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Abstract

We introduce a new approach that deals, jointly and in a unified manner, with
the topics of the (continuous) numerical representability of total preorders,
semiorders and interval orders. This setting is based on the consideration of
increasing scales and the systematic use of a particular kind of codomain based
on a subset of the real plane. The key fact is that this canonical codomain
has a theoretical structure of a completely distributive lattice that allows us
to use a single function (taking values in that codomain) in order to represent
the three kinds of binary relations.

1. Introduction

The present paper can be considered as a natural continuation of the analysis, initiated
in [5, 2, 6, 3] about the possibility of finding representations of several kinds of binary
relations, and in particular of interval orders, using only a single map that takes values
on a set (different, if necessary, from the real line R).

The techniques used here are essentially the same as those used in [3], where we were
able to provide a unified treatment in the case of total preorders and interval orders. The
key idea in [3] was to observe that when representing total preorders and interval orders
through a single map, despite of being different the two typical codomains (namely, the real
line for the case of total preorders, and a particular subset of the real plane for the case of
interval orders) shared the same lattice theoretical structure. Indeed both codomains were
a particular type of completely distributive lattices. After noticing it, it was quite natural
to try to use the techniques of scales coming from [8] in order to provide the desired
uniform treatment. However, in [3] the possibility of extending that kind of results to
capture also the representability of semiorders (in some manner that should be equivalent
to the classical representability of semiorders in the sense of Scott and Suppes [11] through
a real valued map and a nonnegative threshold) was left as an open problem.
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2The author acknowledges financial support from the Ministry of Education and Science of Spain and
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The main originality in the present paper is that we can actually also deal with the
representation of typical (or intransitive) semiorders. The concept of a semiorder was
introduced in [10] to deal with inaccuracies in measurements where a nonnegative thresh-
old of discrimination is involved. The original idea was that of presenting a mathematical
model of preferences enable to capture situations of “intransitive indifference with a thresh-
old of discrimination”. Semiorders are an intermediate type of binary relations that lie
between total preorders and interval orders, in the sense that semiorders are a particular
case of interval orders, whereas total preorders are precisely the transitive semiorders.

The structure of the paper goes as follows: In section 2 we include the necessary prelim-
inaries to deal with total preorders, semiorders and interval orders along the manuscript.
We also present the canonical interval order and typical semiorder. Both of them have the
algebraical structure of completely distributive lattice that will play a crucial role in the
rest of the paper. Section 3 consists of previous results on completely distributive lattices
that are needed in the subsequent sections to benefit from the algebraical properties of the
canonical lattices introduced in section 2. The proof of all the results can be found in [3].
Finally, Section 4 deals with the continuous representability of total preorders, semiorders
and interval orders through scales.

2. Total preorders, semiorders and interval orders

In what follows X denotes a nonempty set, and R a binary relation on X. The asym-
metric part P of R is defined for each x, y ∈ X as xPy if and only if xRy and ¬(yRx.

Definition 1. Let R a binary relation on X and x, y, z, t ∈ X. R is said to be:

(i) An interval order if it is reflexive and whenever xPy and zPt either xPt or zPy.
Notice that R is, in particular, complete.

(ii) A semiorder if it is an interval order and whenever xPy and yPz either xPt or tPz.
(iii) A preorder if it is reflexive and transitive. If in addition it is complete, R is said to

be a total preorder.

Clearly enough we have the following relation between the three notions:

total preorder =⇒ semiorder =⇒ interval order.

Concerning the first implication, it is well-known that a semiorder is a total preorder if
and only if it is transitive. In this sense a semiorder is said to be typical if P is not a total
preorder, i.e. if it is not transitive. However the converse of the implications above are
not necessarily true as the following examples show.

Examples 2. (1) (Canonical interval order) Let R = R∪{−∞,+∞} denote the extended

real line and Y = {(a1, a2) ∈ R2
: a1 ≤ a2}. Endow Y with the relation Ri.o. given by

(a1, a2)Ri.o.(b1, b2) ⇐⇒ a1 ≤ b2 (a1, a2), (b1, b2) ∈ Y.

The corresponding asymmetric part Pi.o. of Ri.o. is given by

(a1, a2)Pi.o.(b1, b2) ⇐⇒ a2 < b1 (a1, a2), (b1, b2) ∈ Y.
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It is easy to check that Ri.o is an interval-order which fails to be a semiorder.

