lattices of Metrics on Cantor sets	F. Balibrea On Periodic-Recurrent property on Continua of low dimension	A. González Biorthogonal systems in WCG Banach spaces
12:40-13:00	M. Mrsevic Some properties of hyperspaces of Cech closure spaces	J.M. Sánchez Álvarez Quasi-metrics and (monotone) normality	A. Le Donne On metric spaces and local extrema	J. Ferreira Alves Zeta functions and other topological invariants for time- periodic	V. Montesinos On bounded biorthogonal systems
13:00-13:20	M.J. López Monotone and light induced maps on \$n\$- fold hyperspaces	O. Valero An extension of the dual complexity spaces and applications	G. Gutierres Totally bounded metric spaces and the Axiom of Choice	G. Soler López Minimal non orientable surfaces	J. Ferrer On a certain class of compacta separating chain conditions
13:20-13:40	D. Herrera-Carrasco Dendrites without unique hyperspace	P. Tirado Fixed point theorems in stationary fuzzy quasi- metric spaces and [0,1]-fuzzy posets	D. Gauld Foliations and non- metrisable manifold	J.C. Valverde Near a local topological equivalence when a quasi- center like point appears	A. Kitover Almost homeomorphisms of compact Hausdorff spaces

Author1 \mathcal{P} Author2 \iff Author1's talk ends before Author2's starts.

Author1 \mathcal{R} Author2 $\iff \neg$ (Author2 \mathcal{P} Author1)

 \iff Author1's talk starts before Author2's ends.

For example: (Valero \mathcal{R} Gutierres) and (Gutierres \mathcal{R} Tirado).

examples (1)

	Salón de Actos	Aula 0.0	Aula 0.1	Aula 0.2	Aula 0.3
12:20-12:40	B. Requejo Dimension on topological spaces	J. Marín Molina Weak bases and quasi- metrization of bispaces	H.W. Martin Lattices of Metrics on Cantor sets	F. Balibrea On Periodic-Recurrent property on Continua of low dimension	A. González Biorthogonal systems in WCG Banach spaces
12:40-13:00	M. Mrsevic Some properties of hyperspaces of Cech closure spaces	J.M. Sánchez Álvarez Quasi-metrics and (monotone) normality	A. Le Donne On metric spaces and local extrema	J. Ferreira Alves Zeta functions and other topological invariants for time- periodic	V. Montesinos On bounded biorthogonal systems
13:00-13:20	M.J. López Monotone and light induced maps on \$n\$- fold hyperspaces	O. Valero An extension of the dual complexity spaces and applications	G. Gutierres Totally bounded metric spaces and the Axiom of Choice	G. Soler López Minimal non orientable surfaces	J. Ferrer On a certain class of compacta separating chain conditions
13:20-13:40	D. Herrera-Carrasco Dendrites without unique hyperspace	P. Tirado Fixed point theorems in stationary fuzzy quasi- metric spaces and [0,1]-fuzzy posets	D. Gauld Foliations and non- metrisable manifold	J.C. Valverde Near a local topological equivalence when a quasi- center like point appears	A. Kitover Almost homeomorphisms of compact Hausdorff spaces

Author1 \mathcal{P} Author2 \iff Author1's talk ends before Author2's starts.

Author1 \mathcal{R} Author2 $\iff \neg$ (Author2 \mathcal{P} Author1)

 \iff Author1's talk starts before Author2's ends.

For example: (Valero \mathcal{R} Gutierres) and (Gutierres \mathcal{R} Tirado).

 \mathcal{R} is a total preorder.

examples (2)

	Salón de Actos	Aula 0.0	Aula 0.1	Aula 0.2	Aula 0.3
12:20-12:40	B. Requejo Dimension on topological spaces	J. Marín Molina Weak bases and quasi- metrization of bispaces	H.W. Martin Lattices of Metrics on Cantor sets	F. Balibrea On Periodic-Recurrent property on Continua of low dimension	A. González Biorthogonal systems in WCG Banach spaces
12:40-13:00	M. Mrsevic Some properties of hyperspaces of Cech closure spaces	J.M. Sánchez Álvarez Quasi-metrics and (monotone) normality	A. Le Donne On metric spaces and local extrema	J. Ferreira Alves Zeta functions and other topological invariants for time- periodic	V. Montesinos On bounded biorthogonal systems
13:00-13:20	M.J. López Monotone and light induced maps on \$n\$- fold hyperspaces	O. Valero An extension of the dual complexity spaces and applications	G. Gutierres Totally bounded metric spaces and the Axiom of Choice	G. Soler López Minimal non orientable surfaces	J. Ferrer On a certain class of compacta separating chain conditions
13:20-13:40	D. Herrera-Carrasco Dendrites without unique hyperspace	P. Tirado Fixed point theorems in stationary fuzzy quasi- metric spaces and [0,1]-fuzzy posets	D. Gauld Foliations and non- metrisable manifold	J.C. Valverde Near a local topological equivalence when a quasi- center like point appears	A. Kitover Almost homeomorphisms of compact Hausdorff spaces

FRIDAY 27 JUNE 2008 (Real)

	Salón de Actos	Aula 0.0	Aula 0.1	Aula 0.2	Aula 0.3
12:20-12:30	B. Requejo Dimension on		H.W. Martin Lattices of Metrics on Cantor	F. Balibrea On Periodic-Recurrent	A. González Biorthogonal systems
12:30-12:40	topological spaces	J. Marín Molina Weak bases and quasi-	sets	property on Continua of low dimension	in WCG Banach spaces
12:40-12:50	M. Mrsevic Some properties of	metrization of bispaces	A. Le Donne On metric spaces and local	J. Ferreira Alves Zeta functions and other	V. Montesinos On bounded
12:50-13:00	hyperspaces of Cech closure spaces		extrema	topological invariants for time- periodic	biorthogonal systems
13:00-13:10	M.J. López Monotone and light	(monotone) normality	G. Gutierres Totally bounded metric	G. Soler López Minimal non orientable	J. Ferrer On a certain class of
13:10-13:20	induced maps on \$n\$- fold hyperspaces	O. Valero An extension of the	spaces and the Axiom of Choice	surfaces	compacta separating chain conditions
13:20-13:30	D. Herrera-Carrasco Dendrites without	dual complexity spaces and applications	D. Gauld Foliations and non-	J.C. Valverde Near a local topological Almo	A. Kitover Almost homeomorphisms of
13:30-13:40	unique hyperspace	P. Tirado Fixed point theorems in	metrisable manifold	equivalence when a quasi- center like point appears	compact Hausdorff spaces
13:40-13:50		stationary fuzzy quasi- metric spaces and [0,1]-fuzzy posets			

Author1 \mathcal{R} Author2 \iff Author1's talk starts before Author2's ends.

FRIDAY 27 JUNE 2008 (Real)

	Salón de Actos	Aula 0.0	Aula 0.1	Aula 0.2	Aula 0.3
12:20-12:30	B. Requejo Dimension on		H.W. Martin Lattices of Metrics on Cantor	F. Balibrea On Periodic-Recurrent	A. González Biorthogonal systems
12:30-12:40	topological spaces	J. Marín Molina Weak bases and quasi-	sets	property on Continua of low dimension	in WCG Banach spaces
12:40-12:50	M. Mrsevic Some properties of	metrization of bispaces J.M. Sánchez Álvarez Quasi-metrics and	A. Le Donne On metric spaces and local	J. Ferreira Alves Zeta functions and other	V. Montesinos
12:50-13:00	hyperspaces of Cech closure spaces		extrema	topological invariants for time- periodic	biorthogonal systems
13:00-13:10	M.J. López Monotone and light	(monotone) normality	G. Gutierres Totally bounded metric	G. Soler López Minimal non orientable surfaces	J. Ferrer On a certain class of compacta separating chain conditions
13:10-13:20	induced maps on \$n\$- fold hyperspaces	O. Valero An extension of the	spaces and the Axiom of Choice		
13:20-13:30	D. Herrera-Carrasco	dual complexity spaces and applications	D. Gauld Foliations and non-	J.C. Valverde Near a local topological	A. Kitover Almost homeomorphisms of
13:30-13:40	unique hyperspace	P. Tirado Fixed point theorems in	metrisable manifold	equivalence when a quasi- center like point appears	compact Hausdorff spaces
13:40-13:50		stationary fuzzy quasi- metric spaces and [0,1]-fuzzy posets			

Author1 \mathcal{R} Author2 \iff Author1's talk starts before Author2's ends.

