Background	Localic real-valued functions	Insertion theorems	Extension theorems	References

Localic real functions: a general setting

Making the ring of continuous localic real functions into a subring of all localic real functions

Javier Gutiérrez García

Department of Mathematics, University of the Basque Country, SPAIN

- joint work with Tomasz Kubiak (Poznan) and Jorge Picado (Coimbra)

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References

"The set C(X) of all continuous, real-valued functions on a topological space X will be provided with an algebraic structure and an order structure. Since their definitions do not involve continuity, we begin by imposing these structures on the collection \mathbb{R}^X of all functions from X into the set \mathbb{R} of real numbers. [...]

In fact, it is clear that \mathbb{R}^{X} is a commutative ring with unity element (provided that X is non empty). [...]

Therefore C(X) is a commutative ring, a subring of \mathbb{R}^X ."

L. Gillman and M. Jerison. **Rings of Continuous Functions**

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Background ●○○○○○	Localic real-valued functions	Insertion theorems	Extension theorems	Referen
Frames				

The category of frames (locales)

pointfree topology

$$(X, \mathcal{O}X) \longrightarrow (\mathcal{O}X, \subseteq)$$

$$i \qquad i$$

 f^{-1} preserves igvee and \wedge

 $(Y, \mathcal{O}Y)$ $(\mathcal{O}Y, \subseteq)$ TopFrm $\mathsf{Top}(X, \Sigma L) \simeq \mathsf{Frm}(L, \mathcal{O}X)$

Gutiérrez García-Kubiak-Picado Localic real function

Localic real functions: a general setting

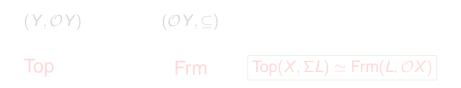
Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
●00000	000000	000	000	
Frames				

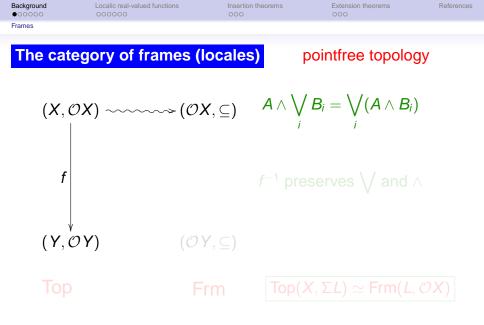
The category of frames (locales)

pointfree topology

$$(X, \mathcal{O}X) \longrightarrow (\mathcal{O}X, \subseteq) \quad A \land \bigvee_i B_i = \bigvee_i (A \land B_i)$$

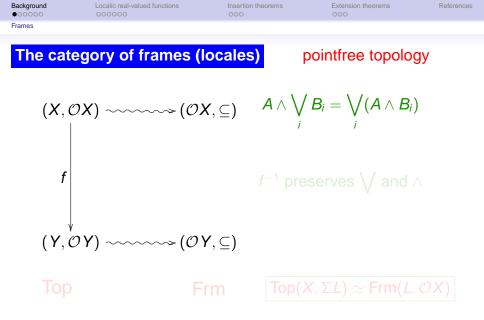
 $^{f^{-1}}$ preserves igvee and \wedge





Gutiérrez García–Kubiak–Picado

Localic real functions: a general setting



Gutiérrez García-Kubiak-Picado Localic real functions: a general setting

Background	Localic real-valued functions	Insertio	n theorems	Extension theorems	References
Frames					
The cate	gory of frames (I	ocales	s) poi	ntfree topol	ogy
(X, O)	X)> (O)	⟨ ,⊆)	$A \wedge \bigvee_i B_i$	$=\bigvee_{i}(A\wedge I)$	B _i)
f		f ⁻¹		rves ∨ and	
(Y, O)	Y)> (O)	 ∕,⊆)			
Тор	Fi	rm	Top (<i>X</i> , <i>X</i>		

Gutiérrez García-Kubiak-Picado Localic real functions: a general setting

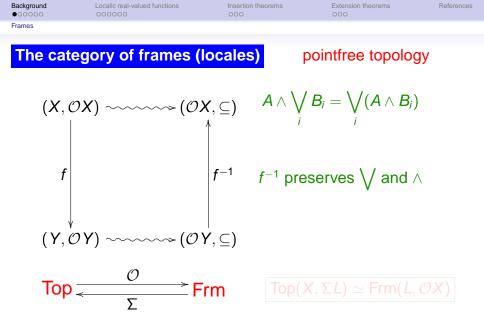
Background ●○○○○○	Localic real-valued functions	Insertio	n theorems	Extension theorems	References
Frames		000			
The cate	gory of frames (I	ocales	s) poi	ntfree topolo	ogy
(X, 0)	X) ~~~~~ (Ολ	(,⊆)	$A \land \bigvee_i B_i$	$=\bigvee_i (A \wedge B)$	hi)
f		f ⁻¹	<i>f</i> ^{−1} prese	rves	\wedge
(Y, O'	Y)> (O)	 ∕,⊆)			
Тор	Fi	m			

Background	Localic real-valued functions	Insertio	n theorems	Extension theorems	References
Frames	000000	0000			
The categ	ory of frames (I	ocales	s) poi	ntfree topolo	ogy
(X, O)	K) ~~~~~ (OX	(,⊆)	$A \land \bigvee_i B_i$	$=\bigvee_i (A \wedge B)$	i)
f		f ⁻¹	f ^{−1} prese	rves ∖∕ and	\wedge
(Y, O)	Y)> (O)	/ ,⊆)			
Тор	Fi	m	Top (<i>X</i> , <i>X</i>		

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
Frames	000000	000	000	
The categ	ory of frames (loc	ales) poi	intfree topology	
			1 05	
(X ())	(<i>OX</i> , <u>OX</u> ,	$ A \land \backslash B$	$_{i} = \bigvee (A \wedge B_{i})$	
	$(\mathcal{O}\mathcal{X}, \underline{Y})$	=) v	i	
f	f	-1 c_1		
1	1	<i>t</i> ⁻ ' prese	erves \bigvee and \land	
(Y O)	\prime) $\sim \mathcal{O} Y, O$	-)		
$(1,\mathbf{C})$) (01,	=)		
	(0)			
Top –	≻ Frm	Top(X		
iop	ГШ		L L J = I III(L, U)	

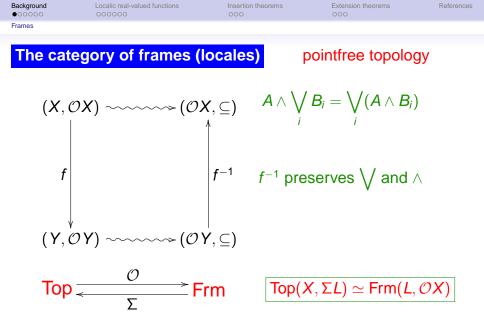
Gutiérrez García-Kubiak-Picado Localic real functi

Localic real functions: a general setting



Gutiérrez García-Kubiak-Picado

Localic real functions: a general setting



Gutiérrez García–Kubiak–Picado

Localic real functions: a general setting

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
The frame of reals				

The *frame of reals* is the frame $\mathfrak{L}(\mathbb{R})$ generated by all ordered pairs (p, q), where $p, q \in \mathbb{Q}$, subject to the relations:

$$\begin{array}{ll} (\mathsf{R1}) & (p,q) \land (r,s) = (p \lor r,q \land s) \\ (\mathsf{R2}) & p \le r < q \le s \Rightarrow (p,q) \lor (r,s) = (p,s) \\ (\mathsf{R3}) & (p,q) = \bigvee \{(r,s) \mid p < r < s < q\} \\ (\mathsf{R4}) & \bigvee \{(p,q) \mid p,q \in \mathbb{Q}\} = 1. \end{array}$$

$$(-,q) := \bigvee_{p \in \mathbb{Q}} (p,q)$$

 $\mathfrak{L}_{l}(\mathbb{R}) = \langle (-,q) \mid q \in \mathbb{Q} \rangle$

$$(p,-):=igvee_{q\in\mathbb{Q}}(p,q)$$

 $\mathfrak{L}_u(\mathbb{R}) = \langle (p,-) \mid p \in \mathbb{Q}
angle$

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
The frame of reals				

The *frame of reals* is the frame $\mathfrak{L}(\mathbb{R})$ generated by all ordered pairs (p, q), where $p, q \in \mathbb{Q}$, subject to the relations:

