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Apdo. 644, 48080, Bilbao, Spain (javier.gutierrezgarcia@lg.ehu.es)
b Matematyki i Informatyki, Uniwersytet im. Adama Mickiewicza,

ul. Umultowska 87, 61-614 Poznań, Poland, (tkubiak@amu.edu.pl)
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Abstract

In the pointfree topological context of locales and frames, real functions on a
locale L are represented as localic morphisms S(L)→ L(R) (i.e. frame homo-
morphisms L(R) → S(L)) where S(L) stands for the frame of all sublocales
of L and L(R) denotes the frame of reals. This is reminiscent of dealing with
(not necessarily continuous) real functions X → R as with continuous func-
tions D(X)→ R where D(X) is the discrete space on the underlying set of X.
But it is deeper: the structure of S(L) is rich enough to provide a nice com-
mon framework for the three types of continuity (lower semicontinuity, upper
semicontinuity and continuity) as well as general (not necessarily continuous)
real functions. The aim of this expository note is to provide a short overview
of the theory of pointfree real functions and the strength of its applications.

1. Introduction

Given a topological space (X,OX), the lattice OX of open sets is complete since any
union of open sets is an open set; of course the infinite distribution law

A ∧
∨
i∈I

Bi =
∨
i∈I

(A ∧Bi)

holds in OX since the operations ∧ (being a finite meet) and
∨

coincide with the usual
set-theoretical operations of ∩ (intersection) and

⋃
(union), respectively. Moreover, if

f : (X,OX) → (Y,OY ) is a continuous map, f−1 defines a map of OY into OX that
clearly preserves the operations ∧ and

∨
. Therefore, defining a frame as a complete

lattice L satisfying the infinite distribution law

a ∧
∨
i∈I

bi =
∨
i∈I

(a ∧ bi),

and defining a frame homomorphism h : L → M as a map from L in M such that
h(
∧
i∈F ai) =

∧
i∈F h(ai) for every finite F (in particular, for F = ∅, h(1) = 1) and

h(
∨
i∈I ai) =

∨
i∈I h(ai) for every I (in particular, for I = ∅, h(0) = 0), we have the

category Frm of frames and frame homomorphisms and a contravariant functor O : Top→
Frm defined by (X,OX) 7→ OX and (f : (X,OX)→ (Y,OY )) 7→ (f−1 : OY → OX).

1The authors are grateful for the financial assistance of the Centre for Mathematics of the University of
Coimbra (CMUC/FCT), grant GIU07/27 of the University of the Basque Country and grant MTM2009-
12872-C02-02 of the Ministry of Science and Innovation of Spain.
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Because of contravariance, to keep the original geometrical motivation it is necessary
to introduce the dual category Frmop, making functor O covariant. This is the genesis
of the category Loc of locales and localic maps: it is precisely the category Frmop. So, a
locale is the same thing as a frame, but morphisms diverge: localic morphisms are defined
abstractly, as morphisms of frames acting in the opposite direction.

The category of locales is a category set up to behave like the familiar one of topological
spaces. One speaks about sublocales and, in particular, of closed, open and dense sublocales.
One speaks about continuous maps between locales and, in particular, of proper and open
maps. One speaks about compact locales and, analogously, many other separation axioms
have their versions in locales: e.g, one speaks of compact Hausdorff locales, regular locales,
normal locales, etc. But there is an important new aspect: the dual category of Loc (that
is, the category Frm of frames) is an algebraic category, with all the nice properties and
tools available in any category of algebras ([15]).

This analogy between the theory of locales and the theory of topological spaces is
not quite exact; otherwise, the two theories would be indistinguishable and locale theory
would be redundant. What exists is a translating device between the two theories: each
topological space X defines naturally a locale O(X) (specifically, its topology). And
given a locale L there exists a topological space Σ(L) naturally associated to L. More
precisely, there is a categorical adjunction between the category Top of topological spaces
and continuous maps and the category Loc of locales, defined by the open-sets functor
O : Top→ Loc and the spectrum functor Σ : Loc→ Top (see [15] or [24] for details).