(2) (Canonical typical semiorder) Endow R with the binary relation Rs.o. given by

aRs.o.b ⇐⇒ a ≤ b + 1 a, b ∈ R.3

The corresponding assymetric part Ps.o. of Rs.o. is given by

aPs.o.b ⇐⇒ a < b − 1 a, b ∈ R.4

It is easy to check that Rs.o. is a typical (non transitive) semiorder.

Remarks 3. (1) Note that the restriction of the interval order Ri.o. on Y to the diagonal
∆ = {a ∈ Y : a1 = a2} becomes a total preorder on ∆. Clearly enough, the pair
(∆,Ri.o.|∆) is isomorphic to (R,≤).

(2) Analogously, the restriction of Ri.o. to ∆1 = {a ∈ Y : a2 = a1 + 1} becomes a typical
semiorder and the pair (∆1,Ri.o.|∆1

) is trivially isomorphic to (R,Rs.o.).

These examples are in the very origin of the notions of interval order and semiorder:
When a set of closed intervals of the reals is partially ordered by decreeing that A < B
when A lies strictly to the left of B, the resulting structure is an interval order (the name
of interval order comes precisely from this example). Semiorders may be viewed as interval
orders that arise from closed intervals having a fixed length. Finally, when the fixed length
is equal to 0 the semiorder becomes a total preorder.

2.1. Representability of total preorders, semiorders and interval orders.

Definition 4. (1) A total preorder R on (X, τ) is said to be (continuously) representable
if there exists a (continuous) u : (X, τ) → (R, τu) (also called “utility function”) such that

xRy ⇐⇒ u(x) ≤ u(y) (x, y ∈ X).

(2) A semiorder R on (X, τ) is said to be (continuously) representable in the sense of Scott
and Suppes (see [11]) if there exist a (continuous) u : (X, τ) → (R, τu) and a nonnegative
constant or “discrimination threshold” K ≥ 0 such that

xRy ⇐⇒ u(x) ≤ u(y) + K (x, y ∈ X).

We shall say that R (continuously) representable in R if there exist a (continuous) u :
(X, τ) → (R, τu) and a discrimination threshold K ≥ 0 such that

xRy ⇐⇒ u(x) ≤ u(y) + K (x, y ∈ X).

3Here we understand +∞ + 1 = +∞ = +∞− 1, i.e. Rs.o. could be equivalently defined as
aRs.o.b ⇐⇒ a = −∞ or (a, b ∈ R and a ≤ b + 1) or b = +∞ a, b ∈ R.

4Equivalently,
aPs.o.b ⇐⇒ (a = −∞ and b ∈ R) or (a, b ∈ R and a < b − 1) or (a ∈ R and b = +∞) a, b ∈ R.
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(3) An interval order R on X is said to be (continuously) representable if there exists a
pair of (continuous) u, v : (X, τ) → (R, τu) such that

xRy ⇐⇒ u(x) ≤ v(y) (x, y ∈ X).

The following result constitutes a first step towards the unified continuous representabil-
ity of total preorders, semiorders and interval orders:

Proposition 5. Let (X, τ) a topological space. Then

(1) A total preorder R on (X, τ) is continuously representable if there exists a continuous
f : (X,R, τ) → (R,≤, τu) such that xRy ⇐⇒ f(x) ≤ f(y) (x, y ∈ X).

(2) A semiorder R on (X, τ) is continuously representable in R if there exists a continuous
f : (X,R, τ) → (R,Rs.o., τu) such that xRy ⇐⇒ f(x)Rs.o.f(y) (x, y ∈ X).

(3) An interval order R on (X, τ) is continuously representable if there exists a continuous
f : (X,R, τ) → (Y,Ri.o., τu) such that xRy ⇐⇒ f(x)Ri.o.f(y) (x, y ∈ X).

The analogy comes from the fact that both R, and Y are completely distributive lattices.
Even more, they are !-separable in the sense of Definition 9 below. In the case of R this
is nothing but the separability in the usual sense. We’ll see what it means in the second
case in Example 10 (2).

Remarks 6. There are still another two interesting things to be commented here in con-
nection with Remarks 3.

(1) It is easy to check that an interval order R is a (continuously) representable total
preorder if and only if it is (continuously) representable as an interval order through a
map that takes values inside ∆ (see [3, Remark 1, Proposition 3] for details).

