On extended and partial real-valued functions in Pointfree Topology

Javier Gutiérrez García ${ }^{1}$
University of the Basque Country, UPV/EHU

Orange, August 8, 2013

The ring of continuous real functions on a frame: $C(L)$

The frame of reals is the frame $\mathfrak{L}(\mathbb{R})$ generated by all ordered pairs (p, q), where $p, q \in \mathbb{Q}$, subject to the following relations:

$$
\begin{aligned}
& \text { (R1) }(p, q) \wedge(r, s)=(p \vee r, q \wedge s), \\
& \text { (R2) }(p, q) \vee(r, s)=(p, s) \text { whenever } p \leq r<q \leq s, \\
& \text { (R3) }(p, q)=\bigvee\{(r, s) \mid p<r<s<q\}, \\
& \text { (R4) } \bigvee_{p, q \in \mathbb{Q}}(p, q)=1 .
\end{aligned}
$$

The spectrum of $\mathfrak{L}(\mathbb{R})$ is homeomorphic to the space \mathbb{R} of reals endowed with the euclidean topology.

Combining the natural isomorphism $\operatorname{Top}(X, \Sigma L) \simeq \operatorname{Frm}(L, \mathcal{O X})$ for $L=\mathfrak{L}(\mathbb{R})$ with the homeomorphism $\Sigma \mathfrak{L}(\mathbb{R}) \simeq \mathbb{R}$ one obtains

$$
C(X)=\operatorname{Top}(X, \mathbb{R}) \xrightarrow{\sim} \operatorname{Frm}(\mathfrak{L}(\mathbb{R}), \mathcal{O} X)
$$

Regarding the frame homomorphisms $\mathfrak{L}(\mathbb{R}) \rightarrow L$, for a general frame L, as the continuous real functions on L provides a natural extension of the classical notion. They form a lattice-ordered ring that we denote

$$
C(L)=\operatorname{Frm}(\mathfrak{L}(\mathbb{R}), L)
$$

Lattice and algebraic operations in $C(L)$

Recall that the operations on the algebra $C(L)$ are determined by the lattice-ordered ring operations of \mathbb{Q} as follows:
(1) For $\diamond=+, \cdot, \wedge, \vee$:

$$
(f \diamond g)(p, q)=\bigvee\{f(r, s) \wedge g(t, u) \mid\langle r, s\rangle \diamond\langle t, u\rangle \subseteq\langle p, q\rangle\}
$$

where $\langle\cdot, \cdot\rangle$ stands for open interval in \mathbb{Q} and the inclusion on the right means that $x \diamond y \in\langle p, q\rangle$ whenever $x \in\langle r, s\rangle$ and $y \in\langle t, u\rangle$.
(2) $(-f)(p, q)=f(-q,-p)$.
(3) For each $r \in \mathbb{Q}$, a nullary operation \mathbf{r} defined by

$$
\mathbf{r}(p, q)= \begin{cases}1 & \text { if } p<r<q \\ 0 & \text { otherwise }\end{cases}
$$

(4) For each $0<\lambda \in \mathbb{Q},(\lambda \cdot f)(p, q)=f\left(\frac{p}{\lambda}, \frac{q}{\lambda}\right)$.
B. Banaschewski,

The real numbers in pointfree topology,
Textos de Matemática, Série B, 12, Univ. de Coimbra, 1997.

Part I: Extended real-valued functions

(based on joint work with Bernhard Banaschewski,)

The frame of extended reals: a first attempt

How to describe the frame $\mathfrak{L}(\overline{\mathbb{R}})$ of extended reals in terms of generators and relations?
The frame of extended reals is the frame $\mathfrak{L}(\mathbb{R}) \mathfrak{L}(\overline{\mathbb{R}})$ generated by all ordered pairs (p, q), where $p, q \in \mathbb{Q}$, subject to the following relations:

$$
\begin{aligned}
& \text { (R1) }(p, q) \wedge(r, s)=(p \vee r, q \wedge s), \\
& \text { (R2) }(p, q) \vee(r, s)=(p, s) \text { whenever } p \leq r<q \leq s, \\
& \text { (R3) }(p, q)=\bigvee\{(r, s) \mid p<r<s<q\}, \\
& \text { (R4) } \vee_{p, q \in \mathbb{Q}}(p, q)=1 .
\end{aligned}
$$

But this frame is precisely the one-point extension of $\mathfrak{L}(\overline{\mathbb{R}})$!
The spectrum of $\mathfrak{L}(\overline{\mathbb{R}})$ is not homeomorphic to the space $\overline{\mathbb{R}}$ of extended reals endowed with the euclidean topology. Indeed,

$$
{ }_{\bullet}^{\infty} \quad X=\mathbb{R} \cup\{\infty\}
$$

The one-point extension of the real line: $\mathcal{O} X=\mathcal{O} \mathbb{R} \cup\{X\}$

