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Abstract

There are different approaches in the literature to the study of (continuous)
real functions in terms of scales.
Our first purpose with this survey-type paper is to provide motivation for the
study of scales as a kind of generalization of the notion of Dedekind cut.
Secondly, we make explicit the well-known relationship between real functions
and scales and we show how one can deal with the algebraic and lattice oper-
ations of the ring of real functions purely in terms of scales.
Finally we consider two particular situations: (1) if the domain is endowed
with a topology we characterize the scales that generate upper and lower
semicontinuous and also continuous functions and/or (2) if the domain is en-
riched with a partial order we characterize the scales that generate functions
preserving the partial order and the order embeddings.

1. Introduction

Let us denote by C(X,OX) the ring of continuous real functions on a topological space
(X,OX)2 and by F (X) the collection of all real functions on X.

We would like to start by discussing the following question:

Question. What is more general, the study of the rings C(X,OX) or that of the rings
F (X)?

A first obvious answer immediately comes to our mind:

• For a given topological space (X,OX), the family F (X) is much bigger than
C(X,OX). Hence the study of the rings of real functions is more general than the
study of the rings of continuous real functions.

But looking at this question from a different perspective we could argue as follows:

1The authors are grateful for the financial assistance of the Centre for Mathematics of the University of
Coimbra (CMUC/FCT), grant GIU07/27 of the University of the Basque Country and grant MTM2009-
12872-C02-02 of the Ministry of Science and Innovation of Spain

2If there is no need to specify the topology OX on X, we will simply write C(X), as usual.
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• For each set X we have that F (X) = C(X,D(X)) (where D(X) denotes the
discrete topology on X), i.e. the real functions on X are precisely the continuous
real functions on (X,D(X)). Hence the study of all F (X) is the study of all
C(X,OX) for discrete topological spaces, a particular case of the study of all
C(X,OX).

We can conclude then that the study of all rings of the form C(X,OX) (see [8]) is
equivalent to the study of all rings of the form F (X). However, for a fixed topological
space (X,OX), the study of F (X) is clearly more general than that of C(X,OX).

The reason to start this introduction with the question above is that it is directly related
with the issue of dealing with real functions in terms of scales that we want to address in
this paper. Depending of the focus of the study, that of C(X) or that of F (X), different
notions of scale can be found in the literature.

The origin of the notion of scale goes back to the work of P. Urysohn [17] and it is based
on his approach to the construction of a continuous function on a topological space from
a given family of open sets.

On the other hand, it was probably M.H. Stone [16] who initiated the study of an
arbitrary (not necessarily continuous) real function by considering what he called the
spectral family of the function.

Note that in both approaches the families involved can be considered to be either
decreasing or increasing. In this paper we will deal only with decreasing families, but we
point out that each statement here could be also rephrased in increasing terms.

For people mainly interested in C(X) a scale is a family of open sets Ud of a given
topological space X indexed by a countable and dense subset D (e.g. the dyadic numbers
or the set Q of rationals) of a suitable part of the reals (e.g. [0, 1] or the whole R) and
such that

(1) if d < d′, then Ud′ ⊆ Ud, 3 (2)
⋃

d∈DUd = X and
⋂

d∈DUd = ∅.

Then the real function defined by f(x) = sup{d ∈ D | x ∈ Ud} for each x ∈ X, is
continuous. Of course, arbitrary real functions appear when the topology OX is discrete;
then any subset is open and closed and condition (1) simply reads as: if d < d′, then
Ud′ ⊆ Ud.

On the other hand, when the main focus of interest is F (X), a scale must be a family
of arbitrary subsets Sd of a set X indexed by D (as before) and such that

(1) if d < d′, then Sd′ ⊆ Sd, (2)
⋃

d∈DSd = X and
⋂

d∈DSd = ∅.

Now the f given by f(x) = sup{d ∈ D | x ∈ Sd} for each x ∈ X, is a real function
(not necessarily continuous). If the set X is endowed with a topology, then additional
conditions on the scale can be added in order to ensure upper or lower semicontinuity or
even continuity. In the same vein, we may be interested in endowing X with a partial
order and characterize those functions which preserve the partial order. This can be also
done in a similar way, by adding some additional conditions to the corresponding scales.

