On extended real valued functions in pointfree topology

Javier Gutiérrez García
Departament of Mathematics, UPV-EHU
(joint work with Jorge Picado (Coimbra))

VI Portuguese Category Seminar July 23, 2009

Background: the frame of reals $\mathfrak{L}(\mathbb{R})$

$$
\mathfrak{L}(\mathbb{R})=\operatorname{FRM}\langle(p, q) p, q \in \mathbb{Q}|
$$

(R1) $(p, q) \wedge(r, s)=(p \vee r, q \wedge s)$
(R2) $p \leq r<q \leq s \quad \Longrightarrow \quad(p, q) \vee(r, s)=(p, s)$
(R3) $\quad(p, q)=\bigvee\{(r, s) \mid p<r<s<q\}$
(R4) $\bigvee\{(p, q) \mid p, q \in \mathbb{Q}\}=1\rangle$.
B. Banaschewski and C. J. Mulvey,

Stone-Čech compactification of locales II, J. Pure Appl. Algebra 33 (1984) 107-122.
B. Banaschewski,

The real numbers in pointfree topology,
Textos de Matemática, Série B, 12, Univ. de Coimbra, 1997.

Background: the commutative f-ring $\mathcal{R} L$

$$
\mathcal{R} L=\operatorname{Frm}(\mathfrak{L}(\mathbb{R}), L)
$$

B. Banaschewski,

The real numbers in pointfree topology, Textos de Matemática, Série B, 12, Univ. de Coimbra, 1997.

Background: the commutative f-ring $\mathrm{C}(L)$

We shall denote by $\mathrm{C}(L)$ the set of all continuous real functions on L :

$$
\mathrm{C}(L)=\operatorname{Frm}(\mathfrak{L}(\mathbb{R}), L)
$$

Background: the commutative f-ring $\mathrm{C}(L)$

We shall denote by $C(L)$ the set of all continuous real functions on L :

$$
\mathrm{C}(L)=\operatorname{Frm}(\mathfrak{L}(\mathbb{R}), L)
$$

Algebraic operations

Let $\langle p, q\rangle=\{r \in \mathbb{Q} \mid p<r<q\}$, let $\diamond \in\{+, \cdot, \wedge, \vee\}$, and let

$$
\langle r, s\rangle \diamond\langle t, u\rangle=\{x \diamond y \mid x \in\langle r, s\rangle \text { and } y \in\langle t, u\rangle\} .
$$

Background: the commutative f-ring $\mathrm{C}(L)$

We shall denote by $C(L)$ the set of all continuous real functions on L :

$$
\mathrm{C}(L)=\operatorname{Frm}(\mathfrak{L}(\mathbb{R}), L)
$$

Algebraic operations

Let $\langle p, q\rangle=\{r \in \mathbb{Q} \mid p<r<q\}$, let $\diamond \in\{+, \cdot, \wedge, \vee\}$, and let

$$
\langle r, s\rangle \diamond\langle t, u\rangle=\{x \diamond y \mid x \in\langle r, s\rangle \text { and } y \in\langle t, u\rangle\} .
$$

Given $f_{1}, f_{2}, f \in \mathrm{C}(L)$ and $r \in \mathbb{Q}$, we define

Background: the commutative f-ring $\mathrm{C}(L)$

We shall denote by $C(L)$ the set of all continuous real functions on L :

$$
\mathrm{C}(L)=\operatorname{Frm}(\mathfrak{L}(\mathbb{R}), L)
$$

Algebraic operations

Let $\langle p, q\rangle=\{r \in \mathbb{Q} \mid p<r<q\}$, let $\diamond \in\{+, \cdot, \wedge, \vee\}$, and let

$$
\langle r, s\rangle \diamond\langle t, u\rangle=\{x \diamond y \mid x \in\langle r, s\rangle \text { and } y \in\langle t, u\rangle\} .
$$

Given $f_{1}, f_{2}, f \in \mathrm{C}(L)$ and $r \in \mathbb{Q}$, we define

$$
\left(f_{1} \diamond f_{2}\right)(p, q)=\bigvee\left\{f_{1}(r, s) \wedge f_{2}(t, u) \mid\langle r, s\rangle \diamond\langle t, u\rangle \subseteq\langle p, q\rangle\right\}
$$

Background: the commutative f-ring $\mathrm{C}(L)$

We shall denote by $C(L)$ the set of all continuous real functions on L :

$$
\mathrm{C}(L)=\operatorname{Frm}(\mathfrak{L}(\mathbb{R}), L)
$$

Algebraic operations

Let $\langle p, q\rangle=\{r \in \mathbb{Q} \mid p<r<q\}$, let $\diamond \in\{+, \cdot, \wedge, \vee\}$, and let

$$
\langle r, s\rangle \diamond\langle t, u\rangle=\{x \diamond y \mid x \in\langle r, s\rangle \text { and } y \in\langle t, u\rangle\} .
$$

Given $f_{1}, f_{2}, f \in \mathrm{C}(L)$ and $r \in \mathbb{Q}$, we define

$$
\begin{aligned}
\left(f_{1} \diamond f_{2}\right)(p, q) & =\bigvee\left\{f_{1}(r, s) \wedge f_{2}(t, u) \mid\langle r, s\rangle \diamond\langle t, u\rangle \subseteq\langle p, q\rangle\right\} \\
(-f)(p, q) & =f(-q,-p)
\end{aligned}
$$

Background: the commutative f-ring $\mathrm{C}(L)$

We shall denote by $C(L)$ the set of all continuous real functions on L :

$$
\mathrm{C}(L)=\operatorname{Frm}(\mathfrak{L}(\mathbb{R}), L)
$$

Algebraic operations

Let $\langle p, q\rangle=\{r \in \mathbb{Q} \mid p<r<q\}$, let $\diamond \in\{+, \cdot, \wedge, \vee\}$, and let

$$
\langle r, s\rangle \diamond\langle t, u\rangle=\{x \diamond y \mid x \in\langle r, s\rangle \text { and } y \in\langle t, u\rangle\} .
$$

Given $f_{1}, f_{2}, f \in \mathrm{C}(L)$ and $r \in \mathbb{Q}$, we define

$$
\begin{aligned}
\left(f_{1} \diamond f_{2}\right)(p, q) & =\bigvee\left\{f_{1}(r, s) \wedge f_{2}(t, u) \mid\langle r, s\rangle \diamond\langle t, u\rangle \subseteq\langle p, q\rangle\right\}, \\
(-f)(p, q) & =f(-q,-p), \\
\mathbf{r}(p, q) & = \begin{cases}1 & \text { if } r \in\langle p, q\rangle \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Background: the commutative f-ring $\mathrm{C}(L)$

These operations satisfy all the axioms in \mathbb{Q} so that $(\mathrm{C}(L),+, \cdot, \leq)$ becomes a commutative archimedean and strong f-ring with unit 1.

Background: the commutative f-ring $\mathrm{C}(L)$

These operations satisfy all the axioms in \mathbb{Q} so that $(\mathrm{C}(L),+, \cdot, \leq)$ becomes a commutative archimedean and strong f-ring with unit 1.

We also have the following descriptions of the partial order:

$$
\begin{aligned}
f_{1} \leq f_{2} & \Leftrightarrow f_{1}(p,-) \leq f_{2}(p,-) \quad \text { for all } p \in \mathbb{Q} \\
& \Leftrightarrow f_{2}(-, q) \leq f_{1}(-, q) \quad \text { for all } q \in \mathbb{Q} \\
& \Leftrightarrow f_{1}(r,-) \wedge f_{2}(-, r)=0 \quad \text { for all } r \in \mathbb{Q} \\
& \Leftrightarrow f_{2}(p,-) \vee f_{1}(-, q)=1 \quad \text { for all } p<q \in \mathbb{Q} .
\end{aligned}
$$

B. Banaschewski,

The real numbers in pointfree topology
Textos de Matemática, Série B, 12, Univ. de Coimbra, 1997.

Background: the sublocale lattice $\mathcal{S}(L)$

Frm locale L, subobject lattice: is a CO-FRAME

Background: the sublocale lattice $\mathcal{S}(L)$

Frm locale L, subobject lattice: is a CO-FRAME
$\mathcal{S}(L)=$ the dual FRAME

Background: the sublocale lattice $\mathcal{S}(L)$

Frm locale L, subobject lattice: is a CO-FRAME

$\mathcal{S}(L)=$ the dual FRAME

$$
\left[\begin{array}{l}
\text { for each } a \in L \\
\mathfrak{c}(a): \text { closed } \\
\mathfrak{o}(a): \text { open }
\end{array}\right.
$$

Background: the sublocale lattice $\mathcal{S}(L)$

Frm locale L, subobject lattice: is a CO-FRAME

$\mathcal{S}(L)=$ the dual FRAME

Background: the sublocale lattice $\mathcal{S}(L)$

Frm locale L, subobject lattice: is a CO-FRAME
$\mathcal{S}(L)=$ the dual FRAME
[for each $a \in L$

$$
\left.\begin{array}{l}
\mathfrak{c}(a): \text { closed } \\
\mathfrak{o}(a): \text { open }
\end{array}\right\} \text { complemented }
$$

$$
\begin{aligned}
& \bigvee_{i \in I} \mathfrak{c}\left(a_{i}\right)=\mathfrak{c}\left(\bigvee_{i \in I} a_{i}\right) \\
& \mathfrak{c}(a) \wedge \mathfrak{c}(b)=\mathfrak{c}(a \wedge b)
\end{aligned}
$$

Background: the sublocale lattice $\mathcal{S}(L)$

Frm locale L, subobject lattice: is a CO-FRAME

$\mathcal{S}(L)=$ the dual FRAME

$$
\begin{aligned}
& \bigvee_{i \in I} \mathfrak{c}\left(a_{i}\right)=\mathfrak{c}\left(\bigvee_{i \in I} a_{i}\right) \\
& \mathfrak{c}(a) \wedge \mathfrak{c}(b)=\mathfrak{c}(a \wedge b)
\end{aligned}
$$

[for each $a \in L$

$$
\left.\begin{array}{l}
\mathfrak{c}(a): \text { closed } \\
\mathfrak{o}(a): \text { open }
\end{array}\right\} \text { complemented }
$$

subframe $c L:=\{c(a): a \in L\} \simeq L$

Background: the sublocale lattice $\mathcal{S}(L)$

Frm locale L, subobject lattice: is a CO-FRAME

$$
\begin{aligned}
& \mathcal{S}(L)=\text { the dual FRAME }
\end{aligned} \quad\left[\begin{array}{c}
\text { for each } a \in L \\
\mathfrak{c}(a): \text { closed } \\
\mathfrak{o}(a): \text { open }
\end{array}\right\} \text { complemented }, ~=~ s u b f r a m e ~ c L:=\{\mathfrak{c}(a): a \in L\} \simeq,
$$

$$
\mathcal{R S}(L)=\operatorname{Frm}(\mathfrak{L}(\mathbb{R}), \mathcal{S}(L))
$$