The frame of extended reals

It is useful here to adopt an equivalent description of $\mathfrak{L}(\mathbb{R})$ with the elements

$$
(r,-)=\bigvee_{s \in \mathbb{Q}}(r, s) \text { and }(-, s)=\bigvee_{r \in \mathbb{Q}}(r, s)
$$

as primitive notions.
Specifically, the frame of reals $\mathfrak{L}(\mathbb{R})$ is equivalently given by generators $(r,-)$ and $(-, s)$ for $r, s \in \mathbb{Q}$ subject to the defining relations
$(r 1)(r,-) \wedge(-, s)=0$ whenever $r \geq s$,
$(r 2)(r,-) \vee(-, s)=1$ whenever $r<s$,
(r3) $(r,-)=\bigvee_{s>r}(s,-)$, and $(-, r)=\bigvee_{s<r}(-, s)$, for every $r \in \mathbb{Q}$,
(r4) $\bigvee_{r \in \mathbb{Q}}(r,-)=1=\bigvee_{r \in \mathbb{Q}}(-, r)$.
With $(p, q)=(p,-) \wedge(-, q)$ one goes back to (R1)-(R4).

The frame of extended reals and extended continuous real functions

The frame of extended reals is the frame $\mathfrak{L}(\mathbb{R}) \mathfrak{L}(\overline{\mathbb{R}})$ generated by generators $(r,-)$ and $(-, s)$ for $r, s \in \mathbb{Q}$ subject to the defining relations
$(r 1)(r,-) \wedge(-, s)=0$ whenever $r \geq s$,
$(r 2)(r,-) \vee(-, s)=1$ whenever $r<s$,
(r3) $(r,-)=\bigvee_{s>r}(s,-)$ and $(-, r)=\bigvee_{s<r}(-, s)$, for every $r \in \mathbb{Q}$,
(r4) $\vee_{r \in \mathbb{Q}}(r,-)=1=V_{r \in \mathbb{Q}}(-, r)$.
The spectrum of $\mathfrak{L}(\overline{\mathbb{R}})$ is homeomorphic to the space $\overline{\mathbb{R}}$ of extended reals endowed with the euclidean topology.

Combining the natural isomorphism $\operatorname{Top}(X, \Sigma L) \simeq \operatorname{Frm}(L, \mathcal{O} X)$ for $L=\mathfrak{L}(\overline{\mathbb{R}})$ with the homeomorphism $\Sigma \mathfrak{L}(\overline{\mathbb{R}}) \simeq \overline{\mathbb{R}}$ one obtains

$$
\overline{\mathrm{C}}(X)=\operatorname{Top}(X, \overline{\mathbb{R}}) \xrightarrow{\sim} \operatorname{Frm}(\mathfrak{L}(\overline{\mathbb{R}}), \mathcal{O} X)
$$

Regarding the frame homomorphisms $\mathfrak{L}(\overline{\mathbb{R}}) \rightarrow L$, for a general frame L, as the extended continuous real functions on L provides a natural extension of the classical notion.
Hence we denote

$$
\overline{\mathrm{C}}(L)=\operatorname{Frm}(\mathfrak{L}(\overline{\mathbb{R}}), L)
$$

Recall that the operations on the algebra $C(L)$ are determined by the lattice-ordered ring operations of \mathbb{Q} as follows:
(1) For $\diamond=+, \cdot, \wedge, \vee$:
$(f \diamond g)(p,-)=\bigvee_{p<r \diamond s} f(r,-) \wedge g(s,-) \quad$ and $\quad(f \diamond g)(-, q)=\bigvee_{r \diamond s<q} f(-, r) \wedge g(-, s)$
(2) $(-f)(p,-)=f(-,-p)$ and $(-f)(-, q)=f(-q,-)$.
(3) For each $r \in \mathbb{Q}$, a nullary operation \mathbf{r} defined by

$$
\mathbf{r}(p,-)=\left\{\begin{array}{ll}
1 & \text { if } p<r \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad \mathbf{r}(-, q)= \begin{cases}1 & \text { if } r<q \\
0 & \text { otherwise }\end{cases}\right.
$$

(4) For each $0<\lambda \in \mathbb{Q},(\lambda \cdot f)(p,-)=f\left(\frac{p}{\lambda},-\right)$ and $(\lambda \cdot f)(-, q)=f\left(-, \frac{q}{\lambda}\right)$.

Q B. Banaschewski,
The real numbers in pointfree topology,
Textos de Matemática, Série B, 12, Univ. de Coimbra, 1997.

Lattice operations in $\bar{C}(L)$

An analysis of the proof that $C(L)$ is an f-ring shows that, by the same arguments, the operations \vee, \wedge and $-(\cdot)$ satisfy all identities which hold for the corresponding operations of \mathbb{Q} in $\overline{\mathrm{C}}(L)$.