In this work we will follow the latter approach, i.e. we will focus our attention on scales
of arbitrary subsets generating arbitrary real functions and then we will study particular
types of scales generating continuous functions. We will see also how one can deal similarly
with order-preserving functions.

The paper is organized as follows. In Section 2 we provide some motivation for the
study of real functions in terms of scales, based on the construction of the real numbers

3Or Ud ⊆ Ud′ in case one prefers to work with increasing scales.
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in terms of Dedekind cuts. In Section 3 we make explicit the well-known relationship
between real functions and scales. In Section 4 we show how one can deal with the
usual algebraic operations in terms of scales, without constructing the corresponding real
functions. In Section 5 we consider scales on a topological space and characterize those
generating lower and upper semicontinous real functions. Finally, in Section 6 we briefly
study the representability of preorders in terms of scales.

2. Motivation for the study of real functions in terms of scales

The purpose of this work is to try to show how one can deal with the ring of real
functions without using the real numbers at all. This will be achieved by using the notion
of a scale. In order to motivate its definition we start by recalling some well-known facts
about the construction of the real numbers via Dedekind cuts.

2.1. Yet another look at Dedekind cuts. As it is well-known, the purpose of Dedekind
(see [7]) with the introduction of the notion of cut was to provide a logical foundation for
the real number system. Dedekind’s motivation is the fundamental observation that a
real number r is completely determined by the rationals strictly smaller than r and those
strictly larger than r; he originally defined a cut (A,B) as a partition of the rationals into
two non-empty classes where every member of one of the classes is smaller than every
member in the other.4 It is important to recall his remark in [7]:

Every rational number produces one cut or, strictly speaking, two cuts,
which, however, we shall not look as essentially different.

In other words, there are two cuts associated to each q ∈ Q, namely,(
(←, q],Q \ (←, q]

)
and

(
(←, q),Q \ (←, q)),

where (←, q] = {p ∈ Q | p ≤ q} and (←, q) = {p ∈ Q | p < q}.
In fact, (assuming excluded middle) we may take the lower part A as the representative

of any given cut (A,B) since the upper part of the cut B is completely determined by A.5

Hence one can consider the following equivalent description of the real numbers:

Dedekind’s construction of the reals. A real number is a Dedekind cut, i.e. a subset
r ⊆ Q such that

(D1) r is a down-set, i.e. if p < q in Q and q ∈ r, then p ∈ r;
(D2) ∅ 6= r 6= Q;
(D3) r contains no greatest element, i.e. if q ∈ r, then there is some p ∈ r such that q < p.

We denote the set of real numbers by R and define a total ordering on the set R as
r ≤ s ≡ r ⊆ s. We also write r < s to denote the negation of s ⊆ r, that is r < s ≡ r ( s.

Any subset S ⊆ R which has an upper bound in R has a least upper bound
∨
S in R

and
∨
S =

⋃
{r : r ∈ S}.

A real number r is said to be irrational if Q \ r contains no least element.

Condition (D3) in the definition above just serves to eliminate subsets of the form (←, q]
for a given q ∈ Q since it determines the same real number as (←, q). This allows us to
embed the rational numbers into the reals by identifying the rational number q ∈ Q with

4We will not recall here the precise formulation, it can be found in [7].
5By doing this we may think intuitively of a real number as being represented by the set of all smaller

rational numbers. Of course, everything could be equivalently stated in a dual way by considering Dedekind
cuts as the upper part B if we think of a real number as being represented by the set of all greater rational
numbers.
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the subset (←, q) ∈ R. In particular the restriction of the total order in R coincides with
the usual order in Q. Also, for each q ∈ Q and each r irrational real number we have that

q ≤ r in R ⇐⇒ (←, q) ⊆ r ⇐⇒ q ∈ r ⇐⇒ (←, q) ( r ⇐⇒ q < r in R.
Remark 1. Note that one can define the extended real numbers in a similar way by consid-
ering those subsets of Q satisfying only conditions (D1) and (D3). Under this definition
we have now two additional cuts, namely ∅ and Q which determine the extended real
numbers usually denoted as −∞ and +∞, respectively.6

Let us consider now the family of subsets A ⊆ Q satisfying only conditions (D1)–(D2),
and call them indefinite Dedekind cuts.7 In other words, we will take into consideration
now both subsets (←, q) and (←, q] for each q ∈ Q.