Background: the sublocale lattice $\mathcal{S}(L)$

Frm locale L, subobject lattice: is a CO-FRAME

$$
\begin{aligned}
& \mathcal{S}(L)=\text { the dual FRAME }
\end{aligned} \quad\left[\begin{array}{c}
\text { for each } a \in L \\
\mathfrak{c}(a): \text { closed } \\
\mathfrak{o}(a): \text { open }
\end{array}\right\} \text { complemented }, ~=\left(\begin{array}{l}
\bigvee_{i \in I} \mathfrak{c}\left(a_{i}\right)=\mathfrak{c}\left(\bigvee_{i \in I} a_{i}\right) \\
\mathfrak{c}(a) \wedge \mathfrak{c}(b)=\mathfrak{c}(a \wedge b)
\end{array} \quad \text { subframe } \mathfrak{c L : = \{ \mathfrak { c } (a) : a \in L \} \simeq} .\right.
$$

$$
\mathrm{C}(\mathcal{S}(L))=\operatorname{Frm}(\mathfrak{L}(\mathbb{R}), \mathcal{S}(L))
$$

Background: the sublocale lattice $\mathcal{S}(L)$

Frm locale L, subobject lattice: is a CO-FRAME

$$
\begin{array}{ll}
\mathcal{S}(L)=\text { the dual FRAME } & {\left[\begin{array}{c}
\text { for each } a \in L \\
\mathfrak{c}(a): \text { closed } \\
\mathfrak{o}(a): \text { open }
\end{array}\right\} \text { complemented }} \\
\begin{array}{l}
\bigvee_{i \in I} \mathfrak{c}\left(a_{i}\right)=\mathfrak{c}\left(\bigvee_{i \in I} a_{i}\right) \\
\mathfrak{c}(a) \wedge \mathfrak{c}(b)=\mathfrak{c}(a \wedge b)
\end{array} & \text { subframe } \mathfrak{c L}:=\{\mathfrak{c}(a): a \in L\} \simeq
\end{array}
$$

$$
\mathrm{F}(L) \equiv \mathrm{C}(\mathcal{S}(L))=\operatorname{Frm}(\mathfrak{L}(\mathbb{R}), \mathcal{S}(L))
$$

Background: the sublocale lattice $\mathcal{S}(L)$

Frm locale L, subobject lattice: is a CO-FRAME

$$
\begin{aligned}
& \mathcal{S}(L)=\text { the dual FRAME }
\end{aligned} \quad\left[\begin{array}{c}
\text { for each } a \in L \\
\mathfrak{c}(a): \text { closed } \\
\mathfrak{o}(a): \text { open }
\end{array}\right\} \text { complemented }, ~ \begin{aligned}
& \begin{array}{l}
\bigvee_{i \in I} \mathfrak{c}\left(a_{i}\right)=\mathfrak{c}\left(\bigvee_{i \in I} a_{i}\right) \\
\mathfrak{c}(a) \wedge \mathfrak{c}(b)=\mathfrak{c}(a \wedge b)
\end{array} \\
& \text { subframe } \mathfrak{c L}:=\{\mathfrak{c}(a): a \in L\} \simeq,
\end{aligned}
$$

$$
\mathrm{F}(L) \equiv \mathrm{C}(\mathcal{S}(L))=\operatorname{Frm}(\mathfrak{L}(\mathbb{R}), \mathcal{S}(L))
$$

$$
\mathrm{C}(L)=\operatorname{Frm}(\mathfrak{L}(\mathbb{R}), L)
$$

Background: the sublocale lattice $\mathcal{S}(L)$

Frm locale L, subobject lattice: is a CO-FRAME

$$
\begin{aligned}
& \mathcal{S}(L)=\text { the dual FRAME }
\end{aligned} \quad\left[\begin{array}{c}
\text { for each } a \in L \\
\mathfrak{c}(a): \text { closed } \\
\mathfrak{o}(a): \text { open }
\end{array}\right\} \text { complemented }, ~=~ s u b f r a m e ~ c L:=\{\mathfrak{c}(a): a \in L\} \simeq,
$$

$$
\mathrm{F}(L) \equiv \mathrm{C}(\mathcal{S}(L))=\operatorname{Frm}(\mathfrak{L}(\mathbb{R}), \mathcal{S}(L))
$$

$$
\mathrm{C}(L)=\operatorname{Frm}(\mathfrak{L}(\mathbb{R}), L) \simeq\{f \in \mathrm{~F}(L) \mid f(\mathfrak{L}(\mathbb{R})) \subseteq c L\}
$$

Background: the frame of reals $\mathfrak{L}(\mathbb{R})$

$$
\begin{aligned}
\mathfrak{L}(\mathbb{R})= & \operatorname{FRM}\langle(p, q) p, q \in \mathbb{Q}| \\
& (\text { R1) } \quad(p, q) \wedge(r, s)=(p \vee r, q \wedge s) \\
& (\text { R2) } \quad p \leq r<q \leq s \Longrightarrow \quad(p, q) \vee(r, s)=(p, s) \\
& (\text { R3 }) \quad(p, q)=\bigvee\{(r, s) \mid p<r<s<q\} \\
& (\text { R4 }) \bigvee\{(p, q) \mid p, q \in \mathbb{Q}\}=1\rangle .
\end{aligned}
$$

Background: the frame of reals $\mathfrak{L}(\mathbb{R})$

$$
\begin{aligned}
\mathfrak{L}(\mathbb{R})= & \mathrm{FRM}\langle(p, q) p, q \in \mathbb{Q}| \\
& (\mathrm{R} 1) \quad(p, q) \wedge(r, s)=(p \vee r, q \wedge s) \\
& (\mathrm{R} 2) \quad p \leq r<q \leq s \quad \Longrightarrow \quad(p, q) \vee(r, s)=(p, s) \\
& (\mathrm{R} 3) \quad(p, q)=\bigvee\{(r, s) \mid p<r<s<q\} \\
& (\mathrm{R} 4) \quad \vee\{(p, q) \mid p, q \in \mathbb{Q}\}=1\rangle \\
& (-, q):=\bigvee_{p \in \mathbb{Q}}(p, q)
\end{aligned}
$$

Background: the frame of reals $\mathfrak{L}(\mathbb{R})$

$$
\begin{aligned}
& \mathfrak{L}(\mathbb{R})= \mathrm{FRM}\langle(p, q) p, q \in \mathbb{Q}| \\
&(\mathrm{R} 1) \quad(p, q) \wedge(r, s)=(p \vee r, q \wedge s) \\
&(\mathrm{R} 2) \quad p \leq r<q \leq s \quad \Longrightarrow \quad(p, q) \vee(r, s)=(p, s) \\
&(\mathrm{R} 3) \quad(p, q)=\bigvee\{(r, s) \mid p<r<s<q\} \\
&(\mathrm{R} 4) \quad \vee\{(p, q) \mid p, q \in \mathbb{Q}\}=1\rangle . \\
&(-, q):=\bigvee_{p \in \mathbb{Q}}(p, q) \\
& \mathfrak{L} /(\mathbb{R})=\langle(-, q) \mid q \in \mathbb{Q}\rangle
\end{aligned}
$$

Background: the frame of reals $\mathfrak{L}(\mathbb{R})$

$$
\begin{aligned}
& \mathfrak{L}(\mathbb{R})= \mathrm{FRM}\langle(p, q) p, q \in \mathbb{Q}| \\
&(\mathrm{R} 1) \quad(p, q) \wedge(r, s)=(p \vee r, q \wedge s) \\
&(\mathrm{R} 2) \quad p \leq r<q \leq s \Longrightarrow \quad(p, q) \vee(r, s)=(p, s) \\
&(\mathrm{R} 3) \quad(p, q)=\bigvee\{(r, s) \mid p<r<s<q\} \\
&(\mathrm{R} 4) \quad \vee\{(p, q) \mid p, q \in \mathbb{Q}\}=1\rangle . \\
&(-, q):=\bigvee_{p \in \mathbb{Q}}(p, q) \\
& \mathfrak{L}_{l}(\mathbb{R})=\langle(-, q) \mid q \in \mathbb{Q}\rangle
\end{aligned}
$$

Background: the frame of reals $\mathfrak{L}(\mathbb{R})$

$$
\begin{aligned}
\mathfrak{L}(\mathbb{R})= & \mathrm{FRM}\langle(p, q) p, q \in \mathbb{Q}| \\
& (\mathrm{R} 1) \quad(p, q) \wedge(r, s)=(p \vee r, q \wedge s) \\
& (\mathrm{R} 2) \quad p \leq r<q \leq s \Longrightarrow \quad(p, q) \vee(r, s)=(p, s) \\
& (\mathrm{R} 3) \quad(p, q)=\bigvee\{(r, s) \mid p<r<s<q\} \\
& (\mathrm{R} 4) \quad \vee\{(p, q) \mid p, q \in \mathbb{Q}\}=1\rangle . \\
& (-, q):=\bigvee_{p \in \mathbb{Q}}(p, q) \\
& (p,-):=\bigvee_{q \in \mathbb{Q}}(p, q) \\
\mathfrak{L}_{/}(\mathbb{R})=\langle(-, q) \mid q \in \mathbb{Q}\rangle & \mathfrak{L}_{u}(\mathbb{R})=\langle(p,-) \mid p \in \mathbb{Q}\rangle
\end{aligned}
$$

Background: the frame of reals $\mathfrak{L}(\mathbb{R})$

As we shall deal with frames of lower and upper reals too, we take $(r,-)$ and $(-, r)$ as primitive notions:

Background: the frame of reals $\mathfrak{L}(\mathbb{R})$

As we shall deal with frames of lower and upper reals too, we take $(r,-)$ and $(-, r)$ as primitive notions: $\mathfrak{L}(\mathbb{R})=\operatorname{FRM}\langle(p,-),(-, q) p, q \in \mathbb{Q}|$

Background: the frame of reals $\mathfrak{L}(\mathbb{R})$

As we shall deal with frames of lower and upper reals too, we take $(r,-)$ and $(-, r)$ as primitive notions: $\mathfrak{L}(\mathbb{R})=\operatorname{FRM}\langle(p,-),(-, q) p, q \in \mathbb{Q}|$
(r1) $p \geq q \quad \Longrightarrow \quad(p,-) \wedge(-, q)=0$

Background: the frame of reals $\mathfrak{L}(\mathbb{R})$

As we shall deal with frames of lower and upper reals too, we take $(r,-)$ and $(-, r)$ as primitive notions: $\mathfrak{L}(\mathbb{R})=\operatorname{FRM}\langle(p,-),(-, q) p, q \in \mathbb{Q}|$
(r1) $p \geq q \quad \Longrightarrow \quad(p,-) \wedge(-, q)=0$
(r2) $p<q \quad \Longrightarrow \quad(p,-) \vee(-, q)=1$

Background: the frame of reals $\mathfrak{L}(\mathbb{R})$

As we shall deal with frames of lower and upper reals too, we take $(r,-)$ and $(-, r)$ as primitive notions: $\mathfrak{L}(\mathbb{R})=\operatorname{FRM}\langle(p,-),(-, q) p, q \in \mathbb{Q}|$
(r1) $p \geq q \quad \Longrightarrow \quad(p,-) \wedge(-, q)=0$
(r2) $p<q \quad \Longrightarrow \quad(p,-) \vee(-, q)=1$
(r3) $\quad(p,-)=\bigvee_{r>p}(r,-)$

Background: the frame of reals $\mathfrak{L}(\mathbb{R})$

As we shall deal with frames of lower and upper reals too, we take $(r,-)$ and $(-, r)$ as primitive notions: $\mathfrak{L}(\mathbb{R})=\operatorname{FRM}\langle(p,-),(-, q) p, q \in \mathbb{Q}|$
(r1) $p \geq q \quad \Longrightarrow \quad(p,-) \wedge(-, q)=0$
(r2) $p<q \quad \Longrightarrow \quad(p,-) \vee(-, q)=1$
(r3) $\quad(p,-)=\bigvee_{r>p}(r,-)$
$(r 4) \quad(-, q)=\bigvee_{s<q}(-, s)$