(R1) $(p,q) \land (r,s) = (p \lor r, q \land s)$ (R2) $p \le r < q \le s \Rightarrow (p,q) \lor (r,s) = (p,s)$ (R3) $(p,q) = \bigvee \{(r,s) \mid p < r < s < q\}$ (R4) $\bigvee \{(p,q) \mid p, q \in \mathbb{Q}\} = 1.$

$$(-,q) := \bigvee_{p \in \mathbb{Q}} (p,q)$$

 $\mathfrak{L}_{l}(\mathbb{R}) = \langle (-,q) \mid q \in \mathbb{Q} \rangle$

$$(p,-):=igvee_{q\in\mathbb{Q}}(p,q)$$

 $\mathfrak{L}_u(\mathbb{R}) = \langle (p, -) \mid p \in \mathbb{Q} \rangle$

イロン 不良と 不良と 不良とう ほ

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
The frame of reals				

The *frame of reals* is the frame $\mathfrak{L}(\mathbb{R})$ generated by all ordered pairs (p, q), where $p, q \in \mathbb{Q}$, subject to the relations:

$$\begin{array}{ll} (\mathsf{R1}) & (p,q) \land (r,s) = (p \lor r,q \land s) \\ (\mathsf{R2}) & p \le r < q \le s \Rightarrow (p,q) \lor (r,s) = (p,s) \\ (\mathsf{R3}) & (p,q) = \bigvee \{(r,s) \mid p < r < s < q\} \\ (\mathsf{R4}) & \bigvee \{(p,q) \mid p,q \in \mathbb{Q}\} = 1. \end{array}$$

$$(-,q) := \bigvee_{p \in \mathbb{Q}} (p,q)$$

 $\mathfrak{L}_{l}(\mathbb{R}) = \langle (-,q) \mid q \in \mathbb{Q} \rangle$

$$(p,-):=igvee_{q\in\mathbb{Q}}(p,q)$$

 $\mathfrak{L}_u(\mathbb{R}) = \langle (p, -) \mid p \in \mathbb{Q} \rangle$

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
The frame of reals				

The *frame of reals* is the frame $\mathfrak{L}(\mathbb{R})$ generated by all ordered pairs (p, q), where $p, q \in \mathbb{Q}$, subject to the relations:

$$\begin{array}{ll} (\mathsf{R1}) & (p,q) \land (r,s) = (p \lor r,q \land s) \\ (\mathsf{R2}) & p \le r < q \le s \Rightarrow (p,q) \lor (r,s) = (p,s) \\ (\mathsf{R3}) & (p,q) = \bigvee \{ (r,s) \mid p < r < s < q \} \\ (\mathsf{R4}) & \bigvee \{ (p,q) \mid p,q \in \mathbb{Q} \} = 1. \end{array}$$

$$(-,q) := \bigvee_{p \in \mathbb{Q}} (p,q)$$

 $\mathfrak{L}_{l}(\mathbb{R}) = \langle (-,q) \mid q \in \mathbb{Q} \rangle$

$$(p,-):=igvee_{q\in\mathbb{Q}}(p,q)$$

 $\mathfrak{L}_u(\mathbb{R}) = \langle (p,-) \mid p \in \mathbb{Q}
angle$

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
The frame of reals				

The *frame of reals* is the frame $\mathfrak{L}(\mathbb{R})$ generated by all ordered pairs (p, q), where $p, q \in \mathbb{Q}$, subject to the relations:

$$\begin{array}{ll} (\mathsf{R1}) & (p,q) \land (r,s) = (p \lor r,q \land s) \\ (\mathsf{R2}) & p \le r < q \le s \Rightarrow (p,q) \lor (r,s) = (p,s) \\ (\mathsf{R3}) & (p,q) = \bigvee \{(r,s) \mid p < r < s < q\} \\ (\mathsf{R4}) & \bigvee \{(p,q) \mid p,q \in \mathbb{Q}\} = 1. \end{array}$$

$$(-, q) := \bigvee_{p \in \mathbb{Q}} (p, q)$$

 $\mathfrak{L}_{l}(\mathbb{R}) = \langle (-,q) \mid q \in \mathbb{Q} \rangle$

$$(p,-):=igvee_{q\in\mathbb{Q}}(p,q)$$

 $\mathfrak{L}_u(\mathbb{R}) = \langle (p, -) \mid p \in \mathbb{Q}
angle$

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
The frame of reals				

The *frame of reals* is the frame $\mathfrak{L}(\mathbb{R})$ generated by all ordered pairs (p, q), where $p, q \in \mathbb{Q}$, subject to the relations:

$$\begin{array}{ll} (\mathsf{R1}) & (p,q) \land (r,s) = (p \lor r,q \land s) \\ (\mathsf{R2}) & p \le r < q \le s \Rightarrow (p,q) \lor (r,s) = (p,s) \\ (\mathsf{R3}) & (p,q) = \bigvee \{(r,s) \mid p < r < s < q\} \\ (\mathsf{R4}) & \bigvee \{(p,q) \mid p,q \in \mathbb{Q}\} = 1. \end{array}$$

$$(-,q) := \bigvee_{p \in \mathbb{Q}} (p,q)$$

 $\mathfrak{L}_{l}(\mathbb{R}) = \langle (-,q) \mid q \in \mathbb{Q} \rangle$

$$(p,-):=igvee_{q\in\mathbb{Q}}(p,q)$$

 $\mathfrak{L}_u(\mathbb{R}) = \langle (\rho, -) \mid \rho \in \mathbb{Q} \rangle$

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
The frame of reals				

The *frame of reals* is the frame $\mathfrak{L}(\mathbb{R})$ generated by all ordered pairs (p, q), where $p, q \in \mathbb{Q}$, subject to the relations:

$$\begin{array}{ll} (\mathsf{R1}) & (p,q) \land (r,s) = (p \lor r,q \land s) \\ (\mathsf{R2}) & p \le r < q \le s \Rightarrow (p,q) \lor (r,s) = (p,s) \\ (\mathsf{R3}) & (p,q) = \bigvee \{(r,s) \mid p < r < s < q\} \\ (\mathsf{R4}) & \bigvee \{(p,q) \mid p,q \in \mathbb{Q}\} = 1. \end{array}$$

$$(-,q) := \bigvee_{p \in \mathbb{Q}} (p,q)$$

 $\mathfrak{L}(\mathbb{R}) = \langle (-,q) \mid q \in \mathbb{Q} \rangle$

$$(p,-):=igvee_{q\in\mathbb{Q}}(p,q)$$

 $\mathfrak{L}_u(\mathbb{R}) = \langle (\rho, -) \mid \rho \in \mathbb{Q} \rangle$

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
The frame of reals				

The *frame of reals* is the frame $\mathfrak{L}(\mathbb{R})$ generated by all ordered pairs (p, q), where $p, q \in \mathbb{Q}$, subject to the relations:

$$\begin{array}{ll} (\mathsf{R1}) & (p,q) \land (r,s) = (p \lor r,q \land s) \\ (\mathsf{R2}) & p \le r < q \le s \Rightarrow (p,q) \lor (r,s) = (p,s) \\ (\mathsf{R3}) & (p,q) = \bigvee \{(r,s) \mid p < r < s < q\} \\ (\mathsf{R4}) & \bigvee \{(p,q) \mid p,q \in \mathbb{Q}\} = 1. \end{array}$$

$$(-,q) := \bigvee_{p \in \mathbb{Q}} (p,q)$$
 $(p,-) := \bigvee_{q \in \mathbb{Q}} (p,q)$

 $\mathfrak{L}(\mathbb{R}) = \langle (-,q) \mid q \in \mathbb{Q} \rangle$

 $\mathfrak{L}_u(\mathbb{R}) = \langle (p,-) \mid p \in \mathbb{Q}
angle$

ヘロト ヘ回ト ヘヨト ヘヨト

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
The frame of reals				

The *frame of reals* is the frame $\mathfrak{L}(\mathbb{R})$ generated by all ordered pairs (p, q), where $p, q \in \mathbb{Q}$, subject to the relations:

$$\begin{array}{ll} (\mathsf{R1}) & (p,q) \land (r,s) = (p \lor r,q \land s) \\ (\mathsf{R2}) & p \le r < q \le s \Rightarrow (p,q) \lor (r,s) = (p,s) \\ (\mathsf{R3}) & (p,q) = \bigvee \{(r,s) \mid p < r < s < q\} \\ (\mathsf{R4}) & \bigvee \{(p,q) \mid p,q \in \mathbb{Q}\} = 1. \end{array}$$

$$(-,q) := \bigvee_{p \in \mathbb{Q}} (p,q)$$
 $(p,-) := \bigvee_{q \in \mathbb{Q}} (p,q)$

 $\mathfrak{L}(\mathbb{R}) = \langle (-,q) \mid q \in \mathbb{Q} \rangle$

$$\mathfrak{L}_{u}(\mathbb{R}) = \langle (p, -) \mid p \in \mathbb{Q}
angle$$

< ロ > < 同 > < 回 > < 回 > <

Background	Localic real-va		sertion theorems	Extension theorems	References
Real-valued fun	ictions				
		Тор	Frm		
	continuous	$f:X \to (\mathbb{R}, \mathcal{T}_e)$	$h: \mathfrak{L}(\mathbb{R}) \to L$		
		$f:X \to (\mathbb{R}, \mathcal{T}_l)$	$h: \mathfrak{L}_l(\mathbb{R}) \to L$		
		$f: X \to (\mathbb{R}, \mathcal{T}_u)$	$h: \mathfrak{L}_u(\mathbb{R}) \to L$		
		$Top(X,\mathcal{T}_e)$	$\simeq Frm(\mathfrak{L}(\mathbb{R}), \mathfrak{c})$	OX)	

B. Banaschewski, *The real numbers in pointfree topology* Textos de Matemática, Série B, 12, Univ. de Coimbra, 1997.

Background	Localic real-va		nsertion theorems	Extension theorems	References
Real-valued fur	nctions				
		Тор	Frm]	
	continuous	$f: X \to (\mathbb{R}, \mathcal{T}_e)$	$h: \mathfrak{L}(\mathbb{R}) \to L$		
	usc	$f:X \to (\mathbb{R}, \mathcal{T}_l)$	$h: \mathfrak{L}_{l}(\mathbb{R}) \to L$	satisfying()	
	lsc		$h: \mathfrak{L}_u(\mathbb{R}) \to L$		
			???		