After identifying each subset A ⊆ Q with its characteristic function χA : Q → 2 into
the two-element lattice 2 = {0, 1} (given by χA(q) = 1 iff q ∈ A) one has, equivalently:

Definition 2. An indefinite Dedekind cut is a function S : Q→ 2 such that

(D1) S is decreasing, i.e. S(q) ≤ S(p) whenever p < q,
(D2)

∨
q∈QS(q) = 1 and

∧
q∈QS(q) = 0.

Remark 3. A Dedekind cut in the previous sense is an indefinite Dedekind cut if it is right
continuous, i.e. if it satisfies the additional condition

(D3) S(q) =
∨

p>qS(p) for each q ∈ Q.

2.2. From indefinite Dedekind cuts to scales. We can now try to extend the previous
notion by considering an arbitrary frame L instead of the two element lattice 2.

Recall that a frame is a complete lattice L in which a ∧
∨
B =

∨
{a ∧ b : b ∈ B} for

all a ∈ L and B ⊆ L. The universal bounds are denoted by 0 and 1. The most familiar
examples of frames are

(a) the two element lattice 2 (and, more generally, any complete chain),
(b) the topology OX of a topological space (X,OX), and
(c) the complete Boolean algebras.

Being a Heyting algebra, each frame L has the implication → satisfying a ∧ b ≤ c iff
a ≤ b→ c. The pseudocomplement of an a ∈ L is

a∗ = a→ 0 =
∨
{b ∈ L : a ∧ b = 0}.

Given a, b ∈ L, we denote by ≺ the relation defined by

a ≺ b iff a∗ ∨ b = 1.

In particular, when L = OX for some topological space X, one has U∗ = Int (X \U) and
U ≺ V iff ClU ⊆ V for each U, V ∈ OX. Also, in a Boolean algebra, the pseudocomple-
ment is a complement and a ≺ b iff a ≤ b.

One arrives now to the notion of an (extended) scale on a frame:8

Definition 4. ([16, 2, 10, 3]) Let L be a frame. An extended scale on L is a family
(sq | q ∈ Q)9 of elements in L satisfying

6There are actually two slightly different notions that both go by the name extended real number : one
in which +∞ and −∞ are identified, and one in which they are not. We are dealing here with the latter.
The former notion forms a quotient space of the latter.

7The name indefinite Dedekind cut is motivated from the notation used in [6].
8Note that the terminology scale used here differs from its use in [15] where it refers to maps to L from

the unit interval of Q and not all of Q. In [2] the term descending trail is used instead.
9From now on we will identify a function s : Q→ L with (sq ≡ s(q) | q ∈ Q).
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(S1) sq ≺ sp whenever p < q;

It is a scale if it additionally satisfies

(S2)
∨

q∈Qsq = 1 =
∨

q∈Qs
∗
q .

Now given a topological space (X,OX), we can particularize the previous notion in two
different ways:

For L = OX, a scale on OX (or a scale of open sets) is a family (Uq | q ∈ Q) of open
sets such that

(S1) ClUq ⊆ Up whenever p < q;
(S2)

⋃
q∈QUq = X and

⋂
q∈QUq = ∅.10

However, in this work we will deal with scales on L = D(X):

Definition 5. Let X be a set. A family S = (Sq | q ∈ Q) of subsets of X is said to be a
scale on X if it is a scale on D(X), i.e. if it satisfies

(S1) Sq ⊆ Sp whenever p < q;
(S2)

⋃
q∈QSq = X and

⋂
q∈QSp = ∅.

We shall denote by Scale(X) the collection of all scales over X.