Each frame L has associated with it the well-known ring C(L) = Frm(L(R), L) of its
continuous real functions ([1]). This is a commutative archimedean (strong) f -ring with
unit. Since the spectrum Σ(L(R)) of the frame of reals is homeomorphic to the usual
space of reals, by the adjunction

Top
O //

Loc
Σ

oo

mentioned above there is a bijection

Top(X,R) ' Loc(OX,L(R)) = Frm(L(R),OX). (1)

Thus the classical ring C(X) ([7]) is naturally isomorphic to C(OX) and the correspon-
dence L C(L) for frames extends that for spaces.

Now, replace the space X in (1) by a discrete space D(X). We get

RX ' Top(D(X),R)) ' Frm(L(R),D(X)).

For any L in the category Frm, the role of the lattice D(X) of all subspaces of X is
taken by the lattice S(L) of all sublocales of L, which justifies to think of the members of
Frm(L(R),S(L)) = C(S(L)) as arbitrary not necessarily continuous real functions on the
frame L ([11]). The real functions on a frame L are thus the continuous real functions on
the sublocale lattice of L and therefore, from the results of [1], constitute a commutative
archimedean (strong) f -ring with unit that we denote by F (L). It is partially ordered by

f ≤ g ≡ f(r,—) ≤ g(r,—) for all r ∈ Q
⇔ g(—, r) ≤ f(—, r) for all r ∈ Q.

Since any L is isomorphic to the subframe cL of S(L) of all closed sublocales, the ring C(L)
may be equivalently viewed as the subring of F (L) of all real functions f : L(R) → S(L)
for which f(p, q) is a closed sublocale for every p, q (i.e. f(L(R)) ⊆ cL). So our ring F (L)
embodies the ring C(L) in a nice way. We shall refer to these f ∈ C(L) (indistinctly
regarded as elements of F (L) or as elements of Frm(L(R), L)) as the continuous real
functions on L and will use the same notation C(L) for denoting both classes.
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Besides continuity, F (L) allows also to distinguish the two types of semicontinuity: f ∈
F (L) is lower semicontinuous if f(p,—) is always closed, and f is upper semicontinuous if
f(—, q) is always closed. We shall denote by LSC(L) and USC(L) the classes of lower and
upper semicontinuous functions respectively. Hence, the ring F (L) provides an appropriate
level of generality for C(L), LSC(L) and USC(L) and

lower semicontinuous + upper semicontinuous = continuous.

The first right approach to semicontinuity in pointfree topology was presented in [12].
The approach here considered, succinctly described above, has wider scope and was intro-
duced recently in [11] (see also [13]).

2. Preliminaries: the lattice of sublocales and the frame of reals

For general information on frames and locales the reader is referred to [15], [24] or [25].
One of the fundamental differences between Top and Loc relies on their lattices of

subobjects. In fact, sublocale lattices are much more complicated than their topological
counterparts (complete atomic Boolean algebras): they are in general co-frames (i.e.,
complete lattices satisfying the distribution law S ∨

∧
i∈I Ti =

∧
i∈I(S ∨ Ti), dual to the

distribution law that characterizes frames). Even the sublocale lattice of a topology OX
can be much larger than the Boolean algebra of the subspaces of X; e.g., Q considered as a
subspace of R (with the usual euclidean topology) has 2c many non-isomorphic sublocales.

Let L be a locale. The sublocales j : M � L of L, that is, the regular monomorphisms
in Loc with codomain L (or still, the quotients or surjective frame homomorphisms L�M
with domain L) can be described in several equivalent ways (cf. [25] or [24]). Here we
shall use the approach of [24]: a subset S of L is a sublocale of L if:

(1) For each A ⊆ S,
∧
A ∈ S.

(2) For any a ∈ L and s ∈ S, a→ s ∈ S.

Since any intersection of sublocales is a sublocale, the set of all sublocales of L is a
complete lattice. This is a co-frame, in which

∧
i∈I Si =

⋂
i∈I Si,

∨
i∈I Si = {

∧
A | A ⊆⋃

i∈I Si}, 0 = {1} and 1 = L. It will be convenient to work with the corresponding dual
lattice, hence a frame, that we shall denote by S(L).

