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Introduction Monotone normality without T1 Monotone normality and quasi-metrizable spaces

Why monotone normality? Separation axioms for metric spaces
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But we have more!

(1) If x ∈ U ⊆ V then G(x , U) ⊆ G(x , V )

(2) If x #= y then G(x , X \{y})∩G(y , X \{x}) = ∅
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Metric spaces are normal Separation axioms for metric spaces
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Here again we have more!:
If F1 ⊆ F2 and U1 ⊆ U2 then ∆(F1, U1) ≤ ∆(F2, U2)
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Monotonization of normality

Let X be a topological space with topology OX (and CX being the
family of all closed sets of X ), let

P = {(F , U) ∈ CX ×OX : F ⊆ U} and Q = OX .

Both P and Q carry natural orderings. Namely, ≤Q is the usual
inclusion and P is ordered by componentwise inclusion ≤P , i.e.,

(F1, U1) ≤P (F2, U2) ⇐⇒ F1 ⊆ F2 and U1 ⊆ U2.

Definition
A space X is monotonically normal if there exists a monotone
∆: P → Q such that
(∆1) F ⊆ ∆(F , U) ⊆ ∆(F , U) ⊆ U for all (F , U) ∈ P;
(∆2) if (F1, U1) ≤P (F2, U2) then ∆(F1, U1) ≤Q ∆(F2, U2).

∆ is called a monotone normality operator.
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Introduction Monotone normality without T1 Monotone normality and quasi-metrizable spaces

Equivalent formulation of monotone normality
Theorem (Borges, Heath, Lutzer, Zenor * 1970)

Let X be a topological space. The following are equivalent:
(1) X is monotonically normal.
(2) There is an assignment of an open set G(x , U) to each pair (x , U)

such that U is an open neighborhood of x, in such a way that
(i) x ∈ G(x , U) ⊆ G(x , U) ⊆ U;

(ii) if x ∈ U ⊆ V, then G(x , U) ⊆ G(x , V ).
(iii) if x #= y then G(x , X \ {y}) ∩G(y , X \ {x}) = ∅.

(3) There is an assignment of an open set H(x , U) such that
(i) x ∈ H(x , U) ⊆ U;

(ii) if H(x , U) ∩ H(y , V ) = ∅, then either x ∈ U or y ∈ U.

Proof.
(3)=⇒(2): G(x , U) =

⋃
{H(x , V )|x ∈ V ⊆ U}.

(2)=⇒(1): ∆(F , U) =
⋃
{G(x , U)|x ∈ F}.

(1)=⇒(3): H(x , U) = ∆({x}, U) ∩∆(X \ U, X \ {x}). (If X is T1!)

Monotone normality, quasi-metrizable spaces and the role of the T1 axiom
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Some properties of monotonically normal T1 spaces

• Metrizable spaces are monotonically normal.

• Linearly ordered topological spaces are monotonically normal.

• Monotone normality is hereditary.

(The proof depends on the last characterization of monotone normality,
hence it is only valid for T1 spaces.)

• Monotone version of Tietze’s theorem:

Suppose A is a closed subspace of a monotonically normal space X .
Then there is a function ΦA : C(A, [0, 1]) → C(X , [0, 1]) such that:
(1) for each f ∈ C(A, [0, 1]), ΦA(f ) extends f ;
(2) if f , g ∈ C(A, [0, 1]) and f ≤ g in A, then ΦA(f ) ≤ ΦA(g) in X .

(The proof depends on the last characterization of monotone normality,
hence it is only valid for T1 spaces.)
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Why monotone normality without T1 axiom?

(1) Monotone normality (with T1 axiom) is hereditary, while normality
is only hereditary for closed subspaces. What about monotone
normality without T1 axiom?

It is not hereditary!!

Example
Let (X , τ) an arbitrary space and Y = X ∪ {∞} with ∞ /∈ X .

Define on Y the topology τ! = τ ∪ {Y}.

X is an open, dense subspace of the monotonically normal non T1
compact space Y .

If (X , τ) fails to be monotonically normal, we have the desired
counterexample.
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Why monotone normality without T1 axiom?

(1) Heritability

(2) The Tietze-Urysohn theorem for normal spaces provides a
characterization of normal spaces for arbitrary (not necessarily
T1) spaces.

What about the monotonically normal analogue of the
Tietze-Urysohn theorem?
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Why monotone normality without T1 axiom?

(1) Heritability

(2) Tietze-Urysohn theorem

(3) Since metrizable spaces are monotonically normal (and T1)
spaces, it is natural to think that quasi-metrizable spaces could
also be monotonically normal (but not necessarily T1).

A first example of a quasi-metrizable (but not metrizable) space
is the Sorgenfrey line, and it is indeed monotonically normal.

However, the Sorgenfrey plane is also quasi-metrizable but not
even normal.

Hence it is natural to try to find which quasi-metrizable spaces
are monotonically normal.
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Monotone normality without T1

Every topological X induces, in a natural way, a partial order ≤ on X
(called the specialization order) defined by y ≤ x ⇐⇒ y ∈ {x}.