Remark 6. Another extension of the notion of scale has been considered in [9] (see also
[4] and [?]) in order to deal with functions with values in a completely distributive lattice
with a a countable join-dense subset consisting of non-supercompact elements. Several
parts in what follows could be stated in this more general ssetting, but we will restrict
ourselves to the real-valued case.

3. Scales and real functions

In this section we will analyze in detail the relationship between scales and real functions
on a given set.

We would like to emphasize again that a similar analysis could be done for scales of open
subsets. Also, note that when dealing with scales, one can always use either decreasing or
increasing scales.

3.1. Some binary relations in Scale(X). We will consider three different binary rela-
tions between scales defined on a given set, which will be denoted as ≤, � and ∼:

Given S, T ∈ Scale(X), we write:

S ≤ T ⇐⇒ Sq ⊆ Tq for each q ∈ Q
S � T ⇐⇒ Sq ⊆ Tp for each p < q ∈ Q

Clearly enough we have that S ≤ T implies that S � T . (Indeed, let S ≤ T and p < q ∈ Q,
then Sq ⊆ Tq ⊆ Tp.)

It is easy to check that both relations are reflexive and transitive and ≤ is additionally
antisymmetric, in other words, ≤ is a partial order while � is only a preorder.

Now we can use the preorder � on Scale(X) to define an equivalence relation ∼ on
Scale(X) such that

S ∼ T ⇐⇒ S � T and T � S ⇐⇒ Sq ∪ Tq ⊆ Sp ∩ Tp for each p < q ∈ Q.
This relation, determines a partial order on the quotient set Scale(X)/ ∼ (the set of all

equivalence classes of ∼): given [S], [T ] ∈ Scale(X)/ ∼,

[S] � [T ] ⇐⇒ S � T .

10Note that
∨

q∈QU
∗
q =

⋃
q∈QInt (X \ Uq) = X \

(⋂
q∈QClUq

)
= X \

(⋂
q∈QUq

)
.
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By the construction of ∼, this definition is independent of the chosen representatives
and the corresponding relation is indeed well-defined. It is also easy to check that this
yields a partially ordered set

(
Scale(X)/ ∼,�

)
.

3.2. The real function generated by a scale. We shallll start now by establishing the
relation between scales and real functions.

Notation 7. Given f : X → R and q ∈ Q, we write [f ≥ q] = {x ∈ X | q ≤ f(x)} and
[f > q] = {x ∈ X | q < f(x)}.

Proposition 8. Let X be a set and S = (Sq | q ∈ Q) a scale on X. Then fS(x) =
∨
{q ∈

Q | x ∈ Sq} determines a unique function fS : X → R such that [fS > q] ⊆ Sq ⊆ [fS ≥ q]
for each q ∈ Q.

In view of the previous result, we can now introduce the following:

Definition 9. Let S = (Sq | q ∈ Q) be a scale in X. The function fS : X → R defined by

fS(x) =
∨
{q ∈ Q | x ∈ Sq}

for each x ∈ X, is said to be the real function generated by S.

We immediately have:

Proposition 10. Let S and T be two scales on X generating real functions fS and fT ,
respectively. Then S � T if and only if fS ≤ fT ; consequently, S ∼ T if and only if
fS = fT .

3.3. Scales generating a given real function. It follows immediately from the preced-
ing proposition that different scales may generate the same real function. Our intention
now is to study the set of all scales generating a given real function, or, equivalently, the
equivalence class of a given scale.

We start by proving the following auxiliary result:

Lemma 11. Let X be a set, S = (Sq | q ∈ Q) a scale on X and

Smin ≡
(
Smin
q =

⋃
p>qSp | q ∈ Q

)
and Smax ≡

(
Smax
q =

⋂
p<qSp | q ∈ Q

)
.

Then:

(1) Smin and Smax are scales on X.
(2) Smin ≤ S ≤ Smax. and Smin ∼ S ∼ Smax.
(3) If T ∼ S, then Smin ≤ T ≤ Smax.
(4) If T ∼ S, then T min = Smin and T max = Smax.
(5) Smin = {[fS > q] | q ∈ Q} and Smax = {[fS ≥ q] | q ∈ Q}.