(Valero \mathcal{R} Gutierres) and (Gutierres \mathcal{R} Sánchez). But \neg (Valero \mathcal{R} Sánchez)

FRIDAY 27 JUNE 2008 (Real)

	Salón de Actos	Aula 0.0	Aula 0.1	Aula 0.2	Aula 0.3
12:20-12:30	B. Requejo Dimension on		H.W. Martin Lattices of Metrics on Cantor	F. Balibrea On Periodic-Recurrent	A. González Biorthogonal systems
12:30-12:40	topological spaces	J. Marín Molina Weak bases and quasi-	sets	property on Continua of low dimension	in WCG Banach spaces
12:40-12:50	M. Mrsevic Some properties of	metrization of bispaces	A. Le Donne On metric spaces and local	J. Ferreira Alves Zeta functions and other	V. Montesinos
12:50-13:00	hyperspaces of Cech closure spaces	J.M. Sánchez Álvarez Quasi-metrics and	extrema	topological invariants for time- periodic	biorthogonal systems
13:00-13:10	M.J. López Monotone and light	(monotone) normality	G. Gutierres Totally bounded metric	G. Soler López Minimal non orientable	J. Ferrer On a certain class of compacta separating chain conditions
13:10-13:20	induced maps on \$n\$- fold hyperspaces	O. Valero An extension of the	spaces and the Axiom of Choice	surfaces	
13:20-13:30	D. Herrera-Carrasco Depdrites without	dual complexity spaces and applications	D. Gauld Foliations and non-	J.C. Valverde Near a local topological	A. Kitover Almost homeomorphisms of
13:30-13:40	unique hyperspace	P. Tirado Fixed point theorems in	metrisable manifold	equivalence when a quasi- center like point appears	compact Hausdorff spaces
13:40-13:50		stationary fuzzy quasi- metric spaces and [0,1]-fuzzy posets			

Author1 \mathcal{R} Author2 \iff Author1's talk starts before Author2's ends.

(Valero \mathcal{R} Gutierres) and (Gutierres \mathcal{R} Sánchez). But \neg (Valero \mathcal{R} Sánchez)

 ${\mathcal R}$ fails to be a total preorder. But it is a semiorder.

examples (3)

	Salón de Actos	Aula 0.0	Aula 0.1	Aula 0.2	Aula 0.3
12:20-12:40	B. Requejo Dimension on topological spaces	J. Marín Molina Weak bases and quasi- metrization of bispaces	H.W. Martin Lattices of Metrics on Cantor sets	F. Balibrea On Periodic-Recurrent property on Continua of low dimension	A. González Biorthogonal systems in WCG Banach spaces
12:40-13:00	M. Mrsevic Some properties of hyperspaces of Cech closure spaces	J.M. Sánchez Álvarez Quasi-metrics and (monotone) normality	A. Le Donne On metric spaces and local extrema	J. Ferreira Alves Zeta functions and other topological invariants for time- periodic	V. Montesinos On bounded biorthogonal systems
13:00-13:20	M.J. López Monotone and light induced maps on \$n\$- fold hyperspaces	O. Valero An extension of the dual complexity spaces and applications	G. Gutierres Totally bounded metric spaces and the Axiom of Choice	G. Soler López Minimal non orientable surfaces	J. Ferrer On a certain class of compacta separating chain conditions
13:20-13:40	D. Herrera-Carrasco Dendrites without unique hyperspace	P. Tirado Fixed point theorems in stationary fuzzy quasi- metric spaces and [0,1]-fuzzy posets	D. Gauld Foliations and non- metrisable manifold	J.C. Valverde Near a local topological equivalence when a quasi- center like point appears	A. Kitover Almost homeomorphisms of compact Hausdorff spaces

examples (3)

・ロト ・ 同ト ・ ヨト ・ ヨ ・ つへの

FRIDAY 27 JUNE 2008 (Real 2)

	Salón de Actos	Aula 0.0	Aula 0.1	Aula 0.2	Aula 0.3
12:20-12:30	B. Requejo Dimension on		H.W. Martin Lattices of Metrics on Cantor		A. González Biorthogonal systems
12:30-12:40	topological spaces	J. Marín Molina Weak bases and quasi- metrization	sets		in WCG Banach spaces
12:40-12:50	M. Mrsevic Some properties of	of bispaces	A. Le Donne On metric spaces and local		V. Montesinos On bounded biorthogonal systems
12:50-13:00	hyperspaces of Cech closure spaces	J.M. Sánchez Álvarez Quasi-metrics and	extrema	F. Balibrea On Periodic-Recurrent	
13:00-13:10	M.J. López Monotone and light induced	(monotone) normality	G. Gutierres Totally bounded metric spaces	property on Continua of low dimension	J. Ferrer On a certain class of compacta
13:10-13:20	maps on \$n\$- fold hyperspaces	O. Valero An extension of the dual complexity	and the Axiom of Choice		separating chain conditions
13:20-13:30	D. Herrera-Carrasco Dendrites without	spaces and applications	D. Gauld Foliations and non-		A. Kitover Almost homeomorphisms of
13:30-13:40	unique hyperspace	P. Tirado Fixed point theorems in	metrisable manifold		compact Hausdorff spaces
13:40-13:50		stationary fuzzy quasi- metric spaces and [0,1]-fuzzy posets			

Author1 \mathcal{R} Author2 \iff Author1's talk starts before Author2's ends.

examples (3)

FRIDAY 27 JUNE 2008 (Real 2)

	Salón de Actos	Aula 0.0	Aula 0.1	Aula 0.2	Aula 0.3
12:20-12:30	B. Requejo Dimension on		H.W. Martin Lattices of Metrics on Cantor		A. González Biorthogonal systems
12:30-12:40	topological spaces	J. Marín Molina Weak bases and quasi- metrization	sets		in WCG Banach spaces
12:40-12:50	M. Mrsevic Some properties of	of bispaces	A. Le Donne On metric spaces and local		V. Montesinos On bounded
12:50-13:00	hyperspaces of Cech closure spaces	J.M. Sánchez Álvarez Quasi-metrics and	extrema	F. Balibrea On Periodic-Recurrent	biorthogonal systems
13:00-13:10	M.J. López Monotone and light induced	(monotone) normality	G. Gutierres Totally bounded metric spaces	of low dimension	J. Ferrer On a certain class of compacta
13:10-13:20	maps on \$n\$- fold hyperspaces	O. Valero An extension of the dual complexity spaces and applications	and the Axiom of Choice		separating chain conditions
13:20-13:30	D. Herrera-Carrasco Dendrites without unique hyperspace		D. Gauld Foliations and non- metrisable manifold		A. Kitover Almost homeomorphisms of compact Hausdorff spaces
13:30-13:40		P. Tirado Fixed point theorems in stationary fuzzy quasi- metric spaces and [0,1]-fuzzy posets			
13:40-13:50					

Author1 \mathcal{R} Author2 \iff Author1's talk starts before Author2's ends.

(Valero \mathcal{R} Balibrea) and (Balibrea \mathcal{R} Marín). But neither (Valero \mathcal{R} Sánchez) nor (Sánchez \mathcal{R} Marín)

examples (3)

FRIDAY 27 JUNE 2008 (Real 2)

	Salón de Actos	Aula 0.0	Aula 0.1	Aula 0.2	Aula 0.3
12:20-12:30	B. Requejo Dimension on topological spaces		H.W. Martin Lattices of Metrics on Cantor	F. Balibres On Periodic-Recurrent property on Continua of low dimension	A. González Biorthogonal systems in WCG Banach spaces
12:30-12:40		J. Marín Molina Weak bases and quasi- metrization of bispaces	sets		
12:40-12:50	M. Mrsevic Some properties of hyperspaces of Cech closure spaces		A. Le Donne On metric spaces and local extrema		V. Montesinos On bounded biorthogonal systems
12:50-13:00		J.M. Sánchez Álvarez Quasi-metrics and (monotone) normality			
13:00-13:10	M.J. López Monotone and light induced maps on \$n\$- fold hyperspaces		G. Gutierres Totally bounded metric spaces and the Axiom of Choice		J. Ferrer On a certain class of compacta separating chain conditions
13:10-13:20		O. Valero An extension of the dual complexity spaces and applications			
13:20-13:30	D. Herrera-Carrasco Dendrites without unique hyperspace		D. Gauld Foliations and non- metrisable manifold		A. Kitover Almost homeomorphisms of compact Hausdorff spaces
13:30-13:40		P. Tirado Fixed point theorems in stationary fuzzy quasi- metric spaces and [0,1]-fuzzy posets			
13:40-13:50					

Author1 \mathcal{R} Author2 \iff Author1's talk starts before Author2's ends.

(Valero \mathcal{R} Balibrea) and (Balibrea \mathcal{R} Marín). But neither (Valero \mathcal{R} Sánchez) nor (Sánchez \mathcal{R} Marín)

 ${\mathcal R}$ fails to be a semiorder. But it is an interval order.

Total preorder:
$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}. \ \mathcal{R}_{t.p.} \equiv \leq_u$$

$$a\mathcal{R}_{t.p.}b \iff a \leq b; \quad a\mathcal{P}_{t.p.}b \iff a < b$$

Total preorder: $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}. \mathcal{R}_{t.p.} \equiv \leq_{u}$

$$a\mathcal{R}_{t.p.}b \iff a \leq b; \quad a\mathcal{P}_{t.p.}b \iff a < b$$

In this case \leq is even an order!