・ロト・(型)・(目)・(目)・(日)・(の)

Background	Localic real-va		nsertion theorems	Extension theorems	References
Real-valued fun	ctions				
		Тор	Frm	١	
	continuous	$f: X \to (\mathbb{R}, \mathcal{T}_e)$	$h: \mathfrak{L}(\mathbb{R}) \to L$		
	usc	$f: X \to (\mathbb{R}, \mathcal{T}_l)$	$h: \mathfrak{L}_{l}(\mathbb{R}) \to L$	satisfying()	
	lsc	$f: X \to (\mathbb{R}, \mathcal{T}_u)$	$h: \mathfrak{L}_u(\mathbb{R}) \to L$	satisfying()	
			???		
		$Top(X, \mathcal{T}_l)$	$ \simeq \operatorname{Frm}(\mathfrak{L}_l(\mathbb{R}),) $	<i>OX</i>) !!!	

J. Gutiérrez García and J. Picado On the algebraic representation of semicontinuity Journal of Pure and Applied Algebra, 210 (2007) 299–306.

Background	Localic real-va	Localic real-valued functions Inser		Extension theorems	References
Real-valued fur	nctions				
		Тор	Frm		
	continuous	$f: X \to (\mathbb{R}, \mathcal{T}_e)$	$h: \mathfrak{L}(\mathbb{R}) \to L$		
	usc	$f:X\to (\mathbb{R}, \mathcal{T}_l)$	$h: \mathfrak{L}_{l}(\mathbb{R}) \to L$	satisfying()	
	lsc	$f: X \to (\mathbb{R}, \mathcal{T}_u)$	$h: \mathfrak{L}_u(\mathbb{R}) \to L$	satisfying()	
			222		

J. Gutiérrez García and J. Picado On the algebraic representation of semicontinuity Journal of Pure and Applied Algebra, 210 (2007) 299–306.

Background	Localic real-va		Insertion theorems	Extension theorems	References
Real-valued fund	ictions				
		Тор	Frm]	
	continuous	$f: X \to (\mathbb{R}, \mathcal{T}_e)$	$h: \mathfrak{L}(\mathbb{R}) \to L$		
	usc	$f:X \to (\mathbb{R}, \mathcal{T}_l)$	$h: \mathfrak{L}_{l}(\mathbb{R}) \to L$	satisfying()	
	lsc	$f: X \to (\mathbb{R}, \mathcal{T}_u)$	$h:\mathfrak{L}_u(\mathbb{R})\to L$	satisfying()	
	C(X) = USC	$C(X) \cap LSC(X)$???		

Gutiérrez García-Kubiak-Picado Localic real functions: a general setting

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへ⊙

Background	Localic real-v		nsertion theorems	Extension theorems	References
Real-valued func	tions				
		Тор	Frm		
	continuous	$f: X \to (\mathbb{R}, \mathcal{T}_e)$	$h: \mathfrak{L}(\mathbb{R}) \to L$		
	usc	$f: X \to (\mathbb{R}, \mathcal{T}_{l})$	$h: \mathfrak{L}_l(\mathbb{R}) \to L$	satisfying()	
	lsc	$f: X \to (\mathbb{R}, \frac{T_u}{U})$	$h: \mathfrak{L}_u(\mathbb{R}) \to L$	satisfying()	

 $C(X) = USC(X) \cap LSC(X)$

???

Background	Localic real-va	Localic real-valued functions Inse 000000 00			extension theorems	I	References
Real-valued functions							
		Тор		Frm			
со	ntinuous	$f:X ightarrow (\mathbb{R},\mathcal{T}_{e})$	h: $\mathfrak{L}(\mathbb{R})$	$\rightarrow L$			
	1100	$f \cdot \mathbf{V} \to (\mathbb{D} \cdot \mathbf{T})$	$() h \cdot e(\mathbb{D})$. 1	coticfuina()	

 $t: X \to (\mathbb{R}, \mathcal{T}_l) \mid h: \mathfrak{L}_l(\mathbb{R}) \to L \quad satisfying(\dots)$ usc $f: X \to (\mathbb{R}, \mathcal{T}_u) \mid h: \mathfrak{L}_u(\mathbb{R}) \to L \quad satisfying(\dots)$ lsc ???

 $C(X) = USC(X) \cap LSC(X)$

(Q1) How to remedy this?

Background ○○○●○○	Localic real-valued functions	Insertion theorems	Extension theorems	References
Real-valued functions				
	Тор	[Frm	
lsc a	Every $f: X \to \mathbb{R}$ ad and usc regularizat aking f more "regul	ions ???		

(Q2)

How can we speak about general localic real functions?

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
Real-valued functions				
	Тор		Frm	
E	very $f: X \to \mathbb{R}$ adn	nits		

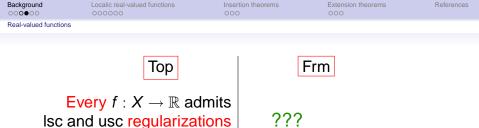
lsc and usc regularizations
(making f more "regular")

???

(Q2)

How can we speak about general localic real functions?

A B > A B >



(making f more "regular")

How can we speak (Q2) about general localic real functions?

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
000000	000000	000	000	
The congruence frame				

- sublocale maps (i.e. onto frame homomorphisms),
- congruences,
- nuclei
- sublocale sets.

A *congruence* on a frame *L*, is an equivalence relation θ on *L* which is a subframe of $L \times L$ in the obvious sense.

The lattice of frame congruences on *L* under set inclusion is a frame, denoted by $\mathcal{C}L$.

Open and closed congruences:

$$\Delta_a = \{(a,b) \in L \times L \mid a \land x = b \land x\}$$

$$\nabla_a = \{(a,b) \in L \times L \mid a \lor x = b \lor x\}$$

Complemented:

$$eg \Delta_a =
abla_a$$

イロン イロン イヨン 一日

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
0000000	000000	000	0000	
The congruence frame				

- sublocale maps (i.e. onto frame homomorphisms),
- congruences,
- nuclei
- sublocale sets.

A *congruence* on a frame *L*, is an equivalence relation θ on *L* which is a subframe of $L \times L$ in the obvious sense.

The lattice of frame congruences on *L* under set inclusion is a frame, denoted by $\mathcal{C}L$.

Open and closed congruences:

$$\Delta_a = \{(a,b) \in L \times L \mid a \land x = b \land x\}$$

$$\nabla_a = \{(a,b) \in L \times L \mid a \lor x = b \lor x\}$$

Complemented:

$$eg \Delta_a =
abla_a$$

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
The congruence frame				

- sublocale maps (i.e. onto frame homomorphisms),
- congruences,
- nuclei
- sublocale sets.

A *congruence* on a frame *L*, is an equivalence relation θ on *L* which is a subframe of $L \times L$ in the obvious sense.

The lattice of frame congruences on *L* under set inclusion is a frame, denoted by $\mathcal{C}L$.

Open and closed congruences:

$$\Delta_a = \{(a,b) \in L \times L \mid a \land x = b \land x\}$$

$$\nabla_a = \{(a,b) \in L \times L \mid a \lor x = b \lor x\}$$

Complemented:

$$eg \Delta_a =
abla_a$$

イロン イロン イヨン 一日

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
The congruence frame				

- sublocale maps (i.e. onto frame homomorphisms),
- congruences,
- nuclei
- sublocale sets.

A *congruence* on a frame *L*, is an equivalence relation θ on *L* which is a subframe of $L \times L$ in the obvious sense.

The lattice of frame congruences on *L* under set inclusion is a frame, denoted by $\mathcal{C}L$.

Open and closed congruences:

$$\Delta_a = \{(a,b) \in L \times L \mid a \land x = b \land x\}$$

$$\nabla_a = \{(a,b) \in L \times L \mid a \lor x = b \lor x\}$$

Complemented:

$$eg \Delta_a =
abla_a$$

イロン イロン イヨン 一日

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
0000000	000000	000	0000	
The congruence frame				

- sublocale maps (i.e. onto frame homomorphisms),
- congruences,
- nuclei
- sublocale sets.

A *congruence* on a frame *L*, is an equivalence relation θ on *L* which is a subframe of $L \times L$ in the obvious sense.

The lattice of frame congruences on *L* under set inclusion is a frame, denoted by $\mathcal{C}L$.

Open and closed congruences:

$$\Delta_a = \{(a,b) \in L \times L \mid a \land x = b \land x\}$$

$$\nabla_a = \{(a,b) \in L \times L \mid a \lor x = b \lor x\}$$

Complemented:

$$eg \Delta_a =
abla_a$$

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
0000000	000000	000	0000	
The congruence frame				

Quotients in Frm (equivalently, subobjects in $Loc = Frm^{op}$):

- sublocale maps (i.e. onto frame homomorphisms),
- congruences,
- nuclei
- sublocale sets.

A *congruence* on a frame *L*, is an equivalence relation θ on *L* which is a subframe of $L \times L$ in the obvious sense.

The lattice of frame congruences on *L* under set inclusion is a frame, denoted by $\mathfrak{C}L$.

Open and closed congruences:

$$\Delta_a = \{(a,b) \in L \times L \mid a \land x = b \land x\}$$

$$\nabla_a = \{(a,b) \in L \times L \mid a \lor x = b \lor x\}$$

Complemented:

$$eg \Delta_a =
abla_a$$

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
0000000	000000	000	0000	
The congruence frame				

Quotients in Frm (equivalently, subobjects in $Loc = Frm^{op}$):

- sublocale maps (i.e. onto frame homomorphisms),
- congruences,
- nuclei
- sublocale sets.

A *congruence* on a frame *L*, is an equivalence relation θ on *L* which is a subframe of $L \times L$ in the obvious sense.

The lattice of frame congruences on L under set inclusion is a frame, denoted by CL.

