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But we have more! (1) If x € U C V then G(x, U) C G(x, V)
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Here again we have more!:
If Fy C Fp and U; C Us then A(Fy, Uy) < A(Fo, Us)
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Introduction

Monotonization of normality

Let X be a topological space with topology O X (and CX being the
family of all closed sets of X), let

P={(F,U)eCXxOX:FCU} and Q=O0X.

Both P and Q carry natural orderings. Namely, <q is the usual
inclusion and P is ordered by componentwise inclusion <p, i.e.,

(F1, U1) <p (FQ, U2) < F1 - F2 and U1 - U2.
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Monotonization of normality

Let X be a topological space with topology O X (and C X being the
family of all closed sets of X), let

P={(F.U) eCXxOX:FCU} and Q=OX.

Both P and Q carry natural orderings. Namely, <q is the usual
inclusion and P is ordered by componentwise inclusion <p, i.e.,

(F1,U1) <p (Fo,Up) <= Fy C F,and Uy C Us.

Definition

A space X is monotonically normal if there exists a monotone
A: P — Qsuch that

(A1) FCA(F,U)CA(F,U)C U forall (F,U) € P;

(A2) if (F1, Uy) <p (Fz, Uz) then A(Fy, Uy) <q A(F, Us).
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Monotonization of normality

Let X be a topological space with topology O X (and C X being the
family of all closed sets of X), let

P={(F,U)eCXxOX:FCU} and Q=O0X.

Both P and Q carry natural orderings. Namely, <q is the usual
inclusion and P is ordered by componentwise inclusion <p, i.e.,

(F1,U1) <p (Fo,Up) <= Fy C F,and Uy C Us.

Definition

A space X is monotonically normal if there exists a monotone
A: P — Qsuch that

(A1) FCA(F,U)CA(F,U)C U forall (F,U) € P;

(A2) if (F1, Uy) <p (Fz, Uz) then A(Fy, Uy) <q A(F, Us).

A is called a monotone normality operator.
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Equivalent formulation of monotone normality

Theorem (Borges, Heath, Lutzer, Zenor ~ 1970)
Let X be a topological space. The following are equivalent:

(1) X is monotonically normal.

(2) There is an assignment of an open set G(x, U) to each pair (x, U)
such that U is an open neighborhood of x, in such a way that

(i) x € G(x,U) C G(x,U) C U;
(ii) ifx e U C V, then G(x, U) C G(x, V).
(iii) ifx # y then G(x, X\ {y}) N G(y, X\ {x}) = .
(3) There is an assignment of an open set H(x, U) such that
(i) x € H(x,U) C U;
(i) ifH(x,U)Nn H(y, V) = @, then eitherx € Uory € U.

Monotone normality, quasi-metrizable spaces and the role of the Ty axiom



Introduction Monotone normality without T4 Monotone normality and quasi-metrizable spaces

Equivalent formulation of monotone normality

Theorem (Borges, Heath, Lutzer, Zenor ~ 1970)
Let X be a topological space. The following are equivalent:

(1) X is monotonically normal.

(2) There is an assignment of an open set G(x, U) to each pair (x, U)
such that U is an open neighborhood of x, in such a way that

(i) x € G(x,U) C G(x,U) C U;
(ii) ifx e U C V, then G(x, U) C G(x, V).
(iii) ifx # y then G(x, X\ {y}) N G(y, X\ {x}) = .
(3) There is an assignment of an open set H(x, U) such that
(i) x € H(x,U) C U;
(i) ifH(x,U)Nn H(y, V) = @, then eitherx € Uory € U.

Proof.
(38)=(2): G(x, U) = J{H(x, V)|x € V C U}.

O
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Equivalent formulation of monotone normality

Theorem (Borges, Heath, Lutzer, Zenor ~ 1970)
Let X be a topological space. The following are equivalent:

(1) X is monotonically normal.