Each sublocale S is itself a frame with
∧

and → as in L (the top of S coincides with
the one of L but the bottom 0S may differ from the one of L).

In spite of S(L) not being in general a Boolean algebra, it contains many complemented
elements. For example, for each a ∈ L, the sets

c(a) := ↑a = {b ∈ L | a ≤ b} and o(a) := {a→ b | b ∈ L}

define sublocales of L, complemented to each other, i.e. c(a)∨o(a) = 1 and c(a)∧o(a) = 0.
The former are the so-called closed sublocales, while the latter are the open sublocales.

Here is a list of some of the most significative properties of S(L) ([24, 25]):

(S1) cL := {c(a) | a ∈ L} is a subframe of S(L) isomorphic to L; the isomorphism
c : L → cL is given by a 7→ c(a). In particular, c(

∨
i∈I ai) =

∨
i∈I c(ai) and

c(a ∧ b) = c(a) ∧ c(b).
(S2) Let oL denote the subframe of S(L) generated by {o(a) | a ∈ L}. The map

L → oL defined by a 7→ o(a) is a dual lattice embedding. In particular, we have
o(
∨
i∈I ai) =

∧
i∈I o(ai) and o(a ∧ b) = o(a) ∨ o(b).

(S3) c(a) ≤ o(b) iff a ∧ b = 0, and o(a) ≤ c(b) iff a ∨ b = 1.
(S4) The closure S :=

∨
{c(a) | c(a) ≤ S} and the interior S◦ :=

∧
{o(a) | S ≤

o(a)} of a sublocale S satisfy the following properties, where (·)∗ stands for the

pseudocomplementation operator: c(a)◦ = o(a∗), o(a) = c(a∗), (S∗)∗ = S◦.
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Since Frm is an algebraic category, we have at our disposal the familiar procedure from
traditional algebra of presentation of objects by generators and relations ([15, 1]). The
frame of reals ([1]) is the frame L(R) generated by ordered pairs (p, q), with p, q ∈ Q, and
relations

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s),
(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s,
(R3) (p, q) =

∨
p<r<s<q(r, s),

(R4)
∨
p,q∈Q(p, q) = 1.

Notice that a map from the generating set of L(R) into L defines a frame homomorphism
L(R)→ L if and only if it transforms relations (R1)–(R4) of L(R) into identities in L.

Let (p,—) =
∨
q∈Q(p, q) and (—, q) =

∨
p∈Q(p, q). With (p,—) and (—, q) taken as the

primitive notions, L(R) may be equivalently defined ([21]) as the frame generated by
elements (p,—) and (—, q), with p, q ∈ Q, and relations

(R′1) (p,—) ∧ (—, q) = 0 whenever p ≥ q,
(R′2) (p,—) ∨ (—, q) = 1 whenever p < q,
(R′3) (p,—) =

∨
r>p(r,—),

(R′4) (—, q) =
∨
s<q(—, s),

(R′5)
∨
p∈Q(p,—) = 1,

(R′6)
∨
q∈Q(—, q) = 1.

3. Constructing real functions: scales

In order to define a real function f ∈ F (L) it suffices to consider two maps from Q to
S(L) that turn the defining relations (R′1)–(R′6) above into identities in S(L).

This can be easily done with scales ([8]; trails in [1]): here by a scale in S(L) is meant
a family (Sp)p∈Q of sublocales of L satisfying (1) Sp ∨ Sq∗ = 1 whenever p < q, and (2)∨
p∈Q Sp = 1 =

∨
p∈Q Sp

∗.

The following lemma, essentially proved in [10], plays a key role.

Lemma 1. For each scale (Sr)r∈Q the formulas

f(p,—) =
∨
r>p

Sr and f(—, q) =
∨
r<q

Sr
∗, p, q ∈ Q

determine an f ∈ F (L). Moreover, if every Sr is closed (resp. open, resp. clopen) then
f ∈ LSC(L) (resp. f ∈ USC(L), resp. f ∈ C(L)). �

Let us mention two basic examples of real functions.