Hence, $\overline{\mathrm{C}}(L)$ is a distributive lattice with join \vee, meet \wedge and an inversion given by $-(\cdot)$. Moreover, it is, of course, bounded, with top $+\infty$ and bottom $-\infty$, where

$$
+\infty(p,-)=1=-\infty(-, q) \quad \text { and } \quad+\infty(-, q)=0=-\infty(p,-)
$$

Further, the partial order determined by this lattice structure is exactly the one mentioned earlier:

$$
\begin{array}{lll}
f \leq g & \text { iff } & f \vee g=g \quad \text { iff } \quad f \wedge g=f \\
& \text { iff } & f(r,-) \leq g(r,-) \text { for all } r \in \mathbb{Q} \\
& \text { iff } & f(-, s) \geq g(r,-, s) \text { for all } s \in \mathbb{Q} .
\end{array}
$$

Algebraic operations in $\bar{C}(L)$

Things become more complicated in the case of addition and multiplication.
This is not a surprise if we think of the typical indeterminacies

$$
-\infty+\infty \quad \text { and } \quad 0 \cdot \infty
$$

when dealing with the algebraic operations in $\overline{\mathrm{C}}(X)$
In the classical case, given $f, g: X \rightarrow \overline{\mathbb{R}}$, the condition

$$
f^{-1}(\{+\infty\}) \cap g^{-1}(\{-\infty\})=\varnothing=f^{-1}(\{-\infty\}) \cap g^{-1}(\{+\infty\})
$$

ensures that the addition $f+g$ can be defined for all $x \in X$ just by the natural convention

$$
\lambda+(+\infty)=+\infty=(+\infty)+\lambda \quad \text { and } \quad \lambda+(-\infty)=-\infty=(-\infty)+\lambda
$$

for all $\lambda \in \mathbb{R}$ together with the usual $(+\infty)+(+\infty)=+\infty$ and the same for $-\infty$.
Clearly enough, this condition is equivalent to

$$
(f \vee g)^{-1}(\{+\infty\}) \cap(f \wedge g)^{-1}(\{-\infty\})=\varnothing
$$

Algebraic operations in $\bar{C}(L)$

What about the algebraic operations in $\overline{\mathrm{C}}(L)$?: Addition
Let $f, g \in \bar{C}(L)$, the natural definition of $h=f+g: \mathfrak{L}(\overline{\mathbb{R}}) \rightarrow L$ on generators would be:

$$
h(p,-)=\bigvee_{p<r+s} f(r,-) \wedge g(s,-) \quad \text { and } \quad h(-, q)=\bigvee_{r+s<q} f(-, r) \wedge g(-, s)
$$

But $h \notin \overline{\mathrm{C}}(L)$ in general! Indeed, $h \in \overline{\mathrm{C}}(L)$ if and only if

$$
\left(\bigvee_{r \in \mathbb{Q}} f(-, r) \vee \bigvee_{r \in \mathbb{Q}} g(r,-)\right) \wedge\left(\bigvee_{r \in \mathbb{Q}} g(-, r) \vee \bigvee_{r \in \mathbb{Q}} f(r,-)\right)=1
$$

Notation. For each $f \in \overline{\mathrm{C}}(L)$ let

$$
a_{f}^{+}=\bigvee_{r \in \mathbb{Q}} f(-, r), \quad a_{f}^{-}=\bigvee_{r \in \mathbb{Q}} f(r,-) \quad \text { and } \quad a_{f}=a_{f}^{+} \wedge a_{f}^{-}=\bigvee_{r<s} f(r, s)=f(\omega)
$$

a_{f} is the pointfree counterpart of the domain of reality $f^{-1}(\mathbb{R})$ of an $f: X \rightarrow \overline{\mathbb{R}}$.
Note also that $a_{f}=a_{f}^{+}=a_{f}^{-}=1$ if and only if $f \in C(L)$.

Algebraic operations in $\bar{C}(L)$

Definition. Let $f, g \in \bar{C}(L)$. We say that f and g are sum compatible if

$$
a_{f \vee g}^{+} \vee a_{f \wedge g}^{-}=1 \quad \text { iff } \quad\left(a_{f}^{+} \vee a_{g}^{-}\right) \wedge\left(a_{g}^{+} \vee a_{f}^{-}\right)=1
$$

Theorem. Let $f, g \in \overline{\mathrm{C}}(L)$ and $f h=+g: \mathfrak{L}(\overline{\mathbb{R}}) \rightarrow L$ given by
$(f+g)(p,-)=\bigvee_{p<r+s} f(r,-) \wedge g(s,-) \quad$ and $\quad(f+g)(-, q)=\bigvee_{r+s<q} f(-, r) \wedge g(-, s)$.
Then $f+g \in \overline{\mathrm{C}}(L)$ if and only if f and g are sum compatible.