For each x ∈ X we shall also denote ↓x = {y ∈ X : y ≤ x} = {x}.

Theorem
Let X be a topological space. The following are equivalent:
(1) X is monotonically normal;
(2) There is an assignment of an open set H(x , U) to each pair (x , U)

such that U is an open neighborhood of ↓x, in such a way that
(i) ↓x ∈ H(x , U) ⊆ H(x , U) ⊆ U;

(ii) if x ≤ y and U ⊆ V, then H(x , U) ⊆ H(y , V ).
(iii) if ↓x ∩ ↓y = ∅, then H(x , X \ ↓y) ∩ H(y , X↓x) = ∅.

J.G.G., I. Mardones-Pérez and M.A. de Prada Vicente, Monotone
normality free of T1 axiom, Acta Math. Hungar., (2009).

Monotone normality, quasi-metrizable spaces and the role of the T1 axiom



Introduction Monotone normality without T1 Monotone normality and quasi-metrizable spaces

Monotone normality without T1

Every topological X induces, in a natural way, a partial order ≤ on X
(called the specialization order) defined by y ≤ x ⇐⇒ y ∈ {x}.

For each x ∈ X we shall also denote ↓x = {y ∈ X : y ≤ x} = {x}.

Theorem
Let X be a topological space. The following are equivalent:
(1) X is monotonically normal;
(2) There is an assignment of an open set H(x , U) to each pair (x , U)

such that U is an open neighborhood of ↓x, in such a way that
(i) ↓x ∈ H(x , U) ⊆ H(x , U) ⊆ U;

(ii) if x ≤ y and U ⊆ V, then H(x , U) ⊆ H(y , V ).
(iii) if ↓x ∩ ↓y = ∅, then H(x , X \ ↓y) ∩ H(y , X↓x) = ∅.

J.G.G., I. Mardones-Pérez and M.A. de Prada Vicente, Monotone
normality free of T1 axiom, Acta Math. Hungar., (2009).

Monotone normality, quasi-metrizable spaces and the role of the T1 axiom



Introduction Monotone normality without T1 Monotone normality and quasi-metrizable spaces

Monotone normality without T1

Every topological X induces, in a natural way, a partial order ≤ on X
(called the specialization order) defined by y ≤ x ⇐⇒ y ∈ {x}.

For each x ∈ X we shall also denote ↓x = {y ∈ X : y ≤ x} = {x}.

Theorem
Let X be a topological space. The following are equivalent:
(1) X is monotonically normal;
(2) There is an assignment of an open set H(x , U) to each pair (x , U)

such that U is an open neighborhood of ↓x, in such a way that
(i) ↓x ∈ H(x , U) ⊆ H(x , U) ⊆ U;

(ii) if x ≤ y and U ⊆ V, then H(x , U) ⊆ H(y , V ).
(iii) if ↓x ∩ ↓y = ∅, then H(x , X \ ↓y) ∩ H(y , X↓x) = ∅.

J.G.G., I. Mardones-Pérez and M.A. de Prada Vicente, Monotone
normality free of T1 axiom, Acta Math. Hungar., (2009).

Monotone normality, quasi-metrizable spaces and the role of the T1 axiom



Introduction Monotone normality without T1 Monotone normality and quasi-metrizable spaces

Monotone normality without T1 Consequences: Heritability

As a corollary of the previous characterization, and in connection with
hereditary monotone normality we have the following:

Facts

(1) Monotone normality is a weakly hereditary property (any closed
subspace of a monotonically normal space is monotonically
normal), but not hereditary.

(2) Monotone normality is hereditary under the assumption of the T1
axiom.

(3) A space X is hereditarily monotonically normal if and only if every
open subspace of X is monotonically normal.

Monotone normality, quasi-metrizable spaces and the role of the T1 axiom
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Monotone normality without T1 Consequences: Tietze-type theorem

As a second corollary of the characterization, we can conclude that
the monotone version of the Tietze’s result is still valid for monotone
normality in the T1-free context.

Theorem
Let X be a monotonically normal space. Then for each closed A ⊆ X
there exists a function ΦA : C(A, [0, 1]) → C(X , [0, 1]) such that:
(1) for each f ∈ C(A, [0, 1]), ΦA(f ) extends f ;
(2) if f , g ∈ C(A, [0, 1]) and f ≤ g in A, then ΦA(f ) ≤ ΦA(g) in X .
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Monotone normality without T1 Consequences: Tietze-type theorem

Even more, the following characterization proved in:
I.S. Stares, Monotone normality and extension of functions, (1995)
remain valid in the T1-free context.

