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Abstract

We use the direct-sum decomposition proposed by Candogan et al. (2011) to decom-

pose any normal-form finite game into the strategic and the nonstrategic components.

Nash equilibrium is invariant to changes in the nonstrategic component. Mutual-Max-

Sum, a new solution concept defined in this paper, depends only on the nonstrategic

component, identifies the most relevant strategy profile in this component and it is in-

variant to changes in the strategic component. We design 3x3 games to empirically test,

whether and when, manipulations in the nonstrategic component affect individual behav-

ior and whether Mutual-Max-Sum is behaviorally relevant. We find that manipulations

of the nonstrategic component affects individual behavior and that Mutual-Max-Sum is

able to attract individual behavior only when it is Pareto efficient and in particular, pay-

off dominant. We conclude that Candogan et al. (2011)’s decomposition is informative

to learn about individual behavior in games.
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1 Introduction

Since economics in general, and game theory in particular, adopted the use of laboratory ex-
periments, hundreds of experimental studies have shown that Nash equilibrium theory has
clear limitations in regard to its ability to describe how people behave in strategic environ-
ments, see for example Thaler (1988), Nagel (1995), McKelvey and Palfrey (1992), Goeree
and Holt (2001), Arad and Rubinstein (2012) among many others. If it is not only equilibrium
thinking, then what determines individual behavior in games? Extensions of individual pref-
erences to the so called social or interdependent preferences, e.g. Sobel (2005), and models
of bounded rationality, e.g. Crawford et al. (2013), have been put forward to explain individ-
ual behavior in games. Yet, the determinants of individual behavior in games are not fully
understood.

In this paper, we take a novel approach to have a better understanding of how individ-
uals play games. We analyze the different pieces of information (considerations) contained
within a game and study their impact on individual behavior. In particular, we use the direct-
sum decomposition of games, proposed by Candogan et al. (2011), to connect individual
behavior and different behavioral rules (solution concepts). Candogan et al. (2011) defined
a direct-sum decomposition for any finite games in strategic form: games are decomposed
into the strategic and nonstrategic components. The appealing attribute of this particular
decomposition is that the strategic component, also referred to as the normalized game, cap-
tures all strategic, while the nonstrategic component, what is left, captures all nonstrategic
considerations. In other words, this decomposition is the only one that filters out the strate-
gic and nonstrategic information in two different components (see footnote 5 to understand
the connection of this particular decomposition with other existing decompositions). Non-
cooperative games are solved using mainly strategic solution concepts. Among those, the
canonical solution concept is the Nash equilibrium, which only takes the information con-
tained in the strategic component. Therefore, from a game theory point of view, only the
strategic component would be key in terms of predicting individual behavior and therefore
individual behavior should remain constant in strategically equivalent games, i.e. games with
the same strategic component, as defined in Candogan et al. (2011). What about consider-
ations included in the nonstrategic component? They could indeed play a role in players’
decision-making. In this paper we address whether the nonstrategic component of a game is
relevant to behavior and if so, when.

To illustrate this idea, take the Prisoner’s Dilemma (PD) game, and three additional mod-
ifications of this game, all shown in Figure 1. The four games have the same unique Nash
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Figure 1: Four Examples based on the Prisoner’s Dilemma Game
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equilibrium strategy profile, hereinafter referred to as NE, given by (NC, NC), which can be
achieved by eliminating the strictly dominated strategy of C. Moreover, following Candogan
et al. (2011), each of the four games can be decomposed into their strategic and nonstrategic
components, as shown in Figure 1. For an easy illustration of how to decompose a game, we
will start with the calculation of the payoffs of the nonstrategic component. In particular, in
game I and for the row player, fixing column player’s strategy C or NC and summing own
payoffs (6+7) or (3+4) and dividing by 2, we obtain row player’s payoffs of 6.5 or 3.5 for
the nonstrategic component when the column player plays C or NC, respectively. Similarly,
we can perform the same calculations to obtain the nonstrategic component’s payoffs for the
column player fixing strategies for the row player. As it is a direct-sum decomposition, the
strategic component is then obtained by subtracting to each of the payoffs of the original
game the payoff in the nonstrategic component.

On the one hand, note that all four games have exactly the same strategic component,
which can be interpreted as a game on itself, and therefore, the four original games, as well
as the four games represented by their respective strategic components will have the same
NE. The same equivalence is true for other strategic solution concepts, such as Quantal

Response Equilibrium (McKelvey and Palfrey, 1995) and level-k thinking rules (Stahl and
Wilson, 1994, 1995; Nagel, 1995; Costa-Gomes et al., 2001; Camerer et al., 2004). For
any games that have the same strategic component, Candogan et al. (2011) define them as
strategically equivalent.

On the other, the nonstrategic component can be also interpreted as a game, although it
is clear that there is no meaningful strategic consideration in this component because both
strategies yield the same payoff for any player. Therefore, in the game represented by the
nonstrategic component, all strategy profiles are Nash equilibria.