Total preorder:
$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}. \ \mathcal{R}_{t.p.} \equiv \leq_u$$

$$a\mathcal{R}_{t.p.}b \iff a \leq b; \quad a\mathcal{P}_{t.p.}b \iff a < b$$

Semiorder:
$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$$

 $a\mathcal{R}_{s.o.}b \iff a \le b+1; \quad a\mathcal{P}_{s.o.}b \iff a < b-1$

Total preorder:
$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}. \ \mathcal{R}_{t.p.} \equiv \leq_u$$

$$a\mathcal{R}_{t.p.}b \iff a \leq b; \quad a\mathcal{P}_{t.p.}b \iff a < b$$

Semiorder: $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$

 $a\mathcal{R}_{s.o.}b \iff a \le b+1; \qquad a\mathcal{P}_{s.o.}b \iff a < b-1$

 $\mathcal{R}_{s.o.}$ is an semiorder which fails to be a total preorder (i.e it fails to be transitive):

$$(3\mathcal{R}_{s.o.}2)$$
 and $(2\mathcal{R}_{s.o.}1)$ but $\neg(3\mathcal{R}_{s.o.}1)$

Total preorder:
$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}. \ \mathcal{R}_{t.p.} \equiv \leq_u$$

$$a\mathcal{R}_{t.p.}b \iff a \leq b; \quad a\mathcal{P}_{t.p.}b \iff a < b$$

Semiorder: $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$

 $a\mathcal{R}_{s.o.}b \iff a \le b+1; \qquad a\mathcal{P}_{s.o.}b \iff a < b-1$

Interval order $\mathcal{Y} = \{a = (a_1, a_2) \in \overline{\mathbb{R}}^2 : a_1 \leq a_2\}$

 $a\mathcal{R}_{i.o.}b \iff a_1 \leq b_2; \qquad a\mathcal{P}_{i.o.}b \iff a_2 < b_1$

Total preorder:
$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}. \ \mathcal{R}_{t.p.} \equiv \leq_u$$

$$a\mathcal{R}_{t.p.}b \iff a \leq b; \quad a\mathcal{P}_{t.p.}b \iff a < b$$

Semiorder: $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$

 $a\mathcal{R}_{s.o.}b \iff a \leq b+1; \qquad a\mathcal{P}_{s.o.}b \iff a < b-1$

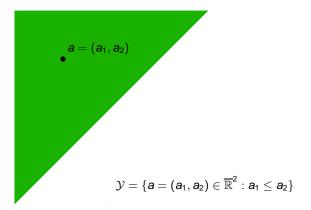
Interval order $\mathcal{Y} = \{ a = (a_1, a_2) \in \overline{\mathbb{R}}^2 : a_1 \leq a_2 \}$

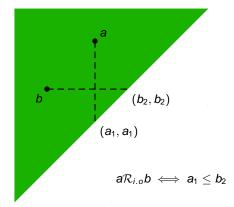
 $a\mathcal{R}_{i.o.}b \iff a_1 \leq b_2; \qquad a\mathcal{P}_{i.o.}b \iff a_2 < b_1$

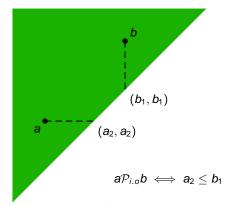
 $\mathcal{R}_{i.o}$ is an interval-order which fails to be a semiorder:

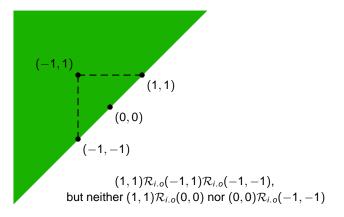
 $(1,1)\mathcal{R}_{i.o}(-1,1)\mathcal{R}_{i.o}(-1,-1)$ but $(0,0)\mathcal{P}_{i.o}(1,1)$ and $(-1,-1)\mathcal{R}_{i.o}(0,0)$

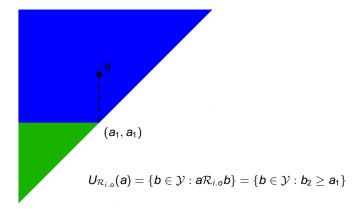
▲□▶▲□▶▲目▶▲目▶ 目 のへで



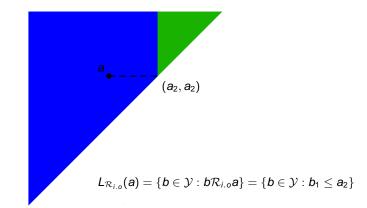


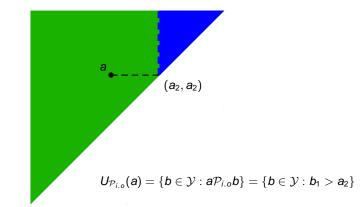


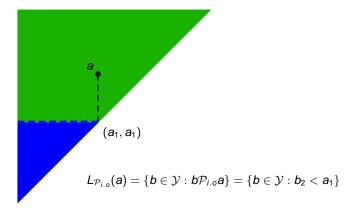


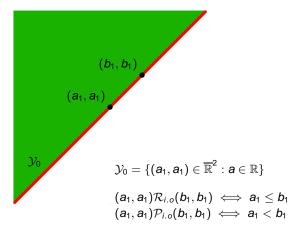


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - 釣��

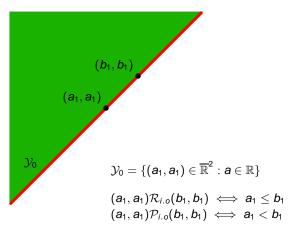








 $(\mathcal{Y}_0,\mathcal{R}_{i.o})$ is isomorphic to $(\overline{\mathbb{R}},\leq)$



$$(b_{1}, b_{1} + K)$$

$$(a_{1}, a_{1} + K)$$

$$\mathcal{Y}_{K} = \{(b_{1}, b_{1})$$

$$(a_{1} + k, a_{1} + K)$$

$$\mathcal{Y}_{K} = \{(a_{1}, a_{1} + K) \in \mathbb{R}^{2} : a_{1} \in \mathbb{R}\}$$

$$(a_{1}, a_{1} + K)\mathcal{R}_{i.o}(b_{1}, b_{1} + K) \iff a_{1} \leq b_{1} + K$$

$$(a_{1}, a_{1} + K)\mathcal{P}_{i.o}(b_{1}, b_{1} + K) \iff a_{1} + K < b_{1}$$

 $(\mathcal{Y}_{\mathcal{K}}, \mathcal{R}_{i.o})$ is isomorphic to $(\overline{\mathbb{R}}, \mathcal{R}_{s.o})$

$$(b_{1}, b_{1} + K)$$

$$(a_{1}, a_{1} + K)$$

$$(a_{1}, a_{1} + K)$$

$$(a_{1} + k, a_{1} + K)$$

$$\mathcal{Y}_{K} = \{(a_{1}, a_{1} + K) \in \mathbb{R}^{2} : a_{1} \in \mathbb{R}\}$$

$$(a_{1}, a_{1} + K)\mathcal{R}_{i.o}(b_{1}, b_{1} + K) \iff a_{1} \leq b_{1} + K$$

$$(a_{1}, a_{1} + K)\mathcal{P}_{i.o}(b_{1}, b_{1} + K) \iff a_{1} + K < b_{1}$$

(1) A total preorder \mathcal{R} on (X, τ) is *(continuously) representable* if there exists a (continuous) $u : (X, \tau, \mathcal{R}) \to (\mathbb{R}, \tau_u, \leq)$ such that

 $x\mathcal{R}y\iff u(x)\leq u(y)\ (x,y\in X).$

(1) A total preorder \mathcal{R} on (X, τ) is *(continuously) representable* if there exists a (continuous) $u : (X, \tau, \mathcal{R}) \to (\mathbb{R}, \tau_u, \leq)$ such that

$$x\mathcal{R}y \iff u(x) \leq u(y) \ (x, y \in X).$$

(2) A semiorder \mathcal{R} on (X, τ) is (continuously) representable in $\overline{\mathbb{R}}$ if there exist a (continuous) $u : (X, \tau, \mathcal{R}) \to (\overline{\mathbb{R}}, \tau_u)$ and $K \ge 0$ ("discrimination threshold") such that

$$x\mathcal{R}y \iff u(x) \leq u(y) + K \ (x, y \in X).$$

(1) A total preorder \mathcal{R} on (X, τ) is *(continuously) representable* if there exists a (continuous) $u : (X, \tau, \mathcal{R}) \to (\mathbb{R}, \tau_u, \leq)$ such that

$$x\mathcal{R}y\iff u(x)\leq u(y)\ (x,y\in X).$$

(2) A semiorder \mathcal{R} on (X, τ) is *(continuously) representable in* $\overline{\mathbb{R}}$ if there exist a (continuous) $u : (X, \tau, \mathcal{R}) \to (\overline{\mathbb{R}}, \tau_u)$ such that

$$x\mathcal{R}y\iff u(x)\leq u(y)+1 \ (x,y\in X).$$

(1) A total preorder \mathcal{R} on (X, τ) is *(continuously) representable* if there exists a (continuous) $u : (X, \tau, \mathcal{R}) \to (\mathbb{R}, \tau_u, \leq)$ such that

$$x\mathcal{R}y\iff u(x)\leq u(y)\ (x,y\in X).$$

(2) A semiorder \mathcal{R} on (X, τ) is *(continuously) representable in* $\overline{\mathbb{R}}$ if there exist a (continuous) $u : (X, \tau, \mathcal{R}) \to (\overline{\mathbb{R}}, \tau_u, \mathcal{R}_{s.o})$ such that