Algebraic operations in $\overline{\mathrm{C}}(L)$

What about the algebraic operations in $\overline{\mathrm{C}}(L)$?: Multiplication
In the classical case, given $f, g: X \rightarrow \overline{\mathbb{R}}$ the condition

$$
f^{-1}(\{-\infty,+\infty\}) \cap g^{-1}(\{0\})=\varnothing=f^{-1}(\{0\}) \cap g^{-1}(\{-\infty,+\infty\})
$$

ensures that the multiplication $f \cdot g$ can be defined for all $x \in X$ just by the natural conventions

$$
\lambda \cdot(\pm \infty)= \pm \infty=(\pm \infty) \cdot \lambda
$$

for all $\lambda>0$ and

$$
\lambda \cdot(\pm \infty)=\mp \infty=(\pm \infty) \cdot \lambda
$$

for all $\lambda<0$ together with the usual

$$
(\pm \infty) \cdot(\pm \infty)=+\infty \quad \text { and } \quad(\pm \infty) \cdot(\mp \infty)=-\infty
$$

Notation. Recall that in a frame L, a cozero element is an element of the form

$$
\operatorname{coz} f=f((-, 0) \vee(0,-))=\bigvee\{f(p, 0) \vee f(0, q) \mid p<0<q \text { in } \mathbb{Q}\}
$$

for some $f \in C(L)$. This is the pointfree counterpart to the notion of a cozero set for ordinary continuous real functions.

Algebraic operations in $\bar{C}(L)$

Definition. Let $f, g \in \overline{\mathrm{C}}(L)$. We say that f and g are product compatible if

$$
\left(a_{f} \wedge a_{g}\right) \vee(\operatorname{coz} f \wedge \operatorname{coz} g)=1 \quad \text { iff } \quad\left(a_{f} \vee \operatorname{coz} g\right) \wedge\left(a_{g} \vee \operatorname{coz} f\right)=1
$$

Theorem. Let $f, g \in \bar{C}(L)$ and $f \cdot g: \mathfrak{L}(\overline{\mathbb{R}}) \rightarrow L$ given by

$$
(f \cdot g)(p,-)=\bigvee_{p<r \cdot s} f(r,-) \wedge g(s,-) \quad \text { and } \quad(f \cdot g)(-, q)=\bigvee_{r \cdot s<q} f(-, r) \wedge g(-, s) .
$$

Then $f \cdot g \in \bar{C}(L)$ if and only if f and g are product compatible.

Representation Theorem (Johnson, 1962)

Let A be an archimedean f-ring with $N(A)=\{0\}$. Then there is a locally compact Hausdorff space X and an f-ring \hat{A} of almost finite extended real functionsalmost finite extended real functions on X which separates points and closed setswhich separates points and closed sets in X, and an isomorphism $A \rightarrow \hat{A}$.
D.J. Johnson,

On a Representation Theory for a Class of Archimedean Lattice-Ordered Rings, Proc. London Math. Soc, 12 (1962), 207-225.

Question: Is it possible to deal with families of "almost finite extended real functions which separates points and closed sets" in a pointfree setting?

Answer: Yes, we can! !Podemos!

Extended real functions: an application

Almost finite extended functions.

Recall that we have $C(L)=\left\{f \in \bar{C}(L) \mid a_{f}=1\right\}$. Now, for any frame L, let

$$
\mathrm{D}(L)=\left\{f \in \overline{\mathrm{C}}(L) \mid a_{f} \text { is dense }\right\}
$$

This definition extends the familiar classical notion to the pointfree setting:
Given an extended real continuous function $u: X \rightarrow \overline{\mathbb{R}}$ we have that the corresponding frame homomorphisms $\mathcal{O} u=u^{-1} \in \overline{\mathrm{C}}(\mathcal{O X})$ and

$$
\mathcal{O} u \in \mathrm{D}(\mathcal{O X}) \quad \text { iff } \quad u^{-1}[\mathbb{R}] \text { is dense in } X \quad \text { iff } \quad u \in \mathrm{D}(X)
$$

The correspondence $L \mapsto \mathrm{D}(L)$ is functorial for skeletal homomorphisms, that is, the $h: L \rightarrow M$ which take dense elements to dense elements

Extended real functions: an application

Theorem. For any L, there exists an inversion lattice embedding $\delta_{L}: \mathrm{D}(L) \rightarrow \mathrm{C}(\mathfrak{B} L)$ such that

$$
\delta_{L}(f)(r,-)=f(r,-)^{* *} \quad \text { and } \quad \delta_{L}(f)(-, r)=f(-, r)^{* *}
$$

which preserves the partial addition and multiplication of $\mathrm{D}(L)$. Moreover, δ_{L} is onto if and only if L is extremally disconnected and then the partial operations are total so that δ_{L} is a lattice-ordered ring isomorphism.
B. Banaschewski, JGG and JP

Extended real functions in Pointfree Topology, Journal of Pure and Applied Algebra 216 (2012), no. 4, 905-922.