Open and closed congruences:

$$\Delta_a = \{(a,b) \in L \times L \mid a \land x = b \land x\}$$

$$\nabla_a = \{(a,b) \in L \times L \mid a \lor x = b \lor x\}$$

Complemented:

$$\neg \Delta_a = \nabla_a$$

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
0000000	000000	000	0000	
The congruence frame				

Quotients in Frm (equivalently, subobjects in $Loc = Frm^{op}$):

- sublocale maps (i.e. onto frame homomorphisms),
- congruences,
- nuclei
- sublocale sets.

A *congruence* on a frame *L*, is an equivalence relation θ on *L* which is a subframe of $L \times L$ in the obvious sense.

The lattice of frame congruences on L under set inclusion is a frame, denoted by CL.

Open and closed congruences:

$$\Delta_a = \{(a,b) \in L \times L \mid a \land x = b \land x\}$$

$$\nabla_a = \{(a,b) \in L \times L \mid a \lor x = b \lor x\}$$

Complemented:

$$\neg \Delta_a = \nabla_a$$

Background ○○○○O●	Localic real-valued functions	Insertion theorems	Extension theorems	References
The congruence frame				

The correspondence $x \mapsto \nabla_x$ defines an isomorphism $L \to \nabla L$.

 $abla : L \xrightarrow{\simeq} \nabla L \subset \mathfrak{C}L$

Closure and interior of a congruence:

 $\overline{\theta} = \bigvee \{ \nabla_{a} : \nabla_{a} \le \theta \} \qquad \overset{\circ}{\theta} = \bigwedge \{ \Delta_{a} : \theta \le \Delta_{a} \}.$

$$\overline{\Delta_a} =
abla_{a^*}$$
 $\nabla_a^\circ = \Delta_{a^*}$

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
The congruence frame				

The correspondence $x \mapsto \nabla_x$ defines an isomorphism $L \to \nabla L$.

$$\nabla: L \xrightarrow{\simeq} \nabla L \subset \mathfrak{C}L$$

Closure and interior of a congruence:

 $\overline{\theta} = \bigvee \{ \nabla_{\mathbf{a}} : \nabla_{\mathbf{a}} \le \theta \} \qquad \stackrel{\circ}{\theta} = \bigwedge \{ \Delta_{\mathbf{a}} : \theta \le \Delta_{\mathbf{a}} \}.$

$$\overline{\Delta_a} =
abla_{a^*}$$
 $\nabla_a^\circ = \Delta_{a^*}$

(日)

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
00000	000000	000	000	
The congruence frame				

The correspondence $x \mapsto \nabla_x$ defines an isomorphism $L \to \nabla L$.

$$\nabla: L \xrightarrow{\simeq} \nabla L \subset \mathfrak{C}L$$

Closure and interior of a congruence:

 $\overline{\theta} = \bigvee \{ \nabla_{\mathbf{a}} : \nabla_{\mathbf{a}} \le \theta \} \qquad \stackrel{\circ}{\theta} = \bigwedge \{ \Delta_{\mathbf{a}} : \theta \le \Delta_{\mathbf{a}} \}.$

$$\overline{\Delta_a} =
abla_{a^*}$$
 $\nabla_a^\circ = \Delta_{a^*}$

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
00000	000000	000	000	
The congruence frame				

The correspondence $x \mapsto \nabla_x$ defines an isomorphism $L \to \nabla L$.

$$\nabla: L \xrightarrow{\simeq} \nabla L \subset \mathfrak{C}L$$

Closure and interior of a congruence:

 $\overline{\theta} = \bigvee \{ \nabla_{\mathbf{a}} : \nabla_{\mathbf{a}} \le \theta \} \qquad \stackrel{\circ}{\theta} = \bigwedge \{ \Delta_{\mathbf{a}} : \theta \le \Delta_{\mathbf{a}} \}.$

$$\overline{\Delta_a} = \nabla_{a^*} \qquad \qquad \nabla_a^\circ = \Delta_{a^*}$$

Background 000000	Localic real-valued functions	Insertion theorems	Extension theorems	References
Motivation				

 $\mathsf{Top}\left(X,\left(\mathbb{R},\mathcal{T}_{\mathsf{e}}\right)\right)\simeq\mathsf{Frm}\left(\mathfrak{L}\left(\mathbb{R}\right),\mathcal{O}X\right)$

 $\mathrm{F}\left(X,\mathbb{R}
ight)\simeq \mathrm{Top}\left(\left(X,\mathcal{P}(X)
ight),\left(\mathbb{R},\mathcal{T}
ight)
ight)$

(for *any* topology \mathcal{T} on \mathbb{R}). In particular, for $\mathcal{T} = \mathcal{T}_e$,

 $\mathrm{F}\left(X,\mathbb{R}\right)\simeq\mathsf{Top}\left(\left(X,\mathcal{P}\left(X\right)\right),\left(\mathbb{R},\mathcal{T}_{e}\right)\right)\simeq\mathsf{Frm}\left(\mathfrak{L}\left(\mathbb{R}\right),\mathcal{P}(X)\right)$

Slogan of pointfree topology:

Congruences in $L \equiv$ generalized subspaces

 $\mathrm{F}(X,\mathbb{R})\simeq\mathrm{Frm}(\mathfrak{L}(\mathbb{R}),\mathcal{P}(X))\longrightarrow\mathrm{Frm}(\mathfrak{L}(\mathbb{R}),\mathfrak{C}L)$

A *localic real function* on *L* is a frame homomorphism $\mathfrak{L}(\mathbb{R}) \to \mathfrak{C}L$.

Background 000000	Localic real-valued functions	Insertion theorems	Extension theorems	References
Motivation				

$$\mathsf{Top}\left(X,\left(\mathbb{R},\mathcal{T}_{\mathsf{e}}\right)\right)\simeq\mathsf{Frm}\left(\mathfrak{L}\left(\mathbb{R}\right),\mathcal{O}X\right)$$

 $F(X, \mathbb{R}) \simeq \mathsf{Top}\left((X, \mathcal{P}(X)), (\mathbb{R}, \mathcal{T})\right)$

(for *any* topology \mathcal{T} on \mathbb{R}). In particular, for $\mathcal{T} = \mathcal{T}_e$,

 $\mathrm{F}\left(X,\mathbb{R}\right)\simeq\mathsf{Top}\left(\left(X,\mathcal{P}\left(X\right)\right),\left(\mathbb{R},\mathcal{T}_{e}\right)\right)\simeq\mathsf{Frm}\left(\mathfrak{L}\left(\mathbb{R}\right),\mathcal{P}(X)\right)$

Slogan of pointfree topology:

Congruences in $L \equiv$ generalized subspaces

 $\mathrm{F}(X,\mathbb{R})\simeq\mathrm{Frm}(\mathfrak{L}(\mathbb{R}),\mathcal{P}(X))\longrightarrow\mathrm{Frm}(\mathfrak{L}(\mathbb{R}),\mathfrak{C}L)$

A *localic real function* on *L* is a frame homomorphism $\mathfrak{L}(\mathbb{R}) \to \mathfrak{C}L$.

Background 000000	Localic real-valued functions	Insertion theorems	Extension theorems	References
Motivation				

$$\mathsf{Top}\left(X,\left(\mathbb{R},\mathcal{T}_{\mathsf{e}}
ight)
ight)\simeq\mathsf{Frm}\left(\mathfrak{L}\left(\mathbb{R}
ight),\mathcal{O}X
ight)$$

 $\mathrm{F}(X,\mathbb{R})\simeq\mathrm{Top}\left(\left(X,\mathcal{P}(X)\right),\left(\mathbb{R},\mathcal{T}\right)\right)$

(for *any* topology \mathcal{T} on \mathbb{R}). In particular, for $\mathcal{T} = \mathcal{T}_e$,

 $\mathrm{F}\left(X,\mathbb{R}\right)\simeq\mathrm{Top}\left(\left(X,\mathcal{P}\left(X\right)\right),\left(\mathbb{R},\mathcal{T}_{e}\right)\right)\simeq\mathrm{Frm}\left(\mathfrak{L}\left(\mathbb{R}\right),\mathcal{P}(X)\right)$

Slogan of pointfree topology:

Congruences in $L \equiv$ generalized subspaces

 $\mathrm{F}(X,\mathbb{R})\simeq\mathrm{Frm}(\mathfrak{L}(\mathbb{R}),\mathcal{P}(X))\longrightarrow\mathrm{Frm}(\mathfrak{L}(\mathbb{R}),\mathfrak{C}L)$

A localic real function on L is a frame homomor

Background 000000	Localic real-valued functions	Insertion theorems	Extension theorems	References
Motivation				

$$\mathsf{Top}\left(X,\left(\mathbb{R},\mathcal{T}_{\mathsf{e}}
ight)
ight)\simeq\mathsf{Frm}\left(\mathfrak{L}\left(\mathbb{R}
ight),\mathcal{O}X
ight)$$

 $\mathrm{F}(X,\mathbb{R})\simeq\mathrm{Top}\left(\left(X,\mathcal{P}(X)\right),\left(\mathbb{R},\mathcal{T}\right)\right)$

(for *any* topology \mathcal{T} on \mathbb{R}). In particular, for $\mathcal{T} = \mathcal{T}_e$,

 $\mathrm{F}\left(X,\mathbb{R}\right)\simeq\mathrm{Top}\left(\left(X,\mathcal{P}\left(X\right)\right),\left(\mathbb{R},\mathcal{T}_{e}\right)\right)\simeq\mathrm{Frm}\left(\mathfrak{L}\left(\mathbb{R}\right),\mathcal{P}(X)\right)$

Slogan of pointfree topology:

Congruences in $L \equiv$ generalized subspaces

 $\mathrm{F}(X,\mathbb{R})\simeq\mathrm{Frm}(\mathfrak{L}(\mathbb{R}),\mathcal{P}(X))\longrightarrow\mathrm{Frm}(\mathfrak{L}(\mathbb{R}),\mathfrak{C}L)$

A *localic real function* on *L* is a frame homomorphism $\mathfrak{L}(\mathbb{R}) \to \mathfrak{C}L$.