(2) There is an assignment of an open set G(x, U) to each pair (x, U)
such that U is an open neighborhood of x, in such a way that

(i) x € G(x,U) C G(x,U) C U;
(ii) ifx e U C V, then G(x, U) C G(x, V).
(iii) ifx # y then G(x, X\ {y}) N G(y, X\ {x}) = .
(3) There is an assignment of an open set H(x, U) such that
(i) x € H(x,U) C U;
(i) ifH(x,U)Nn H(y, V) = @, then eitherx € Uory € U.

Proof.
(B)=(2): G(x,U) =J{H(x, V)|x e V C U}.
(2)=(1): A(F,U) = U{G(x,U)|x € F}.
O
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Equivalent formulation of monotone normality

Theorem (Borges, Heath, Lutzer, Zenor ~ 1970)
Let X be a topological space. The following are equivalent:

(1) X is monotonically normal.

(2) There is an assignment of an open set G(x, U) to each pair (x, U)
such that U is an open neighborhood of x, in such a way that

(i) x € G(x,U) C G(x,U) C U;
(ii) ifx e U C V, then G(x, U) C G(x, V).
(iii) ifx # y then G(x, X\ {y}) N G(y, X\ {x}) = .
(3) There is an assignment of an open set H(x, U) such that
(i) x € H(x,U) C U;
(i) ifH(x,U)Nn H(y, V) = @, then eitherx € Uory € U.

Proof.

(B)=(2): G(x,U) =J{H(x, V)|x e V C U}.

(2)=(1): A(F,U) = U{G(x,U)|x € F}.

(1)=(3): H(x,U) = A({x}, U)n A(X\ U, X\ {x}). O
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Equivalent formulation of monotone normality

Theorem (Borges, Heath, Lutzer, Zenor ~ 1970)
Let X be a T; topological space. The following are equivalent:

(1) X is monotonically normal.

(2) There is an assignment of an open set G(x, U) to each pair (x, U)
such that U is an open neighborhood of x, in such a way that

(i) x € G(x,U) C G(x,U) C U;
(ii) ifx e U C V, then G(x, U) C G(x, V).
(iii) ifx # y then G(x, X\ {y}) N G(y, X\ {x}) = .
(3) There is an assignment of an open set H(x, U) such that
(i) x € H(x,U) C U;
(i) ifH(x,U)Nn H(y, V) = @, then eitherx € Uory € U.

Proof.

(B)=(2): G(x,U) =J{H(x, V)|x e V C U}.

(2=(1): A(F,U) =U{G(x,U)|x € F}.

(1) =(@3): H(x,U) = A{x},U)n AX\ U, X\ {x}). (If Xis T4!) O
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Some properties of monotonically normal T; spaces

o Metrizable spaces are monotonically normal.
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Some properties of monotonically normal T; spaces

o Metrizable spaces are monotonically normal.
o Linearly ordered topological spaces are monotonically normal.

o Monotone normality is hereditary.
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o Metrizable spaces are monotonically normal.
o Linearly ordered topological spaces are monotonically normal.

o Monotone normality is hereditary.

(The proof depends on the last characterization of monotone normality,
hence it is only valid for Ty spaces.)
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Some properties of monotonically normal T; spaces

o Metrizable spaces are monotonically normal.
o Linearly ordered topological spaces are monotonically normal.

o Monotone normality is hereditary.

(The proof depends on the last characterization of monotone normality,
hence it is only valid for Ty spaces.)

e Monotone version of Tietze’s theorem:

Suppose A is a closed subspace of a monotonically normal space X.
Then there is a function ®4: C(A, [0, 1]) — C(X, [0, 1]) such that:

(1) foreach f € C(A,[0,1]), ®a(f) extends f;
(2) iff,ge C(A,[0,1]) and f < gin A, then ®4(f) < d4(g) in X.
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Some properties of monotonically normal T; spaces

o Metrizable spaces are monotonically normal.
o Linearly ordered topological spaces are monotonically normal.

o Monotone normality is hereditary.

