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Motivation Background: Katětov relations Insertion results Extension results

Motivation

Topological Extension Theorem (Mrówka).
Let X be a topological space, S ⊆ X and f : S → R be a bounded
continuous function. TFAE:
(1) f has a continuous extension to the whole of X .
(2) If r > s ∈ Q, then [f ≥ r ] and [f ≤ s] are completely separated in

X .

(A and B are said to be completely separated in X if there is a
continuous f : X → [0, 1] such that f = 0 on A and f = 1 on B).

S. Mrówka
On some approximation theorems
Nieuw Archief voor Wiskunde, (3) 16 (1968) 94–111.
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Motivation Background: Katětov relations Insertion results Extension results

Motivation

Topological Insertion Theorem (Blair-Lane).
Let X be a topological space and let f , g : X → R. TFAE:
(1) There exists a continuous h : X → R such that f ≤ h ≤ g.
(2) If r > s ∈ Q, then [f ≥ r ] and [g ≤ s] are completely separated.

R.L. Blair
Extensions of Lebesgue sets and of real valued functions
Czechoslovak Math. J., 31 (1981) 63–74.

E.P. Lane
Insertion of a continuous function
Topology Proc., 4 (1979) 463–478.
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Background: the sublocale lattice S(L)

Frm locale L, subobject lattice: is a CO-FRAME

SL = the dual FRAME


for each a ∈ L

c(a) : closed

o(a) : open

}
complemented

∨
i∈I

c(ai) = c
(∨

i∈I
ai
)

c(a) ∧ c(b) = c(a ∧ b)
subframe cL := {c(a) : a ∈ L} ' L

∧
i∈I

o(ai) = o
(∨

i∈I
ai
)

o(a) ∨ o(b) = o(a ∧ b)
subframe oL := 〈{o(a) : a ∈ L}〉

(the geometric motivation reads backwards)
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Background: closure and interior of a sublocale

Let L be a frame and S ⊂ L a sublocale.

The closure of S:

S =
∨
{c(a) : c(a) ≤ S} = c(

∧
S) = ↑

∧
S

o(a) = c(a∗)

The interior of S:

S◦ =
∧
{o(a) : S ≤ o(a)}.

c(a)◦ = o(a∗)
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Background: the frame of reals L(R)

L(R) = FRM
〈

(p, q) p, q ∈ Q |

(R1) (p, q) ∧ (r , s) = (p ∨ r , q ∧ s)

(R2) p ≤ r < q ≤ s ⇒ (p, q) ∨ (r , s) = (p, s)

(R3) (p, q) =
∨
{(r , s) | p < r < s < q}

(R4)
∨
{(p, q)

∣∣p, q ∈ Q} = 1
〉
.

(−, q) :=
∨
p∈Q

(p, q) (p,−) :=
∨

q∈Q
(p, q)

Ll(R) = 〈(−, q) | q ∈ Q〉 Lu(R) = 〈(p,−) | p ∈ Q〉
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Background: localic real-valued functions

• f : L(R)→ SL general F(L)

• f : L(R)→ SL usc USC(L)

s. t. f (Ll(R)) ⊆ cL

• f : L(R)→ SL lsc LSC(L)

s. t. f (Lu(R)) ⊆ cL

• f : L(R)→ SL continuous C(L)

s. t. f (L(R)) ⊆ cL

f ≤ g ≡ f (p,−) ≤ g(p,−) ∀p ∈ Q ⇐⇒ f (−, q) ≥ g(−, q) ∀q ∈ Q
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Scales on SL

A collection of sublocales C = {Sr : r ∈ Q} ⊆ SL is a scale on SL if
• Sr ∨ S∗s = 1 whenever r < s.

•
∨
C = 1 =

∨
C∗.

If C = {Sr : r ∈ Q} ⊆ SL is a scale on SL then there exists a unique
f ∈ F(L) such that for all r ∈ Q
(i) f (r ,−) =

∨
s>r Ss, f (−, r) =

∨
s<r S∗s and

(ii) f (r ,−) ≤ Sr ≤ f (−, r)∗.
f is the localic real valued function generated by C.

Given f ∈ F(L), both {f (r ,−) : r ∈ Q} and {f (−, r)∗ : r ∈ Q} are
scales that generate f .
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Scales on SL (continued)

Proposition
Let f , g ∈ F(L) be generated be the scales C = {Sr : r ∈ Q} and
D = {Tr : r ∈ Q}, respectively. Then:

f ≤ g if and only if Sr ≤ Ts whenever r > s.

Proposition
Let f ∈ F(L) be generated by the scale C = {Sr : r ∈ Q}. Then:
(1) f ∈ USC(L) if and only if Sr ≤ Ss whenever r > s;
(2) f ∈ USC(L) if and only if Sr

◦ ≤ Ss whenever r > s;
(3) f ∈ C(L) if and only if Sr

◦ ≤ S − s whenever r > s.
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Background: Katětov relation

Let (M,≤) be a complete lattice. A binary relation % on M is a Katětov
relation if and only if for all x , y , z, x1, x2, y1, y2 ∈ M the following hold:

(P1) x % y ⇒ x ≤ y .
(P2) x2 ≤ x1 % y1 ≤ y2 ⇒ x2 % y2.
(P3) x1 % y and x2 % y ⇒ (x1 ∨ x2) % y .
(P4) x % y1 and x % y2 ⇒ x % (y1 ∧ y2).
(P5) x % y ⇒ x % z % y for some z ∈ M. (Interpolation Property)

(Such a relation has various names in the literature: quasi-proximity
relation, subordination. . . )

M. Katětov
On real-valued functions in topological spaces
Fund. Math., 38 (1951) 85–91; Correction, Fund Math. 40 (1953)
139–142.
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Katětov lemmas

Lemma (Katětov)
Let % be a Katětov relation on M and A, B ⊂ M countable such that(∨

A
)
% b and a %

(∧
B
)

for all a ∈ A, b ∈ B,

then there is a c ∈ M such that a % c % b for all a ∈ A and b ∈ B.