Theorem
A space X is monotonically normal iff for each closed A ⊆ X there
exists a function ΦA : C(A, [0, 1]) → C(X , [0, 1]) such that:
(1) for each f ∈ C(A, [0, 1]), ΦA(f ) extends f ;
(2) if f , g ∈ C(A, [0, 1]) and f ≤ g in A, then ΦA(f ) ≤ ΦA(g) in X .
(3) If A1 ⊆ A2 are closed and fi ∈ C(Ai , [0, 1]) are such that f2|A1 ≥ f1

and f2(x) = 1 for any x ∈ A2 \ A1, then ΦA2(f2) ≥ ΦA1(f1).
(4) If A1 ⊆ A2 are closed and fi ∈ C(Ai , [0, 1]) are such that f2|A1 ≤ f1

and f2(x) = 0 for any x ∈ A2 \ A1, then ΦA2(f2) ≤ ΦA1(f1).
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Quasi-metrizable spaces

Let X be a non-empty set. A map d : X × X → [0,+∞) is a
quasi-metric if the following two conditions hold for all x , y , z ∈ X :
(QM1) d(x , y) = d(y , x) = 0 if and only if x = y ;
(QM2) d(x , y) ≤ d(x , z) + d(z, y).

Every quasi-metric d on X generates a T0 topology τd which has as a
base the family of d-balls.
A topological space (X , τ) is said to be quasi-metrizable if there
exists a quasi-metric d on X such that τ = τd .

A quasi-metric space (X , d) is T1 iff the following is satisfied:

d(x , y) = 0 ⇒ x = y (T1)

The specialization order ≤d on X is given by

y ≤d x ⇐⇒ d(y , x) = 0 ⇐⇒ y ∈ {x}.
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Quasi-metrizable spaces Normality

As we have already mentioned, metrizable spaces are monotonically
normal and, of course, satisfy the T1-axiom.

However, it is not so easy to establish whether a quasi-metrizable
space is normal or not.

It is well known that not all quasi-metrizable spaces are normal, a
typical example being the Sorgenfrey plane.

It is natural to think then about the question of which quasi-metrizable
spaces are normal, or perhaps monotonically normal.
In this sense it could be mentioned, citing from:
P.M. Gartside, Cardinal invariants of monotonically normal spaces,
(1997)

“Whenever a space can be explicitly and constructively
shown to be normal, then it is probably monotonically
normal.”

Monotone normality, quasi-metrizable spaces and the role of the T1 axiom
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Quasi-metrizable spaces Characterization for T1 spaces

If the quasi-metric space is T1 we have the following characterization:

Theorem

Let (X , d) be a T1 quasi-metric space. The following are equivalent:
(1) (X , τd ) is monotonically normal;
(2) There exists a map h : X × (0,+∞) → (0,+∞) such that:

(h1) 0 < h(x , ε) ≤ ε;
(h2) if ε1 < ε2, then h(x , ε1) ≤ h(x , ε2);
(h3) if x #= y, then Bd(x , h(x , d(x , y))) ∩ Bd(y , h(y , d(y , x))) = ∅.

Corollary

Let (X , d) be a T1 quasi-metric space satisfying:

x #= y =⇒ Bd (x , k · d(x , y)) ∩ Bd (y , k · d(y , x)) = ∅ (∗)

for some k ∈ (0, 1]. Then (X , τd ) is monotonically normal.
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Corollary
Let (X , d) be a T1 quasi-metric space satisfying:

x #= y =⇒ Bd (x , k · d(x , y)) ∩ Bd (y , k · d(y , x)) = ∅ (∗)

for some k ∈ (0, 1]. Then (X , τd ) is monotonically normal.

Examples
• If d is a metric, then condition (∗) is satisfied with k = 1

2 .

• If d is a the Sorgenfrey quasi-metric on R
(d(x , y) = min{y − x , 1} if x ≤ y and d∗(x , y) = 1 otherwise),
then condition (∗) is satisfied with k = 1.

• The Michael line.

• . . .
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Quasi-metrizable spaces Sufficient condition

Finally, we can also provide a sufficient condition for a quasi-metric
space to be monotonically normal:

Theorem

Let (X , d) be a quasi-metric space satisfying:

Bd
(
x ′, d(x ′,y)

2

)
∩ Bd

(
y ′, d(y ′,x)

2

)
= ∅ ∀x ′ ≤ x , y ′ ≤ y . (∗)

Then (X , τd ) is monotonically normal.

Note that if d is indeed a metric, the condition (∗) above is obviously
satisfied. In fact, this is precisely the Hausdorff condition.
In this case the previous proposition is, once again, nothing but the
well known fact that metrizable spaces are monotonically normal.
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Theorem

Let (X , d) be a quasi-metric space satisfying:

Bd
(
x ′, d(x ′,y)

2

)
∩ Bd

(
y ′, d(y ′,x)

2

)
= ∅ ∀x ′ ≤ x , y ′ ≤ y . (∗)

Then (X , τd ) is monotonically normal.

Examples
• The reals with the right-order topology (Kolmogorov line).

• The set of (closed) formal balls BX of a metric space endowed
with the Scott topology.

• The domain of words Σ∞.

• The interval domain I([0, 1]).

• The complexity (quasi-metric) space (C, dC).

• . . .
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