(The proof depends on the last characterization of monotone normality,
hence it is only valid for Ty spaces.)

e Monotone version of Tietze’s theorem:
Suppose A is a closed subspace of a monotonically normal space X.
Then there is a function ®4: C(A, [0, 1]) — C(X, [0, 1]) such that:
(1) foreach f € C(A,[0,1]), ®a(f) extends f;
(2) iff,ge C(A,[0,1]) and f < gin A, then ®4(f) < d4(g) in X.
(The proof depends on the last characterization of monotone normality,
hence it is only valid for T; spaces.)

Monotone normality, quasi-metrizable spaces and the role of the Ty axiom



Introduction Monotone normality without T4 Monotone normality and quasi-metrizable spaces

Why monotone normality without 7; axiom?

(1) Monotone normality (with Ty axiom) is hereditary, while normality
is only hereditary for closed subspaces. What about monotone
normality without 7; axiom?
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is only hereditary for closed subspaces. What about monotone
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Why monotone normality without 7; axiom?

(1) Monotone normality (with Ty axiom) is hereditary, while normality
is only hereditary for closed subspaces. What about monotone
normality without 7; axiom?

It is not hereditary!!

Example
Let (X, 7) an arbitrary space and Y = X U {co} with co ¢ X.
Define on Y the topology 7 =7 U {Y}.

X is an open, dense subspace of the monotonically normal non T;
compact space Y.

If (X, 7) fails to be monotonically normal, we have the desired
counterexample.
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Why monotone normality without 7; axiom?

(1) Heritability
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Why monotone normality without 7; axiom?

(1) Heritability
(2) The Tietze-Urysohn theorem for normal spaces provides a

characterization of normal spaces for arbitrary (not necessarily
T1) spaces.
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Why monotone normality without 7; axiom?

(1) Heritability

(2) The Tietze-Urysohn theorem for normal spaces provides a
characterization of normal spaces for arbitrary (not necessarily
T1) spaces.

What about the monotonically normal analogue of the
Tietze-Urysohn theorem?
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Why monotone normality without 7; axiom?

(1) Heritability

(2) Tietze-Urysohn theorem
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Why monotone normality without 7; axiom?

(1) Heritability
(2) Tietze-Urysohn theorem

(3) Since metrizable spaces are monotonically normal (and Ty)
spaces, it is natural to think that quasi-metrizable spaces could
also be monotonically normal (but not necessarily Ty).
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Why monotone normality without 7; axiom?

(1) Heritability
(2) Tietze-Urysohn theorem

(3) Since metrizable spaces are monotonically normal (and Ty)
spaces, it is natural to think that quasi-metrizable spaces could
also be monotonically normal (but not necessarily Ty).

A first example of a quasi-metrizable (but not metrizable) space
is the Sorgenfrey line, and it is indeed monotonically normal.
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Why monotone normality without 7; axiom?

(1) Heritability
(2) Tietze-Urysohn theorem

(3) Since metrizable spaces are monotonically normal (and T;)
spaces, it is natural to think that quasi-metrizable spaces could
also be monotonically normal (but not necessarily Ty).

A first example of a quasi-metrizable (but not metrizable) space
is the Sorgenfrey line, and it is indeed monotonically normal.

However, the Sorgenfrey plane is also quasi-metrizable but not
even normal.
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Why monotone normality without 7; axiom?

(1) Heritability
(2) Tietze-Urysohn theorem

(3) Since metrizable spaces are monotonically normal (and T;)
spaces, it is natural to think that quasi-metrizable spaces could
also be monotonically normal (but not necessarily Ty).

A first example of a quasi-metrizable (but not metrizable) space
is the Sorgenfrey line, and it is indeed monotonically normal.

However, the Sorgenfrey plane is also quasi-metrizable but not
even normal.