Now we can characterize the equivalence class of a given scale as an interval in the
partially ordered set (Scale(X),≤):

Proposition 12. Let X be a set and S = (Sq | q ∈ Q) a scale on X. Then

[S] =
{
T | Smin ≤ T ≤ Smax

}
.

Finally, we can characterize the scales generating a given real function:

Proposition 13. Let X be a set and f : X → R a real function. Then

(1) Smin
f = {[f > q] | q ∈ Q} and Smax

f = {[f ≥ q] | q ∈ Q} are scales generating f .

(2) If S = (Sq | q ∈ Q) is a scale on X that generates f , then Smin = Smin
f and Smax =

Smax
f .
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(3) S = (Sq | q ∈ Q) is a scale on X that generates f if and only if Smin
f ≤ S ≤ Smax

f .

(4) The collection of all scales on X that generate f is precisely the class
[
Smin
f

]
=
[
Smax
f

]
.

3.4. Correspondence between real functions and equivalence classes of scales.
We can now establish the desired correspondence:

Proposition 14. Let X be a set. There exists an order isomorphism between the partially
ordered sets (F(X),≤) of real functions on X and (Scale(X)/ ∼,�).

In fact, this correspondence is more than an order isomorphism. As we will see in
what follows it can be used to express the algebraic operations between real functions
purely in terms of scales. Furthermore, when the space is enriched with some addi-
tional structure (e.g. a topology or a preorder) the real functions preserving the structure
((semi)continuous functions or increasing functions, respectively) can be characterized by
mean of scales.

4. Algebraic operations on Scale(X)

In this section we will try to show how one can deal with the usual algebraic operations
in terms of scales, without constructing the corresponding real functions.

4.1. Constant scale and characteristic scale of a set.

• Let r ∈ R and Sr = (Sr
q | q ∈ Q) be defined by

Sr
q = X if q < r and Sr

q = ∅ if r ≤ q.

Clearly, Sr is a scale on X and it will be called the constant scale with value r.
In case r ∈ Q, we have that [Sr] = {Sr,min,Sr,max}, where Sr,min = Sr and Sr,max

q = X
if q ≤ r and Sr,max

t = ∅ otherwise.
On the other hand, if r is irrational, then Sr,min = Sr,max = Sr and so [Sr] = {Sr}.

• Let A ⊆ X and SA = (SA
q | q ∈ Q) ⊆ X be defined by

SA
q = X if q < 0, SA

q = A if 0 ≤ q < 1 and SA
q = ∅ if q ≥ 1.

Once again, SA is a scale on X and it will be called the characteristic scale of A.
In this case

[
SA
]

is order isomorphic to the 4 element Boolean algebra and SA,min = SA

while SA,max
q = X if q ≤ 0, SA,max

q = A if 0 < q ≤ 1 and SA,max
q = ∅ if q ≥ 1.

4.2. Opposite scale. Given a scale S on X, define

−S = (X \ S−q | q ∈ Q).

(1) −S is a scale on X;
(2) If S � T then −T � −S and hence, if S ∼ T then −T ∼ −S;
(3) [−S] = {−T | T ∈ [S]};
(4) (−S)min = −(Smax) and (−S)max = −(Smin);
(5) −Sr ∼ S−r for each r ∈ R.
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4.3. Finite joins and meets. Given two scales S and T on X, we write

S ∨ T = (Sq ∪ Tq | q ∈ Q) and S ∧ T = (Sq ∩ Tq | q ∈ Q).

(1) S ∨ T = T ∨ S is a scale on X;
(2) If S � S ′ and T � T ′ then S ∨ T � S ′ ∨ T ′ and hence, if S ∼ S ′ and T ∼ T ′ then
S ∨ T ∼ S ′ ∨ T ′;

(3) (S ∨ T )min = Smin ∨ T min and (S ∨ T )max = Smax ∨ T max;
(4) S ∧ T = −

(
(−S) ∨ (−T )

)
= T ∧ S is a scale on X;

(5) If S � S ′ and T � T ′ then S ∧ T � S ′ ∧ T ′ and hence, if S ∼ S ′ and T ∼ T ′ then
S ∧ T ∼ S ′ ∧ T ′;

(6) (S ∧ T )min = Smin ∧ T min and (S ∧ T )max = Smax ∧ T max;
(7) S ≺ T if and only if S ∨ T ∼ T if and only if S ∧ T ∼ S.