Lemma (Katětov)
Let % be an Katětov relation on M and {ar}r∈Q, {br}r∈Q ⊂ M such that

r > s =⇒ ar ≤ as, br ≤ bs and ar % bs.

Then there is {cr}r∈Q ⊆ K such that

r > p > q > s =⇒ ar % cp % cq % bs.
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Katětov relations on SL

We are particularly interested in considering Katětov relations on the
frame SL.

Given a frame L, a Katětov relation % in SL is said to be strong, if

S % T =⇒ S◦ ≤ T and S ≤ T .

Examples
Given S, T ∈ SL we write

(1) S ≺ T ⇐⇒ S◦ ≤ f (—, 1)∗ ≤ f (0, —) ≤ T for some f ∈ C(L).

≺ is a strong Katětov relation.

(2) S b T ⇐⇒ S◦ ≤ T .

b is a strong Katětov relation iff L is normal.
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The insertion result

Theorem

Let L be a frame. Let f , g ∈ F(L) be two localic real functions on L.
If there exists a strong Katětov relation % on SL such that

f (r , —) % g(s, —) whenever r > s,

then there exists an h ∈ C(L) such that f ≤ h ≤ g.

Proof:
(1) Apply Katětov Lemma with ar = f (r , —) and br = g(r , —) to obtain

a countable family {Sr}r∈Q ⊂ SL such that

r > p > q > s =⇒ f (r , —) % Sp % Sq % g(s, —).

(2) C = {Sr : r ∈ Q} is a scale on SL and the real-valued function h
generated by C satisfies

f ≤ h ≤ g and h ∈ C(L).
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Katětov-Tong Theorem

Let S, T ∈ SL we write

S b T ⇐⇒ S◦ ≤ T .

Theorem (Localic Katětov-Tong)
Let L be a frame. Then the following are equivalent:
(1) L is normal.
(2) b is a strong Katětov relation
(3) If f ∈ USC(L), G ∈ LSC(L), and f ≤ g, then there exists h ∈ C(L)

such that f ≤ h ≤ g.
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Localic Insertion Theorem

Let S, T ∈ SL we write

S ≺ T ⇐⇒ S◦ ≤ f (—, 1)∗ ≤ f (0, —) ≤ T for some f ∈ C(L).

Definition
Two sublocales S and T in L are said to be completely separated if

f (s, —) ≤ S and f (—, t) ≤ T for some f ∈ C(L).

Localic Insertion Theorem (Blair-Lane).
Let L be a frame and let f , g ∈ F(L). TFAE:
(1) There exists h ∈ C(L) such that f ≤ h ≤ g.
(2) If r > s, then f (r , —) ≺ g(s, —).
(3) If r > s, then f (—, r) and g(s, —) are completely separated.
(4) If r > s, then f (r , —)∗ and g(—, s)∗ are completely separated.
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Extension results: Localic Tietze

Given a frame L, we shall denote

F∗(L) = {f ∈ F(L) : 0 ≤ f ≤ 1} = {f ∈ F(L) : f ((—, 0) ∨ (1, —)) = 0}

and

C∗(L) = {f ∈ C(L) : 0 ≤ f ≤ 1} = {f ∈ C(L) : f ((—, 0) ∨ (1, —)) = 0}

Theorem (Localic Tietze)
Let L be a normal frame, S a closed sublocale in L and f ∈ C∗(S).
Then there exists an extension of f to the whole L, i.e. there exists
f̃ ∈ C∗(L) such that ccS ◦ f̃ = f .

?
-

�
�
�
�
��3

cSL(R)

cL

f

f̃
ccS

J. Gutiérrez García Localic analogues of general insertion and extension theorems
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Extension results: Localic Extension Theorem

Localic Extension Theorem (Mrówka)
Let L be a frame, S a complemented sublocale in L and f ∈ C∗(S).
Then the following are equivalent:
(1) There exists an extension of f to the whole L, i.e. there exists

f̃ ∈ C∗(L) such that ccS ◦ f̃ = f .

?
-�

�
�
�
��3

cSL(R)

cL

f

f̃
ccS

(2) If r > s, then f (r , —) and f (—, s) are completely separated in L.
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Extension results: Localic Extension Theorem (proof)

Proof.
(1) =⇒ (2) is the easy part.

(2) =⇒ (1): Let f1 and g2 be generated, respectively, by the scales
C = {Sp : p ∈ Q} and D = {Tq : q ∈ Q} where

Sp =


0(= L), if p ≥ 1;

f (p, —), if 0 ≤ p < 1;

1(= {1}), if p < 0
Tq =


0(= L), if q ≥ 0;

f (—,−q), if − 1 ≤ q < 0;

1(= {1}), if q < −1.

Then f1 and f2 = −g2 belong to C∗(L) and if r > s then f2(r , —) and
f1(—, s) are completely separated in L.

It follows from the Localic Insertion Theorem that there exists
h ∈ C(L) such that f2 ≤ h ≤ f1.

The real valued function h ∈ C∗(L) is the desired extension of f .
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