Background: the frame of reals $\mathfrak{L}(\mathbb{R})$

As we shall deal with frames of lower and upper reals too, we take $(r,-)$ and $(-, r)$ as primitive notions: $\mathfrak{L}(\mathbb{R})=\operatorname{FRM}\langle(p,-),(-, q) p, q \in \mathbb{Q}|$
(r1) $p \geq q \quad \Longrightarrow \quad(p,-) \wedge(-, q)=0$
(r2) $p<q \quad \Longrightarrow \quad(p,-) \vee(-, q)=1$
(r3) $\quad(p,-)=\bigvee_{r>p}(r,-)$
$(r 4) \quad(-, q)=\bigvee_{s<q}(-, s)$
(r5) $\bigvee_{p \in \mathbb{Q}}(p,-)=1$

Background: the frame of reals $\mathfrak{L}(\mathbb{R})$

As we shall deal with frames of lower and upper reals too, we take $(r,-)$ and $(-, r)$ as primitive notions: $\mathfrak{L}(\mathbb{R})=\operatorname{FRM}\langle(p,-),(-, q) p, q \in \mathbb{Q}|$
(r1) $p \geq q \quad \Longrightarrow \quad(p,-) \wedge(-, q)=0$
(r2) $p<q \quad \Longrightarrow \quad(p,-) \vee(-, q)=1$
(r3) $\quad(p,-)=\bigvee_{r>p}(r,-)$
(r4) $\quad(-, q)=\bigvee_{s<q}(-, s)$
(r5) $\bigvee_{p \in \mathbb{Q}}(p,-)=1$
(r6) $\left.\quad \bigvee_{q \in \mathbb{Q}}(-, q)=1\right\rangle$.

Background: the frame of reals $\mathfrak{L}(\mathbb{R})$

As we shall deal with frames of lower and upper reals too, we take $(r,-)$ and $(-, r)$ as primitive notions: $\mathfrak{L}(\mathbb{R})=\operatorname{FRM}\langle(p,-),(-, q) p, q \in \mathbb{Q}|$
(r1) $p \geq q \quad \Longrightarrow \quad(p,-) \wedge(-, q)=0$
(r2) $p<q \quad \Longrightarrow \quad(p,-) \vee(-, q)=1$
(r3) $\quad(p,-)=\bigvee_{r>p}(r,-) \quad(\mathrm{r} 4) \quad(-, q)=\bigvee_{s<q}(-, s)$
(r5) $\bigvee_{p \in \mathbb{Q}}(p,-)=1$
(r6) $\left.\quad \bigvee_{q \in \mathbb{Q}}(-, q)=1\right\rangle$.
Y.-M. Li, G.-J. Wang,

Localic Katětov-Tong insertion theorem and localic Tietze extension theorem,
Comment. Math. Univ. Carolinae 38 (1997) 801-814.

Background: the frames of upper and lower reals $\mathfrak{L}_{u}(\mathbb{R})$ aand $\mathfrak{L}_{(}(\mathbb{R})$

$$
\begin{array}{rll}
& (\mathrm{r} 1) \quad p \geq q & \Longrightarrow \\
& (\mathrm{r} 2) \quad p<q \quad(p,-) \wedge(-, q)=0 \\
(\mathrm{r} 3) \quad(p,-)=\vee_{r>p}(r,-) & (\mathrm{r} 4) \quad(-, q)=\vee_{s<q}(-, s) \\
(\mathrm{r} 5) \quad \vee_{p \in \mathbb{Q}}(p,-)=1 & (\mathrm{r} 6) \quad \vee_{q \in \mathbb{Q}}(-, q)=1
\end{array}
$$

$($ With $(p, q)=(p,-) \wedge(-, q)$ one goes back to (R1)-(R4))

Background: the frames of upper and lower reals $\mathfrak{L}_{u}(\mathbb{R})$ aand $\mathfrak{L}_{(}(\mathbb{R})$

(r3) $\quad(p,-)=\bigvee_{r>p}(r,-)$
(r5) $\bigvee_{p \in \mathbb{Q}}(p,-)=1$

$$
\mathfrak{L}_{u}(\mathbb{R})=\operatorname{FRM}\langle\{(p,-) \mid p \in \mathbb{Q},(r,-) \text { satisfy }(\mathrm{r} 3) \text { and }(\mathrm{r} 5)\}\rangle
$$

Background: the frames of upper and lower reals $\mathfrak{L}_{U}(\mathbb{R})$ aand $\mathfrak{L}(\mathbb{R})$

$$
\begin{array}{ll}
(r 4) & (-, q)=\bigvee_{s<q}(-, s) \\
(r 6) & V_{q \in \mathbb{Q}}(-, q)=1
\end{array}
$$

$$
\mathcal{L}_{(}(\mathbb{R})=\operatorname{FRM}\langle\{(-, r) \mid r \in \mathbb{Q},(-, r) \text { satisfy }(\mathrm{r} 4) \text { and }(\mathrm{r} 6)\}\rangle
$$

Background: the frames of upper and lower reals $\mathfrak{L}_{u}(\mathbb{R})$ aand $\mathfrak{L}_{(}(\mathbb{R})$

$$
\begin{aligned}
& \text { (r1) } \quad p \geq q \quad \Longrightarrow \quad(p,-) \wedge(-, q)=0 \\
& \text { (r2) } p<q \quad \Longrightarrow \quad(p,-) \vee(-, q)=1 \\
& \text { (r3) } \quad(p,-)=\bigvee_{r>p}(r,-) \quad(r 4) \quad(-, q)=\bigvee_{s<q}(-, s) \\
& \text { (r5) } \quad \vee_{p \in \mathbb{Q}}(p,-)=1 \quad \text { (r6) } \quad \vee_{q \in \mathbb{Q}}(-, q)=1 \\
& \mathfrak{L}_{u}(\mathbb{R})=\operatorname{FRM}\langle\{(p,-) \mid p \in \mathbb{Q},(r,-) \text { satisfy }(\mathrm{r} 3) \text { and }(\mathrm{r} 5)\}\rangle \\
& \mathfrak{L}_{l}(\mathbb{R})=\operatorname{FRM}\langle\{(-, r) \mid r \in \mathbb{Q},(-, r) \text { satisfy (r4) and (r6) }\}\rangle
\end{aligned}
$$

Background: the frames of upper and lower reals $\mathfrak{L}_{u}(\mathbb{R})$ aand $\mathfrak{L}_{(}(\mathbb{R})$

$$
\begin{aligned}
& (\mathrm{r} 1) \quad p \geq q \\
& (\mathrm{r} 2) \quad p<q \Longrightarrow \\
(\mathrm{r} 3) \quad(p,-)=\vee_{r>p}(r,-) & (\mathrm{r} 4) \quad(-, q)=\vee_{s<q}(-, s) \\
(\mathrm{r} 5) \quad \vee_{p \in \mathbb{Q}}(p,-)=1 & (\mathrm{r} 6) \quad \vee_{q \in \mathbb{Q}}(-, q)=1
\end{aligned}
$$

$$
\begin{aligned}
\mathfrak{L}_{u}(\mathbb{R}) & =\operatorname{FRM}\langle\{(p,-) \mid p \in \mathbb{Q},(r,-) \text { satisfy }(\mathrm{r} 3) \text { and }(\mathrm{r} 5)\}\rangle \\
\mathfrak{L}_{/}(\mathbb{R}) & =\operatorname{FRM}\langle\{(-, r) \mid r \in \mathbb{Q},(-, r) \text { satisfy }(\mathrm{r} 4) \text { and }(\mathrm{r} 6)\}\rangle
\end{aligned}
$$

$$
\operatorname{LSC}(L)=\left\{f \in \mathrm{~F}(L) \mid f\left(\mathfrak{L}_{\mu}(\mathbb{R})\right) \subseteq \mathfrak{c L}\right\}
$$

Background: the frames of upper and lower reals $\mathfrak{L}_{u}(\mathbb{R})$ aand $\mathfrak{L}_{(}(\mathbb{R})$

$$
\begin{aligned}
& \text { (r1) } p \geq q \Longrightarrow \quad(p,-) \wedge(-, q)=0 \\
& \text { (r2) } p<q \quad \Longrightarrow \quad(p,-) \vee(-, q)=1 \\
& \text { (r3) } \quad(p,-)=\mathrm{V}_{r>p}(r,-) \quad(r 4) \quad(-, q)=\mathrm{V}_{s<q}(-, s) \\
& \text { (r5) } \quad \bigvee_{p \in \mathbb{Q}}(p,-)=1 \\
& \text { (r6) } \bigvee_{q \in \mathbb{Q}}(-, q)=1 \\
& \mathfrak{R}_{u}(\mathbb{R})=\operatorname{FRM}\langle\{(p,-) \mid \boldsymbol{p} \in \mathbb{Q},(r,-) \text { satisfy }(\mathrm{r} 3) \text { and }(\mathrm{r} 5)\}\rangle \\
& \mathcal{L}_{(}(\mathbb{R})=\operatorname{FRM}\langle\{(-, r) \mid r \in \mathbb{Q},(-, r) \text { satisfy }(\mathrm{r} 4) \text { and }(\mathrm{r} 6)\}\rangle \\
& \operatorname{LSC}(L)=\left\{f \in \mathrm{~F}(L) \mid f\left(\mathfrak{L}_{u}(\mathbb{R})\right) \subseteq c L\right\} \\
& \operatorname{USC}(L)=\{f \in \mathrm{~F}(L) \mid f(\mathfrak{L} /(\mathbb{R})) \subseteq \mathfrak{c} L\}
\end{aligned}
$$

Background: the frames of upper and lower reals $\mathfrak{L}_{u}(\mathbb{R})$ aand $\mathfrak{L}_{(}(\mathbb{R})$

$$
\begin{aligned}
& \text { (r1) } p \geq q \quad \Longrightarrow \quad(p,-) \wedge(-, q)=0 \\
& \text { (r2) } p<q \quad \Longrightarrow \quad(p,-) \vee(-, q)=1 \\
& \text { (r3) } \quad(p,-)=\bigvee_{r>p}(r,-) \quad(r 4) \quad(-, q)=\bigvee_{s<q}(-, s) \\
& \text { (r5) } \bigvee_{p \in \mathbb{Q}}(p,-)=1 \\
& \text { (r6) } \bigvee_{q \in \mathbb{Q}}(-, q)=1 \\
& \mathfrak{L}_{u}(\mathbb{R})=\operatorname{FRM}\langle\{(p,-) \mid p \in \mathbb{Q},(r,-) \text { satisfy }(\mathrm{r} 3) \text { and }(\mathrm{r} 5)\}\rangle \\
& \mathfrak{L}_{l}(\mathbb{R})=\operatorname{FRM}\langle\{(-, r) \mid r \in \mathbb{Q},(-, r) \text { satisfy (r4) and (r6) }\}\rangle \\
& \operatorname{LSC}(L)=\left\{f \in \mathrm{~F}(L) \mid f\left(\mathfrak{L}_{u}(\mathbb{R})\right) \subseteq \mathfrak{c} L\right\} \\
& \operatorname{USC}(L)=\{f \in \mathrm{~F}(L) \mid f(\mathfrak{L} /(\mathbb{R})) \subseteq c L\} \\
& C(L)= \\
& \operatorname{LSC}(L) \cap \operatorname{USC}(L)
\end{aligned}
$$

"The set $\mathrm{C}(X)$ of all continuous, real-valued functions on a topological space X will be provided with an algebraic structure and an order structure. Since their definitions do not involve continuity, we begin by imposing these structures on the collection \mathbb{R}^{X} of all functions from X into the set \mathbb{R} of real numbers. [...]