Extended real functions: an application

Subfamilies in $\overline{\mathrm{C}}(X)$ which separates points from closed sets in X.
In Top - the category of all topological spaces - let:

$$
f: X \rightarrow Y_{f} \quad \text { for all } \quad f \in \mathcal{F} .
$$

The family \mathcal{F} separates points from closed sets if for each closed $K \subseteq X$ and $x \in X \backslash K$, there exists an $f \in \mathcal{F}$ with $f(x) \notin \overline{f(K)}$.

Avoiding points. The family \mathcal{F} separates points from closed sets iff for each closed $K \subseteq X$

$$
K=\bigcap_{f \in \mathcal{F}} f^{-1}(\overline{f(K)}) .
$$

Avoiding closed sets. The family \mathcal{F} separates points from closed sets iff for each closed $U \in \mathcal{O} X$

$$
U=\bigcup_{f \in \mathcal{F}} f^{-1}\left(Y_{f} \backslash \overline{f(X \backslash U)}\right)=\bigcup_{f \in \mathcal{F}} f^{-1}\left(f_{*}(U)\right)
$$

(where $f_{*}: \mathcal{O} X \rightarrow \mathcal{O} Y_{f}$ is the right adjoint of the inverse image map $f^{-1}: \mathcal{O} Y_{f} \rightarrow \mathcal{O} X$).

Extended real functions: an application

Separating subfamilies in $\overline{\mathrm{C}}(L)$.
In Frm let:

$$
h: M_{h} \rightarrow L \quad \text { for all } \quad h \in \mathcal{H} .
$$

Definition. The family \mathcal{H} is said to be separating if

$$
a=\bigvee_{h \in \mathcal{H}} h\left(h_{*}(a)\right) \quad \text { for all } a \in L .
$$

(Note that if $\mathcal{H}=\{h\}$ then \mathcal{H} is separating iff h is an embedding.)
This definition extends a familiar classical notion to the pointfree setting:
Let $u: X \rightarrow Y_{u}$ be in Top for all $u \in \mathcal{F}$, and let $\mathcal{O F}$ be the corresponding family of frame homomorphisms $\mathcal{O} u=u^{-1}: \mathcal{O} Y_{u} \rightarrow \mathcal{O} X$.

Then
\mathcal{F} separates points from closed sets in Top iff $\mathcal{O} \mathcal{F}$ is separating in Frm.

Part II: Partial real-valued functions

(based on joint work with Imanol Mozo Carollo)

Order completeness of $C(L)$ and $\bar{C}(L)$

Certainly both $C(L)$ and $\bar{C}(L)$ fail to be Dedekind complete. But. . . why?
Let $\left\{f_{i}\right\}_{i \in I} \subset C(L)$ and $f \in C(L)$ be such that $f_{i} \leq f$ for all $i \in I$.
The natural candidate $h: \mathfrak{L}(\mathbb{R}) \rightarrow L$ would be defined for each $r \in \mathbb{Q}$ by

$$
h(r,-)=\bigvee_{i \in I} f_{i}(r,-) \quad \text { and } \quad h(-, r)=\bigvee_{s<r}\left(\bigwedge_{i \in I} f_{i}(-, s)\right) .
$$

Recall that

$$
h \in \mathrm{C}(L) \Longleftrightarrow \begin{cases}(\mathrm{r} 1) \text { if } r \leq s, \text { then } h(-, r) \wedge h(s,-)=0, & \\ (\mathrm{r} 2) \text { if } s<r, \text { then } h(-, r) \vee h(s,-)=1, & X \\ (r 3) h(r,-)=\bigvee_{s>r} h(s,-) \text { and } h(-, r)=\bigvee_{s<r} h(-, s), & V \\ (r 4) \bigvee_{r \in \mathbb{Q}} h(r,-)=1=\bigvee_{r \in \mathbb{Q}} h(-, r) . & V\end{cases}
$$

(r2) if $s<r$, then $\quad h(-, r) \vee h(s,-) \neq 1$ in general. We cannot ensure that $h \in \mathrm{C}(L)$ because of $(\mathrm{r} 2)$.

$$
\mathrm{C}(L) \text { fails to be Dedekind complete because of }(\mathrm{r} 2) \text { ! }
$$

The frame of partial reals $\mathfrak{L}(\mathbb{I} \mathbb{R})$

Generators: $\quad(p, q), \quad p, q \in \mathbb{Q}$
Relations:
(R1) $(p, q) \wedge(r, s)=(p \vee r, q \wedge s)$,
(R2) $(p, q) \vee(r, s)=(p, s)$ whenever
$\quad p \leq r<q \leq s ;$
(R3) $(p, q)=\bigvee\{(r, s) \mid p<r<s<q\}$,
(R4) $\bigvee_{p, q \in \mathbb{Q}}(p, q)=1$.

