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Abstract

Monotone normality is usually defined in the class of T1 spaces. In this work
we extend well-known characterizations of these kind of spaces to the T1-
free context and besides, we generalize such results considering lattice-valued
maps instead of real-valued maps. Among the new T1-free characterizations
of monotonically normal spaces we provide are a Katetov-Tong-type insertion
theorem and Tietze-type extension theorem for lattice-valued functions.

1. Introduction

There has been an extensive literature devoted to monotonically normal spaces (see the
surveys [3, 5] and the references on them) since the notion was introduced in [1, 8, 17].
With the exception of [9], monotone normality has always been studied in the restricted
class of T1 spaces.

The influence of computer science not only has given relevance to those spaces not
satisfying T1 axiom, but also has focussed attention in functions with values in ordered
sets rather than in the reals. Continuous lattices or domains with their Scott topology are
an important class among the spaces which do not satisfy the T1 axiom.

In concordance with those ideas, the present work explores monotone normality in
a T1 free context. Also lattice-valued functions rather than real-valued functions are
considered throughout. The techniques established in [6] will allow us to give lattice-
valued counterparts of some known characterizations of monotonically normal spaces given
in terms of real-valued functions, and all of them will be free of the T1 axiom.

After some lattice theoretic preliminaries, the notion of monotone normality, free of
T1 axiom, is studied. Several characterizations of monotone normality in this context
are provided and some deviation from T1-monotonically normal spaces is exhibited. It
is well known that in the class of normal spaces (either T1 or not), complete normality
and hereditary normality are equivalent concepts as well as the fact that open subsets
inherit the property [16]. As to the class of T1-monotonically normal spaces is concerned,
it has been proved [2, 8, 13] that monotone normality is equivalent to any one of the
following notions: complete monotone normality, hereditary monotone normality, open
subsets inherit the property. The proof of these equivalences depends strongly on the
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axiom T1. It relies upon a new property, also equivalent to monotone normality, which can
be properly called monotone regularity and implies the Hausdorff axiom. The question as
to whether the above equivalences hold in spaces not satisfying the axiom T1 is answered
in negative. The answer is based on a construction of a non T1 monotonically normal
compactification associated to any topological space. It is important to notice that, when
characterizing monotone normality, the role of points will now be played by the closure of
singletons (the minimal closed sets in a non T1-space). This idea is as simple as effective. It
is also used to provide an extension property of lattice-valued functions for monotonically
normal spaces. This extension property is obtained as a consequence of a monotone and
lattice-valued version of the Katětov-Tong’s insertion theorem and Urysohn’s lemma that
we shall also obtain.

This presentation is a summary of the two papers [12, 7] already published by the
authors.

2. Preliminaries

2.1. Lattices. In the sequel L denotes a completely distributive lattice (with bounds 0
and 1). For general concepts regarding lattices and complete distributivity we refer the
reader to [4]. We shall use the Raney’s characterization of complete distributivity in terms
of an extra order ! with the approximation property:

Given a complete lattice L and a, b ∈ L, take the following binary relation: a ! b if and
only if, whenever C ⊆ L and b ≤

∨
C, there exists some c ∈ C with a ≤ c. The lattice L

is said to be completely distributive if and only if a =
∨
{b ∈ L : b ! a} for each a ∈ L. The

previous relation has the following properties: (1) a ! b implies a ≤ b; (2) c ≤ a ! b ≤ d
implies c ! d; (3) a ! b implies a ! c ! b for some c ∈ L (Interpolation Property).

A subset D ⊂ L is called join-dense (or a base) if a =
∨
{d ∈ D : d ≤ a} for each

a ∈ L. An element a ∈ L is called supercompact if a ! a holds. As in [6], any completely
distributive lattice which has a countable join-dense subset free of supercompact elements
will be called !-separable.

2.2. Semicontinuous lattice-valued functions. Given a set X, LX denotes the col-
lection of all functions from X into L ordered pointwisely, i.e., f ≤ g in LX iff f(x) ≤
g(x) in L for each x ∈ X. Given f ∈ LX and a ∈ L, we write [f ≥ a] = {x ∈ X : a ≤ f(x)}
and similarly for [f " a].

Let X be a topological space. A function f ∈ LX is said to be upper (resp. lower)
semicontinuous if [f ≥ a] is closed (resp. [f " a] is open) for each a ∈ L (cf. [6, 11]).