$$x\mathcal{R}y \iff u(x) \leq u(y) + 1 \ (x, y \in X).$$

(3) An interval order \mathcal{R} on X is said to be *(continuously)* representable if there exists a pair of (continuous) $u, v : (X, \tau) \to (\mathbb{R}, \tau_u)$ such that

$$x\mathcal{R}y \iff u(x) \leq v(y) \ (x, y \in X).$$

・ロン ・四 と ・ ヨ と ・ ヨ

Representability

	Salón de Actos	Aula 0.0	Aula 0.1	Aula 0.2	Aula 0.3
12:20-12:40	B. Requejo Dimension on topological spaces	J. Marín Molina Weak bases and quasi- metrization of bispaces	H.W. Martin Lattices of Metrics on Cantor sets	F. Balibrea On Periodic-Recurrent property on Continua of low dimension	A. González Biorthogonal systems in WCG Banach spaces
12:40-13:00	M. Mrsevic Some properties of hyperspaces of Cech closure spaces	J.M. Sánchez Álvarez Quasi-metrics and (monotone) normality	A. Le Donne On metric spaces and local extrema	J. Ferreira Alves Zeta functions and other topological invariants for time- periodic	V. Montesinos On bounded biorthogonal systems
13:00-13:20	M.J. López Monotone and light induced maps on \$n\$- fold hyperspaces	O. Valero An extension of the dual complexity spaces and applications	G. Gutierres Totally bounded metric spaces and the Axiom of Choice	G. Soler López Minimal non orientable surfaces	J. Ferrer On a certain class of compacta separating chain conditions
13:20-13:40	D. Herrera-Carrasco Dendrites without unique hyperspace	P. Tirado Fixed point theorems in stationary fuzzy quasi- metric spaces and [0,1]-fuzzy posets	D. Gauld Foliations and non- metrisable manifold	J.C. Valverde Near a local topological equivalence when a quasi- center like point appears	A. Kitover Almost homeomorphisms of compact Hausdorff spaces

ヘロン ヘロン ヘヨン ヘヨン

Main results

example (total preorder)

13:20-13:40: Herrera, Tirado, Gauld, Valverde, Kitover

13:00-13:20: López, Valero, Gutierres, Soler, Ferrer

12:40-13:00: Mrsevic, Sánchez, Donne, Ferreira, Montesinos

12:20-12:40: Requejo, Marin, Martin, Balibrea, González

Completely distributive lattices

Main results

example (total preorder)

13:20-13:40: Herrera, Tirado, Gauld, Valverde, Kitover

13:00-13:20: López, Valero, Gutierres, Soler, Ferrer

12:40-13:00: Mrsevic, Sánchez, Donne, Ferreira, Montesinos

12:20-12:40: Requejo, Marin, Martin, Balibrea, González

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Main results

example (total preorder)

13:20-13:40: Herrera, Tirado, Gauld, Valverde, Kitover

13:00-13:20: López, Valero, Gutierres, Soler, Ferrer

12:40-13:00: Mrsevic, Sánchez, Donne, Ferreira, Montesinos

12:20-12:40:

Requejo, Marin, Martin, Balibrea, González

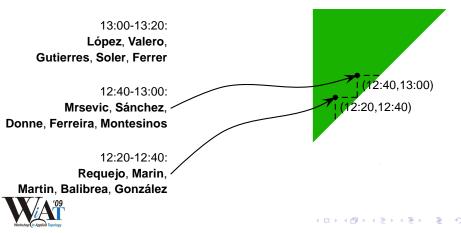
(12:20, 12:40)

Completely distributive lattices

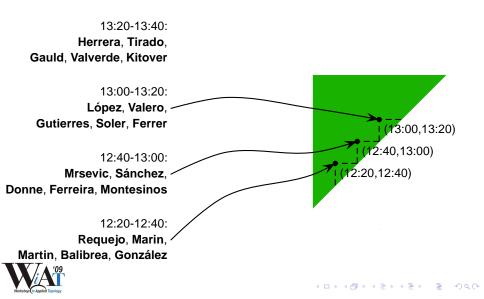
Main results

example (total preorder)

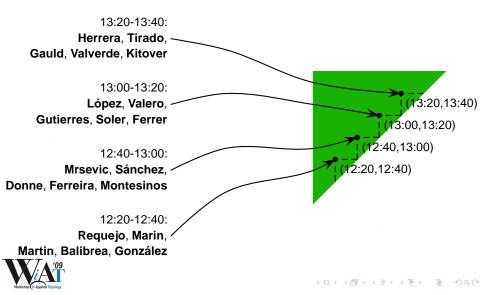
13:20-13:40: Herrera, Tirado, Gauld, Valverde, Kitover



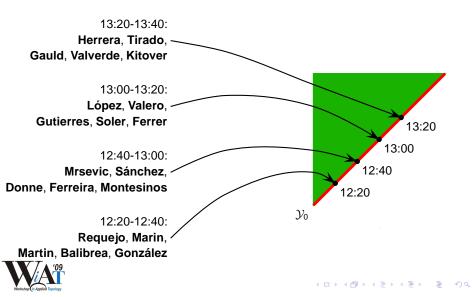
Main results



Main results



Main results



example (semiorder)

FRIDAY 27 JUNE 2008 (Real)

	Salón de Actos	Aula 0.0	Aula 0.1	Aula 0.2	Aula 0.3
12:20-12:30	B. Requejo Dimension on topological spaces		H.W. Martin Lattices of Metrics on Cantor	F. Balibrea On Periodic-Recurrent property on Continua of low dimension	A. González Biorthogonal systems in WCG Banach spaces
12:30-12:40		J. Marín Molina Weak bases and guasi-	sets		
12:40-12:50	M. Mrsevic Some properties of hyperspaces of Cech closure spaces	metrization of bispaces	A. Le Donne On metric spaces and local extrema	J. Ferreira Alves Zeta functions and other topological invariants for time- periodic	V. Montesinos On bounded biorthogonal systems
12:50-13:00		J.M. Sánchez Álvarez Quasi-metrics and (monotone) normality			
13:00-13:10	M.J. López Monotone and light induced maps on \$n\$- fold hyperspaces		G. Gutierres Totally bounded metric spaces and the Axiom of Choice	G. Soler López Minimal non orientable surfaces	J. Ferrer On a certain class of compacta separating chain conditions
13:10-13:20		O. Valero An extension of the dual complexity spaces and applications			
13:20-13:30	D. Herrera-Carrasco Dendrites without unique hyperspace		D. Gauld Foliations and non- metrisable manifold	J.C. Valverde Near a local topological equivalence when a quasi- center like point appears	A. Kitover Almost homeomorphisms of compact Hausdorff spaces
13:30-13:40		P. Tirado Fixed point theorems in stationary fuzzy quasi- metric spaces and [0,1]-fuzzy posets			
13:40-13:50				-	

◆□> ◆□> ◆三> ◆三> 三 のへで

Completely distributive lattices

Main results

Representability

example (semiorder)

13:30-13:50: Tirado

13:20-13:40: Herrera,...

13:10-13:30: Valero 13:00-13:20: López, ...

12:50-13:10: **Sánchez** 12:40-13:00: **Mrsevic**, ...

12:30-12:50: Marin

12:20-12:40: **Requejo**, ...

Completely distributive lattices

Main results

Representability

example (semiorder)

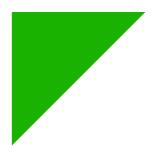
13:30-13:50: **Tirado** 13:20-13:40: **Herrera**,...

13:10-13:30: Valero 13:00-13:20: López, ...

12:50-13:10: **Sánchez** 12:40-13:00: **Mrsevic**, ...

12:30-12:50: Marin

12:20-12:40: **Requejo**, ...

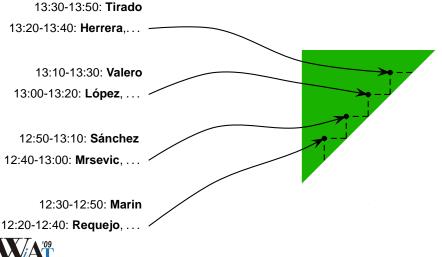


・ロト ・同ト ・ヨト ・ヨト … ヨ

Completely distributive lattices

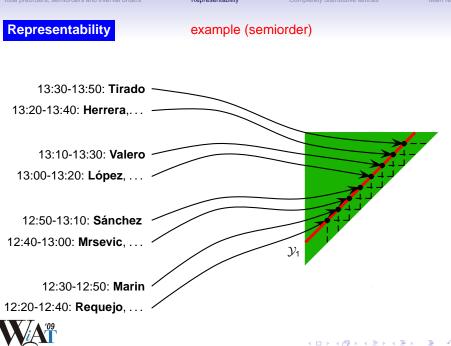
Main results

example (semiorder)



top in Applied Topplagy

Main results

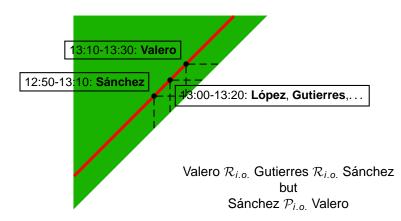


Completely distributive lattices

Main results

Representability

example (semiorder)



example (interval order)

FRIDAY 27 JUNE 2008 (Real 2)