In fact, it is clear that \mathbb{R}^{X} is a commutative ring with unity element (provided that X is non empty). [...]

Therefore $\mathrm{C}(X)$ is a commutative ring, a subring of \mathbb{R}^{X}."
L. Gillman and M. Jerison,

Rings of Continuous Functions

$(\mathrm{C}(L),+, \cdot, \leq)$ is a commutative f-ring, a subring of $(\mathrm{F}(L),+, \cdot, \leq)$.

$(\mathrm{C}(L),+, \cdot, \leq)$ is a commutative f-ring, a subring of $(\mathrm{F}(L),+, \cdot, \leq)$.

$$
f \in \operatorname{USC}(L) \Longleftrightarrow-f \in \operatorname{LSC}(L)
$$

The posets $(\operatorname{USC}(L), \leq)$ and $(\operatorname{LSC}(L), \leq)$ are order isomorphic.

$$
\mathrm{F}(L)=\mathrm{C}(\mathcal{S}(L))
$$

$(\mathrm{C}(L),+, \cdot, \leq)$ is a commutative f-ring, a subring of $(\mathrm{F}(L),+, \cdot, \leq)$.
Question

$$
f \in \operatorname{USC}(L) \Longleftrightarrow-f \in \operatorname{LSC}(L)
$$

The posets $(\operatorname{USC}(L), \leq)$ and $(\operatorname{LSC}(L), \leq)$ are order isomorphic.
What else can be said about $(\operatorname{USC}(L),+, \cdot, \leq)$ and $(\operatorname{LSC}(L),+, \cdot, \leq)$?

Background: the frame of extended reals $\mathfrak{L}(\overline{\mathbb{R}})$

$$
\begin{aligned}
& \text { (r1) } p \geq q \quad \Longrightarrow \quad(p,-) \wedge(-, q)=0 \\
& \text { (r2) } p<q \quad \Longrightarrow \quad(p,-) \vee(-, q)=1 \\
& \text { (r3) } \quad(p,-)=\bigvee_{r>p}(r,-) \quad(r 4) \quad(-, q)=V_{s<q}(-, s) \\
& \text { (r5) } \bigvee_{p \in \mathbb{Q}}(p,-)=1 \\
& \text { (r6) } \bigvee_{q \in \mathbb{Q}}(-, q)=1
\end{aligned}
$$

$$
\mathfrak{L}(\mathbb{R})=\operatorname{FRM}\langle\{(p,-),(-, q) p, q \in \mathbb{Q},(r,-) \text { satisfy }(\mathrm{r} 1)-(\mathrm{r} 6)\}\rangle
$$

Background: the frame of extended reals $\mathfrak{L}(\overline{\mathbb{R}})$

$$
\begin{aligned}
\text { (r1) } \quad p \geq q & \Longrightarrow \quad(p,-) \wedge(-, q)=0 \\
(\mathrm{r} 2) \quad p<q & \Longrightarrow \quad(p,-) \vee(-, q)=1 \\
(\mathrm{r} 3) \quad(p,-)=\vee_{r>p}(r,-) & (\mathrm{r} 4) \quad(-, q)=\vee_{s<q}(-, s)
\end{aligned}
$$

$$
\mathfrak{L}(\overline{\mathbb{R}})=\operatorname{FRM}\langle\{(p,-),(-, q) p, q \in \mathbb{Q},(r,-) \text { satisfy }(\mathrm{r} 1)-(\mathrm{r} 4)\}\rangle
$$

Background: the frame of extended reals $\mathfrak{L}(\overline{\mathbb{R}})$

(r3) $\quad(p,-)=\bigvee_{r>p}(r,-)$

$$
\mathfrak{L}_{u}(\overline{\mathbb{R}})=\operatorname{FRM}\langle\{(p,-) \mid p \in \mathbb{Q},(r,-) \text { satisfy }(\mathrm{r} 3)\}\rangle
$$

Background: the frame of extended reals $\mathfrak{L}(\overline{\mathbb{R}})$

$$
\text { (r4) } \quad(-, q)=V_{s<q}(-, s)
$$

$$
\mathfrak{N}(\overline{\mathbb{R}})=\operatorname{FRM}\langle\{(-, r) \mid r \in \mathbb{Q},(-, r) \text { satisfy }(\mathrm{r} 4)\}\rangle
$$

Background: the frame of extended reals $\mathfrak{L}(\overline{\mathbb{R}})$

$$
\begin{aligned}
& \text { (r1) } p \geq q \quad \Longrightarrow \quad(p,-) \wedge(-, q)=0 \\
& \text { (r2) } p<q \quad \Longrightarrow \quad(p,-) \vee(-, q)=1 \\
& \text { (r3) } \quad(p,-)=\bigvee_{r>p}(r,-) \quad(r 4) \quad(-, q)=\bigvee_{s<q}(-, s) \\
& \mathfrak{L}(\overline{\mathbb{R}})=\operatorname{FRM}\langle\{(p,-),(-, q) p, q \in \mathbb{Q},(r,-) \text { satisfy }(\mathrm{r} 1)-(\mathrm{r} 4)\}\rangle \\
& \mathfrak{L}_{u}(\overline{\mathbb{R}})=\operatorname{FRM}\langle\{(p,-) \mid p \in \mathbb{Q},(r,-) \text { satisfy }(\mathrm{r} 3)\}\rangle \\
& \mathfrak{L}_{(}(\overline{\mathbb{R}})=\operatorname{FRM}\langle\{(-, r) \mid r \in \mathbb{Q},(-, r) \text { satisfy }(\mathrm{r} 4)\}\rangle
\end{aligned}
$$

Background: the frame of extended reals $\mathfrak{L}(\overline{\mathbb{R}})$

$$
\begin{aligned}
&(\mathrm{r} 1) \quad p \geq q \quad \Longrightarrow \quad(p,-) \wedge(-, q)=0 \\
&(\mathrm{r} 2) \quad p<q \Longrightarrow \quad(p,-) \vee(-, q)=1 \\
&(\mathrm{r} 3) \quad(p,-)=\bigvee_{r>p}(r,-) \quad(\mathrm{r} 4) \quad(-, q)=\bigvee_{s<q}(-, s)
\end{aligned}
$$

Background: the frame of extended reals $\mathfrak{L}(\overline{\mathbb{R}})$

$$
\begin{aligned}
& \text { (r1) } p \geq q \quad \Longrightarrow \quad(p,-) \wedge(-, q)=0 \\
& \text { (r2) } p<q \quad \Longrightarrow \quad(p,-) \vee(-, q)=1 \\
& \text { (r3) } \quad(p,-)=\bigvee_{r>p}(r,-) \quad(r 4) \quad(-, q)=\bigvee_{s<q}(-, s) \\
& \mathfrak{L}(\mathbb{\mathbb { R }})=\operatorname{FRM}\langle\{(p,-),(-, q) p, q \in \mathbb{Q},(r,-) \text { satisfy }(\mathrm{rl})-(\mathrm{r} 4)\}\rangle \\
& \mathfrak{L}_{u}(\mathbb{\mathbb { R }})=\operatorname{FRM}\langle\{(p,-) \mid p \in \mathbb{Q},(r,-) \text { satisfy }(\mathrm{r} 3)\}\rangle \\
& \mathcal{L}(\mathbb{\mathbb { R }})=\operatorname{FRM}\langle\{(-, r) \mid r \in \mathbb{Q},(-, r) \text { satisfy }(\mathrm{r} 4)\}\rangle \\
& \overline{\mathrm{F}}(L)=\operatorname{Frm}(\mathfrak{L}(\overline{\mathbb{R}}), \mathcal{S}(L)) \\
& \overline{\operatorname{LSC}}(L)=\left\{f \in \overline{\mathrm{~F}}(L) \mid f\left(\mathfrak{L}_{u}(\overline{\mathbb{R}})\right) \subseteq c L\right\}
\end{aligned}
$$

Background: the frame of extended reals $\mathfrak{L}(\overline{\mathbb{R}})$

$$
\begin{aligned}
& \text { (r1) } p \geq q \Longrightarrow(p,-) \wedge(-, q)=0 \\
& \text { (r2) } p<q \quad \Longrightarrow \quad(p,-) \vee(-, q)=1 \\
& \text { (r3) } \quad(p,-)=\bigvee_{r>p}(r,-) \quad(r 4) \quad(-, q)=\bigvee_{s<q}(-, s) \\
& \mathfrak{L}(\overline{\mathbb{R}})=\operatorname{FRM}\langle\{(p,-),(-, q) p, q \in \mathbb{Q},(r,-) \text { satisfy }(\mathrm{rl})-(\mathrm{r} 4)\}\rangle \\
& \mathfrak{L}_{u}(\mathbb{\mathbb { R }})=\operatorname{FRM}\langle\{(p,-) \mid p \in \mathbb{Q},(r,-) \text { satisfy }(\mathrm{r} 3)\}\rangle \\
& \mathcal{L}(\mathbb{\mathbb { R }})=\operatorname{FRM}\langle\{(-, r) \mid r \in \mathbb{Q},(-, r) \text { satisfy }(\mathrm{r} 4)\}\rangle \\
& \overline{\mathrm{F}}(L)=\operatorname{Frm}(\mathfrak{L}(\overline{\mathbb{R}}), \mathcal{S}(L)) \\
& \overline{\operatorname{LSC}}(L)=\left\{f \in \overline{\mathrm{~F}}(L) \mid f\left(\mathfrak{L}_{u}(\overline{\mathbb{R}})\right) \subseteq c L\right\} \\
& \overline{\operatorname{USC}}(L)=\{f \in \overline{\mathrm{~F}}(L) \mid f(\mathfrak{R} /(\mathbb{R})) \subseteq \mathfrak{c L}\}
\end{aligned}
$$

Background: the frame of extended reals $\mathfrak{L}(\overline{\mathbb{R}})$

$$
\begin{aligned}
& \text { (r1) } p \geq q \quad \Longrightarrow \quad(p,-) \wedge(-, q)=0 \\
& \text { (r2) } p<q \quad \Longrightarrow \quad(p,-) \vee(-, q)=1 \\
& \text { (r3) } \quad(p,-)=\bigvee_{r>p}(r,-) \quad(r 4) \quad(-, q)=\bigvee_{s<q}(-, s) \\
& \mathfrak{L}(\overline{\mathbb{R}})=\operatorname{FRM}\langle\{(p,-),(-, q) p, q \in \mathbb{Q},(r,-) \text { satisfy }(\mathrm{r} 1)-(\mathrm{r} 4)\}\rangle \\
& \mathfrak{L}_{u}(\overline{\mathbb{R}})=\operatorname{FRM}\langle\{(p,-) \mid p \in \mathbb{Q},(r,-) \text { satisfy }(\mathrm{r} 3)\}\rangle \\
& \mathfrak{L}_{(}(\overline{\mathbb{R}})=\operatorname{FRM}\langle\{(-, r) \mid r \in \mathbb{Q},(-, r) \text { satisfy }(\mathrm{r} 4)\}\rangle \\
& \overline{\mathrm{F}}(L)=\operatorname{Frm}(\mathfrak{L}(\overline{\mathbb{R}}), \mathcal{S}(L)) \\
& \overline{\operatorname{LSC}}(L)=\left\{f \in \overline{\mathrm{~F}}(L) \mid f\left(\mathfrak{L}_{u}(\overline{\mathbb{R}})\right) \subseteq c L\right\} \\
& \overline{\operatorname{LSC}}(L) \cap \overline{\operatorname{USC}(L)} \\
& \overline{\operatorname{USC}}(L)=\left\{f \in \overline{\mathrm{~F}}(L) \mid f\left(\mathfrak{R}_{\mathcal{L}}(\mathbb{R})\right) \subseteq \mathfrak{c L}\right\}
\end{aligned}
$$