Hence it is natural to try to find which quasi-metrizable spaces
are monotonically normal.
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Monotone normality without T;

Every topological X induces, in a natural way, a partial order < on X
(called the specialization order) defined by y < x <— y € {x}.

For each x € X we shall also denote |x = {y € X : y < x} = {x}.
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Monotone normality without T;

Every topological X induces, in a natural way, a partial order < on X
(called the specialization order) defined by y < x <— y € {x}.

For each x € X we shall also denote |x = {y € X : y < x} = {x].

Theorem
Let X be a topological space. The following are equivalent:

(1) X is monotonically normal;
(2) There is an assignment of an open set H(x, U) to each pair (x, U)
such that U is an open neighborhood of | x, in such a way that
(i) |x e H(x,U) C H(x,U) C U;
(i) ifx <yandU C V, then H(x,U) C H(y, V).
(i) iflx N ly=o,then H(x, X\ ly) N H(y,X|x) =2.
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Monotone normality without T;

Every topological X induces, in a natural way, a partial order < on X
(called the specialization order) defined by y < x <— y € {x}.

For each x € X we shall also denote |x = {y € X : y < x} = {x].

Theorem
Let X be a topological space. The following are equivalent:
(1) X is monotonically normal;

(2) There is an assignment of an open set H(x, U) to each pair (x, U)
such that U is an open neighborhood of | x, in such a way that
(i) |x e H(x,U) C H(x,U) C U;
(i) ifx <yandU C V, then H(x,U) C H(y, V).
(i) iflx N ly=o,then H(x, X\ ly) N H(y,X|x) =2.

Q J.G.G., |. Mardones-Pérez and M.A. de Prada Vicente, Monotone
normality free of Ty axiom, Acta Math. Hungar., (2009).
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(Lo a o] (oTa W Teld EIIIWAVIGIITIMEE  Consequences: Heritability

As a corollary of the previous characterization, and in connection with
hereditary monotone normality we have the following:
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(Lo a o] (oTa W Teld EIIIWAVIGIITIMEE  Consequences: Heritability

As a corollary of the previous characterization, and in connection with
hereditary monotone normality we have the following:

Facts

(1) Monotone normality is a weakly hereditary property (any closed
subspace of a monotonically normal space is monotonically
normal), but not hereditary.
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(Lo a o] (oTa W Teld EIIIWAVIGIITIMEE  Consequences: Heritability

As a corollary of the previous characterization, and in connection with
hereditary monotone normality we have the following:

Facts

(1) Monotone normality is a weakly hereditary property (any closed
subspace of a monotonically normal space is monotonically
normal), but not hereditary.

(2) Monotone normality is hereditary under the assumption of the T;
axiom.
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(Lo a o] (oTa W Teld EIIIWAVIGIITIMEE  Consequences: Heritability

As a corollary of the previous characterization, and in connection with
hereditary monotone normality we have the following:

Facts

(1) Monotone normality is a weakly hereditary property (any closed
subspace of a monotonically normal space is monotonically
normal), but not hereditary.

(2) Monotone normality is hereditary under the assumption of the T;
axiom.

(3) A space X is hereditarily monotonically normal if and only if every
open subspace of X is monotonically normal.

v
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1| leTaTo] oTo [-WTelg )y EVI\AV/ G [e1T| PR Consequences: Tietze-type theorem

As a second corollary of the characterization, we can conclude that
the monotone version of the Tietze’s result is still valid for monotone
normality in the T-free context.

Theorem

Let X be a monotonically normal space. Then for each closed A C X
there exists a function ®4: C(A,[0,1]) — C(X, [0, 1]) such that:

(1) foreach f e C(A,[0,1]), ®a(f) extends f;
(2) iff,ge C(A[0,1]) and f < ginA, then ®4(f) < da(g) in X.
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1| leTaTo] oTo [-WTelg )y EVI\AV/ G [e1T| PR Consequences: Tietze-type theorem

Even more, the following characterization proved in:
I.S. Stares, Monotone normality and extension of functions, (1995)
remain valid in the T;-free context.