(2) Analogously, in the case of semiorders we can prove that an interval order R is a
semiorder (continuously) representable in R if and only if it is (continuously) representable
as an interval order through a map that takes values inside ∆1.

In view of the previous comments we have now another unified look at the (continuous)
representability of all these kinds of ordered structures. In this case we have that the
(continuous) representability of semiorders in R and of total preorders can be interpreted
as a particular case of the (continuous) representability when considered as interval orders.

3. Some known results on completely distributive lattices

In what follows L always denotes a complete lattice. The top and bottom elements are
denoted by * =

∧
∅ and ⊥ =

∨
∅, respectively. Our main reference for general concepts

regarding lattices and complete distributivity is [7].
Given a lattice L and a, b ∈ L, we write

a ! b ⇐⇒ for each A ⊆ L with
∧

A ≤ a, there is c ∈ A with c ≤ b.

This relation (or its dual version) has several names in the literature: well-above relation,
long-way-above relation or simply Raney relation.

For each a ∈ L we write

U≤(a) = {b ∈ L : a ≤ b}, U<(a) = {b ∈ L : a < b}, U!(a) = {b ∈ L : a ! b},
L≤(a) = {b ∈ L : b ≤ a}, L<(a) = {b ∈ L : b < a}, L!(a) = {b ∈ L : b ! a},
etc.

It is well-known that a lattice L is completely distributive if and only if

a =
∧

U!(a) =
∧
{b ∈ L : a ! b} for each a ∈ L.
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Examples 7. (1) Let (L,≤) be a complete chain (a totally ordered set). An element
a ∈ L is said to be isolated from above if a <

∧
U<(a). We now have for each a, b ∈ L:

a ! b ⇐⇒ a < b or a = b is isolated from above.

It follows that U!(a) = U≤(a) if a is isolated from above and U!(a) = U<(a) otherwise. We
conclude the well-known fact that any chain is completely distributive. In the particular
case L = R, one just has a ! b ⇐⇒ a < b for each a, b ∈ R. Hence for each a ∈ R

U!(a) = U<(a) = (a,+∞] and L!(a) = L<(a) = [∞, a).

(2) Let (L,≤L) be a completely distributive lattice and

L = {a ≡ (a1, a2) ∈ L2 : a1 ≤L a2}

endowed with the componentwise order given by

a ≤L b ⇐⇒ a1 ≤L b1 and a2 ≤L b2 a ≡ (a1, a2), b ≡ (b1, b2) ∈ L.

In this case ⊥L = (⊥L,⊥L) and *L = (*L,*L). Given a, b ∈ L, we have

a !L b ⇐⇒
(
a1 !L b1 and b2 = *L

)
or a2 !L b1.

Consequently, for each a ∈ L we have

U!L(a) =
(
U!L

(a1) × {*L}
)
∪

(
(U!L

(a2) × L) ∩ L
)

and so
∧

U!L(a) =
∧(

U!L
(a1)× {*L}

)
∧

∧(
(U!L

(a2)×L)∩L
)

= (a1,*L)∧ (a2, a2) = a
for each a ∈ L. We conclude that (L,≤L) is a completely distributive lattice. In the
particular case L = R, we have L = Y and one just has for a, b ∈ Y:

a !Y b ⇐⇒
(
a1 < b1 and b2 = +∞

)
or a2 < b1.

Hence U!Y (a) =
(
(a1,+∞] × {+∞}

)
∪

(
(a2,+∞] × R) ∩ Y

)
and

L!Y (a) =

{
(R × [−∞, a1)) ∩ Y, if b2 < +∞

([−∞, a1) × R) ∩ Y, if b2 = +∞

Definition 8. A subset D ⊆ L is called meet-dense if each element a ∈ L there exists
some Da ⊆ D such that a =

∧
Da.

Definition 9. A completely distributive lattice is said to be !-separable if it has a count-
able meet-dense subset.

Examples 10. (1) R is !-separable with D = Q.

(2) Y = {a ∈ R2
: a1 ≤ a2} endowed with the componentwise order is !-separable with

(see Figure 3(1)).