Generators: $\quad(r,-),(-, s), \quad r, s \in \mathbb{Q}$
Relations:
$(r 1)(r,-) \wedge(-, s)=0$ whenever $r \geq s$,
$(r 2)(r,-) \vee(-, s)=1$ whenever $r<s$,
$(r 3)(r,-)=\bigvee_{s>r}(s,-)$ and
$(-, s)=\bigvee_{r<s}(-, r)$,
$(r 4) \bigvee_{r \in \mathbb{Q}}(r,-)=1=\bigvee_{s \in \mathbb{Q}}(-, s)$.

They both generate the same frame, the frame of partial reals $\mathfrak{L}(\mathbb{R})$. Question. Do they generate the same frame?

Answer. Yes, they do.
We will call it the frame of partial reals and denote by $\mathfrak{L}(\mathbb{I} \mathbb{R})$.

The frame of partial reals $\mathfrak{L}(\mathbb{R} \mathbb{R})$

Generators: $\quad(p, q), \quad p, q \in \mathbb{Q}$
Relations:
(R1) $(p, q) \wedge(r, s)=(p \vee r, q \wedge s)$,
(R2) $(p, q) \vee(r, s)=(p, s)$ whenever
$p \leq r<q \leq s$,
(R3) $(p, q)=\bigvee\{(r, s) \mid p<r<s<q\}$,
(R4) $\bigvee_{p, q \in \mathbb{Q}}(p, q)=1$.

Generators: $\quad(r,-),(-, s), \quad r, s \in \mathbb{Q}$
Relations:
$(r 1)(r,-) \wedge(-, s)=0$ whenever $r \geq s$,
$(+2)(r,-) \vee(-, s)=1$ whenever $r<s$,
$(r 3)(r,-)=\bigvee_{s>r}(s,-)$ and
$(-, s)=\bigvee_{r<s}(-, r)$,
$(r 4) \bigvee_{r \in \mathbb{Q}}(r,-)=1=\bigvee_{s \in \mathbb{Q}}(-, s)$.

The spectrum $\Sigma \mathfrak{L}(\mathbb{R} \mathbb{R})$ is the partial real line!

$$
\begin{aligned}
& \mathbb{I} \mathbb{R}=\{a:=[\underline{a}, \overline{\bar{a}}] \subset \mathbb{R} \mid \underline{a}, \bar{a} \in \mathbb{R} \text { and } \underline{a} \leq \bar{a}\} \\
& a \sqsubseteq b \quad \text { iff } \quad[\underline{a}, \bar{a}] \supseteq[\underline{b}, \bar{b}]
\end{aligned}
$$

$(\mathbb{R}, \sqsubseteq)$ is the partial real line (or interval-domain) The Scott topology on $(\mathbb{I} \mathbb{R}, \sqsubseteq)$ is isomorphic to $\mathfrak{L}(\mathbb{I} \mathbb{R})$

$$
(p, q) \equiv\{a \in \mathbb{R} \mid[p, q] \ll a\}
$$

The frame of extended partial reals $\mathfrak{L}(\overline{\mathbb{I R}})$

Generators: $\quad(p, q), \quad p, q \in \mathbb{Q}$
Relations:
(R1) $(p, q) \wedge(r, s)=(p \vee r, q \wedge s)$,
(R2) $(p, q) \vee(r, s)=(p, s)$ whenever
$p \leq r<q \leq s$,
(R3) $(p, q)=\bigvee\{(r, s) \mid p<r<s<q\}$,
$\left(\right.$ R1) $\vee_{p, q \in \mathbb{Q}}(p, q)=1$.

$$
\begin{aligned}
& \text { Generators: } \quad(r,-),(-, s), \quad r, s \in \mathbb{Q} \\
& \hline \text { Relations: } \\
& (r 1)(r,-) \wedge(-, s)=0 \text { whenever } r \geq s, \\
& (r 2)(r,-) \vee(-, s)=1 \text { whenever } r<s, \\
& (r 3)(r,-)=\bigvee_{s>r}(s,-) \text { and } \\
& (-, s)=\bigvee_{r<s}(-, r), \\
& \left((r 4) \vee_{r \in \mathbb{Q}}(r,)=1=V_{s \in \mathbb{Q}}(-, s) .\right. \\
& \hline
\end{aligned}
$$

The spectrum $\Sigma \mathfrak{L}(\overline{\mathbb{I}})$ is the extended partial real line.