4.4. Arbitrary joins and meets. As expected, given an arbitrary family of scales on X
we cannot always ensure the existence of its join and/or meet in Scale(X). More precisely,
given a family of scales {Si}i∈I on X, we define∨

i∈IS
i =

(⋃
i∈IS

i
q | q ∈ Q

)
and

∧
i∈IS

i =
(⋂

i∈IS
i
q | q ∈ Q

)
.

If
⋂

q∈Q
⋃

i∈IS
i
q = ∅, then we have that:

(1)
∨

i∈ISi is a scale on X;
(2) f∨

i∈I Si =
∨

i∈IfSi ;

(3)
(∨

i∈ISi
)min

=
⋃

i∈I
(
Si
)min

.

Dually, if
⋃

q∈Q
⋂

i∈IS
i
q = X we have that:

(4)
∧

i∈ISi = −
(∨

i∈I − Si
)

is a scale on X;
(5) f∧

i∈I Si =
∧

i∈IfSi ;

(6)
(∧

i∈ISi
)max

=
⋂

i∈I
(
Si
)max

.

In particular, if there is a scale T on X such that Si � T for each i ∈ I, then⋂
q∈Q
⋃

i∈IS
i
q ⊆

⋂
q∈Q
⋃

i∈ITq = ∅ and so
∨

i∈ISi is a scale on X and
∨

i∈ISi � T . Similarly,

if T � Si for each i ∈ I, then
∧

i∈ISi is a scale on X and T �
∧

i∈ISi.

4.5. Product with a scalar. Given r ∈ R such that r > 0 and a scale S on X, we define

r · S =
(⋃

p<rS q
p
| q ∈ Q

)
.

We have that:

(1) r · S is a scale on X;
(2) If S � T then r · S � r · T and hence, if S ∼ T then r · S ∼ r · T ;
(3) [r · S] = {r · T | T ∈ [S]};
(4) (r · S)min = r · (S)min and (r · S)max ∼ r · (S)max;
(5) 1 · S ∼ S;
(6) r · Ss = Srs for each s ∈ R;
(7) −

(
r · S

)
∼ r ·

(
−S
)
;

(8) r ·
(
S ∨ T

)
∼
(
r · S

)
∨
(
r · T

)
and r ·

(
S ∧ T

)
∼
(
r · S

)
∧
(
r · T

)
.

Further, we define

r · S = −
(
(−r) · S

)
if r < 0 and 0 · T = S0.
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4.6. Sum and difference. Given two scales S and T on X, we define

S + T =
(⋃

p∈QSp ∩ Tq−p | q ∈ Q
)

and S − T =
(⋃

p∈QSp \ Tp−q | q ∈ Q
)
.

We have that:

(1) S + T = T + S is a scale on X;
(2) If S � S ′ and T � T ′ then S + T � S ′ + T ′ and hence, if S ∼ S ′ and T ∼ T ′ then
S + T ∼ S ′ + T ′;

(3) S0 + S ∼ S, i.e. the constant scale with value 0 is the neutral element w.r.t the sum;
(4) Sr + Ss ∼ Sr+s for each r, s ∈ R;
(5) −

(
S + T

)
∼
(
−S
)

+
(
−T
)
;

(6) r ·
(
S + T

)
∼
(
r · S

)
+
(
r · T

)
for each r ∈ R;

(7) S − T ∼ T +
(
−S
)
.

4.7. Product. Given two scales S and T on X such that S0 � S, T , we define

S · T =
(⋃

0<pSp ∩ T q
p
| q ∈ Q

)
.

Then S · T is a scale on X.
More generally, given a scale S on X let

S+ = S ∨ S0 and S− = (−S) ∨ S0

(Notice that S ∼ S+ − S−.) Given two arbitrary scales S and T on X, we define

S · T =
((
S+ · T +)− (S+ · T −)

)
−
(
(S− · T +) + (S− · T −)

)
.