Example 2 (Constant functions). For each r ∈ Q, the family (Srt )t∈Q defined by Srt = 1
if t < r and Srt = 0 if t ≥ r is a scale. The corresponding function in C(L) provided by
Lemma 1 is given for each p, q ∈ Q by

r(p,—) =

{
1 if p < r

0 if p ≥ r
and r(—, q) =

{
0 if q ≤ r
1 if q > r.

Example 3 (Characteristic functions). Let S be a complemented sublocale of L with
complement ¬S. Then (Sr)r∈Q defined by Sr = 1 if r < 0, Sr = ¬S if 0 ≤ r < 1 and
Sr = 0 if r ≥ 1, is a scale. We denote the corresponding real function in F (L) by χS and
refer to it as the characteristic function of S. It is defined for each p, q ∈ Q by

χS(p,—) =


1 if p < 0

¬S if 0 ≤ p < 1

0 if p ≥ 1

and χS(—, q) =


0 if q ≤ 0

S if 0 < q ≤ 1

1 if q > 1.
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4. The algebraic structure of F (L)

For any frame L, the algebra C(L) of continuous real functions on L has as its elements
the frame homomorphisms f : L(R) → L (or, equivalently, as already pointed out, the
frame homomorphisms f : L(R)→ S(L) for which f(p, q) is closed for any p, q ∈ Q). The
operations are determined by the operations of Q as lattice-ordered ring as follows (see [1]
for more details):

(1) For � = +, ·,∧,∨, (f �g)(p, q) is given by
∨
{f(r, s)∧g(t, u) | 〈r, s〉�〈t, u〉 ⊆ 〈p, q〉},

where 〈·, ·〉 stands for open interval in Q and the inclusion on the right means that
x � y ∈ 〈p, q〉 whenever x ∈ 〈r, s〉 and y ∈ 〈t, u〉.

(2) (−f)(p, q) = f(−q,−p).
(3) For all λ > 0 in Q, (λ · f)(p, q) = f( pλ ,

q
λ).

Indeed, these stipulations define maps from Q×Q to L and turn the defining relations
(R1)–(R4) of L(R) into identities in L and consequently determine frame homomorphisms
L(R)→ L (the result that C(L) is an f -ring follows then from the fact that any identity in
these operations which is satisfied by Q also holds in C(L)). In particular, F (L) = C(S(L))
is an f -ring. In the sequel we present alternative formulas for its operations, picked from
[13], which were obtained with the help of scales and Lemma 1.

Given f, g ∈ F (L), (f(p,—) ∨ g(p,—))p∈Q and (f(p,—) ∧ g(p,—))p∈Q are scales that
generate respectively the supremum f∨g ∈ F (L) and the infimum f∧g ∈ F (L). Therefore
(f ∨ g)(p,—) =

∨
r>p

(
f(r,—)∨g(r,—)

)
= f(p,—)∨g(p,—), (f ∨ g)(—, q) =

∨
r<q

(
f(r,—)∨

g(r,—)
)∗

= f(—, q)∧ g(—, q), (f ∧ g)(p,—) = f(p,—)∧ g(p,—) and, finally, (f ∧ g)(—, q) =
f(—, q) ∨ g(—, q). In summary, we have:

Proposition 4. The poset F (L) has binary joins and meets; LSC(L), USC(L) and C(L)
are closed under these joins and meets. �

Now for each p ∈ Q define Sf+g
p =

∨
r∈Q
(
f(r,—) ∧ g(p− r,—)

)
. The family (Sf+g

p )p∈Q
is a scale that determines the sum f + g ∈ F (L) of f and g. It is not hard to see
that (f + g)(p,—) =

∨
r∈Q
(
f(r,—) ∧ g(p − r,—)

)
for every p ∈ Q and (f + g)(—, q) =∨

s∈Q
(
f(—, s) ∧ g(—, q − s)

)
for every q ∈ Q. Hence we have:

Proposition 5. Let f, g ∈ F (L). If f, g ∈ LSC(L) (resp. USC(L), resp. C(L)) then
f + g ∈ LSC(L) (resp. USC(L), resp. C(L)). �

Given f, g ∈ F (L), with f − g = f + (−g) we also have:

Proposition 6. Let f, g ∈ F (L). Then:

(i) (f − g)(p,—) =
∨
r∈Q f(r,—) ∧ g(—, r − p) for every p ∈ Q.