	Salón de Actos	Aula 0.0	Aula 0.1	Aula 0.2	Aula 0.3
12:20-12:30	B. Requejo Dimension on		H.W. Martin Lattices of Metrics on Cantor		A. González Biorthogonal systems
12:30-12:40	topological spaces	J. Marín Molina Weak bases and quasi- metrization	sets	F. Baltbrea On Periodic-Recurrent property on Continua of low dimension	in WCG Banach spaces
12:40-12:50	M. Mrsevic Some properties of hyperspaces of Cech closure spaces	of bispaces	A. Le Donne On metric spaces and local extrema		V. Montesinos On bounded biorthogonal systems
12:50-13:00		J.M. Sánchez Álvarez Quasi-metrics and (monotone) normality			
13:00-13:10	M.J. López Monotone and light induced maps on \$n\$- fold hyperspaces		G. Gutierres Totally bounded metric spaces and the Axiom of Choice		J. Ferrer On a certain class of compacta separating chain conditions
13:10-13:20		O. Valero An extension of the dual complexity			
13:20-13:30	D. Herrera-Carrasco Dendrites without	spaces and applications	D. Gauld Foliations and non-		A. Kitover Almost homeomorphisms of compact Hausdorff spaces
13:30-13:40	unique hyperspace	P. Tirado Fixed point theorems in	metrisable manifold		
13:40-13:50		stationary fuzzy quasi- metric spaces and [0,1]-fuzzy posets		-	

Completely distributive lattices

Main results

example (interval order)

13:30-13:50: Tirado

13:20-13:40: Herrera,...

13:10-13:30: Valero

13:00-13:20: López, ...

12:30-13:30: Balibrea

12:50-13:10: Sánchez

12:40-13:00: Mrsevic, ...

12:30-12:50: Marin

12:20-12:40: Requejo, ...

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Completely distributive lattices

Main results

example (interval order)

13:30-13:50: **Tirado** 13:20-13:40: **Herrera**,...

13:10-13:30: Valero

13:00-13:20: López, ...

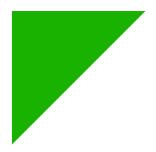
12:30-13:30: Balibrea

12:50-13:10: Sánchez

12:40-13:00: Mrsevic, ...

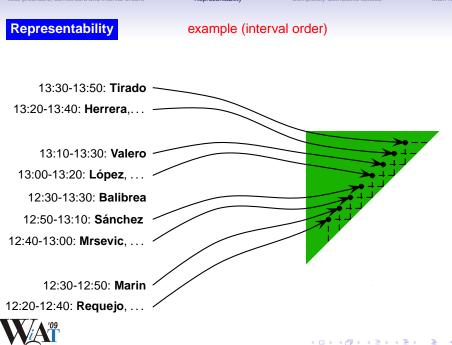
12:30-12:50: Marin

12:20-12:40: **Requejo**, ...



・ロト ・同ト ・ヨト ・ヨト … ヨ

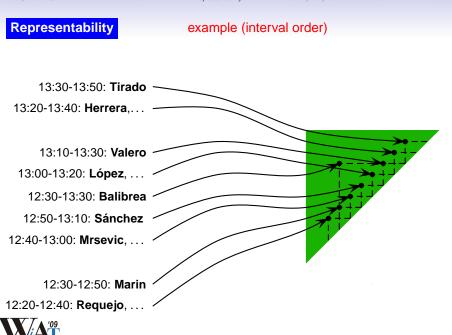
Main results



ヘロン ヘロン ヘヨン ヘヨン

э

Main results

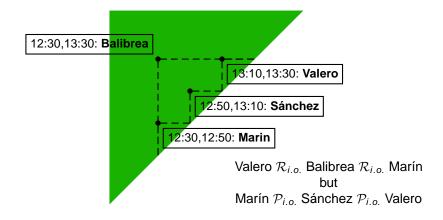


Completely distributive lattices

Main results

Representability

example (interval order)



equivalent formulation

Let (X, τ) a topological space. Then

(1) A total preorder \mathcal{R} on (X, τ) is (continuously) representable if there exists a (continuous) $f : (X, \mathcal{R}, \tau) \to (\overline{\mathbb{R}}, \leq, \tau_u)$ such that $x\mathcal{R}y \iff f(x)\mathcal{R}_{t.p.}f(y) \ (x, y \in X).$

equivalent formulation

Let (X, τ) a topological space. Then

- (1) A total preorder \mathcal{R} on (X, τ) is (continuously) representable if there exists a (continuous) $f : (X, \mathcal{R}, \tau) \to (\overline{\mathbb{R}}, \leq, \tau_u)$ such that $x\mathcal{R}y \iff f(x)\mathcal{R}_{t.p.}f(y) \ (x, y \in X).$
- (2) A semiorder \mathcal{R} on (X, τ) is (continuously) representable in $\overline{\mathbb{R}}$ if there exists a (continuous) $f : (X, \mathcal{R}, \tau) \to (\overline{\mathbb{R}}, \mathcal{R}_{s.o.}, \tau_u)$ such that $x\mathcal{R}y \iff f(x)\mathcal{R}_{s.o.}f(y)$ $(x, y \in X)$.

equivalent formulation

Let (X, τ) a topological space. Then

- (1) A total preorder \mathcal{R} on (X, τ) is (continuously) representable if there exists a (continuous) $f : (X, \mathcal{R}, \tau) \to (\overline{\mathbb{R}}, \leq, \tau_u)$ such that $x\mathcal{R}y \iff f(x)\mathcal{R}_{t.p.}f(y) \ (x, y \in X).$
- (2) A semiorder \mathcal{R} on (X, τ) is (continuously) representable in $\overline{\mathbb{R}}$ if there exists a (continuous) $f : (X, \mathcal{R}, \tau) \to (\overline{\mathbb{R}}, \mathcal{R}_{s.o.}, \tau_u)$ such that $x\mathcal{R}y \iff f(x)\mathcal{R}_{s.o.}f(y) \ (x, y \in X)$.
- (3) An interval order R on (X, τ) is (continuously) representable if there exists a (continuous) f : (X, R, τ) → (Y, R_{i.o.}, τ_u) such that xRy ⇐⇒ f(x)R_{i.o.}f(y) (x, y ∈ X).

unified formulation

Note that all the results mentioned before are of the following form:

Let (X, τ) a topological space. Let \mathcal{R} be a certain type of preference (total preorder, semiorder or interval order) on (X, τ) and $(L, \tau_L, \mathcal{R}_L)$ be the corresponding canonical structure. Then

The preference \mathcal{R} on (X, τ) is continuously representable if there exists a continuous $f : (X, \tau, \mathcal{R}) \to (L, \tau_L, \mathcal{R}_L)$ such that

$$x\mathcal{R}y \iff f(x)\mathcal{R}_L f(y) \ (x,y \in X).$$

unified formulation

Note that all the results mentioned before are of the following form:

Let (X, τ) a topological space. Let \mathcal{R} be a certain type of preference (total preorder, semiorder or interval order) on (X, τ) and $(L, \tau_L, \mathcal{R}_L)$ be the corresponding canonical structure. Then

The total preorder \mathcal{R} on (X, τ) is continuously representable if there exists a continuous $f : (X, \tau, \mathcal{R}) \to (\overline{\mathbb{R}}, \tau_u, \leq)$ such that

$$x\mathcal{R}y \iff f(x) \leq f(y) \ (x, y \in X).$$

unified formulation

Note that all the results mentioned before are of the following form:

Let (X, τ) a topological space. Let \mathcal{R} be a certain type of preference (total preorder, semiorder or interval order) on (X, τ) and $(L, \tau_L, \mathcal{R}_L)$ be the corresponding canonical structure. Then

The semiorder \mathcal{R} on (X, τ) is continuously representable if there exists a continuous $f : (X, \tau, \mathcal{R}) \to (\mathbb{R}, \tau_u, \mathcal{R}_{s.o.})$ such that

$$x\mathcal{R}y \iff f(x)\mathcal{R}_{s.o.}f(y) \ (x,y \in X).$$

Representability

unified formulation

Note that all the results mentioned before are of the following form:

Let (X, τ) a topological space. Let \mathcal{R} be a certain type of preference (total preorder, semiorder or interval order) on (X, τ) and $(L, \tau_L, \mathcal{R}_L)$ be the corresponding canonical structure. Then

The interval order \mathcal{R} on (X, τ) is continuously representable if there exists a continuous $f : (X, \tau, \mathcal{R}) \to (\mathcal{Y}, \tau_u, \mathcal{R}_{i.o.})$ such that

$$x\mathcal{R}y \iff f(x)\mathcal{R}_{i.o.}f(y) \ (x,y \in X).$$

Representability

unified formulation

Note that all the results mentioned before are of the following form:

Let (X, τ) a topological space. Let \mathcal{R} be a certain type of preference (total preorder, semiorder or interval order) on (X, τ) and $(L, \tau_L, \mathcal{R}_L)$ be the corresponding canonical structure. Then

The preference \mathcal{R} on (X, τ) is continuously representable if there exists a continuous $f : (X, \tau, \mathcal{R}) \to (L, \tau_L, \mathcal{R}_L)$ such that

$$x\mathcal{R}y \iff f(x)\mathcal{R}_{L}f(y) \ (x,y\in X).$$

unified formulation

Note that all the results mentioned before are of the following form:

Let (X, τ) a topological space. Let \mathcal{R} be a certain type of (total preorder, semiorder or interval order) on (X, τ) and be the corresponding canonical structure. Then

The preference \mathcal{R} on (X, τ) is continuously representable if there exists a continuous $f : (X, \tau, \mathcal{R}) \to (L, \tau_L, \mathcal{R}_L)$ such that

$$x\mathcal{R}y \iff f(x)\mathcal{R}_{L}f(y) \ (x,y\in X).$$

Notice that (L, τ_L) is always a completely distributive lattice and τ_L the Lawson topology on *L*.