J. Gutiérrez García

On extended real valued functions in pointfree topology

Background: generating frame homomorphisms by scales

Definition

A collection $\left\{c_{r}: r \in \mathbb{Q}\right\} \subseteq L$ is called an extended scale on L if

$$
c_{r} \vee c_{s}^{*}=1 \text { whenever } r<s
$$

An extended scale is called a scale if

$$
\bigvee\left\{c_{r}: r \in \mathbb{Q}\right\}=1=\bigvee\left\{c_{r}^{*}: r \in \mathbb{Q}\right\} .
$$

Remark

An extended scale $\left\{c_{r}: r \in \mathbb{Q}\right\}$ in L is necessarily an antitone family.
Furthermore, if \mathcal{C} consists of complemented elements, then \mathcal{C} is an extended scale if and only if it is antitone.

Background: generating frame homomorphisms by scales

Lemma

Let $\mathcal{C}=\left\{c_{r}: r \in \mathbb{Q}\right\}$ be an extended scale in L and let

$$
f(p,-)=\bigvee_{r>p} c_{p} \quad \text { and } \quad f(-, q)=\bigvee_{r<q} c_{r}^{*}
$$

for all $r \in \mathbb{Q}$. Then the following hold:
(1) The above two formulas determine an $f \in \overline{\mathrm{C}}(L)$;
(2) If \mathcal{C} is a scale, then $f \in \mathrm{C}(L)$.

Lemma

Let $f, g \in \overline{\mathrm{C}}(L)$ be generated by the extended scales $\left\{c_{r}: r \in \mathbb{Q}\right\}$ and $\left\{d_{r}: r \in \mathbb{Q}\right\}$, respectively. Then:
(1) $f(r,-) \leq c_{r} \leq f(-, r)^{*}$ for all $r \in \mathbb{Q}$;
(2) $f \leq g$ if and only if $c_{r} \leq d_{s}$ whenever $r>s$ in \mathbb{Q}.

Alternative description of algebraic operations

$(\mathrm{C}(L),+, \cdot, \leq)$ is a commutative f-ring with unit $\mathbf{1}$.

Algebraic operations

Let $\langle p, q\rangle=\{r \in \mathbb{Q} \mid p<r<q\}$, let $\diamond \in\{+, \cdot, \wedge, \vee\}$, and let

$$
\langle r, s\rangle \diamond\langle t, u\rangle=\{x \diamond y \mid x \in\langle r, s\rangle \text { and } y \in\langle t, u\rangle\} .
$$

Given $f_{1}, f_{2}, f \in \mathrm{C}(L)$ and $r \in \mathbb{Q}$, we define

$$
\begin{aligned}
\left(f_{1} \diamond f_{2}\right)(p, q) & =\bigvee\left\{f_{1}(r, s) \wedge f_{2}(t, u) \mid\langle r, s\rangle \diamond\langle t, u\rangle \subseteq\langle p, q\rangle\right\}, \\
(-f)(p, q) & =f(-q,-p), \\
\mathbf{r}(p, q) & = \begin{cases}1 & \text { if } r \in\langle p, q\rangle \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Alternative description of algebraic operations

$(\mathrm{C}(L),+, \cdot, \leq)$ is a commutative f-ring with unit 1 .

1. Constant real functions

For each $r \in \mathbb{Q}$ take $\mathcal{C}_{r}=\left\{c_{p}^{r}\right\}_{p \in \mathbb{Q}} \subseteq L$ with $c_{p}^{r}= \begin{cases}0, & \text { if } r \leq p, \\ 1, & \text { if } p<r .\end{cases}$

Alternative description of algebraic operations

$(\mathrm{C}(L),+, \cdot, \leq)$ is a commutative f-ring with unit $\mathbf{1}$.

1. Constant real functions

For each $r \in \mathbb{Q}$ take $\mathcal{C}_{r}=\left\{c_{p}^{r}\right\}_{p \in \mathbb{Q}} \subseteq L$ with $c_{p}^{r}= \begin{cases}0, & \text { if } r \leq p, \\ 1, & \text { if } p<r .\end{cases}$
\mathcal{C}_{r} is a scale in $L . \mathbf{r} \in \mathrm{C}(L)$ is the constant real function generated.

$$
\mathbf{r}(p,-)=c_{p}^{r}=\left\{\begin{array}{ll}
0, & \text { if } r \leq p, \\
1, & \text { if } p<r,
\end{array} \quad \text { and } \quad \mathbf{r}(-, q)= \begin{cases}1, & \text { if } r<q, \\
0, & \text { if } q<r .\end{cases}\right.
$$

Alternative description of algebraic operations

$(\mathrm{C}(L),+, \cdot, \leq)$ is a commutative f-ring with unit 1 .

1. Constant real functions

For each $r \in \mathbb{Q}$ take $\mathcal{C}_{r}=\left\{c_{p}^{r}\right\}_{p \in \mathbb{Q}} \subseteq L$ with $c_{p}^{r}= \begin{cases}0, & \text { if } r \leq p, \\ 1, & \text { if } p<r .\end{cases}$
\mathcal{C}_{r} is a scale in $L . \mathbf{r} \in \mathrm{C}(L)$ is the constant real function generated.

$$
\mathbf{r}(p,-)=c_{p}^{r}=\left\{\begin{array}{ll}
0, & \text { if } r \leq p, \\
1, & \text { if } p<r,
\end{array} \quad \text { and } \quad \mathbf{r}(-, q)= \begin{cases}1, & \text { if } r<q, \\
0, & \text { if } q<r .\end{cases}\right.
$$

2. Opposite real function

For each $f \in \mathrm{C}(L)$ take $\mathcal{C}_{r}=\left\{c_{p}^{-f}\right\}_{p \in \mathbb{Q}} \subseteq L$ with $c_{p}^{-f}=f(-,-p)$.

Alternative description of algebraic operations

$(\mathrm{C}(L),+, \cdot, \leq)$ is a commutative f-ring with unit $\mathbf{1}$.

1. Constant real functions

For each $r \in \mathbb{Q}$ take $\mathcal{C}_{r}=\left\{c_{p}^{r}\right\}_{p \in \mathbb{Q}} \subseteq L$ with $c_{p}^{r}= \begin{cases}0, & \text { if } r \leq p, \\ 1, & \text { if } p<r .\end{cases}$
\mathcal{C}_{r} is a scale in $L . \mathbf{r} \in \mathrm{C}(L)$ is the constant real function generated.

$$
\mathbf{r}(p,-)=c_{p}^{r}=\left\{\begin{array}{ll}
0, & \text { if } r \leq p, \\
1, & \text { if } p<r,
\end{array} \quad \text { and } \quad \mathbf{r}(-, q)= \begin{cases}1, & \text { if } r<q \\
0, & \text { if } q<r .\end{cases}\right.
$$

2. Opposite real function

For each $f \in \mathrm{C}(L)$ take $\mathcal{C}_{r}=\left\{c_{p}^{-f}\right\}_{p \in \mathbb{Q}} \subseteq L$ with $c_{p}^{-f}=f(-,-p)$.
The opposite real function $-f \in \mathrm{C}(L)$ generated is given by.

$$
-f(p,-)=c_{p}^{-f}=f(-,-p) \quad \text { and } \quad-f(-, q)=f(-q,-)
$$

Alternative description of algebraic operations

3. Maximum

For each $f, g \in \mathrm{C}(L)$ take $\mathcal{C}_{r}=\left\{c_{p}^{f \vee g}\right\}_{p \in \mathbb{Q}} \subseteq L$ with

$$
c_{p}^{f \vee g}=f(p,-) \vee g(p,-) .
$$

Alternative description of algebraic operations

3. Maximum

For each $f, g \in \mathrm{C}(L)$ take $\mathcal{C}_{r}=\left\{c_{p}^{f \vee g}\right\}_{p \in \mathbb{Q}} \subseteq L$ with

$$
c_{p}^{f \vee g}=f(p,-) \vee g(p,-)
$$

The maximum real function $f \vee g \in \mathrm{C}(L)$ generated is given by
$(f \vee g)(p,-)=f(p,-) \vee g(p,-) \quad$ and $\quad(f \vee g)(-, q)=f(-, q) \wedge g(-, q)$.

Alternative description of algebraic operations

3. Maximum

For each $f, g \in \mathrm{C}(L)$ take $\mathcal{C}_{r}=\left\{c_{p}^{f \vee g}\right\}_{p \in \mathbb{Q}} \subseteq L$ with

$$
c_{p}^{f \vee g}=f(p,-) \vee g(p,-)
$$

The maximum real function $f \vee g \in \mathrm{C}(L)$ generated is given by
$(f \vee g)(p,-)=f(p,-) \vee g(p,-) \quad$ and $\quad(f \vee g)(-, q)=f(-, q) \wedge g(-, q)$.
4. Minimum

For each $f, g \in \mathrm{C}(L)$ take

$$
f \wedge g=-((-f) \vee(-g))
$$

Alternative description of algebraic operations

3. Maximum

For each $f, g \in \mathrm{C}(L)$ take $\mathcal{C}_{r}=\left\{c_{p}^{f \vee g}\right\}_{p \in \mathbb{Q}} \subseteq L$ with

$$
c_{p}^{f \vee g}=f(p,-) \vee g(p,-)
$$

The maximum real function $f \vee g \in \mathrm{C}(L)$ generated is given by.
$(f \vee g)(p,-)=f(p,-) \vee g(p,-) \quad$ and $\quad(f \vee g)(-, q)=f(-, q) \wedge g(-, q)$.
4. Minimum

For each $f, g \in \mathrm{C}(L)$ take

$$
f \wedge g=-((-f) \vee(-g)) .
$$

The minimum real function $f \wedge g \in \mathrm{C}(L)$ is given by.
$(f \wedge g)(p,-)=f(p,-) \wedge g(p,-) \quad$ and $\quad(f \wedge g)(-, q)=f(-, q) \vee g(-, q)$.