Background 000000	Localic real-valued functions	Insertion theorems	Extension theorems	References
Motivation				

$$\mathsf{Top}\left(X,\left(\mathbb{R},\mathcal{T}_{\mathsf{e}}\right)\right)\simeq\mathsf{Frm}\left(\mathfrak{L}\left(\mathbb{R}\right),\mathcal{O}X\right)$$

 $\mathrm{F}\left(X,\mathbb{R}
ight)\simeq \mathsf{Top}\left(\left(X,\mathcal{P}(X)
ight),\left(\mathbb{R},\mathcal{T}
ight)
ight)$

(for *any* topology \mathcal{T} on \mathbb{R}). In particular, for $\mathcal{T} = \mathcal{T}_e$,

 $\mathrm{F}\left(X,\mathbb{R}\right)\simeq\mathrm{Top}\left(\left(X,\mathcal{P}\left(X\right)\right),\left(\mathbb{R},\mathcal{T}_{e}\right)\right)\simeq\mathrm{Frm}\left(\mathfrak{L}\left(\mathbb{R}\right),\mathcal{P}(X)\right)$

Slogan of pointfree topology:

Congruences in $L \equiv$ generalized subspaces

 $\mathrm{F}(X,\mathbb{R})\simeq\mathrm{Frm}(\mathfrak{L}(\mathbb{R}),\mathcal{P}(X))\longrightarrow\mathrm{Frm}(\mathfrak{L}(\mathbb{R}),\mathfrak{C}L)$

Definition

A *localic real function* on *L* is a frame homomorphism $\mathfrak{L}(\mathbb{R}) \to \mathfrak{C}L$.

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
Continuous function	S			
• /	${\sf F}:\mathfrak{L}(\mathbb{R}) ightarrow\mathfrak{C} L$	general	F(<i>L</i>)	
	$F:\mathfrak{L}(\mathbb{R}) o\mathfrak{C}L$ t. $F(\mathfrak{L}_l(\mathbb{R}))\subseteq abla L$		USC(L)	
	$F:\mathfrak{L}(\mathbb{R}) o\mathfrak{C}L\ \mathfrak{t}.\ F(\mathfrak{L}_d(\mathbb{R}))\subseteq abla L$		LSC(L)	
	$F:\mathfrak{L}(\mathbb{R}) o\mathfrak{C}L$ t. $F(\mathfrak{L}(\mathbb{R}))\subseteq abla L$		C(<i>L</i>)	
		C(I) =	$\operatorname{USC}(I) \cap \operatorname{USC}(I)$	

$$\mathcal{C}(L) = \mathrm{USC}(L) \cap \mathrm{LSC}(L)$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
Continuous function	15			
• /	${\sf F}:\mathfrak{L}(\mathbb{R}) ightarrow\mathfrak{C} L$	general	F(<i>L</i>)	
	$F:\mathfrak{L}(\mathbb{R}) o\mathfrak{C}L$ t. $F(\mathfrak{L}_l(\mathbb{R}))\subseteq abla L$		USC(<i>L</i>)	
	$F:\mathfrak{L}(\mathbb{R}) o\mathfrak{C}L$ t. $F(\mathfrak{L}_d(\mathbb{R}))\subseteq abla L$		LSC(L)	
	$F:\mathfrak{L}(\mathbb{R}) o\mathfrak{C}L$ t. $F(\mathfrak{L}(\mathbb{R}))\subseteq abla L$		C(<i>L</i>)	
		C(I) –	$USC(I) \cap ISC(I)$	$\left(\right)$

$$\mathcal{C}(L) = \mathrm{USC}(L) \cap \mathrm{LSC}(L)$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Gutiérrez García-Kubiak-Picado Localic real functions: a general setting

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
Continuous function	S			
• F	$\bar{T}:\mathfrak{L}(\mathbb{R}) ightarrow\mathfrak{C}L$	general	F(<i>L</i>)	
	$F: \mathfrak{L}(\mathbb{R}) \to \mathfrak{C}L$ t. $F(\mathfrak{L}_l(\mathbb{R})) \subseteq \nabla L$	USC	USC(<i>L</i>)	
	$m{F}: \mathfrak{L}(\mathbb{R}) ightarrow \mathfrak{C}L$ t. $F(\mathfrak{L}_{\iota}(\mathbb{R})) \subseteq abla L$		LSC(<i>L</i>)	
	$ar{F}:\mathfrak{L}(\mathbb{R}) o\mathfrak{C}L$ t. $F(\mathfrak{L}(\mathbb{R}))\subseteq abla L$		C(<i>L</i>)	
		C(1)		(1)

 $C(L) = USC(L) \cap LSC(L)$

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
Continuous function	s			
• F	$\exists:\mathfrak{L}(\mathbb{R}) ightarrow\mathfrak{C}L$	general	F(<i>L</i>)	
	$F: \mathfrak{L}(\mathbb{R}) \to \mathfrak{C}L$ t. $F(\mathfrak{L}_{l}(\mathbb{R})) \subseteq \nabla L$	USC	USC(<i>L</i>)	
	$F:\mathfrak{L}(\mathbb{R}) o\mathfrak{C}L$ t. $F(\mathfrak{L}_d(\mathbb{R}))\subseteq abla L$		LSC(<i>L</i>)	
	$egin{aligned} & oldsymbol{\in} \mathfrak{L}(\mathbb{R}) o \mathfrak{C}L \ & ext{t. } F(\mathfrak{L}(\mathbb{R})) \subseteq abla L \end{aligned}$		C(L)	
		\sim (1)		

 $C(L) = USC(L) \cap LSC(L)$

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
Continuous function	s			
• /	$\exists:\mathfrak{L}(\mathbb{R}) ightarrow\mathfrak{C}L$	general	F(<i>L</i>)	
	$ f: \mathfrak{L}(\mathbb{R}) \to \mathfrak{C}L $ t. $F(\mathfrak{L}_{l}(\mathbb{R})) \subseteq \nabla L $	USC	USC(<i>L</i>)	
	$oldsymbol{\in}:\mathfrak{L}(\mathbb{R}) ightarrow\mathfrak{C}L$ t. $F(\mathfrak{L}_d(\mathbb{R}))\subseteq abla L$	Isc	LSC(<i>L</i>)	
	$ar{T}:\mathfrak{L}(\mathbb{R}) ightarrow\mathfrak{C} L$ t. $F(\mathfrak{L}(\mathbb{R}))\subseteq abla L$		C(<i>L</i>)	
		C(I) =	$USC(I) \cap LSC(I)$	

◆□> ◆□> ◆目> ◆目> ◆目> ○○○

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
Continuous function	S			
• /	$\exists:\mathfrak{L}(\mathbb{R}) ightarrow\mathfrak{C}L$	general	F(<i>L</i>)	
	$ f: \mathfrak{L}(\mathbb{R}) \to \mathfrak{C}L $ t. $F(\mathfrak{L}_l(\mathbb{R})) \subseteq \nabla L $	USC	USC(<i>L</i>)	
	$F: \mathfrak{L}(\mathbb{R}) \to \mathfrak{C}L$ t. $F(\mathfrak{L}_u(\mathbb{R})) \subseteq \nabla L$	Isc	LSC(<i>L</i>)	
	$ar{F}:\mathfrak{L}(\mathbb{R}) o\mathfrak{C}L,$ t. $F(\mathfrak{L}(\mathbb{R}))\subseteq abla L$		C(<i>L</i>)	
		C(L) =	$\mathrm{USC}(L)\cap\mathrm{LSC}(L)$	_)

Gutiérrez García-Kubiak-Picado Localic real functions: a general setting

▲□▶▲□▶★∃▶★∃▶ 差 のへで

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
Continuous function	S			
• /	$\exists:\mathfrak{L}(\mathbb{R}) ightarrow\mathfrak{C}L$	general	F(<i>L</i>)	
• /	$\exists:\mathfrak{L}(\mathbb{R}) ightarrow\mathfrak{C}L$	USC	USC(L)	
S.	t. $F(\mathfrak{L}_{l}(\mathbb{R})) \subseteq \nabla L$			
• /	$\exists:\mathfrak{L}(\mathbb{R}) ightarrow\mathfrak{C}L$	lsc	LSC(L)	
S.	t. $F(\mathfrak{L}_u(\mathbb{R})) \subseteq \nabla L$			
• /	$\exists:\mathfrak{L}(\mathbb{R}) ightarrow\mathfrak{C} L$	continuous	C(L)	
S.	t. $F(\mathfrak{L}(\mathbb{R})) \subseteq \nabla L$			
		C(L) =	$USC(L) \cap LSC($	L)

(ロ) (回) (E) (E) (E) (O)