Given a complete lattice *L* and $a, b \in L$, we write

 $a \triangleleft b \iff$ for each $A \subseteq L$ with $\bigwedge A \leq a$, there is $c \in A$ with $c \leq b$.

Given a complete lattice *L* and $a, b \in L$, we write

 $a \triangleleft b \iff$ for each $A \subseteq L$ with $\bigwedge A \leq a$, there is $c \in A$ with $c \leq b$.

For each $a \in L$ we write

$$U_{\leq}(a) = \{b \in L : a \leq b\}, \qquad L_{\leq}(a) = \{b \in L : b \leq a\}, \\ U_{\triangleleft}(a) = \{b \in L : a \triangleleft b\}, \qquad L_{\triangleleft}(a) = \{b \in L : b \triangleleft a\}, \quad \text{etc.}$$

Given a complete lattice *L* and $a, b \in L$, we write

 $a \triangleleft b \iff$ for each $A \subseteq L$ with $\bigwedge A \leq a$, there is $c \in A$ with $c \leq b$.

For each $a \in L$ we write

$$\begin{split} &U_{\leq}(a) = \{b \in L : a \leq b\}, \qquad L_{\leq}(a) = \{b \in L : b \leq a\}, \\ &U_{\blacktriangleleft}(a) = \{b \in L : a \blacktriangleleft b\}, \qquad L_{\blacktriangle}(a) = \{b \in L : b \blacktriangleleft a\}, \quad \text{etc.} \end{split}$$

It is well-known that a lattice L is completely distributive if and only if

$$a = \bigwedge U_{\blacktriangleleft}(a) = \bigwedge \{b \in L : a \blacktriangleleft b\}$$
 for each $a \in L$.

Given a complete lattice *L* and $a, b \in L$, we write

 $a \triangleleft b \iff$ for each $A \subseteq L$ with $\bigwedge A \leq a$, there is $c \in A$ with $c \leq b$.

For each $a \in L$ we write

-

$$\begin{split} &U_{\leq}(a) = \{b \in L : a \leq b\}, \qquad L_{\leq}(a) = \{b \in L : b \leq a\}, \\ &U_{\blacktriangleleft}(a) = \{b \in L : a \blacktriangleleft b\}, \qquad L_{\blacktriangle}(a) = \{b \in L : b \blacktriangleleft a\}, \quad \text{etc.} \end{split}$$

It is well-known that a lattice L is completely distributive if and only if

 $a = \bigwedge U_{\blacktriangleleft}(a) = \bigwedge \{b \in L : a \blacktriangleleft b\}$ for each $a \in L$.

Example: Any complete chain is completely distributive. In particular, if $L = \overline{\mathbb{R}}$, one just has $a \blacktriangleleft b \iff a < b$ for each $a, b \in \overline{\mathbb{R}}$. Hence

$$U_{\triangleleft}(a) = U_{<}(a) = (a, +\infty)$$
 and $L_{\triangleleft}(a) = L_{<}(a) = [-\infty, a).$

イロン イボン イヨン 一日

Completely distributive lattices

A subset $D \subseteq L$ is called meet-dense if each element $a \in L$ there exists some $D_a \subseteq D$ such that $a = \bigwedge D_a$.

A subset $D \subseteq L$ is called meet-dense if each element $a \in L$ there exists some $D_a \subseteq D$ such that $a = \bigwedge D_a$.

A completely distributive lattice is said to be **-**separable if it has a countable meet-dense subset.

A subset $D \subseteq L$ is called meet-dense if each element $a \in L$ there exists some $D_a \subseteq D$ such that $a = \bigwedge D_a$.

A completely distributive lattice is said to be <-separable if it has a countable meet-dense subset.

Examples: (1) $L = \overline{\mathbb{R}}$ is \blacktriangleleft -separable with $D = \mathbb{Q}$.

-separability

Completely distributive lattices

A subset $D \subseteq L$ is called meet-dense if each element $a \in L$ there exists some $D_a \subseteq D$ such that $a = \bigwedge D_a$.

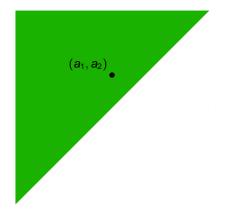
A completely distributive lattice is said to be <-separable if it has a countable meet-dense subset.

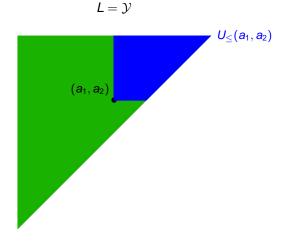
Examples: (1) $L = \overline{\mathbb{R}}$ is \blacktriangleleft -separable with $D = \mathbb{Q}$.

(2) $\mathcal{Y} = \{a \in \mathbb{R}^2 : a_1 \leq a_2\}$ endowed with the componentwise order is a \blacktriangleleft -separable completely distributive lattice with

$$D=D_1\cup D_2=ig\{(q,q)\in \mathcal{Y}:q\in \mathbb{Q}ig\}\cupig\{(q,+\infty)\in \mathcal{Y}:q\in \mathbb{Q}ig\}.$$

$$L = \mathcal{Y}$$





 $L = \mathcal{Y}$

Completely distributive lattices

$$U_{\mathcal{R}_{i,o}}(a_1,a_2)$$

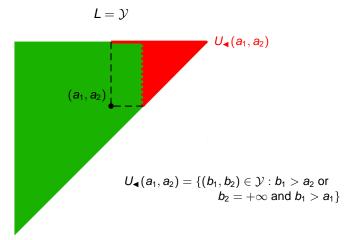
 (a_1,a_2)
 $U_{\mathcal{P}_{i,o}}(a_1,a_2) = \{(b_1,b_2) \in \mathcal{Y} : b_2 \geq a_1\}$

 $L = \mathcal{Y}$

Completely distributive lattices

$$U_{\mathcal{P}_{l,o}}(a_1, a_2)$$

 (a_1, a_2)
 $U_{\mathcal{P}_{l,o}}(a_1, a_2) = \{(b_1, b_2) \in \mathcal{Y} : b_1 > a_2\}$



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

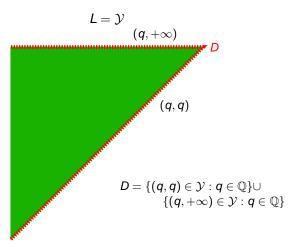
Completely distributive lattices

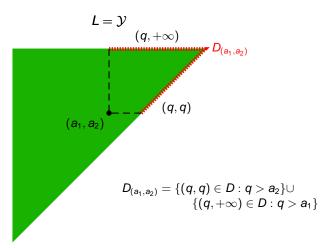
$$L = \mathcal{Y}$$

$$U_{\blacktriangleleft}(a_1, a_2)$$

$$U_{\blacktriangle}(a_1, a_2) = \{(b_1, b_2) \in \mathcal{Y} : b_1 > a_2 \text{ or} \\ b_2 = +\infty \text{ and } b_1 > a_1\}$$

$$\forall (a_1, a_2) \in L \quad (a_1, a_2) = \bigwedge U_{\blacktriangleleft}(a_1, a_2) \implies L \text{ is completely distributive.}$$





the canonical interval order

 $L = \mathcal{Y}$ $(q, +\infty)$ $D_{(a_1,a_2)}$ (q,q) (a_1, a_2) $D_{(a_1,a_2)} = \{(q,q) \in D : q > a_2\} \cup$ $\{(q, +\infty) \in D : q > a_1\}$ $\forall (a_1, a_2) \in L \ (a_1, a_2) = \bigwedge D_{(a_1, a_2)} \implies L \text{ is } \blacktriangleleft \text{-separable.}$ イロン イボン イヨン イヨン 三日

scales

Let *X* be a set, *L* completely distributive and $D \subseteq L$ meet-dense.

 $\mathcal{F} = \{F_d \subseteq X : d \in D\}$ is said to be a \blacktriangleleft -scale if \mathcal{F} is \blacktriangleleft -increasing, i.e.

 $F_{d_1} \subseteq F_{d_2}$ whenever $d_1 \triangleleft d_2$.

◆□ → ◆□ → ◆三 → ◆三 → ◆ ● ◆ ◆ ● ◆

Completely distributive lattices

scales

Let *X* be a set, *L* completely distributive and $D \subseteq L$ meet-dense.

 $\mathcal{F} = \{F_d \subseteq X : d \in D\}$ is said to be a \blacktriangleleft -scale if \mathcal{F} is \blacktriangleleft -increasing, i.e.

 $F_{d_1} \subseteq F_{d_2}$ whenever $d_1 \triangleleft d_2$.