Alternative description of algebraic operations

5. Sum

For each $f, g \in \mathrm{C}(L)$ take $\mathcal{C}_{r}=\left\{c_{p}^{f+g}\right\}_{p \in \mathbb{Q}} \subseteq L$ with

$$
c_{p}^{f+g}=\bigvee_{r \in \mathbb{Q}} f(r,-) \wedge g(p-r,-)
$$

Alternative description of algebraic operations

5. Sum

For each $f, g \in \mathrm{C}(L)$ take $\mathcal{C}_{r}=\left\{c_{p}^{f+g}\right\}_{p \in \mathbb{Q}} \subseteq L$ with

$$
c_{p}^{f+g}=\bigvee_{r \in \mathbb{Q}} f(r,-) \wedge g(p-r,-)
$$

The sum real function $f+g \in \mathrm{C}(L)$ generated is given by.

$$
(f+g)(p,-)=\bigvee_{r \in \mathbb{Q}} f(r,-) \wedge g(p-r,-)
$$

and

$$
(f+g)(-, q)=\bigvee_{s \in \mathbb{Q}} f(-, s) \wedge g(-, q-s)
$$

Alternative description of algebraic operations

6. Product

For each $\mathbf{0} \leq f, g \in \mathrm{C}(L)$ take $\mathcal{C}_{r}=\left\{c_{p}^{f \cdot g}\right\}_{p \in \mathbb{Q}} \subseteq L$ with

$$
c_{p}^{f \cdot g}= \begin{cases}\bigvee_{r>0} f(r,-) \wedge g\left(\frac{p}{r},-\right), & \text { if } p \geq 0 \\ 1, & \text { if } p<0\end{cases}
$$

Alternative description of algebraic operations

6. Product

For each $\mathbf{0} \leq f, g \in \mathrm{C}(L)$ take $\mathcal{C}_{r}=\left\{c_{p}^{f \cdot g}\right\}_{p \in \mathbb{Q}} \subseteq L$ with

$$
c_{p}^{f \cdot g}= \begin{cases}\bigvee_{r>0} f(r,-) \wedge g\left(\frac{p}{r},-\right), & \text { if } p \geq 0 \\ 1, & \text { if } p<0\end{cases}
$$

The product real function $f \cdot g \in \mathrm{C}(L)$ generated is given by.

$$
(f \cdot g)(p,-)= \begin{cases}\bigvee_{r>0} f(r,-) \wedge g\left(\frac{p}{r},-\right), & \text { if } p \geq 0 \\ 1, & \text { if } p<0\end{cases}
$$

and

$$
(f \cdot g)(-, q)= \begin{cases}\bigvee_{s>0} f(-, s) \wedge g\left(-, \frac{q}{s}\right), & \text { if } q>0 \\ 0, & \text { if } q \leq 0\end{cases}
$$

Alternative description of algebraic operations

6. Product

For arbitrary $f \in \mathrm{C}(L)$ we denote

$$
f^{+}=f \vee \mathbf{0} \quad \text { and } \quad f^{-}=(-f) \vee \mathbf{0} .
$$

From general properties of lattice-ordered rings we have

$$
f=f^{+}-f^{-} .
$$

Alternative description of algebraic operations

6. Product

For arbitrary $f \in \mathrm{C}(L)$ we denote

$$
f^{+}=f \vee \mathbf{0} \quad \text { and } \quad f^{-}=(-f) \vee \mathbf{0}
$$

From general properties of lattice-ordered rings we have

$$
f=f^{+}-f^{-} .
$$

Hence given $f, g \in \mathrm{C}(L)$ we have

$$
f \cdot g=\left(f^{+} \cdot g^{+}\right)+\left(f^{-} \cdot g^{-}\right)-\left(f^{+} \cdot g^{-}\right)-\left(f^{-} \cdot g^{+}\right)
$$

Scales in $\mathcal{S}(L)$

A collection of sublocales $\left\{S_{r}: r \in \mathbb{Q}\right\} \subseteq \mathcal{S}(L)$ is called an extended scale on $\mathcal{S}(L)$ if $S_{r} \vee S_{s}^{*}=1$ whenever $r<s$.
An extended scale is called a scale if

$$
\bigvee\left\{S_{r}: r \in \mathbb{Q}\right\}=1=\bigvee\left\{S_{r}^{*}: r \in \mathbb{Q}\right\} .
$$

Scales in $\mathcal{S}(L)$

A collection of sublocales $\left\{S_{r}: r \in \mathbb{Q}\right\} \subseteq \mathcal{S}(L)$ is called an extended scale on $\mathcal{S}(L)$ if $S_{r} \vee S_{s}^{*}=1$ whenever $r<s$.
An extended scale is called a scale if

$$
\bigvee\left\{S_{r}: r \in \mathbb{Q}\right\}=1=\bigvee\left\{S_{r}^{*}: r \in \mathbb{Q}\right\} .
$$

Lemma
Let $\mathcal{C}=\left\{S_{r}: r \in \mathbb{Q}\right\}$ be an extended scale in $\mathcal{S}(L)$ and let

$$
f(p,-)=\bigvee_{r>p} S_{r} \text { and } f(-, q)=\bigvee_{r<q} S_{r}^{*} \quad(p, q \in \mathbb{Q})
$$

Scales in $\mathcal{S}(L)$

A collection of sublocales $\left\{S_{r}: r \in \mathbb{Q}\right\} \subseteq \mathcal{S}(L)$ is called an extended scale on $\mathcal{S}(L)$ if $S_{r} \vee S_{s}^{*}=1$ whenever $r<s$.
An extended scale is called a scale if

$$
\bigvee\left\{S_{r}: r \in \mathbb{Q}\right\}=1=\bigvee\left\{S_{r}^{*}: r \in \mathbb{Q}\right\}
$$

Lemma
Let $\mathcal{C}=\left\{S_{r}: r \in \mathbb{Q}\right\}$ be an extended scale in $\mathcal{S}(L)$ and let

$$
f(p,-)=\bigvee_{r>p} S_{r} \quad \text { and } \quad f(-, q)=\bigvee_{r<q} S_{r}^{*} \quad(p, q \in \mathbb{Q})
$$

(1) $f \in \overline{\mathrm{~F}}(L)$.

Scales in $\mathcal{S}(L)$

A collection of sublocales $\left\{S_{r}: r \in \mathbb{Q}\right\} \subseteq \mathcal{S}(L)$ is called an extended scale on $\mathcal{S}(L)$ if $S_{r} \vee S_{s}^{*}=1$ whenever $r<s$.
An extended scale is called a scale if

$$
\bigvee\left\{S_{r}: r \in \mathbb{Q}\right\}=1=\bigvee\left\{S_{r}^{*}: r \in \mathbb{Q}\right\} .
$$

Lemma
Let $\mathcal{C}=\left\{S_{r}: r \in \mathbb{Q}\right\}$ be an extended scale in $\mathcal{S}(L)$ and let

$$
f(p,-)=\bigvee_{r>p} S_{r} \quad \text { and } \quad f(-, q)=\bigvee_{r<q} S_{r}^{*} \quad(p, q \in \mathbb{Q})
$$

(1) $f \in \overline{\mathrm{~F}}(L)$. If \mathcal{C} is a scale, then $f \in \mathrm{~F}(L)$.

Scales in $\mathcal{S}(L)$

A collection of sublocales $\left\{S_{r}: r \in \mathbb{Q}\right\} \subseteq \mathcal{S}(L)$ is called an extended scale on $\mathcal{S}(L)$ if $S_{r} \vee S_{s}^{*}=1$ whenever $r<s$.
An extended scale is called a scale if

$$
\bigvee\left\{S_{r}: r \in \mathbb{Q}\right\}=1=\bigvee\left\{S_{r}^{*}: r \in \mathbb{Q}\right\} .
$$

Lemma
Let $\mathcal{C}=\left\{S_{r}: r \in \mathbb{Q}\right\}$ be an extended scale in $\mathcal{S}(L)$ and let

$$
f(p,-)=\bigvee_{r>p} S_{r} \text { and } f(-, q)=\bigvee_{r<q} S_{r}^{*} \quad(p, q \in \mathbb{Q})
$$

(1) $f \in \overline{\mathrm{~F}}(L)$. If \mathcal{C} is a scale, then $f \in \mathrm{~F}(L)$.
(2) If S_{r} is a closed sublocale for each $r \in \mathbb{Q}$ then $f \in \overline{\operatorname{LSC}}(L)$.

Scales in $\mathcal{S}(L)$

A collection of sublocales $\left\{S_{r}: r \in \mathbb{Q}\right\} \subseteq \mathcal{S}(L)$ is called an extended scale on $\mathcal{S}(L)$ if $S_{r} \vee S_{s}^{*}=1$ whenever $r<s$.
An extended scale is called a scale if

$$
\bigvee\left\{S_{r}: r \in \mathbb{Q}\right\}=1=\bigvee\left\{S_{r}^{*}: r \in \mathbb{Q}\right\} .
$$

Lemma
Let $\mathcal{C}=\left\{S_{r}: r \in \mathbb{Q}\right\}$ be an extended scale in $\mathcal{S}(L)$ and let

$$
f(p,-)=\bigvee_{r>p} S_{r} \quad \text { and } \quad f(-, q)=\bigvee_{r<q} S_{r}^{*} \quad(p, q \in \mathbb{Q})
$$

(1) $f \in \overline{\mathrm{~F}}(L)$. If \mathcal{C} is a scale, then $f \in \mathrm{~F}(L)$.
(2) If S_{r} is a closed sublocale for each $r \in \mathbb{Q}$ then $f \in \overline{\operatorname{LSC}}(L)$.
(3) If S_{r} is an open sublocale for each $r \in \mathbb{Q}$ then $f \in \overline{\mathrm{USC}}(L)$.

Scales in $\mathcal{S}(L)$

A collection of sublocales $\left\{S_{r}: r \in \mathbb{Q}\right\} \subseteq \mathcal{S}(L)$ is called an extended scale on $\mathcal{S}(L)$ if $S_{r} \vee S_{s}^{*}=1$ whenever $r<s$.
An extended scale is called a scale if

$$
\bigvee\left\{S_{r}: r \in \mathbb{Q}\right\}=1=\bigvee\left\{S_{r}^{*}: r \in \mathbb{Q}\right\}
$$

Lemma
Let $\mathcal{C}=\left\{S_{r}: r \in \mathbb{Q}\right\}$ be an extended scale in $\mathcal{S}(L)$ and let

$$
f(p,-)=\bigvee_{r>p} S_{r} \text { and } f(-, q)=\bigvee_{r<q} S_{r}^{*} \quad(p, q \in \mathbb{Q})
$$

(1) $f \in \overline{\mathrm{~F}}(L)$. If \mathcal{C} is a scale, then $f \in \mathrm{~F}(L)$.
(2) If S_{r} is a closed sublocale for each $r \in \mathbb{Q}$ then $f \in \overline{\operatorname{LSC}}(L)$.
(3) If S_{r} is an open sublocale for each $r \in \mathbb{Q}$ then $f \in \overline{\mathrm{USC}}(L)$.
(4) If S_{r} is a clopen sublocale for each $r \in \mathbb{Q}$ then $f \in \overline{\mathrm{C}}(L)$.

Algebraic operations on LSC(L)

Let $f, g \in \operatorname{LSC}(L)$. What can be said about $f \vee g, f \wedge g, f+g$ and $f \cdot g$?

Algebraic operations on LSC(L)

Let $f, g \in \operatorname{LSC}(L)$. What can be said about $f \vee g, f \wedge g, f+g$ and $f \cdot g$?
We have that $f(p,-), g(p,-) \in c L$ for each p.

Algebraic operations on LSC(L)

Let $f, g \in \operatorname{LSC}(L)$. What can be said about $f \vee g, f \wedge g, f+g$ and $f \cdot g$?
We have that $f(p,-), g(p,-) \in c L$ for each p.