$$
\begin{aligned}
& \overline{\mathbb{I} \mathbb{R}}=\{a:=[\underline{a}, \bar{a}] \subset \overline{\mathbb{R}} \mid \underline{a}, \bar{a} \in \overline{\mathbb{R}} \text { and } \underline{a} \leq \bar{a}\} \\
& a \sqsubseteq b \quad \text { iff } \quad[\underline{a}, \bar{a}] \supseteq[\underline{b}, \bar{b}]
\end{aligned}
$$

The Scott topology on $(\overline{\mathbb{I} \mathbb{R}}, \sqsubseteq)$ is isomorphic to $\mathfrak{L}(\overline{\mathbb{I} \mathbb{R}})$

The frame of partial reals and partial continuous real functions

The frame of partial reals is the frame $\mathfrak{L}(\mathbb{R}) \mathfrak{L}(\mathbb{R} \mathbb{R})$ generated by generators $(r,-)$ and $(-, s)$ for $r, s \in \mathbb{Q}$ subject to the defining relations

$$
\begin{aligned}
& (r 1)(r,-) \wedge(-, s)=0 \text { whenever } r \geq s, \\
& (r 2)(r,-) \vee(-, s)=1 \text { whenever } r<s, \\
& (r 3)(r,-)=\bigvee_{s>r}(s,-) \text { and }(-, r)=\bigvee_{s<r}(-, s) \text {, for every } r \in \mathbb{Q} \text {, } \\
& (r 4) \bigvee_{r \in \mathbb{Q}}(r,-)=1=\bigvee_{r \in \mathbb{Q}}(-, r) .
\end{aligned}
$$

The spectrum of $\mathfrak{L}(\mathbb{I} \mathbb{R})$ is homeomorphic to the space $\mathbb{I} \mathbb{R}$ of partial reals endowed with the Scott topology.

Combining the natural isomorphism $\operatorname{Top}(X, \Sigma L) \simeq \operatorname{Frm}(L, \mathcal{O X})$ for $L=\mathfrak{L}(\mathbb{R})$ with the homeomorphism $\Sigma \mathfrak{L}(\mathbb{R} \mathbb{R}) \simeq \mathbb{R}$ one obtains

$$
\operatorname{IC}(X)=\operatorname{Top}(X, \mathbb{R}) \xrightarrow{\sim} \operatorname{Frm}(\mathfrak{L}(\mathbb{R} \mathbb{R}), \mathcal{O} X)
$$

Regarding the frame homomorphisms $\mathfrak{L}(\mathbb{T} \mathbb{R}) \rightarrow L$, for a general frame L, as the partial continuous real functions on L provides a natural extension of the classical notion. Hence we denote

$$
\operatorname{IC}(L)=\operatorname{Frm}(\mathfrak{L}(\mathbb{R} \mathbb{R}), L)
$$

Dedekind completeness of $\operatorname{IC}(L)$

Let $\left\{f_{i}\right\}_{i \in I} \subset \operatorname{IC}(L)$ and $f \in \operatorname{IC}(L)$ be such that $f_{i} \leq f$ for all $i \in I$.
Does there exist $\bigvee_{i \in I} f_{i}$ in $\operatorname{IC}(L)$?
Here again, the natural candidate would be defined for each $r \in \mathbb{Q}$ by

$$
h(r,-)=\bigvee_{i \in I} f_{i}(r,-) \quad \text { and } \quad h(-, r)=\bigvee_{s<r}\left(\bigwedge_{i \in I} f_{i}(-, s)\right)
$$

Recall that

$$
h \in \operatorname{IC}(L) \Longleftrightarrow\left\{\begin{array}{l}
(r 1) \text { if } r \leq s, \text { then } h(-, r) \wedge h(s,-)=0 \\
(r 3) f(r,-)=\bigvee_{s>r} f(s,-) \text { and } f(-, r)=\bigvee_{s<r} f(-, s) \\
(r 4) \bigvee_{r \in \mathbb{Q}} f(r,-)=1=\bigvee_{r \in \mathbb{Q}} f(-, r)
\end{array}\right.
$$

Hence $h \in \operatorname{IC}(L)$. Moreover, $h=\bigvee_{i \in I}^{\mathrm{IC}(L)} h_{i}$.
Theorem. IC (L) is Dedekind complete.

Dedekind completion of $C(L)$

Recall that we can consider $C(L)$ as a subset of $\operatorname{IC}(L)$.

Now, since $\operatorname{IC}(L)$ is Dedekind complete it follows that it contains the Dedekind completion of all its subsets, in particular $\mathrm{C}(L)$.

Dedekind completion of $\mathrm{C}(L)$ and $\overline{\mathrm{C}}(L)$

There is no essential loss of generality if we restrict ourselves to completely regular frames, so L will denote a completely regular frame in what follows.