The following are equivalent:

- (1) \mathcal{F} is a \blacktriangleleft -scale.
- (2) There exists a function $f : X \to L$ such that for every $d \in D$:

$$[f \blacktriangleleft d] \subseteq F_d \subseteq [f \leq d].$$

scales

Let *X* be a set, *L* completely distributive and $D \subseteq L$ meet-dense.

 $\mathcal{F} = \{F_d \subseteq X : d \in D\}$ is said to be a \blacktriangleleft -scale if \mathcal{F} is \blacktriangleleft -increasing, i.e.

 $F_{d_1} \subseteq F_{d_2}$ whenever $d_1 \triangleleft d_2$.

The following are equivalent:

- (1) \mathcal{F} is a \blacktriangleleft -scale.
- (2) There exists a function $f : X \to L$ such that for every $d \in D$:

$$[f \blacktriangleleft d] \subseteq F_d \subseteq [f \leq d].$$

If *L* is \triangleleft -separable then we can choose *D* to be countable and so we conclude that we can identify *L*-valued functions on *X* with countable \triangleleft -scales on *X*.

the Lawson topology

Any poset (L, \leq) carries three well-known topologies:

- the upper topology $\nu(L)$ having $\{L \setminus L_{\leq}(a) : a \in L\}$ as a subbase.
- the *lower topology* $\omega(L)$ having $\{L \setminus U_{\leq}(a) : a \in L\}$ as a subbase.
- the interval topology $\nu(L) \vee \omega(L)$.

the Lawson topology

Any poset (L, \leq) carries three well-known topologies:

- the upper topology $\nu(L)$ having $\{L \setminus L_{\leq}(a) : a \in L\}$ as a subbase.
- − the *lower topology* $\omega(L)$ having $\{L \setminus U_{\leq}(a) : a \in L\}$ as a subbase.
- the interval topology $\nu(L) \vee \omega(L)$.

If *L* is a \triangleleft -separable completely distributive lattice and $D \subseteq L$ a meet-dense subset. Then:

(1)
$$\{L \setminus L_{\leq}(d) : d \in D\}$$
 is a subbase of $\nu(L)$.

(2)
$$\{L_{\blacktriangleleft}(d) : d \in D\}$$
 is a subbase of $\omega(L)$.

the Lawson topology

Any poset (L, \leq) carries three well-known topologies:

- the upper topology $\nu(L)$ having $\{L \setminus L_{\leq}(a) : a \in L\}$ as a subbase.
- − the *lower topology* $\omega(L)$ having $\{L \setminus U_{\leq}(a) : a \in L\}$ as a subbase.
- the interval topology $\nu(L) \vee \omega(L)$.

If *L* is a \triangleleft -separable completely distributive lattice and $D \subseteq L$ a meet-dense subset. Then:

(1)
$$\{L \setminus L_{\leq}(d) : d \in D\}$$
 is a subbase of $\nu(L)$.

(2)
$$\{L_{\blacktriangleleft}(d) : d \in D\}$$
 is a subbase of $\omega(L)$.

Examples: (1) Let $L = \overline{\mathbb{R}}$ and $D = \mathbb{Q}$. Then $\{(q, +\infty) : q \in \mathbb{Q}\}$ and $\{[-\infty, q] : q \in \mathbb{Q}\}$ are, resp., subbases of $\nu(L)$ and $\nu(L)$. The Lawson topology is precisely the usual topology on $\overline{\mathbb{R}}$.

the Lawson topology

Any poset (L, \leq) carries three well-known topologies:

- the upper topology $\nu(L)$ having $\{L \setminus L_{\leq}(a) : a \in L\}$ as a subbase.
- the *lower topology* $\omega(L)$ having $\{L \setminus U_{\leq}(a) : a \in L\}$ as a subbase.
- the interval topology $\nu(L) \vee \omega(L)$.

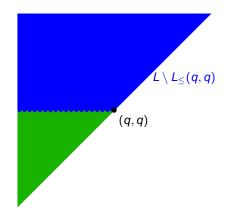
If *L* is a \triangleleft -separable completely distributive lattice and $D \subseteq L$ a meet-dense subset. Then:

(1)
$$\{L \setminus L_{\leq}(d) : d \in D\}$$
 is a subbase of $\nu(L)$.

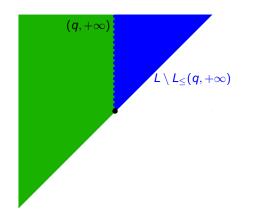
(2)
$$\{L_{\blacktriangleleft}(d) : d \in D\}$$
 is a subbase of $\omega(L)$.

Examples: (1) Let $L = \overline{\mathbb{R}}$ and $D = \mathbb{Q}$. Then $\{(q, +\infty) : q \in \mathbb{Q}\}$ and $\{[-\infty, q] : q \in \mathbb{Q}\}$ are, resp., subbases of $\nu(L)$ and $\nu(L)$. The Lawson topology is precisely the usual topology on $\overline{\mathbb{R}}$.

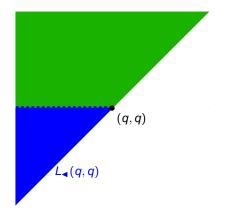
$$L = \mathcal{Y}, \quad D = \left\{ (q,q) \in \mathcal{Y} : q \in \mathbb{Q} \right\} \cup \left\{ (q,+\infty) \in \mathcal{Y} : q \in \mathbb{Q} \right\}$$



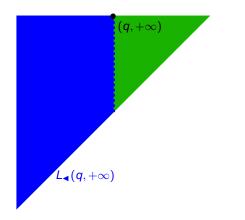
$$L = \mathcal{Y}, \quad D = ig\{(q,q) \in \mathcal{Y} : q \in \mathbb{Q}ig\} \cup ig\{(q,+\infty) \in \mathcal{Y} : q \in \mathbb{Q}ig\}$$



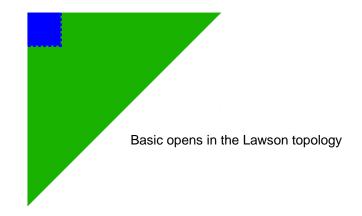
$$L = \mathcal{Y}, \quad D = \left\{ (q,q) \in \mathcal{Y} : q \in \mathbb{Q} \right\} \cup \left\{ (q,+\infty) \in \mathcal{Y} : q \in \mathbb{Q} \right\}$$



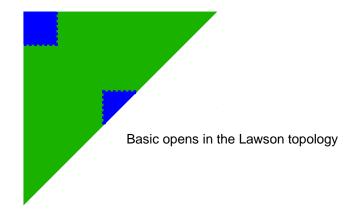
$$L = \mathcal{Y}, \quad D = \left\{ (q,q) \in \mathcal{Y} : q \in \mathbb{Q} \right\} \cup \left\{ (q,+\infty) \in \mathcal{Y} : q \in \mathbb{Q} \right\}$$



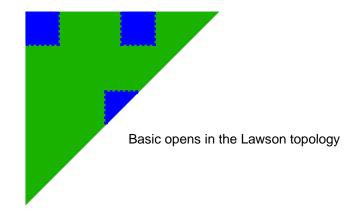
$$L = \mathcal{Y}, \quad D = \left\{ (q,q) \in \mathcal{Y} : q \in \mathbb{Q} \right\} \cup \left\{ (q,+\infty) \in \mathcal{Y} : q \in \mathbb{Q} \right\}$$



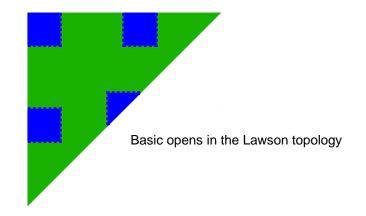
$$L = \mathcal{Y}, \quad D = \left\{ (q,q) \in \mathcal{Y} : q \in \mathbb{Q} \right\} \cup \left\{ (q,+\infty) \in \mathcal{Y} : q \in \mathbb{Q} \right\}$$



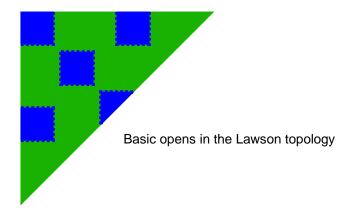
$$L = \mathcal{Y}, \quad D = \left\{ (q,q) \in \mathcal{Y} : q \in \mathbb{Q} \right\} \cup \left\{ (q,+\infty) \in \mathcal{Y} : q \in \mathbb{Q} \right\}$$



$$L = \mathcal{Y}, \quad D = \left\{ (q,q) \in \mathcal{Y} : q \in \mathbb{Q} \right\} \cup \left\{ (q,+\infty) \in \mathcal{Y} : q \in \mathbb{Q} \right\}$$

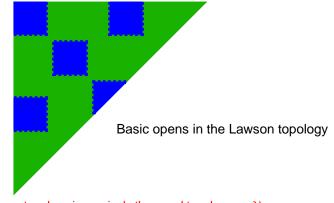


$$L = \mathcal{Y}, \quad D = \left\{ (q,q) \in \mathcal{Y} : q \in \mathbb{Q} \right\} \cup \left\{ (q,+\infty) \in \mathcal{Y} : q \in \mathbb{Q} \right\}$$



the canonical interval order

$$L = \mathcal{Y}, \quad D = \left\{ (q,q) \in \mathcal{Y} : q \in \mathbb{Q} \right\} \cup \left\{ (q,+\infty) \in \mathcal{Y} : q \in \mathbb{Q} \right\}$$