(ii) (f − g)(—, q) =
∨
s∈Q f(—, s) ∧ g(s− q,—) for every q ∈ Q.

(iii) If f ∈ LSC(L) (resp. USC(L), resp. C(L)) and g ∈ USC(L) (resp. LSC(L), resp.
C(L)) then f − g ∈ LSC(L) (resp. USC(L), resp. C(L)). �

Finally, with respect to the product f · g, for the case f, g ≥ 0 we have that, defining,

for each p ∈ Q, Sf ·gp =
∨
r>0

(
f(r,—) ∧ g(pr ,—)

)
if p ≥ 0 and Sf ·gp = 1 otherwise, then

(Sf ·gp )p∈Q is a scale generating f · g. Therefore

(f · g)(p,—) =


∨
r>0

(
f(r,—) ∧ g(pr ,—)

)
if p ≥ 0

1 if p < 0

and

(f · g)(—, q) =


∨
s>0

(
f(—, s) ∧ g(—, qs)

)
if q > 0

0 if q ≤ 0.
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Proposition 7. Both LSC(L) and USC(L) are closed under products of non-negative
elements (and so does C(L)).

In order to extend this result to the product of two arbitrary f and g in F (L) let
f+ = f ∨0 and f− = (−f)∨0. Notice that f = f+−f−. Since C(S(L)) is an `-ring, from
general properties of `-rings we have that f ·g =

(
f+ ·g+)−(f+ ·g−)−(f− ·g+)+(f− ·g−).

In particular, if f, g ≤ 0, then f · g = f− · g− = (−f) · (−g). Hence:

Proposition 8. C(L) is closed under products. If f, g ≤ 0 and f, g ∈ LSC(L) (resp.
USC(L)) then f · g ∈ USC(L) (resp. LSC(L)). �

5. Upper and lower regularizations

A fact from the theory of real functions asserts that every real function f : X → R on a
topological space X admits the so-called lower semicontinuous regularization f∗ : X → R,
given by the lower limit of f :

f∗(x) := lim inf
y→x

f(y) =
∨
{
∧
f(U) | x ∈ U ∈ OX}.

This is the largest lower semicontinuous minorant of f : f∗ =
∨
{g ∈ LSC(X,R) | g ≤ f}.

For each p ∈ Q we have

f−1
∗ (]p,+∞[) =

⋃
r>p

(f−1([r,+∞[))◦ = X \
⋂
r>p

f−1(]−∞, r[),

which means that the lower regularization f∗ takes values in R if and only if it has a
lower semicontinuous minorant; equivalently, if and only if

⋃
r∈Q f

−1
∗ (]r,+∞[) = X, that

is,
⋂
r∈Q f

−1(]−∞, r[) = ∅.
In the pointfree context, since we know already how to deal with generic real functions,

the construction of the corresponding lower and upper regularizations can be performed
in a surprisingly easy way ([9]) which we describe in the sequel.

Let f ∈ F (L). The family
(
f(r,—)

)
r∈Q is a scale so, by Lemma 1, formulas

f◦(p,—) =
∨
r>p

f(r,—) and f◦(—, q) =
∨
s<q
¬ f(s,—)

determine an f◦ ∈ LSC(L), called the lower regularization of f . It satisfies, among others,
the following properties ([9, 11]):

Proposition 9. Let f, g ∈ F (L). Then f◦ ≤ f , (f∧g)◦ = f◦∧g◦ and f◦◦ = f◦. Moreover,
f◦ =

∨
{g ∈ LSC(L) | g ≤ f} and LSC(L) = {f ∈ F (L) | f = f◦}. �

Analogously, we can define the upper regularization of f ∈ F (L) by

f−(—, q) =
∨
s<q

f(—, s) and f−(p,—) =
∨
r>p
¬ f(—, r).