The collections of all upper [lower] semicontinuous functions of LX will be denoted
by USC(X,L) [LSC(X,L)]. Elements of C(X,L) = USC(X,L) ∩ LSC(X,L) are called
continuous.

3. Monotone normality in a T1 free context

Let X be a topological space with topology o(X) and let us denote by κ(X) the family
of closed subsets of X. We shall need the following sets (the notation comes from [2] and
[9]):

DX = {(K,U) ∈ κ(X) × o(X) : K ⊂ U},
SX = {(A,B) ∈ 2X × 2X : A ⊂ B and A ⊂ IntB},

ŜX =
{
(A,B) ∈ 2X × 2X : A ⊂

⋂

y∈X\B
Int(X \ {y}) and

⋃
x∈A

{x} ⊂ IntB
}
.
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All these sets are partially ordered considering the componentwise order.
Note that DX ⊂ ŜX ⊂ SX and besides, SX = ŜX if X is T1.

Definition 1. [8]. A topological space X is called monotonically normal if there exists
and order-preserving function ∆ : DX → o(X) such that

K ⊂ ∆(K,U) ⊂ ∆(K,U) ⊂ U

for any (K,U) ∈ DX . The function ∆ is called a monotone normality operator.

Remark 2. The spaces described in the previous definition were originally assumed to be
T1. However, as in [9], we will not consider the axiom T1 as part of the definition of
monotone normality. A trivial example of a monotonically normal space, not satisfying
T1 axiom, is provided by the reals endowed with the right-order topology (Kolmogorov’s
line). We will show some more relevant examples after Proposition 4.

Let us recall the following characterizations of monotone normality (under condition
T1). The first one was originally called complete monotone normality [17]. The second one
could be properly called monotone regularity. Many of the known results on monotonically
normal spaces rely on these characterizations.

Proposition 3. [2, 8]. Let X be T1. The following statements are equivalent:

(1) X is monotonically normal;
(2) There exists an order-preserving function Σ : SX → o(X) such that

A ⊂ Σ(A,B) ⊂ Σ(A,B) ⊂ B for any (A,B) ∈ SX .
(3) There exists a function H which assigns to each ordered pair (x,U) (with x ∈ U

and U ∈ o(X)) an open set H(x,U) such that:
(a) x ∈ H(x,U) ⊂ U ,
(b) If x ∈ U ⊂ V , then H(x,U) ⊂ H(x, V ),
(c) If x )= y are points of X, then H(x,X \ {y}) ∩H(y,X \ {x}) = ∅.

The proposition below gives the counterpart of Proposition 3 when T1 axiom is not
assumed. We would like to point out that it is the key to extend many known results to
the T1-free context.

Proposition 4. Let X be a topological space. The following are equivalent:

(1) X is monotonically normal;

(2) There exists an order preserving function Σ̂ : ŜX → o(X) such that

A ⊂ Σ̂(A,B) ⊂ Σ̂(A,B) ⊂ B

for any (A,B) ∈ ŜX .
(3) For each point x and open set U containing {x} we can assign an open set H(x,U)

such that:
(a) {x} ⊂ H(x,U) ⊂ U ;
(b) if V is open and {x} ⊂ U ⊂ V , then H(x,U) ⊂ H(x, V );
(c) if {x} ∩ {y} = ∅, then H(x,X \ {y}) ∩H(y,X \ {x}) = ∅.

Remark 5. As it was said in the introduction, under the T1 axiom, monotone normality
and hereditary monotone normality are equivalent axioms (see Proposition 3 in [13], or
Lemma 2.2 in [8] or Theorem 2.4 in [2]). The proof of this result is based on Proposition
3. However, in the absence of the T1 axiom, the equivalence between monotone normality
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and hereditary monotone normality cannot be derived directly from Proposition 4. Even
more, for spaces not satisfying the axiom T1, this equivalence does not hold, as the following
construction shows:

Any topological space has a monotonically normal non T1 compactification. Indeed, for
a topological space (X, τ), let Y be a set such that X ⊂ Y and Y \ X )= ∅. Define on
Y the topology τ! = τ ∪ {Y }. Then, X is an open, dense subspace of the monotonically
normal non T1 compact space Y .