Theorem

A space X is monotonically normal iff for each closed A C X there

exists a function 4. C(A,[0,1]) — C(X,[0,1]) such that:

(1) foreachf e C(A,[0,1]), ®a(f) extends f;

(2) iff,ge C(A[0,1]) and f < ginA, then ®4(f) < da(g) in X.

(8) If Ay C Ay are closed and f; € C(A,[0,1]) are such that 2|4, > f
and K(x) =1 forany x € Ax \ A1, then ®4,(f) > ®4,(fr).

(4) If Ay C Ay are closed and f; € C(A;,[0,1]) are such that >4, < f
and K(x) = 0 forany x € Ax \ A1, then ®4,(f) < ®4,(fr).
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Quasi-metrizable spaces

Let X be a non-empty set. Amap d: X x X — [0, +o0) is a
quasi-metric if the following two conditions hold for all x, y,z € X:

(QM1) d(x,y)=d(y,x) =0ifand only if x = y;
(QM2) d(x,y) < d(x,2) + d(z,y).
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Let X be a non-empty set. Amap d: X x X — [0,+00) is a
quasi-metric if the following two conditions hold for all x, y,z € X:

(QM1) d(x,y) =d(y,x) =0ifand only if x = y;

(QM2) d(x,y) < d(x,z)+d(z,y).

Every quasi-metric d on X generates a T, topology 74 which has as a
base the family of d-balls.

A topological space (X, 7) is said to be quasi-metrizable if there
exists a quasi-metric d on X such that 7 = 4.
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Quasi-metrizable spaces

Let X be a non-empty set. Amap d: X x X — [0,+00) is a
quasi-metric if the following two conditions hold for all x, y,z € X:

(QM1) d(x,y) =d(y,x) =0ifand only if x = y;

(QM2) d(x,y) < d(x,z)+d(z,y).

Every quasi-metric d on X generates a T, topology 74 which has as a
base the family of d-balls.

A topological space (X, 7) is said to be quasi-metrizable if there
exists a quasi-metric d on X such that 7 = 4.

A quasi-metric space (X, d) is Ty iff the following is satisfied:

dx,y)=0 = x=y (Ty)
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Quasi-metrizable spaces

Let X be a non-empty set. Amap d: X x X — [0,+00) is a
quasi-metric if the following two conditions hold for all x, y,z € X:

(QM1) d(x,y)=d(y,x) =0ifand only if x = y;
(QM2) d(x,y) < d(x,2) + d(z,y).

Every quasi-metric d on X generates a T, topology 74 which has as a
base the family of d-balls.

A topological space (X, 7) is said to be quasi-metrizable if there
exists a quasi-metric d on X such that 7 = 4.

A quasi-metric space (X, d) is Ty iff the following is satisfied:
dix,y)=0 = x=y (T1)
The specialization order <4 on X is given by

y<gx <= dy,x)=0 < yc {x}.
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Quasi-metrizable spaces Normality

As we have already mentioned, metrizable spaces are monotonically
normal and, of course, satisfy the T;-axiom.
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Quasi-metrizable spaces Normality

As we have already mentioned, metrizable spaces are monotonically
normal and, of course, satisfy the T;-axiom.

However, it is not so easy to establish whether a quasi-metrizable
space is normal or not.

It is well known that not all quasi-metrizable spaces are normal, a
typical example being the Sorgenfrey plane.
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Quasi-metrizable spaces Normality

As we have already mentioned, metrizable spaces are monotonically
normal and, of course, satisfy the T;-axiom.

However, it is not so easy to establish whether a quasi-metrizable
space is normal or not.

It is well known that not all quasi-metrizable spaces are normal, a
typical example being the Sorgenfrey plane.