The Lawson topology is precisely the usual topology on \mathcal{Y} .

continuity

Given a topological space (X, τ) and $f : X \to L$ we say that:

- (1) *f* is *lower semicontinuous* iff it is continuous with respect to $\nu(L)$;
- (2) *f* is upper semicontinuous iff it is continuous with respect to $\omega(L)$;
- (3) *f* is *continuous* iff it is continuous with respect to $\nu(L) \vee \omega(L)$.

continuity

Given a topological space (X, τ) and $f : X \to L$ we say that:

- (1) *f* is lower semicontinuous iff $L \setminus [f \leq d]$ is closed for all $d \in D$;
- (2) *f* is upper semicontinuous iff $[f \triangleleft d]$ is open for all $d \in D$.
- (3) *f* is continuous iff $L \setminus [f \le d]$ is closed and $[f \blacktriangleleft d]$ open for all *d*.

continuity

Given a topological space (X, τ) and $f : X \to L$ we say that:

- (1) *f* is lower semicontinuous iff $L \setminus [f \leq d]$ is closed for all $d \in D$;
- (2) *f* is upper semicontinuous iff $[f \triangleleft d]$ is open for all $d \in D$.
- (3) *f* is continuous iff $L \setminus [f \le d]$ is closed and $[f \blacktriangleleft d]$ open for all *d*.

After the equivalence stated between \triangleleft -scales on X and L-valued functions on X we have the following:

continuity

Given a topological space (X, τ) and $f : X \to L$ we say that:

- (1) *f* is lower semicontinuous iff $L \setminus [f \leq d]$ is closed for all $d \in D$;
- (2) *f* is upper semicontinuous iff $[f \triangleleft d]$ is open for all $d \in D$.
- (3) *f* is continuous iff $L \setminus [f \le d]$ is closed and $[f \blacktriangleleft d]$ open for all *d*.

After the equivalence stated between \triangleleft -scales on X and L-valued functions on X we have the following:

Theorem

Let $f : X \to L$ be generated by the \blacktriangleleft -scale { $F_d \subseteq X : d \in D$ }.

- (1) *f* is lower semicontinuous iff $\overline{F_{d_1}} \subseteq F_{d_2}$ whenever $d_1 \triangleleft d_2$;
- (2) *f* is upper semicontinuous iff $F_{d_1} \subset \text{Int } F_{d_2}$ whenever $d_1 \triangleleft d_2$;
- (3) *f* is continuous iff $\overline{F_{d_1}} \subset \text{Int } F_{d_2}$ whenever $d_1 \triangleleft d_2$.

total preorders

A total preorder \mathcal{R} on (X, τ) is *(continuously) representable* if there exists a (continuous) $u : (X, \tau, \mathcal{R}) \to (\mathbb{R}, \tau_u, \leq)$ such that

$$x\mathcal{R}y\iff u(x)\leq u(y)\ (x,y\in X).$$

total preorders

A total preorder \mathcal{R} on (X, τ) is *(continuously) representable* if there exists a (continuous) $u : (X, \tau, \mathcal{R}) \to (\mathbb{R}, \tau_u, \leq)$ such that

$$x\mathcal{R}y\iff u(x)\leq u(y)\ (x,y\in X).$$

Theorem

Then the following are equivalent:

- (1) \mathcal{R} is representable;
- (2) There exists a scale $\{F_q\}_{q\in\mathbb{Q}}$ satisfying for each $x, y \in X$

(a) $x\mathcal{P}y \iff \exists q_1 < q_2 \in \mathbb{Q}$ such that $x \in F_{q_1}$ and $y \notin F_{q_2}$.

(representability)

total preorders

A total preorder \mathcal{R} on (X, τ) is *(continuously) representable* if there exists a (continuous) $u : (X, \tau, \mathcal{R}) \to (\mathbb{R}, \tau_u, \leq)$ such that

$$x\mathcal{R}y\iff u(x)\leq u(y)\ (x,y\in X).$$

Theorem

Then the following are equivalent:

- (1) \mathcal{R} is continuously representable;
- (2) There exists a scale $\{F_q\}_{q\in\mathbb{Q}}$ satisfying for each $x, y \in X$

(a) $x \mathcal{P} y \iff \exists q_1 < q_2 \in \mathbb{Q}$ such that $x \in F_{q_1}$ and $y \notin F_{q_2}$.

(representability)

(b)
$$\overline{F_{q_1}} \subseteq \operatorname{Int} F_{q_2}$$
 whenever $q_1 < q_2 \in \mathbb{Q}$.

(continuity)

semiorders

A semiorder \mathcal{R} on (X, τ) is *(continuously) representable in* \mathbb{R} if there exist a (continuous) $u : (X, \tau, \mathcal{R}) \to (\mathbb{R}, \tau_u, \mathcal{R}_{s.o})$ such that

$$x\mathcal{R}y\iff u(x)\leq u(y)+1 \ (x,y\in X).$$

semiorders

A semiorder \mathcal{R} on (X, τ) is *(continuously) representable in* \mathbb{R} if there exist a (continuous) $u : (X, \tau, \mathcal{R}) \to (\mathbb{R}, \tau_u, \mathcal{R}_{s.o})$ such that

$$x\mathcal{R}y\iff u(x)\leq u(y)+1 \ (x,y\in X).$$

Theorem

Then the following are equivalent:

- (1) \mathcal{R} is representable in $\overline{\mathbb{R}}$;
- (2) There exists a scale $\{F_q\}_{q \in \mathbb{Q}}$ satisfying for each $x, y \in X$

(a) $x \mathcal{P} y \iff \exists q_1 < q_2 \in \mathbb{Q}$ such that $x \in F_q$ and $y \notin F_{q+1}$.

(representability)

semiorders

A semiorder \mathcal{R} on (X, τ) is *(continuously) representable in* \mathbb{R} if there exist a (continuous) $u : (X, \tau, \mathcal{R}) \to (\mathbb{R}, \tau_u, \mathcal{R}_{s.o})$ such that

$$x\mathcal{R}y\iff u(x)\leq u(y)+1 \ (x,y\in X).$$

Theorem

Then the following are equivalent:

- (1) \mathcal{R} is continuously representable in $\overline{\mathbb{R}}$;
- (2) There exists a scale $\{F_q\}_{q\in\mathbb{Q}}$ satisfying for each $x, y \in X$

(a) $x \mathcal{P} y \iff \exists q_1 < q_2 \in \mathbb{Q}$ such that $x \in F_q$ and $y \notin F_{q+1}$.

(representability)

(b)
$$\overline{F_{q_1}} \subseteq \operatorname{Int} F_{q_2}$$
 whenever $q_1 < q_2 \in \mathbb{Q}$.

(continuity)

interval orders

An interval order \mathcal{R} on X is said to be *(continuously) representable* if there exists a pair of (continuous) $u, v : (X, \tau) \to (\mathbb{R}, \tau_u)$ such that

$$x\mathcal{R}y \iff u(x) \leq v(y) \ (x, y \in X).$$

interval orders

An interval order \mathcal{R} on X is said to be *(continuously) representable* if there exists a pair of (continuous) $u, v : (X, \tau) \to (\mathbb{R}, \tau_u)$ such that

$$x\mathcal{R}y \iff u(x) \leq v(y) \ (x, y \in X).$$

Theorem

Then the following are equivalent:

- (1) \mathcal{R} is representable;
- (2) There exists a scale $\{F_{(q,q)}\}_{q\in\mathbb{Q}} \cup \{F_{(q,1)}\}\}_{q\in\mathbb{Q}}$ such that

(a)
$$x \mathcal{P} y \iff \exists q_1 < q_2 \in \mathbb{Q} \text{ with } x \in F_{(q_1,q_1)} \text{ and } y \notin F_{(q_2,1)}.$$

(representability)

interval orders

An interval order \mathcal{R} on X is said to be *(continuously) representable* if there exists a pair of (continuous) $u, v : (X, \tau) \to (\mathbb{R}, \tau_u)$ such that

$$x\mathcal{R}y \iff u(x) \leq v(y) \ (x, y \in X).$$

Theorem

Then the following are equivalent:

- (1) \mathcal{R} is continuously representable;
- (2) There exists a scale $\{F_{(q,q)}\}_{q\in\mathbb{Q}} \cup \{F_{(q,1)}\}\}_{q\in\mathbb{Q}}$ such that

(a)
$$x\mathcal{P}y \iff \exists q_1 < q_2 \in \mathbb{Q} \text{ with } x \in F_{(q_1,q_1)} \text{ and } y \notin F_{(q_2,1)}.$$

(representability)

(b)
$$\overline{F_{(q_1,q_1)}} \subseteq \operatorname{Int} F_{(q_2,q_2)}$$
 and $\overline{F_{(q_1,1)}} \subseteq \operatorname{Int} F_{(q_2,1)}$ whenever $q_1 < q_2 \in \mathbb{Q}$.
(continuity)