Thus f− = (−f)◦ which with Proposition 9 yields the following:

Proposition 10. Let f, g ∈ F (L). Then f− ∈ USC(L), f ≤ f−, (f ∨ g)− = f− ∨ g−,
f−− = f−, f− =

∧
{g ∈ USC(L) | f ≤ g} and USC(L) = {f ∈ F (L) | f = f−}. �

6. Insertion-type results

Our aim now is to give evidence of the scope and usefulness of the ring F (L) with a short
review of its main applications to insertion-type results in normal or extremally discon-
nected frames. Their classical (particular) versions about the existence of continuous real
functions in normal spaces or extremally disconnected spaces rank among the fundamental
results of point-set topology and can be classified in three types: separation theorems (like
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Urysohn’s Lemma), extension theorems (like Tietze’s Theorem), and insertion theorems
(like Katětov-Tong Theorem). The latter are the most important since they imply the
former two as corollaries.

We begin by the pointfree extension of Katětov-Tong insertion theorem which holds for
normal frames, that is, frames in which, whenever a ∨ b = 1, there exists u ∈ L such that
a ∨ u = 1 = b ∨ u∗. It is not difficult to show that a frame L is normal if and only if

for any countable A,B ⊆ L satisfying a∨
∧
B = 1 = b∨

∧
A for all a ∈ A

and b ∈ B, there exists u ∈ L such that a ∨ u = 1 = b ∨ u∗ for all a ∈ A
and b ∈ B ([23]).

Based on this characterization it is then possible to show the Katětov-Tong Theorem:

Theorem 11 (Insertion: Katětov-Tong; [12]). For a frame L, the following are equiv-
alent:

(i) L is normal.
(ii) For every f ∈ USC(L) and g ∈ LSC(L) satisfying f ≤ g, there exists h ∈ C(L) such

that f ≤ h ≤ g. �

Other insertion theorems were meanwhile obtained for other classes of frames ([5, 8,
9, 10, 13]). The following one is, in some sense, a dual version of the previous theorem;
equivalence (i)⇔(v) generalizes Corollary 4 of [20] and all the others extend results of
Kubiak-de Prada Vicente ([19]). Recall that a frame L is extremally disconnected if a∗ ∨
a∗∗ = 1 for every a ∈ L. These frames are precisely those in which the second De Morgan
law (

∧
i∈I ai)

∗ =
∨
i∈I a

∗
i holds (this is the reason why they are also referred to as De

Morgan frames).

Theorem 12 (Insertion: Lane, Kubiak-de Prada Vicente; [9]). For a frame L, the
following are equivalent:

(i) L is extremally disconnected.
(ii) C(L) = {f◦ | f ∈ USC(L) and f◦ ∈ LSC(L)}.

(iii) C(L) = {g− | g ∈ LSC(L) and g− ∈ USC(L)}.
(iv) For every f ∈ USC(L) and g ∈ LSC(L), if g ≤ f then g− ≤ f◦.
(v) For every f ∈ USC(L) and g ∈ LSC(L) satisfying g ≤ f , there exists h ∈ C(L) such

that g ≤ h ≤ f . �

Our next result is the monotone version of Katětov-Tong Theorem and generalizes the
(monotone insertion) theorem of Kubiak in [18]. First note that the definition of normality
may be rephrased in the following way: let DL = {(a, b) ∈ L × L | a ∨ b = 1}; a frame
L is normal if and only if there exists a map ∆ : DL → L satisfying a ∨ ∆(a, b) = 1 =
b ∨∆(a, b)∗. Equipping DL with the partial order (≤op,≤) inherited from Lop × L, L is
called monotonically normal in case it is normal and ∆ is monotone ([8]). Let UL(L) =
{(f, g) ∈ USC(L) × LSC(L) | f ≤ g} be partially ordered by the order inherited from
F (L)op × F (L), i.e., (f1, g1) ≤ (f2, g2) ≡ f2 ≤ f1 and g1 ≤ g2. Then:

Theorem 13 (Monotone insertion: Kubiak; [8]). For a frame L, the following are
equivalent:

(i) L is monotonically normal.
(ii) There is a monotone map ∆ : UL(L) → C(L) such that f ≤ ∆(f, g) ≤ g for every

(f, g) ∈ UL(L). �

Now let f, g ∈ F (L) and define ι(f, g) =
∨
p∈Q
(
f(—, p) ∧ g(p,—)

)
∈ S(L). One writes

f < g whenever ι(f, g) = 1. Note that the relation < is indeed stronger than ≤.
The next insertion theorem in our list is the pointfree version of the (insertion) theorem

of Dowker ([3]) for countably paracompact spaces. More generally, a frame L is said to be
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countably paracompact ([4]) if every countable non-decreasing cover (aj)j∈J is shrinkable
(i.e., there is a cover (bj)j∈J such that b∗j ∨ aj = 1 for all j ∈ J).