D = D1 ∪ D2 =
(
{a ∈ Y : a1 = a2 ∈ Q}

)
∪

(
{a ∈ Y : a1 ∈ Q and a2 = +∞}

)
.
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Indeed, for each a ∈ Y we have a =
∧

Da where (see Figure 3(2))

Da = {b ∈ Y : b1 = b2 ∈ Q ∩ (a2,+∞)} ∪ {b ∈ Y : b1 ∈ Q ∩ (a1,+∞) and b2 = +∞}.

3.1. Generating lattice-valued functions by scales. Our standing assumption on L
is – as has already been mentioned – the complete distributivity. For X a set, a map f
from X into L and a ∈ L, we standardly write:

[f ≤ a] = {x ∈ X : f(x) ≤ a} and [f ! a] = {x ∈ X : f(x) ! a}.

We recall here in the context of lattice-valued functions what is known about generating
real-valued functions by monotone families of subsets (Stone-Urysohn’s procedure).

Definition 11. Let X be a set, L be a completely distributive lattice, D ⊆ L meet-dense
and F = {Fd ⊆ X : d ∈ D}. F is said to be a !-scale if F is !-increasing, i.e.

Fd1 ⊆ Fd2 whenever d1 ! d2.

We can prove now the following key result:

Proposition 12. Let X be a set and L be a completely distributive lattice. For a meet-
dense D ⊆ L and a family F = {Fd ⊆ X : d ∈ D}. Then the following are equivalent:

(1) F is a !-scale.
(2) There exists a function f : X → L such that for every d ∈ D:

[f ! d] ⊆ Fd ⊆ [f ≤ d].

Remarks 13. (1) Given a !-scale F , the function f : X → L defined by f(x) =
∧
{d ∈ D :

x ∈ Fd} is said to be generated by F .

(2) Given an f : X → L, both {[f ! d] : d ∈ D} and {[f ≤ d] : d ∈ D} are !-scales
that generate the function f . We mainly use the first one, {[f ! d] : d ∈ D}, but it is
important to note here that this is not the only possible choice.

(3) Proposition 12 means that !-scales on X and L-valued functions on X are equivalent
notions; given a !-scale F we have the function f : X → L generated by F and given a
function f : X → L we have the !-scale {[f ! d] : d ∈ D}.

(4) If L is !-separable then we can choose D to be separable and so we conclude that we
can identify L-valued functions on X with countable !-scales on X.

3.2. Lattice-valued semicontinuous functions. Any poset (L,≤) carries three well-
known topologies:

– the upper topology ν(L) having
{
L \ L≤(a) : a ∈ L

}
as a subbase.

– the lower topology ω(L) having
{
L \ U≤(a) : a ∈ L

}
as a subbase.

– the interval topology ν(L) ∨ ω(L).

It is easy to check the following result:
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Proposition 14. Let L be a !-separable completely distributive lattice and D ⊆ L a
meet-dense subset. Then:

(1)
{
L \ L≤(d) : d ∈ D

}
is a subbase of ν(L).

(2)
{
L!(d) : d ∈ D

}
is a subbase of ω(L).

Once again, we are particularly interested in the following:

Examples 15. (1) In the case of the extended real line R with D = Q the previous
proposition just says that

{
(q,+∞] : q ∈ Q

}
(resp.

{
[−∞, q) : q ∈ Q

}
) is a subbase of the

upper (resp. lower) topology. In fact, in this particular case, both families are not only
subbases but also bases. It is important to emphasize here that this is not true in general,
as shown by the following example.

(2) Let Y and D be as in Example 10 (2). By Proposition 14 (1) we have the following
subbase of the upper topology ν(Y) on Y:

{
(Y \ L≤((q, q)) : q ∈ Q

}
∪

{
(Y \ L≤((q,+∞)) : q ∈ Q

}
.

Similarly, by Proposition 14 (2) we have the following subbase of the lower topology ω(Y)
on Y: {

L!(q, q) : q ∈ Q
}
∪

{
L!(q, 1) : q ∈ Q

}
.

Definition 16. Given a topological space (X, τ) and f : X → L we say that:

(1) f is lower semicontinuous iff it is continuous with respect to the upper topology ν(L);
(2) f is upper semicontinuous iff it is continuous with respect to the lower topology ω(L);
(3) f is continuous iff it is continuous with respect to the interval topology.

We have now the following immediate corollary of Proposition 14.