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
Continuous function	15			
•	$F:\mathfrak{L}(\mathbb{R}) ightarrow\mathfrak{C} L$	general	F(<i>L</i>)	
• /	$\exists : \mathfrak{L}(\mathbb{R}) ightarrow \mathfrak{C}L$	USC	USC(L)	
	()			
5.	t. $F(\mathfrak{L}_{l}(\mathbb{R})) \subseteq \nabla L$			
•	${}^{\vdash}:\mathfrak{L}(\mathbb{R}) ightarrow\mathfrak{C} L$	Isc	LSC(L)	
		100		
S.	t. $F(\mathfrak{L}_u(\mathbb{R})) \subseteq \nabla L$			
		aantinuuuu	C(1)	
	$\exists : \mathfrak{L}(\mathbb{R}) ightarrow \mathfrak{C}L$	continuous	C(L)	
S.	t. $F(\mathfrak{L}(\mathbb{R})) \subseteq \nabla L$			
		C(L) = C(L)	$\mathrm{USC}(L)\cap\mathrm{LSC}(L)$	_)

(ロ) (回) (E) (E) (E) (O)

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
000000	00000	000	000	
Characteristic functions				

The characteristic function $\chi_{\theta} \in F(L)$:

$$\boldsymbol{\chi}_{\boldsymbol{\theta}}(-,q) = \begin{cases} 0 & \text{if } q \leq 0 \\ \theta & \text{if } 0 < q \leq 1, \\ 1 & \text{if } q > 1 \end{cases} \quad \boldsymbol{\chi}_{\boldsymbol{\theta}}(\boldsymbol{p},-) = \begin{cases} 1 & \text{if } \boldsymbol{p} < 0 \\ \neg \theta & \text{if } 0 \leq \boldsymbol{p} < 1 \\ 0 & \text{if } \boldsymbol{p} \geq 1. \end{cases}$$

• $\chi_{\theta} \in \text{USC}(L)$ if and only if θ is closed

- $\chi_{\theta} \in \mathrm{LSC}(L)$ if and only if θ is open.
- *χ*_θ ∈ C(L) if and only if θ is clopen.

イロン イロン イヨン イヨン 三油

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
000000	00000	000	000	
Characteristic functions				

The characteristic function $\chi_{\theta} \in F(L)$:

$$\chi_{\theta}(-,q) = \begin{cases} 0 & \text{if } q \leq 0 \\ \theta & \text{if } 0 < q \leq 1, \\ 1 & \text{if } q > 1 \end{cases} \begin{pmatrix} \chi_{\theta}(p,-) = \begin{cases} 1 & \text{if } p < 0 \\ \neg \theta & \text{if } 0 \leq p < 1 \\ 0 & \text{if } p \geq 1. \end{cases}$$

- $\chi_{\theta} \in \text{USC}(L)$ if and only if θ is closed.
- $\chi_{\theta} \in LSC(L)$ if and only if θ is open.
- $\chi_{\theta} \in C(L)$ if and only if θ is clopen.

イロト 不得 トイヨト イヨト 三日

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
000000	00000	000	000	
Characteristic functions				

The characteristic function $\chi_{\theta} \in F(L)$:

$$\boldsymbol{\chi}_{\boldsymbol{\theta}}(-,q) = \begin{cases} 0 & \text{if } q \leq 0 \\ \theta & \text{if } 0 < q \leq 1, \\ 1 & \text{if } q > 1 \end{cases} \quad \boldsymbol{\chi}_{\boldsymbol{\theta}}(\boldsymbol{p},-) = \begin{cases} 1 & \text{if } \boldsymbol{p} < 0 \\ \neg \theta & \text{if } 0 \leq \boldsymbol{p} < 1 \\ 0 & \text{if } \boldsymbol{p} \geq 1. \end{cases}$$

- $\chi_{\theta} \in \text{USC}(L)$ if and only if θ is closed.
- $\chi_{\theta} \in LSC(L)$ if and only if θ is open.
- $\chi_{\theta} \in C(L)$ if and only if θ is clopen.

イロト 不得 トイヨト イヨト 三日

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
000000	00000	000	000	
Characteristic functions				

The characteristic function $\chi_{\theta} \in F(L)$:

$$\chi_{\theta}(-,q) = \begin{cases} 0 & \text{if } q \leq 0 \\ \theta & \text{if } 0 < q \leq 1, \\ 1 & \text{if } q > 1 \end{cases} \begin{pmatrix} \chi_{\theta}(p,-) = \begin{cases} 1 & \text{if } p < 0 \\ \neg \theta & \text{if } 0 \leq p < 1 \\ 0 & \text{if } p \geq 1. \end{cases}$$

- $\chi_{\theta} \in \text{USC}(L)$ if and only if θ is closed.
- $\chi_{\theta} \in LSC(L)$ if and only if θ is open.
- $\chi_{\theta} \in C(L)$ if and only if θ is clopen.

イロト 不得 トイヨト イヨト 三日

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
000000	00000	000	000	
Regularization of a g	eneral real function			

$$F^{\circ}(-,q) = \bigvee_{s < q} \neg \overline{F(s,-)}$$
 and $F^{\circ}(p,-) = \bigvee_{r > p} \overline{F(r,-)}.$

$$F^{\circ} \leq F$$

$$F^{\circ \circ} = F^{\circ}$$

$$F^{\circ} \in LSC(L)$$

$$G \in LSC(L) \text{ and } G \leq F \quad \Rightarrow \quad G \leq F^{\circ}$$

$$(\chi_{\theta})^{\circ} = \chi_{\theta}^{\circ}$$

Gutiérrez García-Kubiak-Picado Localic real functions: a general setting

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
Regularization of a	general real function			

$$F^{\circ}(-,q) = \bigvee_{s < q} \neg \overline{F(s,-)}$$
 and $F^{\circ}(p,-) = \bigvee_{r > p} \overline{F(r,-)}.$

$$F^{\circ} \leq F$$

$$F^{\circ \circ} = F^{\circ}$$

$$F^{\circ} \in LSC(L)$$

$$G \in LSC(L) \text{ and } G \leq F \quad \Rightarrow \quad G \leq F^{\circ}$$

$$(\chi_{\theta})^{\circ} = \chi_{\hat{\theta}}$$

Gutiérrez García-Kubiak-Picado Localic real functions: a general setting

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
Regularization of a ge	eneral real function			

$$F^{\circ}(-,q) = \bigvee_{s < q} \neg \overline{F(s,-)}$$
 and $F^{\circ}(p,-) = \bigvee_{r > p} \overline{F(r,-)}.$

$$F^{\circ} \leq F$$

$$F^{\circ \circ} = F^{\circ}$$

$$F^{\circ} \in LSC(L)$$

$$G \in LSC(L) \text{ and } G \leq F \quad \Rightarrow \quad G \leq F^{\circ}$$

$$(\chi_{\theta})^{\circ} = \chi_{\overset{\circ}{\theta}}$$

Gutiérrez García-Kubiak-Picado Localic real functions: a general setting

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
000000	00000	000	000	
Regularization of a ge	eneral real function			

$$F^{\circ}(-,q) = \bigvee_{s < q} \neg \overline{F(s,-)}$$
 and $F^{\circ}(p,-) = \bigvee_{r > p} \overline{F(r,-)}.$

$$F^{\circ} \leq F$$

$$F^{\circ \circ} = F^{\circ}$$

$$F^{\circ} \in LSC(L)$$

$$G \in LSC(L) \text{ and } G \leq F \quad \Rightarrow \quad G \leq F^{\circ}$$

$$(\chi_{\theta})^{\circ} = \chi_{\overset{\circ}{\theta}}$$

Gutiérrez García-Kubiak-Picado Localic real functions: a general setting

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
Regularization of a ge	eneral real function			

$$F^{\circ}(-,q) = \bigvee_{s < q} \neg \overline{F(s,-)}$$
 and $F^{\circ}(p,-) = \bigvee_{r > p} \overline{F(r,-)}.$

$$\begin{array}{l} F^{\circ} \leq F \\ F^{\circ \circ} = F^{\circ} \\ F^{\circ} \in \mathrm{LSC}(\mathcal{L}) \\ G \in \mathrm{LSC}(\mathcal{L}) \text{ and } G \leq F \quad \Rightarrow \quad G \leq F^{\circ} \\ \left(\chi_{\theta}\right)^{\circ} = \chi_{\frac{\theta}{\theta}} \end{array}$$

Gutiérrez García-Kubiak-Picado Localic real functions: a general setting

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
000000	00000	000	000	
Regularization of a ge	eneral real function			

$$F^{\circ}(-,q) = \bigvee_{s < q} \neg \overline{F(s,-)}$$
 and $F^{\circ}(p,-) = \bigvee_{r > p} \overline{F(r,-)}.$

$$F^{\circ} \leq F$$

$$F^{\circ\circ} = F^{\circ}$$

$$F^{\circ} \in LSC(L)$$

$$G \in LSC(L) \text{ and } G \leq F \quad \Rightarrow \quad G \leq F^{\circ}$$

$$(\chi_{\theta})^{\circ} = \chi_{\overset{\circ}{\theta}}$$

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
000000	000000	000	000	
Regularization of a	a general real function			

$$F^{\circ}(-,q) = \bigvee_{s < q} \neg \overline{F(s,-)}$$
 and $F^{\circ}(p,-) = \bigvee_{r > p} \overline{F(r,-)}.$

$$\begin{array}{l} F^{\circ} \leq F \\ F^{\circ \circ} = F^{\circ} \\ F^{\circ} \in \mathrm{LSC}(L) \\ G \in \mathrm{LSC}(L) \text{ and } G \leq F \quad \Rightarrow \quad G \leq F^{\circ} \\ (\chi_{\theta})^{\circ} = \chi_{\overset{\circ}{\theta}} \end{array}$$

Gutiérrez García-Kubiak-Picado Localic real functions: a general setting

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
000000	000000	000	000	
Regularization of a genera	al real function			