- $f \vee g \in \mathrm{~F}(L)$ is generated by the scale

$$
S_{p}^{f \vee g}=f(p,-) \vee g(p,-) .
$$

Algebraic operations on LSC(L)

Let $f, g \in \operatorname{LSC}(L)$. What can be said about $f \vee g, f \wedge g, f+g$ and $f \cdot g$?
We have that $f(p,-), g(p,-) \in c L$ for each p.

- $f \vee g \in \mathrm{~F}(L)$ is generated by the scale

$$
S_{p}^{f \vee g}=f(p,-) \vee g(p,-) .
$$

Since $S_{p}^{f \vee g} \in \mathfrak{c L}$ for each p, it follows that $f \vee g \in \operatorname{LSC}(L)$.

Algebraic operations on LSC(L)

Let $f, g \in \operatorname{LSC}(L)$. What can be said about $f \vee g, f \wedge g, f+g$ and $f \cdot g$?
We have that $f(p,-), g(p,-) \in c L$ for each p.

- $f \vee g \in \mathrm{~F}(L)$ is generated by the scale

$$
S_{p}^{f \vee g}=f(p,-) \vee g(p,-)
$$

Since $S_{p}^{f \vee g} \in \mathfrak{c L}$ for each p, it follows that $f \vee g \in \operatorname{LSC}(L)$.

- $f \wedge g \in \mathrm{~F}(L)$ is generated by the scale

$$
S_{p}^{f \wedge g}=f(p,-) \wedge g(p,-)
$$

Since $S_{p}^{f \wedge g} \in \mathfrak{c L}$ for each p, it follows that $f \wedge g \in \operatorname{LSC}(L)$.

Algebraic operations on LSC(L)

- $f+g \in \mathrm{~F}(L)$ is generated by the scale

$$
S_{p}^{f+g}=\bigvee_{r \in \mathbb{Q}} f(r,-) \wedge g(p-r,-)
$$

Algebraic operations on LSC(L)

- $f+g \in \mathrm{~F}(L)$ is generated by the scale

$$
S_{p}^{f+g}=\bigvee_{r \in \mathbb{Q}} f(r,-) \wedge g(p-r,-)
$$

Since $S_{p}^{f+g} \in \mathfrak{c} L$ for each p, it follows that $f+g \in \operatorname{LSC}(L)$.

Algebraic operations on LSC(L)

- $f+g \in \mathrm{~F}(L)$ is generated by the scale

$$
S_{p}^{f+g}=\bigvee_{r \in \mathbb{Q}} f(r,-) \wedge g(p-r,-)
$$

Since $S_{p}^{f+g} \in \mathfrak{c L}$ for each p, it follows that $f+g \in \operatorname{LSC}(L)$.

- If $\mathbf{0} \leq f, g \in \mathrm{~F}(L)$ then $f \cdot g \in \mathrm{~F}(L)$ is generated by the scale

$$
S_{p}^{f \cdot g}= \begin{cases}\bigvee_{r>0} f(r,-) \wedge g\left(\frac{p}{r},-\right), & \text { if } p \geq 0 ; \\ 1, & \text { if } p<0 ;\end{cases}
$$

Algebraic operations on $\operatorname{LSC}(L)$

- $f+g \in \mathrm{~F}(L)$ is generated by the scale

$$
S_{p}^{f+g}=\bigvee_{r \in \mathbb{Q}} f(r,-) \wedge g(p-r,-)
$$

Since $S_{p}^{f+g} \in \mathfrak{c L}$ for each p, it follows that $f+g \in \operatorname{LSC}(L)$.

- If $\mathbf{0} \leq f, g \in \mathrm{~F}(L)$ then $f \cdot g \in \mathrm{~F}(L)$ is generated by the scale

$$
S_{p}^{f \cdot g}= \begin{cases}\bigvee_{r>0} f(r,-) \wedge g\left(\frac{p}{r},-\right), & \text { if } p \geq 0 ; \\ 1, & \text { if } p<0 ;\end{cases}
$$

Since $S_{p}^{f \cdot g} \in \mathfrak{c} L$ for each p, it follows that $f \cdot g \in \operatorname{LSC}(L)$.

Algebraic operations on LSC(L)

- If $\mathbf{0} \geq f, g \in \mathrm{~F}(L)$ then we have
$f \cdot g=\left(f^{+} \cdot g^{+}\right)+\left(f^{-} \cdot g^{-}\right)-\left(f^{+} \cdot g^{-}\right)-\left(f^{-} \cdot g^{+}\right)=f^{-} \cdot g^{-}=(-f) \cdot(-g)$
and since $-f,-g \in \operatorname{USC}(L)$ we conclude that $f \cdot g \in \operatorname{USC}(L)$.

Algebraic operations on LSC(L)

- If $\mathbf{0} \geq f, g \in \mathrm{~F}(L)$ then we have

$$
f \cdot g=\left(f^{+} \cdot g^{+}\right)+\left(f^{-} \cdot g^{-}\right)-\left(f^{+} \cdot g^{-}\right)-\left(f^{-} \cdot g^{+}\right)=f^{-} \cdot g^{-}=(-f) \cdot(-g)
$$

and since $-f,-g \in \operatorname{USC}(L)$ we conclude that $f \cdot g \in \operatorname{USC}(L)$.

Proposition

Let $f, g \in \mathrm{~F}(L)$, then
(1) If $f, g \in \operatorname{LSC}(L)$ then $f \vee g, f \wedge g, f+g \in \operatorname{LSC}(L)$,

Algebraic operations on $\operatorname{LSC}(L)$

- If $\mathbf{0} \geq f, g \in \mathrm{~F}(L)$ then we have

$$
f \cdot g=\left(f^{+} \cdot g^{+}\right)+\left(f^{-} \cdot g^{-}\right)-\left(f^{+} \cdot g^{-}\right)-\left(f^{-} \cdot g^{+}\right)=f^{-} \cdot g^{-}=(-f) \cdot(-g)
$$

and since $-f,-g \in \operatorname{USC}(L)$ we conclude that $f \cdot g \in \operatorname{USC}(L)$.

Proposition

Let $f, g \in \mathrm{~F}(L)$, then
(1) If $f, g \in \operatorname{LSC}(L)$ then $f \vee g, f \wedge g, f+g \in \operatorname{LSC}(L)$,
(2) If $\mathbf{0} \leq f, g \in \operatorname{LSC}(L)$ then $f \cdot g \in \operatorname{LSC}(L)$,

Algebraic operations on $\operatorname{LSC}(L)$

- If $\mathbf{0} \geq f, g \in \mathrm{~F}(L)$ then we have

$$
f \cdot g=\left(f^{+} \cdot g^{+}\right)+\left(f^{-} \cdot g^{-}\right)-\left(f^{+} \cdot g^{-}\right)-\left(f^{-} \cdot g^{+}\right)=f^{-} \cdot g^{-}=(-f) \cdot(-g)
$$

and since $-f,-g \in \operatorname{USC}(L)$ we conclude that $f \cdot g \in \operatorname{USC}(L)$.

Proposition

Let $f, g \in \mathrm{~F}(L)$, then
(1) If $f, g \in \operatorname{LSC}(L)$ then $f \vee g, f \wedge g, f+g \in \operatorname{LSC}(L)$,
(2) If $\mathbf{0} \leq f, g \in \operatorname{LSC}(L)$ then $f \cdot g \in \operatorname{LSC}(L)$,
(3) If $\mathbf{0} \geq f, g \in \operatorname{LSC}(L)$ then $f \cdot g \in \operatorname{USC}(L)$.

Algebraic operations in $\overline{\mathrm{F}}(L)$

1. Constant real functions

Apart from the constant real functions $\mathbf{r} \in \mathrm{F}(L)$, we have in $\overline{\mathrm{F}}(L)$ the constant extended real functions $+\infty$ and $-\infty$ generated by the extended scales

$$
\mathcal{C}_{+\infty}=\{1: r \in \mathbb{Q}\} \quad \text { and } \quad \mathcal{C}_{-\infty}=\{0: r \in \mathbb{Q}\} .
$$

Algebraic operations in $\overline{\mathrm{F}}(L)$

1. Constant real functions

Apart from the constant real functions $\mathbf{r} \in \mathrm{F}(L)$, we have in $\overline{\mathrm{F}}(L)$ the constant extended real functions $+\infty$ and $-\infty$ generated by the extended scales

$$
\mathcal{C}_{+\infty}=\{1: r \in \mathbb{Q}\} \quad \text { and } \quad \mathcal{C}_{-\infty}=\{0: r \in \mathbb{Q}\} .
$$

The constant extended real functions $+\infty$ and $-\infty$ are precisely the top and bottom elements in the partially ordered set $(\overline{\mathrm{F}}(L), \leq)$.

Algebraic operations in $\overline{\mathrm{F}}(L)$

1. Constant real functions

Apart from the constant real functions $\mathbf{r} \in \mathrm{F}(L)$, we have in $\overline{\mathrm{F}}(L)$ the constant extended real functions $+\infty$ and $-\infty$ generated by the extended scales

$$
\mathcal{C}_{+\infty}=\{1: r \in \mathbb{Q}\} \quad \text { and } \quad \mathcal{C}_{-\infty}=\{0: r \in \mathbb{Q}\} .
$$

The constant extended real functions $+\infty$ and $-\infty$ are precisely the top and bottom elements in the partially ordered set $(\overline{\mathrm{F}}(L), \leq)$.
2. Opposite real function

For each $f \in \overline{\mathrm{~F}}(L)$ take $\mathcal{C}_{r}=\left\{S_{p}^{-f}\right\}_{p \in \mathbb{Q}} \subseteq \mathcal{S}(L)$ with $S_{p}^{-f}=f(-,-p)$.

Algebraic operations in $\overline{\mathrm{F}}(L)$

1. Constant real functions

Apart from the constant real functions $\mathbf{r} \in \mathrm{F}(L)$, we have in $\overline{\mathrm{F}}(L)$ the constant extended real functions $+\infty$ and $-\infty$ generated by the extended scales

$$
\mathcal{C}_{+\infty}=\{1: r \in \mathbb{Q}\} \quad \text { and } \quad \mathcal{C}_{-\infty}=\{0: r \in \mathbb{Q}\} .
$$

The constant extended real functions $+\infty$ and $-\infty$ are precisely the top and bottom elements in the partially ordered set $(\overline{\mathrm{F}}(L), \leq)$.
2. Opposite real function

For each $f \in \overline{\mathrm{~F}}(L)$ take $\mathcal{C}_{r}=\left\{S_{p}^{-f}\right\}_{p \in \mathbb{Q}} \subseteq \mathcal{S}(L)$ with $S_{p}^{-f}=f(-,-p)$.
The opposite real function $-f \in \overline{\mathrm{~F}}(L)$ generated is given by.

$$
-f(p,-)=S_{p}=f(-,-p) \quad \text { and } \quad-f(-, q)=f(-q,-)
$$

Algebraic operations in $\overline{\mathrm{F}}(L)$

3. Maximum

For each $f, g \in \overline{\mathrm{~F}}(L)$ take $\mathcal{C}_{r}=\left\{S_{p}^{f \vee g}\right\}_{p \in \mathbb{Q}} \subseteq L$ with

$$
S_{p}^{f \vee g}=f(p,-) \vee g(p,-) .
$$

Algebraic operations in $\overline{\mathrm{F}}(L)$

3. Maximum

For each $f, g \in \overline{\mathrm{~F}}(L)$ take $\mathcal{C}_{r}=\left\{S_{p}^{f \vee g}\right\}_{p \in \mathbb{Q}} \subseteq L$ with

$$
S_{p}^{f \vee g}=f(p,-) \vee g(p,-) .
$$

The maximum real function $f \vee g \in \overline{\mathrm{~F}}(L)$ generated is given by.
$(f \vee g)(p,-)=f(p,-) \vee g(p,-) \quad$ and $\quad(f \vee g)(-, q)=f(-, q) \wedge g(-, q)$.