It is natural to think then about the question of which quasi-metrizable
spaces are normal, or perhaps monotonically normal.
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Quasi-metrizable spaces Normality

As we have already mentioned, metrizable spaces are monotonically
normal and, of course, satisfy the T;-axiom.

However, it is not so easy to establish whether a quasi-metrizable
space is normal or not.

It is well known that not all quasi-metrizable spaces are normal, a
typical example being the Sorgenfrey plane.

It is natural to think then about the question of which quasi-metrizable
spaces are normal, or perhaps monotonically normal.

In this sense it could be mentioned, citing from:

P.M. Gartside, Cardinal invariants of monotonically normal spaces,
(1997)

“Whenever a space can be explicitly and constructively
shown to be normal, then it is probably monotonically
normal.”
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Quasi-metrizable spaces Characterization for T; spaces

If the quasi-metric space is T; we have the following characterization:

Monotone normality, quasi-metrizable spaces and the role of the Ty axiom



Introduction Monotone normality without T4 Monotone normality and quasi-metrizable spaces

Quasi-metrizable spaces Characterization for T; spaces

If the quasi-metric space is T; we have the following characterization:

Theorem

Let (X, d) be a Ty quasi-metric space. The following are equivalent:
(1) (X, 1q) is monotonically normal;
(2) There exists a map h: X x (0,+00) — (0, +00) such that:

(hl) 0 < h(x,e) <eg;

(h2) ifer < ep, then h(x,e1) < h(x,e2);

(h3) ifx # y, then By(x, h(x, d(x,y))) N Ba(y, h(y,d(y, x))) = 2.
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Quasi-metrizable spaces Characterization for T; spaces

If the quasi-metric space is T; we have the following characterization:

Theorem

Let (X, d) be a Ty quasi-metric space. The following are equivalent:
(1) (X, 1q) is monotonically normal;
(2) There exists amap h: X x (0,+00) — (0, +00) such that:

(hl) 0 < h(x,e) <eg;

(h2) ifeq < £z, then h(x,e1) < h(X, e2);

(h3) ifx # y, then By(x, h(x, d(x,y))) N Ba(y, h(y,d(y, x))) = 2.

Corollary
Let (X, d) be a Ty quasi-metric space satisfying:
X#y g Bd(xak'd(x7y))ﬂBd(y7k'd(y,X)):'® (*)

for some k € (0,1]. Then (X, 74) is monotonically normal.
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Quasi-metrizable spaces Examples (T;)

Corollary
Let (X, d) be a Ty quasi-metric space satisfying:

x#y = Ba(x,k-d(x,y)) N By(y,k-d(y,x)) =2 (%)
for some k € (0,1]. Then (X, t4) is monotonically normal.

Examples
o If d is a metric, then condition () is satisfied with k = 1.

v
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Quasi-metrizable spaces Examples (T;)

Corollary
Let (X, d) be a Ty quasi-metric space satisfying:

x#y = Ba(x,k-d(x,y)) N By(y,k-d(y,x)) =2 (%)
for some k € (0,1]. Then (X, t4) is monotonically normal.

Examples

o If d is a metric, then condition () is satisfied with k = 1.

o If d is a the Sorgenfrey quasi-metric on R
(d(x,y) =min{y — x,1} if x < y and d*(x, y) = 1 otherwise),
then condition (x) is satisfied with k = 1.

v
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Corollary
Let (X, d) be a Ty quasi-metric space satisfying:

x#y = Ba(x,k-d(x,y)) N By(y,k-d(y,x)) =2 (%)
for some k € (0,1]. Then (X, t4) is monotonically normal.

Examples
o If d is a metric, then condition () is satisfied with k = 1.
o If d is a the Sorgenfrey quasi-metric on R
(d(x,y) =min{y — x,1} if x < y and d*(x, y) = 1 otherwise),
then condition (x) is satisfied with k = 1.

e The Michael line.

v
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Corollary
Let (X, d) be a Ty quasi-metric space satisfying:

x#y = Ba(x,k-d(x,y)) N By(y,k-d(y,x)) =2 (%)
for some k € (0,1]. Then (X, t4) is monotonically normal.