Corollary 17. Let L be a !-separable completely distributive lattice and D ⊆ L a meet-
dense subset. Given a topological space (X, τ) and f : X → L we say that:

(1) f is lower semicontinuous iff [f ≤ d] is closed for all d ∈ D;
(2) f is upper semicontinuous iff [f ! d] is open for all d ∈ D.
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After the equivalence stated in Proposition 12 between !-scales on X and L-valued
functions on X it is natural to ask wether given an L-valued function f : X → L generated
by a !-scale {Fd ⊆ X : d ∈ D} it is possible to characterize the (semi)continuity of f in
terms of the elements of the !-scale.

In this sense, we have now the following result. It is essentially proved in [8].

Theorem 18. For X a topological space, D a meet-dense subset of L, and f : X → L
being generated by the !-scale {Fd ⊆ X : d ∈ D}, the following hold:

(1) f is lower semicontinuous iff Fd1 ⊆ Fd2 whenever d1 ! d2;
(2) f is upper semicontinuous iff Fd1 ⊂ IntFd2 whenever d1 ! d2;
(3) f is continuous iff Fd1 ⊂ IntFd2 whenever d1 ! d2.

4. Continuous representation of interval orders, semiorders and total
preorders by means of scales

Finally, we can use the results in previous sections in order to deal with the (continuous)
representability of all these kinds of binary relations by means of countable increasing
scales.

For the sake of completeness, we shall also include here the statements in the case of
total preorders and interval orders, whose proofs can be found in [3].

Let us start by particularizing the results in the previous section to simplest situation:
the case of the extended real line. This will serve us to obtain the characterizations of
(continuous) representability of both total preorders and semiorders.

Definition 19. Let X be a set. We say that a family F = {Fq ⊆ X}q∈Q is a scale if it is
a !-scale in the sense of Definition 11, i.e. if F is <-increasing, i.e.

Fq1 ⊆ Fq2 whenever q1 < q2.

The function f : X → R defined by

f(x) =
∧
{q ∈ Q x ∈ Fq}

is said to be generated by the scale F .

4.1. Total preorders. We start with the following theorem in the case of total preorders

Theorem 20 ([3], see also . . . ). Let (X, τ) be a topological space and R an total preorder
on X. Then the following are equivalent:

(1) R is continuously representable;
(2) There exists a scale {Fq}q∈Q satisfying for each x, y ∈ X

(a) xPy ⇐⇒ ∃q1 < q2 ∈ Q such that x ∈ Fq1 and y /∈ Fq2 . (representability)
(b) Fq1 ⊆ Int Fq2 whenever q1 < q2 ∈ Q. (continuity)

4.2. Typical semiorders. Since the representability of semiorders is the main originality
of the present paper comparing with [3], we shall include here a more detailed analysis of
the whole situation in this particular case. Note that the corresponding results could be
also stated in the case of total preorders and interval orders.

Theorem 21. Let R an typical semiorder on X. Then the following are equivalent:

(1) R is representable in R;
(2) There exists a scale {Fq}q∈Q satisfying for each x, y ∈ X

(a) xPy ⇐⇒ ∃q ∈ Q such that x ∈ Fq and y /∈ Fq+1. (representability)
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Proof. (1) =⇒ (2): Let f : (X,R) → (R,Rs.o.) be such that xRy ⇐⇒ f(x)Rs.o.f(y) for
each x, y ∈ X. It follows from Remarks 13 (2) that {Fq = [f < q]}q∈Q is a scale.

Given x, y ∈ X we have

xPy ⇐⇒ f(x)Ps.o.f(y)
⇐⇒ f(x) < f(y) − 1
⇐⇒ there exists q ∈ Q with f(x) < q and q + 1 ≤ f(y)
⇐⇒ there exists q ∈ Q with x ∈ Fq and y /∈ Fq+1.

(2) =⇒ (1): Let {Fq}q∈Q be a scale satisfying condition (a). Let f : X → R be the
function generated by the scale, that is, f(x) =

∧
{q ∈ Q : x ∈ Fq} for each x ∈ X.