For $F \in \overline{F}(L)$ we define the *upper regularization* F^- :

$$F^{-}(-,q) = \bigvee_{s < q} \overline{F(-,s)}$$
 and $F^{-}(p,-) = \bigvee_{r > p} \neg \overline{F(-,r)}.$

$$F \leq F^{-}$$

$$F^{--} = F^{-}$$

$$F^{-} \in USC(L)$$

$$G \in USC(L) \text{ and } F \leq G \quad \Rightarrow \quad F^{-} \leq G$$

$$(\chi_{\theta})^{-} = \chi_{\overline{\theta}}$$

Gutiérrez García-Kubiak-Picado Localic real functions: a general setting

イロン イロン イヨン イヨン 一座

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
000000	000000	000	000	
Regularization of a genera	al real function			

For $F \in \overline{F}(L)$ we define the *upper regularization* F^- :

$$F^{-}(-,q) = \bigvee_{s < q} \overline{F(-,s)}$$
 and $F^{-}(p,-) = \bigvee_{r > p} \neg \overline{F(-,r)}.$

$$F \leq F^{-}$$

$$F^{--} = F^{-}$$

$$F^{-} \in \text{USC}(L)$$

$$G \in \text{USC}(L) \text{ and } F \leq G \quad \Rightarrow \quad F^{-} \leq G$$

$$(\chi_{\theta})^{-} = \chi_{\overline{\theta}}$$

Gutiérrez García-Kubiak-Picado Localic real functions: a general setting

ヘロト ヘロト ヘヨト ヘヨト

Background 000000	Localic real-valued functions	Insertion theorems	Extension theorems	References
Achievements				

Localic real-valued functions

Achievements

< ロ > < 同 > < 回 > < 回 > <

- One can see semicontinuous functions as a particular kind of real-valued functions on the frame of congruences, with the same domain, namely L(R).
- Being all upper and lower semicontinuous functions particular kinds of real-valued functions on the frame of congruences, we can compare them.
- By considering the algebraic operations of the ring Frm(𝔅(ℝ), 𝔅L), we obtain, in particular, a way of defining the sum of upper and lower semicontinuous functions.
- The class of continuous functions is precisely the intersection of the classes of lower and upper ones.
- The situation with respect to regularization is precisely the same as in the topological setting.

Background 000000	Localic real-valued functions	Insertion theorems	Extension theorems	References
Achievements				

Localic real-valued functions

Achievements

イロト 不得 トイヨト イヨト

- One can see semicontinuous functions as a particular kind of real-valued functions on the frame of congruences, with the same domain, namely L(R).
- Being all upper and lower semicontinuous functions particular kinds of real-valued functions on the frame of congruences, we can compare them.
- By considering the algebraic operations of the ring Frm(𝔅(𝔅), 𝔅L), we obtain, in particular, a way of defining the sum of upper and lower semicontinuous functions.
- The class of continuous functions is precisely the intersection of the classes of lower and upper ones.
- The situation with respect to regularization is precisely the same as in the topological setting.

Background 000000	Localic real-valued functions	Insertion theorems	Extension theorems	References
Achievements				

Localic real-valued functions

Achievements

- One can see semicontinuous functions as a particular kind of real-valued functions on the frame of congruences, with the same domain, namely L(R).
- Being all upper and lower semicontinuous functions particular kinds of real-valued functions on the frame of congruences, we can compare them.
- By considering the algebraic operations of the ring Frm(𝔅(ℝ), 𝔅L), we obtain, in particular, a way of defining the sum of upper and lower semicontinuous functions.
- The class of continuous functions is precisely the intersection of the classes of lower and upper ones.
- The situation with respect to regularization is precisely the same as in the topological setting.

Background 000000	Localic real-valued functions	Insertion theorems	Extension theorems	References
Achievements				

Localic real-valued functions

Achievements

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

- One can see semicontinuous functions as a particular kind of real-valued functions on the frame of congruences, with the same domain, namely L(R).
- Being all upper and lower semicontinuous functions particular kinds of real-valued functions on the frame of congruences, we can compare them.
- By considering the algebraic operations of the ring Frm(𝔅(ℝ), 𝔅𝒪), we obtain, in particular, a way of defining the sum of upper and lower semicontinuous functions.
- The class of continuous functions is precisely the intersection of the classes of lower and upper ones.
- The situation with respect to regularization is precisely the same as in the topological setting.

Background 000000	Localic real-valued functions	Insertion theorems	Extension theorems	References
Achievements				

Localic real-valued functions

Achievements

- One can see semicontinuous functions as a particular kind of real-valued functions on the frame of congruences, with the same domain, namely L(R).
- Being all upper and lower semicontinuous functions particular kinds of real-valued functions on the frame of congruences, we can compare them.
- By considering the algebraic operations of the ring Frm(𝔅(ℝ), 𝔅𝒪), we obtain, in particular, a way of defining the sum of upper and lower semicontinuous functions.
- The class of continuous functions is precisely the intersection of the classes of lower and upper ones.
- The situation with respect to regularization is precisely the same as in the topological setting.

Background 000000	Localic real-valued functions	Insertion theorems	Extension theorems	References

Theorem (Katětov-Tong)

The following conditions on a frame L are equivalent:

(1) *L* is normal.

(2) For every F ∈ USC(L) and every G ∈ LSC(L) with F ≤ G, there exists H ∈ C(L) such that F ≤ H ≤ G.

Theorem (Stone)

The following conditions on a frame L are equivalent:

(1) L is extremally disconnected.

(2) $C(L) = \{F^- : F \in LSC(L)\}.$

 $(3) C(L) = \{ \mathbf{G}^\circ : \mathbf{G} \in \mathrm{USC}(L) \}.$

(4) For every F ∈ USC(L) and every G ∈ LSC(L) with G ≤ F, there exists H ∈ C(L) such that G ≤ H ≤ F.

Background 000000	Localic real-valued functions	Insertion theorems ●○○	Extension theorems	References

Theorem (Katětov-Tong)

The following conditions on a frame L are equivalent:

- (1) L is normal.
- (2) For every F ∈ USC(L) and every G ∈ LSC(L) with F ≤ G, there exists H ∈ C(L) such that F ≤ H ≤ G.

Theorem (Stone)

The following conditions on a frame L are equivalent:

- (1) L is extremally disconnected.
- (2) $C(L) = \{F^- : F \in LSC(L)\}.$
- (3) $C(L) = \{ \mathbf{G}^\circ : \mathbf{G} \in USC(L) \}.$
- (4) For every F ∈ USC(L) and every G ∈ LSC(L) with G ≤ F, there exists H ∈ C(L) such that G ≤ H ≤ F.

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References

Theorem (Katětov-Tong)

The following conditions on a frame L are equivalent:

- (1) L is normal.
- (2) For every F ∈ USC(L) and every G ∈ LSC(L) with F ≤ G, there exists H ∈ C(L) such that F ≤ H ≤ G.

Theorem (Stone)

The following conditions on a frame L are equivalent:

- (1) L is extremally disconnected.
- (2) $C(L) = \{F^- : F \in LSC(L)\}.$
- (3) $C(L) = \{ \mathbf{G}^\circ : \mathbf{G} \in USC(L) \}.$
- (4) For every $F \in USC(L)$ and every $G \in LSC(L)$ with $G \leq F$, there exists $H \in C(L)$ such that $G \leq H \leq F$.

Background	Localic real-valued functions	Insertion theorems ○●○	Extension theorems	References

Let $UL(L) = \{(F, G) \in USC(L) \times LSC(L) : F \leq G\}$ with the order $(F_1, G_1) \leq (F_2, G_2) \iff F_2 \leq F_1$ and $G_1 \leq G_2$.

Theorem (Monotone Katětov-Tong)

For a frame L, the following are equivalent:

- (1) L is monotonically normal.
- (2) There exists a monotone function Λ : UL(L) → C(L) such that F ≤ Λ(F, G) ≤ G for all (F, G) ∈ UL(L).

< ロ > < 同 > < 回 > < 回 > <

Background 000000	Localic real-valued functions	Insertion theorems ○●○	Extension theorems	References

Let $UL(L) = \{(F, G) \in USC(L) \times LSC(L) : F \leq G\}$ with the order $(F_1, G_1) \leq (F_2, G_2) \iff F_2 \leq F_1$ and $G_1 \leq G_2$.

Theorem (Monotone Katětov-Tong)

For a frame L, the following are equivalent:

- (1) L is monotonically normal.
- (2) There exists a monotone function $\Lambda : UL(L) \to C(L)$ such that $F \leq \Lambda(F, G) \leq G$ for all $(F, G) \in UL(L)$.

Background 000000	Localic real-valued functions	Insertion theorems ○○●	Extension theorems	References

Theorem

The following conditions on a frame L are equivalent:

- (1) L is completely normal.
- (2) L is hereditarily normal.
- (3) Each open sublocale of L is normal.
- (4) For every $F, G \in F(L)$, if $F^- \leq G$ and $F \leq G^\circ$, then there exists an $H \in LSC(L)$ such that $F \leq H \leq H^- \leq G$.

For each frame L the following are equivalent:

Strict insertion Michael insertion theorem for perfectly normal frames... Dowker insertion theorem for normal and countably paracompact frames...

Background 000000	Localic real-valued functions	Insertion theorems ○○●	Extension theorems	References

Theorem

The following conditions on a frame L are equivalent:

- (1) L is completely normal.
- (2) L is hereditarily normal.
- (3) Each open sublocale of L is normal.
- (4) For every $F, G \in F(L)$, if $F^- \leq G$ and $F \leq G^\circ$, then there exists an $H \in LSC(L)$ such that $F \leq H \leq H^- \leq G$.