Theorem 14 (Strict insertion: Dowker; [10, 13]). For a frame L, the following are
equivalent:

(i) L is normal and countably paracompact.
(ii) For every f ∈ USC(L) and g ∈ LSC(L) satisfying f < g, there exists h ∈ C(L) such

that f < h < g. �

The last two insertion results that we list here are the pointfree extensions of respec-
tively the insertion theorem of Michael for perfectly normal spaces ([22]) and the insertion
theorem of Kubiak for completely normal spaces ([17]). We recall from [10] that a frame
L is perfectly normal if, for each a ∈ L, there exists a countable subset B ⊆ L such that
a =

∨
B and b∗∨a = 1 for every b ∈ B; a frame L is completely normal if for each a, b ∈ L

there exist u, v ∈ L such that u ∧ v = 0, b ≤ a ∨ u and a ≤ b ∨ v ([5]).

Theorem 15 (Bounded insertion: Michael; [10, 13]). For a frame L, the following
are equivalent:

(i) L is perfectly normal.
(ii) For every f ∈ USC(L) and g ∈ LSC(L) satisfying f ≤ g, there exists h ∈ C(L) such

that f ≤ h ≤ g and ι(f, h) = ι(h, g) = ι(f, g). �

Theorem 16 (General insertion: Kubiak; [5]). For a frame L, the following are
equivalent:

(i) L is completely normal.
(ii) For every f, g ∈ F (L) satisfying f− ≤ g and f ≤ g◦, there exists h ∈ LSC(L) such

that f ≤ h ≤ h− ≤ g. �

It is worth mentioning that all the preceding theorems, when applied to L = OX (for
the specific type of space X in question), yield the corresponding classical result. We
illustrate this here with Katětov-Tong insertion: applying Theorem 11 to the topology
OX of a normal space X, the implication “(i)⇒ (ii)” provides the non-trivial implication
of the classical Katětov-Tong Theorem ([16, 27]) as we describe next.

Let f : X → R be an upper semicontinuous function and g : X → R a lower semicon-
tinuous one such that f ≤ g. The families (c(f−1(]−∞, q[))q∈Q and (c(p−1(]p,+∞[))p∈Q
are scales in S(OX). Then, by Lemma 1, the formulas

f̃(—, q) = c(f−1(]−∞, q[)), f̃(p,—) =
∨
r>p o(f−1(]−∞, r[)),

g̃(p,—) = c(g−1(]p,+∞[)), g̃(—, q) =
∨
s<q o(g−1(]s,+∞[)),

establish functions f̃ , g̃ : L(R) → S(OX) with f̃ ∈ USC(OX) and g̃ ∈ LSC(OX). The

condition f ≤ g implies f−1(] − ∞, q[) ⊇ g−1(] − ∞, q[) for every q ∈ Q, thus f̃ ≤ g̃.

Consider h̃ ∈ C(OX) provided by Theorem 11, and the corresponding continuous map

h : X → R defined by h(x) ∈]p, q[ iff x ∈ c−1
(
h̃(p, q)

)
. It is then clear that f ≤ h ≤ g.

For a more detailed discussion of the preceding results and more examples of results in
this vein consult [5, 8, 11, 13].