Some other interesting examples of monotonically normal non T1 spaces, come from
the field of quasi-pseudo-metrics (where by a quasi-pseudo-metric we mean a map d :
X ×X → [0,∞) such that d(x, y) = d(y, x) = 0 iff x = y and d(x, z) ≤ d(x, y) + d(y, z)
for any x, y, z ∈ X).

Example 6. Let K > 0 and X = (−∞, 0]∪ [K,+∞). Define the map d : X×X → [0,∞)
as follows:

d(x, y) =






|x− y| if x, y ≤ 0 or x, y ≥ K,

y − x−K if x ≤ 0 and y ≥ K,

x− y if y ≤ 0 and x ≥ K.

The map d defined above is a quasi-pseudo-metric and the collection {Bd(x, ε) : x ∈
X, ε > 0} (where Bd(x, ε) = {y ∈ X : d(x, y) < ε}) forms a base for a topology τd on X.

Clearly the space (X, τd) is not T1 (notice that {0∗} = {0, 0∗}). Even if monotone
normality is not a property easy to manage with, condition (3) of Proposition 4 turns out
to be very effective to prove that the previous space is monotonically normal.

4. Monotone normality and lattice-valued functions

Monotonically normal spaces will now be characterized in terms of insertion and exten-
sion of some kind of lattice-valued functions. Before doing so, we shall need some more
notation. Let us consider the following families:

UL(X,L) = {(f, g) ∈ USC(X,L)× LSC(X,L) : f ≤ g},

SF (X,L) = {(f, g) ∈ LX × LX : f∗ ≤ g and f ≤ g∗},

ŜF (X,L) =
{
(f, g) ∈ LX × LX :

∨

y∈{x}

f∗(y) ≤ g(x) and

f(x) ≤
∧

y∈{x}

g∗(y) for each x ∈ X
}
,

which are partially ordered considering the componentwise order.

Remark 7. (a) UL(X,L) ⊂ ŜF (X,L) ⊂ SF (X,L) and besides, SF (X,L) = ŜF (X,L) if
X is T1.
(b) (A,B) ∈ SX (ŜX) if and only if (1A, 1B) ∈ SF (X,L) (ŜF (X,L)).

The proposition below is a characterization of monotonically normal spaces in terms of
insertion of semicontinuous lattice-valued functions. For the case of real-valued functions,
the equivalence (1) ⇔ (2) in the T1-free context was obtained in [9].
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Proposition 8. Let X be a topological space and L be a completely distributive lattice.
The following are equivalent:

(1) X is monotonically normal;
(2) There exists an order preserving function Γ : UL(X,L) → LSC(X,L) such that

f ≤ Γ(f, g) ≤ Γ(f, g)∗ ≤ g for any (f, g) ∈ UL(X,L).

(3) There exists an order preserving function Θ̂ : ŜF (X,L) → LSC(X,L) such that

f ≤ Θ̂(f, g) ≤ Θ̂(f, g)∗ ≤ g for any (f, g) ∈ ŜF (X,L);

Thanks to the previous proposition, the following equivalent results hold for arbitrary
topological spaces. The first one is a monotone and lattice-valued version of the well known
Katetov-Tong insertion theorem and generalizes a result obtained by Kubiak [9] (see also
Lane and Pan [10]). The second one is a monotone lattice-valued version of Urysohn’s
lemma, which for the case of real-valued function was obtained by Borges [1, 2].

Theorem 9. Let X be a topological space and L be a completely distributive !-separable
lattice. The following statements are equivalent:

(1) X is monotonically normal;
(2) [Monotone Katětov-Tong theorem] There exists an order-preserving function

Λ : UL(X,L) → C(X,L) such that f ≤ Λ(f, g) ≤ g for any (f, g) ∈ UL(X,L);
(3) [Monotone Urysohn’s lemma] There exists an order-preserving function

Ψ : DX → C(X,L) such that Ψ(K,U)(K) = {1} and Ψ(K,U)(X − U) = {0}
for each (K,U) ∈ DX .

As a consequence, we have the following result, which shows that monotonically normal
spaces satisfy the monotone extension property for lattice-valued functions.