Let x, y ∈ X. If xPy, then there exists q ∈ Q such that x ∈ Fq and y /∈ Fq+1, then
f(x) ≤ q and y /∈ Fq′ for all q′ ≤ q + 1. Hence f(x) ≤ q < q + 1 ≤ f(y). We conclude
that f(x)Ps.o.f(y). Conversely, if f(x)Ps.o.f(y), one can always find an r ∈ R such that
f(x) < r and r + 1 ≤ f(y). Consequently there exists q ∈ Q such that q < r and x ∈ Fq

and y /∈ Fq+1 "

Following Definition 4 (2), we say that a typical semiorder R on X is lower (resp.
upper) R semicontinuously representable in R if it is representable through an lower (resp.
upper) semicontinuous function u : (X, τ) → (R, τu). Note that in this case the notion of
lower (upper) semicontinuity is the usual notion in the case of real-valued functions.

Theorem 22. Let (X, τ) be a topological space and R a typical semiorder on X. Then
the following are equivalent:

(1) R is lower semicontinuously representable in R;
(2) There exists a scale {Fq}q∈Q satisfying for each x, y ∈ X

(a) xPy ⇐⇒ ∃q ∈ Q such that x ∈ Fq and y /∈ Fq+1. (representability)
(b1) Fq1 ⊆ Fq2 whenever q1 < q2 ∈ Q. (lower semicontinuity)

Proof. It follows immediately from Theorem 21 and Theorem 18 (1). "

Clearly enough we also have the dual result:

Theorem 23. Let (X, τ) be a topological space and R a typical semiorder on X. Then
the following are equivalent:

(1) R is upper semicontinuously representable in R;
(2) There exists a scale {Fq}q∈Q satisfying for each x, y ∈ X

(a) xPy ⇐⇒ ∃q ∈ Q such that x ∈ Fq and y /∈ Fq+1. (representability)
(b2) Fq1 ⊆ IntFq2 whenever q1 < q2 ∈ Q. (upper semicontinuity)

Finally, combining Theorems 22 and 23 we obtain:

Theorem 24. Let (X, τ) be a topological space and R an typical semiorder on X. Then
the following are equivalent:

(1) R is continuously representable in R;
(2) There exists a scale {Fq}q∈Q satisfying for each x, y ∈ X

(a) xPy ⇐⇒ ∃q1 < q2 ∈ Q such that x ∈ Fq and y /∈ Fq+1. (representability)
(b) Fq1 ⊆ IntFq2 whenever q1 < q2 ∈ Q. (continuity)
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4.3. Interval orders. In this case we can proceed as in [3] and introduce the following
definition. (See [3] for a more exhaustive presentation of these results).

Definition 25. Let X be a set. A family F = {F(q,q)}q∈Q ∪ {F(q,1)}q∈Q of subsets of
X is said to be an i.o. scale if it is a !-scale in the sense of Definition 11 i.e. if F is
!-increasing :

F(q1,q1) ⊆ F(q2,q2), F(q1,q1) ⊆ F(q2,1) and F(q1,1) ⊆ F(q2,1) whenever q1 < q2.

The function f : X → L defined by f(x) =
∧
{d ∈ D : x ∈ Fd} is said to be generated by

the i.o. scale F .

Proposition 26. Let {F(q,q)}q∈Q∪{F(q,1)}q∈Q be an i.o. scale on X. Then for each x ∈ X
we have f(x) = (u(x), v(x)) where u(x) =

∧
{q : x ∈ F(q,1)} and v(x) =

∧
{q : x ∈ F(q,q)}.

Theorem 27. Let (X, τ) be a topological space and R an interval order on X. The
following are equivalent:

(1) R is continuously representable through a pair of continuous real-valued functions u
and v with values in [0, 1], where u is a representation for the total preorder R∗∗ and
v is a representation for the total preorder R∗;

(2) There exists an i.o. scale {F(q,q)}q∈Q ∪ {F(q,1)}}q∈Q satisfying for each x, y ∈ X
(a) xPy ⇐⇒ ∃q1 < q2 ∈ Q with x ∈ F(q1,q1) and y /∈ F(q2,1). (representability)
(b) F(q,q) is R∗-decreasing and F(q,1) is R∗∗-decreasing for every q ∈ Q.

(representability for R∗ and R∗∗)
(c) F(q1,q1) ⊆ IntF(q2,q2) and F(q1,1) ⊆ Int F(q2,1) whenever q1 < q2 ∈ Q. (continuity)
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[5] M. J. Campión, J. C. Candeal, E. Induráin, Representability of binary relations through fuzzy numbers,
Fuzzy Sets and Systems 157 (2006), 1–19.
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