Remark 17. For a unified presentation of insertion-type results regarding normal and ex-
tremally disconnected objects in the categories of topological spaces, bitopological spaces,
ordered topological spaces and locales see [6].
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7. Separation-type corollaries

Let L be a normal frame and consider a, b ∈ L satisfying a ∨ b = 1. By property (S3)
of Section 2, o(a) ≤ c(b). Therefore, χc(b) ≤ χo(a). Consequently, applying Theorem 11

we obtain a continuous h̃ : L(R) → S(L) such that χc(b) ≤ h̃ ≤ χo(a). Consider then the

h : L(R)→ L given by h = c−1◦h̃. Observing that χc(b) ≤ h̃ iff h(—, 0) = 0 and h(—, 1) ≤ b
and that, on the other hand, h̃ ≤ χo(a) iff h(0,—) ≤ a and h(1,—) = 0, we get immediately
the non-trivial implication of the following:

Corollary 18 (Separation: Urysohn; [11]). A frame L is normal if and only if, for
every a, b ∈ L satisfying a∨b = 1, there exists h : L(R)→ L such that h((—, 0)∨(1,—)) = 0,
h(0,—) ≤ a and h(—, 1) ≤ b. �

The statement of Corollary 18 is precisely the statement of the (separation) lemma of
Urysohn for frames (cf. [1], Prop. 5), that extends the famous Urysohn’s Lemma of point-
set topology. From Theorem 12 we can arrive, in a similar way, at the frame extension
of the (separation) lemma for extremally disconnected spaces in Gillman and Jerison ([7,
1.H]):

Corollary 19 (Separation: Gillman and Jerison; [9]). A frame L is extremally
disconnected if and only if, for every a, b ∈ L satisfying a∧b = 0, there exists h : L(R)→ L
such that h((—, 0) ∨ (1,—)) = 0, h(0,—) ≤ a∗ and h(—, 1) ≤ b∗. �

If we do a similar thing with Theorem 15 we arrive to the pointfree extension of a
separation result due to Vedenissoff ([28]):

Corollary 20 (Bounded separation: Vedenissoff; [10]). A frame L is perfectly normal
if and only if, for every a, b ∈ L satisfying a ∨ b = 1, there exists h : L(R)→ L such that
h((—, 0) ∨ (1,—)) = 0, h(0,—) = a and h(—, 1) = b. �

8. Extension-type corollaries

We conclude our journey through pointfree real functions with the question: when is it
possible to extend a continuous functions from a sublocale of L to all of L?

For any sublocale S of L, let cS : L� S denote the corresponding frame quotient, given

by cS(x) =
∧
{s ∈ S | x ≤ s}. A continuous h̃ ∈ C(L) is said to be a continuous extension

of h ∈ C(S) whenever cS ◦ c ◦ h̃ = c ◦ h ([11]).
As outlined in [23], from Theorem 11 it also follows the well-known (extension) Theorem

of Tietze for frames:

Corollary 21 (Extension: Tietze; [21, 23]). For a frame L, the following are equivalent:

(i) L is normal.
(ii) For any closed sublocale S of L and any h ∈ C(S), there exists a continuous extension

h̃ ∈ C(L) of h. �

Dually, from Theorem 12 it readily follows:

Corollary 22 (Extension: Gillman and Jerison; [9]). For a frame L, the following
are equivalent:

(i) L is extremally disconnected.
(ii) For any open sublocale S of L and any h ∈ C(S), there exists a continuous extension

h̃ ∈ C(L) of h. �

A similar characterization holds for perfectly normal frames, in terms of the rings C∗(L)
and C∗(S) of bounded functions (of course, an f ∈ F (L) is bounded in case 0 ≤ f ≤ 1):
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Corollary 23 (Bounded extension; [10]). For a frame L, the following are equivalent:

(i) L is perfectly normal.
(ii) For every closed sublocale S of L and any h ∈ C∗(S), there exists a continuous

extension h̃ ∈ C∗(L) of h such that h̃(0, 1) ≥ S. �

Remark 24. Replacing the frame L(R) of reals by the frame L
(
R
)

of extended reals (defined
by dropping conditions (R′5) and (R′6) in Section 2) we are able to deal with rings of
extended real functions. This is the object of study of the ongoing research project [2].
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[8] J. Gutiérrez Garćıa, T. Kubiak and J. Picado, Monotone insertion and monotone extension of frame

homomorphisms, J. Pure Appl. Algebra 212 (2008) 955–968.
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