Corollary 10. Let X be a topological space and L be a completely distributive !-separable
lattice. If X is monotonically normal, then for every closed subspace A ⊂ X there exists
an order-preserving function Φ : C(A,L) → C(X,L) such that Φ(f)|A = f for all f ∈
C(A,L).

Remark 11. In [8] Heath, Lutzer and Zenor proved the previous extension property for
L = [0, 1] (under T1 axiom). In the same paper they raised the question of whether the
converse was true. It was Van Douwen [15] who proved that, for real-valued functions, the
previous property does not characterize monotone normality. Later, in 1995, Stares [14]
pointed out that the problem for the converse not to hold seemed to be that the above
property does not link continuous functions defined in different closed subspaces. Taking
this fact into account, he gave an additional condition which solved the situation and
obtained an analogue of the Tietze-Urysohn theorem for monotonically normal spaces [14,
Theorem 2.3]. The proof of Stares depends on the axioms T1. Our final result extends to
the T1-free context and generalizes to lattice-valued functions the extension theorem given
by Stares. We include the proof to highlight the importance of Proposition 4.

Theorem 12. Let X be a topological space and L be a completely distributive !-separable
lattice. The following are equivalent:

(1) X is monotonically normal,
(2) For every closed subspace A ⊂ X there exists an order-preserving function ΦA :

C(A,L) → C(X,L) such that ΦA(f)|A = f for all f ∈ C(A,L) and which satisfies
the following two conditions:
(a) If A1 ⊂ A2 are closed subspaces and f1 ∈ C(A1, L), f2 ∈ C(A2, L) are such

that f2|A1 ≥ f1 and f2(x) = 1 for any x ∈ A2 \A1, then ΦA2(f2) ≥ ΦA1(f1).
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(b) If A1 ⊂ A2 are closed subspaces and f1 ∈ C(A1, L), f2 ∈ C(A2, L) are such
that f2|A1 ≤ f1 and f2(x) = 0 for any x ∈ A2 \ A1, then ΦA2(f2) ≤ ΦA1(f1).

Proof. (1) ⇒ (2): For any closed A ⊂ X let ΦA : C(A,L) → C(X,L) be defined by
ΦA(f) = Λ(hf , gf ), where hf , gf : X → L are such that hf = f = gf on A, hf = 0 and
gf = 1 on X\A and Λ the monotone inserter of Theorem 9 (2). If A1 ⊂ A2 are closed
subspaces and f1 ∈ C(A1, L), f2 ∈ C(A2, L) are such that f2|A1 ≥ f1 and f2(x) = 1 for
any x ∈ A2 \ A1, then hf1 ≤ hf2 and gf1 ≤ gf2 so

ΦA1(f1) = Λ(hf1 , gf1) ≤ Λ(hf2 , gf2) = ΦA2(f2)

and hence condition (a) is satisfied. Condition (b) is proved similarly.

(2) ⇒ (1): In order to prove monotone normality we will use (3) of Proposition 4. Let U
be open and x ∈ X such that {x} ⊂ U . We take the closed subspace Ax

U = {x} ∪ (X \U)
and define the maps

fAx
U
, gAx

U
: {x} ∪ (X \ U) → L

as fAx
U

= 1X\U and gAx
U

= 1{x}. Then fAx
U
, gAx

U
∈ C(Ax

U , L) and hence the extensions

ΦAx
U
(fAx

U
),ΦAx

U
(gAx

U
) belong to C(X,L). Let a ∈ L \ {0} be such that 0 ! a ! 1 and

define
H(x,U) = (X \ [ΦAx

U
(fAx

U
) ≥ a]) ∩ [ΦAx

U
(gAx

U
) " a].

Then, clearly H(x,U) is open and {x} ⊂ H(x,U) ⊂ U . Now, if V is open and {x} ⊂ U ⊂
V , by property (a) it easy to prove that [ΦAx

V
(fAx

V
) ≥ a] ⊂ [ΦAx

U
(fAx

U
) ≥ a] and property

(b) yields the inclusion [ΦAx
U
(gAx

U
) " a] ⊂ [ΦAx

V
(gAx

V
) " a] so

H(x,U) ⊂ H(x, V ).

Moreover, if x, y ∈ X are such that {x} ∩ {y} = ∅, one easily checks that

H(x,X \ {y}) ∩H(y,X \ {x}) = ∅.
By Proposition 4 the space is monotonically normal. #
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