We have that:

(1) S · T ∼ T · S is a scale on X;
(2) If S ∼ S ′ and T ∼ T ′ then S · T ∼ S ′ · T ′;
(3) S1 ·S ∼ S, i.e. the constant scale with value 1 is the neutral element w.r.t the product;
(4) r · S = Sr · S for each r ∈ R;
(5) −

(
S · T

)
∼
(
−S
)
· T ∼ S ·

(
−T
)
;

(6) S ·
(
T + T ′

)
=
(
S · T

)
+
(
S · T ′

)
.

5. Semicontinuous real functions and scales

In what follows the space X will be endowed with a topology OX and we will try to
see how to deal with semicontinuous real functions in terms of scales.

Let (X,OX) be a topological space. A function f : X → R is lower (resp. upper)
semicontinuous if and only if [f > q] ∈ OX (resp. [f < q] ∈ OX) for each q ∈ Q. The
collections of all lower (resp. upper) semicontinuous real functions on X will be denoted by
LSC(X) (resp. USC(X)). Elements of C(X) = LSC(X) ∩USC(X) are called continuous.

As mentioned in the Introduction, in this work we focus our attention on scales of
arbitrary subsets generating arbitrary real functions and then we study particular types
of scales generating continuous (and semicontinuous) functions. We introduce now the
following terminology:

Definition 15. Let (X,OX) be a topological space. A scale S on X is said to be:

(1) lower semicontinuous if Sq ⊆ IntSp whenever p < q ∈ Q.
(2) upper semicontinuous if ClSq ⊆ Sp whenever p < q ∈ Q.
(3) continuous if ClSq ⊆ IntSp whenever p < q ∈ Q.

Remarks 16. (1) If Sq ∈ OX for each q ∈ Q, i.e if S is a scale of open subsets of X,
then it is automatically lower semicontinuous and it is continuous if ClSq ⊆ Sp whenever
p < q ∈ Q.

Consequently a continuous scale of open subsets of X is precisely a scale on OX in the
sense of Definition 4.
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(2) Any scale on X is continuous when OX is the discrete topology on X. On the other
hand, the only continuous scales when OX is the indiscrete topology on X are the constant
ones.

Now we have the following result which motivates the notation introduced.

Proposition 17. Let S be a scale on (X,OX) and fS the real function generated by S:

(1) S is lower semicontinuous if and only if fS ∈ LSC(X);
(2) S is upper semicontinuous if and only if fS ∈ USC(X);
(3) S is continuous if and only if fS ∈ C(X);

Since our intention is to work purely in terms of scales, we need still some further
characterizations:

Proposition 18. For a scale S on (X,OX) the following are equivalent:

(1) S is lower semicontinuous;
(2) There exists a scale of open subsets T such that T ∼ S;
(3) Smin is a scale of open subsets, i.e.

⋃
q>pSq is open for each p ∈ Q.

Clearly enough, S is upper semicontinuous if and only if −S is lower semicontinuous.
Hence we have:

Corollary 19. For a scale S on (X,OX) the following are equivalent:

(1) S is upper semicontinuous;
(2) There exists a scale of closed subsets T such that T ∼ S;
(3) Smax is a scale of closed subsets, i.e.

⋂
q<pSq is closed for each p ∈ Q.

Corollary 20. For a scale on S on (X,OX) the following are equivalent:

(1) S is continuous;
(2) There exist a scale T of open subsets and a scale T ′ of closed subsets satisfying T ∼
T ′ ∼ S;

(3) Smin is a scale of open subsets and Smax is a scale of closed subsets.