Recall that if $f \in \mathrm{C}(L)$ then
(r2) $f(-, r) \vee f(s,-)=1 \quad \forall s<r \quad \Longrightarrow \quad(r 2)^{\prime}\left\{\begin{array}{l}f(s,-)^{*} \leq f(-, r) \\ f(-, r)^{*} \leq f(s,-)\end{array} \quad \forall s<r\right.$
If L extremally disconnected then $(r 2) \Longleftrightarrow(r 2)$ '.

Theorem. Let L be a frame. Then the Dedekind completion $\mathrm{C}(L)^{\#}$ of $\mathrm{C}(L)$ is given by

$$
\begin{aligned}
& \mathrm{C}(L)^{\#}=\{h \in \operatorname{IC}(L) \mid \text { (1) } \exists f, g \in \mathrm{C}(L): f \leq h \leq g \\
& \text { (2) } \left.h(s,-)^{*} \leq h(-, r) \text { and } h(-, r)^{*} \leq h(s,-) \text { if } s<r\right\}
\end{aligned}
$$

Corollary. $C(L)$ is Dedekind complete if and only if L is extremally disconnected.

Dedekind completion of $\mathrm{C}^{*}(L), \mathrm{C}(L, \mathbb{Z}), \ldots$

Let

$$
\begin{aligned}
\mathrm{C}^{*}(L) & =\{h \in \mathrm{C}(L) \mid \text { there exists } r \in \mathbb{Q} \text { such that } h(-r, r)=1\} \\
\mathrm{IC}^{*}(L) & =\{h \in \mathrm{IC}(L) \mid \text { there exists } r \in \mathbb{Q} \text { such that } h(-r, r)=1\} .
\end{aligned}
$$

Corollary. Let L be a completely regular frame. Let L be a frame. Then the Dedekind completion $\mathrm{C}^{*}(L)^{\#}$ of $\mathrm{C}^{*}(L)$ is given by

$$
\mathrm{C}^{*}(L)^{\#}=\mathrm{C}(L)^{\#} \cap \mathrm{IC}^{*}(L) .
$$

Corollary. $C^{*}(L)$ is Dedekind complete if and only if L is extremally disconnected.
The integer-valued case follows similarly:
An $h \in \operatorname{IC}(L)$ is said to be integer-valued if $f(r, s)=f(\lfloor r\rfloor,\lceil s\rceil)$ for all $r, s \in \mathbb{Q}$, (where $\lfloor r\rfloor$ denotes the biggest integer $\leq r$ and $\lceil s\rceil$ the smallest integer $\geq s$).

Let

$$
\mathfrak{Z} L \simeq \mathrm{C}(L, \mathbb{Z})=\mathrm{C}(L) \cap\{h \in \operatorname{IC}(L) \mid h \text { is integer-valued }\}
$$

Corollary. For any zero-dimensional frame $L, \mathrm{C}(L, \mathbb{Z})^{\#}=\mathrm{C}(L)^{\#} \cap \operatorname{IC}(L, \mathbb{Z})$ is the Dedekind completion of $C(L, \mathbb{Z})$.
Corollary. For any zero-dimensional frame $L, C(L, \mathbb{Z})$ is Dedekind complete if and only if L is extremally disconnected.

Generators: $\quad(r,-),(-, s), \quad r, s \in \mathbb{Q}$

Relations:

(r1) $(r,-) \wedge(-, s)=0$ whenever $r \geq s$,
$(r 2)(r,-) \vee(-, s)=1$ whenever $r<s$,
(r3) $(r,-)=\bigvee_{s>r}(s,-)$ and
$(-, s)=\bigvee_{r<s}(-, r)$,
($r 4$) $\mathrm{V}_{r \in \mathbb{Q}}(r,-)=1=\bigvee_{s \in \mathbb{Q}}(-, s)$.

The frame of extended reals $\mathfrak{L}(\overline{\mathbb{R}})$.
Extended continuous real functions:

$$
\overline{\mathrm{C}}(L)=\operatorname{Frm}(\mathfrak{L}(\overline{\mathbb{R}}), L)
$$

Generators: $\quad(r,-),(-, s), \quad r, s \in \mathbb{Q}$
Relations:
$(r 1)(r,-) \wedge(-, s)=0$ whenever $r \geq s$, $(r 2)(r,-) \vee(-, s)=1$ whenever $r<s$,
(r3) $(r,-)=\bigvee_{s>r}(s,-)$ and
$(-, s)=\bigvee_{r<s}(-, r)$,
(r4) $\bigvee_{r \in \mathbb{Q}}(r,-)=1=\bigvee_{s \in \mathbb{Q}}(-, s)$.

The frame of partial reals $\mathfrak{L}(\mathbb{I} \mathbb{R})$.
Partial continuous real functions:

$$
\operatorname{IC}(L)=\operatorname{Frm}(\mathfrak{L}(\mathbb{R} \mathbb{R}), L)
$$