Algebraic operations in $\overline{\mathrm{F}}(L)$

3. Maximum

For each $f, g \in \overline{\mathrm{~F}}(L)$ take $\mathcal{C}_{r}=\left\{S_{p}^{f \vee g}\right\}_{p \in \mathbb{Q}} \subseteq L$ with

$$
S_{p}^{f \vee g}=f(p,-) \vee g(p,-)
$$

The maximum real function $f \vee g \in \overline{\mathrm{~F}}(L)$ generated is given by.
$(f \vee g)(p,-)=f(p,-) \vee g(p,-) \quad$ and $\quad(f \vee g)(-, q)=f(-, q) \wedge g(-, q)$.
4. Minimum

For each $f, g \in \overline{\mathrm{~F}}(L)$ take

$$
f \wedge g=-((-f) \vee(-g)) .
$$

Algebraic operations in $\overline{\mathrm{F}}(L)$

3. Maximum

For each $f, g \in \overline{\mathrm{~F}}(L)$ take $\mathcal{C}_{r}=\left\{S_{p}^{f \vee g}\right\}_{p \in \mathbb{Q}} \subseteq L$ with

$$
S_{p}^{f \vee g}=f(p,-) \vee g(p,-)
$$

The maximum real function $f \vee g \in \overline{\mathrm{~F}}(L)$ generated is given by.
$(f \vee g)(p,-)=f(p,-) \vee g(p,-) \quad$ and $\quad(f \vee g)(-, q)=f(-, q) \wedge g(-, q)$.
4. Minimum

For each $f, g \in \overline{\mathrm{~F}}(L)$ take

$$
f \wedge g=-((-f) \vee(-g)) .
$$

The minimum real function $f \wedge g \in \overline{\mathrm{~F}}(L)$ is given by.
$(f \wedge g)(p,-)=f(p,-) \wedge g(p,-) \quad$ and $\quad(f \wedge g)(-, q)=f(-, q) \vee g(-, q)$.

Algebraic operations in $\overline{\mathrm{F}}(L)$

Things become more complicated in the other two cases left: the sum and the product.

Algebraic operations in $\overline{\mathrm{F}}(L)$

Things become more complicated in the other two cases left: the sum and the product.

This is quite natural if we think in the typical indeterminations

$$
-\infty+\infty \quad \text { and } \quad 0 \cdot \infty
$$

Algebraic operations in $\overline{\mathrm{F}}(L)$

Things become more complicated in the other two cases left: the sum and the product.

This is quite natural if we think in the typical indeterminations

$$
-\infty+\infty \quad \text { and } \quad 0 \cdot \infty
$$

5. Sum

Let $f \in \overline{\mathrm{~F}}(L)$. We shall denote

$$
R_{f}^{+}=\bigvee_{r \in \mathbb{Q}} f(-, r), \quad R_{f}^{-}=\bigvee_{r \in \mathbb{Q}} f(r,-) \quad \text { and } \quad R_{f}=R_{f}^{+} \wedge R_{f}^{-} .
$$

Algebraic operations in $\overline{\mathrm{F}}(L)$

Things become more complicated in the other two cases left: the sum and the product.

This is quite natural if we think in the typical indeterminations

$$
-\infty+\infty \quad \text { and } \quad 0 \cdot \infty
$$

5. Sum

Let $f \in \overline{\mathrm{~F}}(L)$. We shall denote

$$
R_{f}^{+}=\bigvee_{r \in \mathbb{Q}} f(-, r), \quad R_{f}^{-}=\bigvee_{r \in \mathbb{Q}} f(r,-) \quad \text { and } \quad R_{f}=R_{f}^{+} \wedge R_{f}^{-}
$$

Give, $f, g \in \overline{\mathrm{~F}}(L)$, we say that f and g are sum compatible in case

- $\left(R_{f}^{+} \vee R_{g}^{-}\right) \wedge\left(R_{g}^{+} \vee R_{f}^{-}\right)=1$.

Algebraic operations in $\overline{\mathrm{F}}(L)$

Things become more complicated in the other two cases left: the sum and the product.

This is quite natural if we think in the typical indeterminations

$$
-\infty+\infty \quad \text { and } \quad 0 \cdot \infty
$$

5. Sum

Let $f \in \overline{\mathrm{~F}}(L)$. We shall denote

$$
R_{f}^{+}=\bigvee_{r \in \mathbb{Q}} f(-, r), \quad R_{f}^{-}=\bigvee_{r \in \mathbb{Q}} f(r,-) \quad \text { and } \quad R_{f}=R_{f}^{+} \wedge R_{f}^{-}
$$

Give, $f, g \in \overline{\mathrm{~F}}(L)$, we say that f and g are sum compatible in case

- all $R_{f}^{+}, R_{f}^{-}, R_{g}^{+}$and R_{g}^{-}are complemented.
- $\left(R_{f}^{+} \vee R_{g}^{-}\right) \wedge\left(R_{g}^{+} \vee R_{f}^{-}\right)=1$.

Algebraic operations in $\overline{\mathrm{F}}(L)$

5. Sum

Let $f, g \in \overline{\mathrm{~F}}(L)$ be sum compatible. Take $\mathcal{C}_{r}=\left\{S_{p}^{f+g}\right\}_{p \in \mathbb{Q}} \subseteq L$ with

$$
S_{p}^{f+g}=\bigvee_{r \in \mathbb{Q}} f(r,-) \wedge g(p-r,-)
$$

Algebraic operations in $\overline{\mathrm{F}}(L)$

5. Sum

Let $f, g \in \overline{\mathrm{~F}}(L)$ be sum compatible. Take $\mathcal{C}_{r}=\left\{S_{p}^{f+g}\right\}_{p \in \mathbb{Q}} \subseteq L$ with

$$
S_{p}^{f+g}=\bigvee_{r \in \mathbb{Q}} f(r,-) \wedge g(p-r,-)
$$

Then the family

$$
\left\{S_{p}^{f+g}: p \in \mathbb{Q}\right\} \subseteq \mathcal{S}(L)
$$

is an extended scale.

Algebraic operations in $\overline{\mathrm{F}}(L)$

5. Sum

Let $f, g \in \overline{\mathrm{~F}}(L)$ be sum compatible. Take $\mathcal{C}_{r}=\left\{S_{p}^{f+g}\right\}_{p \in \mathbb{Q}} \subseteq L$ with

$$
S_{p}^{f+g}=\bigvee_{r \in \mathbb{Q}} f(r,-) \wedge g(p-r,-)
$$

Then the family

$$
\left\{S_{p}^{f+g}: p \in \mathbb{Q}\right\} \subseteq \mathcal{S}(L)
$$

is an extended scale.
The sum real function $f+g \in \overline{\mathrm{~F}}(L)$ generated is given by.

$$
(f+g)(p,-)=\bigvee_{r \in \mathbb{Q}} f(r,-) \wedge g(p-r,-)
$$

and

$$
(f+g)(-, q)=\bigvee_{s \in \mathbb{Q}} f(-, s) \wedge g(-, q-s)
$$

Algebraic operations in $\overline{\mathrm{F}}(L)$

Proposition

Let $f, g \in \overline{\mathrm{~F}}(L)$ be sum compatible. Then:

Algebraic operations in $\overline{\mathrm{F}}(L)$

Proposition

Let $f, g \in \overline{\mathrm{~F}}(L)$ be sum compatible. Then:
(1) $f+g \in \overline{\mathrm{~F}}(L)$.

Algebraic operations in $\overline{\mathrm{F}}(L)$

Proposition

Let $f, g \in \overline{\mathrm{~F}}(L)$ be sum compatible. Then:
(1) $f+g \in \overline{\mathrm{~F}}(L)$.
(2) If $f, g \in \overline{\operatorname{LSC}}(L)$ then $f+g \in \overline{\operatorname{LSC}}(L)$.

Algebraic operations in $\overline{\mathrm{F}}(L)$

Proposition

Let $f, g \in \overline{\mathrm{~F}}(L)$ be sum compatible. Then:
(1) $f+g \in \overline{\mathrm{~F}}(L)$.
(2) If $f, g \in \overline{\operatorname{LSC}}(L)$ then $f+g \in \overline{\operatorname{LSC}}(L)$.
(3) If $f, g \in \overline{\mathrm{USC}}(L)$ then $f+g \in \overline{\mathrm{USC}}(L)$.

Algebraic operations in $\overline{\mathrm{F}}(L)$

Proposition

Let $f, g \in \overline{\mathrm{~F}}(L)$ be sum compatible. Then:
(1) $f+g \in \overline{\mathrm{~F}}(L)$.
(2) If $f, g \in \overline{\operatorname{LSC}}(L)$ then $f+g \in \overline{\operatorname{LSC}}(L)$.
(3) If $f, g \in \overline{\mathrm{USC}}(L)$ then $f+g \in \overline{\mathrm{USC}}(L)$.
(4) If $f, g \in \overline{\mathrm{C}}(L)$ then $f+g \in \overline{\mathrm{C}}(L)$.

Algebraic operations in $\overline{\mathrm{F}}(L)$

6. Product

Let $f \in \overline{\mathrm{~F}}(L)$. We shall denote

$$
\operatorname{coz}(f)=f((-, 0) \vee(0,-))
$$

Algebraic operations in $\overline{\mathrm{F}}(L)$

6. Product

Let $f \in \overline{\mathrm{~F}}(L)$. We shall denote

$$
\operatorname{coz}(f)=f((-, 0) \vee(0,-))
$$

Let $f, g \in \overline{\mathrm{~F}}(L)$. We say that f and g are product compatible in case

- $\left(\operatorname{coz} f \vee R_{g}\right) \wedge\left(\operatorname{coz} g \vee R_{f}\right)=1$.

Algebraic operations in $\overline{\mathrm{F}}(L)$

6. Product

Let $f \in \overline{\mathrm{~F}}(L)$. We shall denote

$$
\operatorname{coz}(f)=f((-, 0) \vee(0,-))
$$

Let $f, g \in \overline{\mathrm{~F}}(L)$. We say that f and g are product compatible in case

- all coz f, R_{f}, coz g and R_{g} are complemented.
- $\left(\operatorname{coz} f \vee R_{g}\right) \wedge\left(\operatorname{coz} g \vee R_{f}\right)=1$.

Algebraic operations in $\overline{\mathrm{F}}(L)$

6. Product

Let $f \in \overline{\mathrm{~F}}(L)$. We shall denote

$$
\operatorname{coz}(f)=f((-, 0) \vee(0,-))
$$

Let $f, g \in \overline{\mathrm{~F}}(L)$. We say that f and g are product compatible in case

- all coz $f, R_{f}, \operatorname{coz} g$ and R_{g} are complemented.
- $\left(\operatorname{coz} f \vee R_{g}\right) \wedge\left(\operatorname{coz} g \vee R_{f}\right)=1$.

Let $f, g \in \overline{\mathrm{~F}}(L)$ be product compatible.