Now we use the descriptions of the algebraic operations obtained in the previous section
together with these characterization to obtain the following:

Proposition 21. Let S, T and Si (i ∈ I) be scales on (X,OX) and r ∈ R+. Then:

(1) Sr is continuous;
(2) If S is lower (resp. upper) semicontinuous, then −S is upper (resp. lower) semicon-

tinuous;
(3) If S and T are lower (resp. upper) semicontinuous, then so are S ∨ T and S ∧ T ;
(4) If all Si are lower semicontinuous and

∨
i∈ISi is a scale, then it is lower semicontin-

uous;
(5) If all Si are upper semicontinuous and

∧
i∈ISi is a scale, then it is lower semicontin-

uous;
(6) If S is lower (resp. upper) semicontinuous, then so is r · S;
(7) If S and T are lower (resp. upper) semicontinuous, then so is S + T ;
(8) If S and T are lower (resp. upper) semicontinuous and S0 � S, T , then so is S · T .

Of course, the previous results are well-known properties when we think in terms of
real functions. But we want to stress here that the interest of this approach (in terms of
scales) is that it can be easily generalized to the pointfree setting, as it has been recently
done in [12].
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How to deal with the ring of (continuous) real functions in terms of scales

6. Representability of preorders through scales

Finally, in this section the topological space (X,OX) will be additionally endowed with
a preorder R (a reflexive and transitive relation on X). The pair (X,R) will be referred
to as a preordered set and the triple (X,OX,R) consisting of a topological space (X,OX)
endowed with a preorder R will be referred to as a topological preordered space. The
asymmetric part P of R is defined for each x, y ∈ X as xPy if and only if xRy and not
yRx.

In this section we will try to see how to deal with real functions defined on a topological
preordered space (X,OX,R) which preserve the preorder R as well as its asymmetric part
P, in terms of scales.

A subset A of (X,R) is said to be increasing if xRy together with x ∈ A imply y ∈ A.
For a subset A of X we write i(A) = {y ∈ X | ∃x ∈ A such that xRy} to denote the
smallest increasing subset of X containing A.

A function f : (X,R) → (R,≤) is increasing if f(x) ≤ f(y) whenever xRy, stricly
increasing if f(x) < f(y) whenever xPy aand it is a preorder embedding in case f(x) ≤ f(y)
if and only if xRy. A preorder R on X is said to be representable if there exists a preorder
embedding (also called “utility function”) f : (X,R) → (R,≤). We introduce now the
following terminology:

Definition 22. Let (X,R) be a preordered set. A scale S on X is said to be:

(1) increasing if i(Sq) ⊆ Sp whenever p < q ∈ Q;
(2) strictly increasing if for each x, y ∈ X with xPy there exist p < q ∈ Q such that

x ∈ Sp and y /∈ Sq;
(3) preorder embedding in case it is both increasing and strictly increasing.

Remarks 23. (1) If Sq is increasing for each q ∈ Q, i.e if S is a scale of increasing subsets
of X, then S is automatically a increasing scale.

(2) The notion of continuous preorder embedding scale is closely related with that of linear
separable system in a preordered topological space ([13, 14, 5]), i.e. a family F of open
decreasing subsets of X which is linearly ordered by set inclusion and such that there exist
sets E1, E2 ∈ F such that E1 ⊆ E2 and for all sets E1, E2 ∈ F such that ClE1 ⊆ E2 there
exists some set E3 ∈ F such that ClE1 ⊆ E3 ⊆ ClE3 ⊆ E2.

The following result that justifies the notation introduced (cf. [1, Theorem 2.2]).

Proposition 24. Let S be a scale on (X,R) and fS the real function generated by S.
Then:

(1) S is increasing if and only if fS is increasing;
(2) S is strictly increasing if and only if fS is strictly increasing;
(3) S is a preorder embedding if and only if fS is a utility function;

Finally we provide a sample result which shows how the concept of a scale furnishes
interesting results on the existence of (continuous) utility representations:

Theorem 25. [1, Theorem 2.5] Let (X,OX,R) be a preordered topological space. The
following conditions are equivalent:

(1) There exists a (continuous) preorder embedding scale.
(2) There exists a (continuous) utility function u : (X,OX,R)→ (R,≤).
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[11] J. Gutiérrez Garćıa, I. Mardones-Pérez and M.A. de Prada Vicente, Insertion and extension theorems

for lattice-valued functions on preordered topological spaces, preprint, 2010 (submitted for publication).
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