Examples
o If d is a metric, then condition () is satisfied with k = 1.
o If d is a the Sorgenfrey quasi-metric on R
(d(x,y) =min{y — x,1} if x < y and d*(x, y) = 1 otherwise),
then condition (x) is satisfied with k = 1.

e The Michael line.

v
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Quasi-metrizable spaces Sufficient condition

Finally, we can also provide a sufficient condition for a quasi-metric
space to be monotonically normal:

Monotone normality, quasi-metrizable spaces and the role of the Ty axiom



Introduction Monotone normality without T4 Monotone normality and quasi-metrizable spaces

Quasi-metrizable spaces Sufficient condition

Finally, we can also provide a sufficient condition for a quasi-metric
space to be monotonically normal:

Theorem

Let (X, d) be a quasi-metric space satisfying:

By(x', 25) N By(y, 20) =2 W <xy' <y (%)

Then (X, 14) is monotonically normal.
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Quasi-metrizable spaces Sufficient condition

Finally, we can also provide a sufficient condition for a quasi-metric
space to be monotonically normal:

Theorem

Let (X, d) be a quasi-metric space satisfying:

By (X', w) By(y', Ay X)) =g W <xy<y. (%)

Then (X, 14) is monotonically normal.

Note that if d is indeed a metric, the condition (x) above is obviously
satisfied. In fact, this is precisely the Hausdorff condition.

In this case the previous proposition is, once again, nothing but the
well known fact that metrizable spaces are monotonically normal.
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Quasi-metrizable spaces Examples (non Ty)

Theorem
Let (X, d) be a quasi-metric space satisfying:
By (X', ﬂ%) N By(y', ﬂ”z—xl) =2 VW <x,y<y. (%)

Then (X, 14) is monotonically normal.

Examples
e The reals with the right-order topology (Kolmogorov line).

v
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Theorem
Let (X, d) be a quasi-metric space satisfying:
By (X', ﬂ%) N By(y', ﬂ”z—xl) =2 VW <x,y<y. (%)

Then (X, 14) is monotonically normal.

Examples
e The reals with the right-order topology (Kolmogorov line).

o The set of (closed) formal balls BX of a metric space endowed
with the Scott topology.

v
Monotone normality, quasi-metrizable spaces and the role of the Ty axiom




Introduction Monotone normality without T4 Monotone normality and quasi-metrizable spaces

Quasi-metrizable spaces Examples (non T;)

Theorem
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By (X', ﬂ%) N By(y', ﬂ”z—xl) =2 VW <x,y<y. (%)

Then (X, 14) is monotonically normal.

Examples
e The reals with the right-order topology (Kolmogorov line).

o The set of (closed) formal balls BX of a metric space endowed
with the Scott topology.

e The domain of words X°.
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Theorem
Let (X, d) be a quasi-metric space satisfying:
By (X', ﬂ%) N By(y', ﬂ”z—xl) =2 VW <x,y<y. (%)

Then (X, 14) is monotonically normal.

Examples
e The reals with the right-order topology (Kolmogorov line).

o The set of (closed) formal balls BX of a metric space endowed
with the Scott topology.

e The domain of words X°.

e The interval domain /([0, 1]).
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Quasi-metrizable spaces Examples (non T;)

Theorem
Let (X, d) be a quasi-metric space satisfying:
By (X', ﬂ%) N Bd(y’,ﬂyzl—”‘l) =g W <xy <y. (%)

Then (X, 14) is monotonically normal.

Examples
e The reals with the right-order topology (Kolmogorov line).

The set of (closed) formal balls BX of a metric space endowed
with the Scott topology.

The domain of words ~°°.
The interval domain ([0, 1]).

The complexity (quasi-metric) space (C, dc).

o
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