For each frame L the following are equivalent:

Strict insertion

Michael insertion theorem for perfectly normal frames... Dowker insertion theorem for normal and countably

paracompact frames...

Background 000000	Localic real-valued functions	Insertion theorems ○○●	Extension theorems	References

Theorem

The following conditions on a frame L are equivalent:

- (1) L is completely normal.
- (2) L is hereditarily normal.
- (3) Each open sublocale of L is normal.
- (4) For every $F, G \in F(L)$, if $F^- \leq G$ and $F \leq G^\circ$, then there exists an $H \in LSC(L)$ such that $F \leq H \leq H^- \leq G$.

For each frame L the following are equivalent:

Strict insertion Michael insertion theorem for perfectly normal frames... Dowker insertion theorem for normal and countably paracompact frames...

Background 000000	Localic real-valued functions	Insertion theorems ○○●	Extension theorems	References

Theorem

The following conditions on a frame L are equivalent:

- (1) L is completely normal.
- (2) L is hereditarily normal.
- (3) Each open sublocale of L is normal.
- (4) For every $F, G \in F(L)$, if $F^- \leq G$ and $F \leq G^\circ$, then there exists an $H \in LSC(L)$ such that $F \leq H \leq H^- \leq G$.

For each frame L the following are equivalent:

Strict insertion Michael insertion theorem for perfectly normal frames... Dowker insertion theorem for normal and countably paracompact frames...

Background 000000	Localic real-valued functions	Insertion theorems	Extension theorems	References
Introduction				

Each $\theta \in \mathfrak{C}L$ determines a unique sublocale $S_{\theta} \subseteq L$ and a unique frame quotient $c_{\theta} \in \operatorname{Frm}(L, S_{\theta})$.

 $H \in C(L)$ is said to be a *continuous extension* of $H \in C(S_{\theta})$ if and only if the following diagram commutes

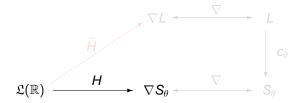
i.e. $c_{\theta} \circ \nabla \circ \widetilde{H} = \nabla \circ H$.

イロト 不得 トイヨト イヨト 三日

Background 000000	Localic real-valued functions	Insertion theorems	Extension theorems	References
Introduction				

Each $\theta \in \mathfrak{C}L$ determines a unique sublocale $S_{\theta} \subseteq L$ and a unique frame quotient $c_{\theta} \in \operatorname{Frm}(L, S_{\theta})$.

Given $H \in C(S_{\theta})$, $H \in C(L)$ is said to be a *continuous extension* of $H \in C(S_{\theta})$ if and only if the following diagram commutes

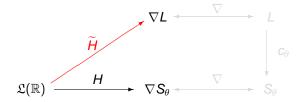


i.e. $c_{\theta} \circ \nabla \circ \widetilde{H} = \nabla \circ H$.

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
Introduction				

Each $\theta \in \mathfrak{C}L$ determines a unique sublocale $S_{\theta} \subseteq L$ and a unique frame quotient $c_{\theta} \in \operatorname{Frm}(L, S_{\theta})$.

Given $H \in C(S_{\theta})$, $\tilde{H} \in C(L)$ is said to be a *continuous extension* of $H \in C(S_{\theta})$ if and only if the following diagram commutes



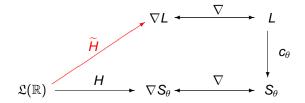
i.e. $c_{\theta} \circ \nabla \circ \widetilde{H} = \nabla \circ H$.

イロト イヨト イヨト -

Background 000000	Localic real-valued functions	Insertion theorems	Extension theorems	References
Introduction				

Each $\theta \in \mathfrak{C}L$ determines a unique sublocale $S_{\theta} \subseteq L$ and a unique frame quotient $c_{\theta} \in \operatorname{Frm}(L, S_{\theta})$.

Given $H \in C(S_{\theta})$, $\tilde{H} \in C(L)$ is said to be a *continuous extension* of $H \in C(S_{\theta})$ if and only if the following diagram commutes

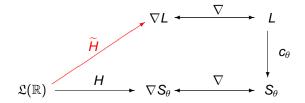


i.e. $c_{\theta} \circ \nabla \circ \widetilde{H} = \nabla \circ H$.

Background 000000	Localic real-valued functions	Insertion theorems	Extension theorems	References
Introduction				

Each $\theta \in \mathfrak{C}L$ determines a unique sublocale $S_{\theta} \subseteq L$ and a unique frame quotient $c_{\theta} \in \operatorname{Frm}(L, S_{\theta})$.

Given $H \in C(S_{\theta})$, $\tilde{H} \in C(L)$ is said to be a *continuous extension* of $H \in C(S_{\theta})$ if and only if the following diagram commutes



i.e. $c_{\theta} \circ \nabla \circ \widetilde{H} = \nabla \circ H$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Background 000000	Localic real-valued functions	Insertion theorems	Extension theorems	References

Theorem (Tietze)

The following conditions on a frame L are equivalent:

- (1) L is normal.
- (2) For each closed sublocale S of L and each H ∈ C(S), there exists a continuous extension H̃ ∈ C(L) of H.

Theorem

The following conditions on a frame L are equivalent:

- (1) L is extremally disconnected.
- (2) For each open sublocale S of L and each H ∈ C(S), there exists a continuous extension H ∈ C(L) of H.

イロト 不得 トイヨト イヨト 三日

Background 000000	Localic real-valued functions	Insertion theorems	Extension theorems ○●O	References

Theorem (Tietze)

The following conditions on a frame L are equivalent:

- (1) L is normal.
- (2) For each closed sublocale S of L and each H ∈ C(S), there exists a continuous extension H̃ ∈ C(L) of H.

Theorem

The following conditions on a frame L are equivalent:

- (1) L is extremally disconnected.
- (2) For each open sublocale S of L and each H ∈ C(S), there exists a continuous extension H ∈ C(L) of H.

ヘロン 人間 とくほ とくほ とう

Background	Localic real-valued functions	Insertion theorems	Extension theorems	References
000000	000000	000	000	

Also versions for monotone normality, perfect normality, ...

Theorem

For a frame L, the following are equivalent:

- (1) *L* is monotonically normal.
- (2) For every closed sublocale S there exists an extender $\Phi_S : \overline{C}(S) \to \overline{C}(L)$ such that for each S₁, S₂ and $H_i \in \overline{C}(S_i)$ (i = 1, 2) with $\widehat{H}_1 \leq \widehat{H}_2$ one has $\Phi_{S_1}(H_1) \leq \Phi_{S_2}(H_2)$.

Theorem

For a frame L, the following are equivalent:

(1) L is perfectly normal.

(2) For every closed sublocale S and H ∈ C
(S), there exists a continuous extension H ∈ C
(L) of H such that H
(V (p,q)) ∈ S

Background	Localic real-valued functions	Insertion theorems	Extension theorems ○O●	References

Also versions for monotone normality, perfect normality, ...

Theorem

For a frame L, the following are equivalent:

- (1) L is monotonically normal.
- (2) For every closed sublocale S there exists an extender $\Phi_{S}: \overline{C}(S) \to \overline{C}(L)$ such that for each S_1 , S_2 and $H_i \in \overline{C}(S_i)$ (i = 1, 2) with $\widehat{H}_1 \leq \widehat{H}_2$ one has $\Phi_{S_1}(H_1) \leq \Phi_{S_2}(H_2)$.

Theorem

For a frame L, the following are equivalent:

(1) L is perfectly normal.

(2) For every closed sublocale S and H ∈ C(S), there exists a continuous extension H̃ ∈ C(L) of H such that H̃(∨ (p,q)) ∈ S

Background 000000	Localic real-valued functions	Insertion theorems	Extension theorems	References

Also versions for monotone normality, perfect normality, ...

Theorem

For a frame L, the following are equivalent:

- (1) L is monotonically normal.
- (2) For every closed sublocale S there exists an extender $\Phi_{S}: \overline{C}(S) \to \overline{C}(L)$ such that for each S_1 , S_2 and $H_i \in \overline{C}(S_i)$ (i = 1, 2) with $\widehat{H}_1 \leq \widehat{H}_2$ one has $\Phi_{S_1}(H_1) \leq \Phi_{S_2}(H_2)$.

Theorem

For a frame L, the following are equivalent:

- (1) L is perfectly normal.
- (2) For every closed sublocale S and $H \in \overline{C}(S)$, there exists a continuous extension $\widetilde{H} \in \overline{C}(L)$ of H such that $\widetilde{H}(\bigvee_{p,q \in \mathbb{O}} (p,q)) \in S$.

Background 000000	Localic real-valued functions	Insertion theorems	Extension theorems	References

J. Gutiérrez García and J. Picado

On the algebraic representation of semicontinuity Journal of Pure and Applied Algebra, 210 (2007) 299–306.

J. Gutiérrez García, T. Kubiak and J. Picado

Monotone insertion and monotone extension of frame homomorphisms

Journal of Pure and Applied Algebra, 212 (2008) 955–968.

Lower and upper regularizations of frame semicontinuous real functions To appear in: Algebra Universalis (2008)

To appear in: *Algebra Universalis*, (2008).

- Pointfree forms of Dowker and Michael insertion theorems To appear in: Journal of Pure and Applied Algebra, (2008).
 - Localic real-valued functions: a general setting Submitted.

イロト 不得 トイヨト イヨト 三日