Does the addition or manipulation of a nonstrategic component affect individual behavior
in the original game? In other words, is individual behavior constant in strategically equiv-
alent games? This is the initial question we address in this paper. Although we have not
taken these particular four games into the laboratory, we expect, as many readers will, that
the answer will be positive. Moreover, we delve deeper into the analysis of the nonstrate-
gic component, by defining a new solution concept, and by using carefully designed 3× 3
games in two important ways. First, we show when the manipulation of the nonstrategic
component will affect individual behavior most and second, we also show how individual
behavior will be affected, i.e., which behavioral rule individuals will follow. The answer to
these two questions in short is: individual behavior will be affected most when manipulations
of the nonstrategic component change the Pareto optimality ordering of different outcomes
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in the original game, and individuals will mostly deviate to a behavioral rule that has Pareto
optimality concerns.

We start analyzing the nonstrategic component. Going back to the example: What are
the relevant considerations in the nonstrategic component? It is obvious that the outcomes
given by the four strategy combinations in the nonstrategic components in Figure 1 can be
partially ordered by Pareto optimality, see for example Mock (2011).1 Most importantly,
there is a unique strong Pareto optimal outcome, which coincides with the prediction by the
social-welfare maximization or altruistic rule, hereafter A rule, which maximizes the sum
of players’ payoffs, as described by Charness and Rabin (2002). From now on, we will
focus on A behavioral rule, whose outcome we see it as a refinement of the set of strong
Pareto optimal outcomes.2 Needless to say, and scanning all the four matrices shown by the
nonstrategic components, the unique A is the sensible strategy profile to play. In particular,
in the games represented by the nonstrategic components in I and II, (C,C) is the strategy
profile selected by the A rule. In game III, the A rule selects (NC, NC), and finally, in game
IV, the A prediction is given by (C, NC). What are the three different modifications of the
nonstrategic components doing to the original PDs in II, III and IV in Figure 1? In game
II, it is exacerbating the social dilemma that exists in the original PD, described in game I,
making the Pareto dominance between (C,C) over (NC,NC) more extreme. By contrast, the
nonstrategic component in games III and IV destroys the social dilemma that existed in the
original PD, so that we cannot even label these last two games as PD games, since the unique
NE is not Pareto dominated by (C,C). These four games clearly illustrate that strategy profiles
selected by the A rule in the nonstrategic component will not necessarily coincide with those
by the A in the original game. In particular, in game IV, the the strategy profile selected by A

1Payoff dominance, defined by Harsanyi et al. (1988), is a related concept, when an outcome is Pareto
dominating another outcome. According to these authors the payoff dominance principle relies on the idea
that “rational individuals will cooperate in pursuing their common interests if the conditions permit them to
do so”. There are multiple experimental investigations of when payoff dominance is important for individual
behavior, in games where Nash equilibrium and payoff dominance are in conflict, as in the classical Prisoner’s
Dilemma, among the oldest experiments on games going back to Deutsch (1958), but also in games with mul-
tiple Nash equilibria, where payoff dominance is one selection criterion (Cooper et al. (1990), Cooper et al.
(1992), Van Huyck et al. (1990), Van Huyck et al. (1991), Straub (1995), Haruvy and Stahl (2007) or Crawford
et al. (2008)).

2In the nonstrategic component, a strong Pareto optimal and A or the social-welfare maximization rule will
select the same strategy profile(s), which we will refer to as the A rule. However, in the original game, the set
of strong or weak Pareto optimal outcomes and A rules’ predictions will not necessarily fully coincide. Overall,
Pareto optimality criterion can select multiple strategy profiles. In particular, any A profile will always be strong
Pareto optimal, and consequently weak Pareto optimal, but there can be strong Pareto optimal profiles that are
not selected by the A rule. Of all the strong Pareto optimal profiles, we will focus on A profile, so we see the A
as a refinement of the set of Pareto optimal outcomes.
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in the game represented by the nonstrategic component is (C,NC) but in the original game IV,
the A rule selects (NC,NC), so the same behavioral rule can select different strategy profiles in
the nonstrategic component and the original game. Consequently, to identify the importance
of the nonstrategic component, separating the A rule predictions in the original and in the
nonstrategic component game is crucial and an important contribution of this paper. We will
now go on to explain this contribution using the examples in Figure 1.

The NE in the original game coincides with the NE in the game represented by the strate-
gic component. However, when considering the A as the natural solution of the game rep-
resented by the nonstrategic component, the following question arises: How can we identify
that strategy profile in the original game? It is clear that it may not necessarily be the A of
the original game. To answer this question we define a new solution concept for two-player
games, which we shall call the Mutual-Max Sum, MMS for short. The MMS coincides, in
the original game, the strategy profile(s) identified by the A rule in the nonstrategic compo-
nent. In particular, the MMS selects strategy profile(s) where players choose their strategies
by maximizing the sum of the other player’s payoffs. The MMS solution concept may be
understood as a solution in which an empathetic player who chooses her strategy maximizing
the sum of the opponent’s payoffs, as if the other player would not be able to do so by her-
self. Indeed, under this interpretation, it captures an extreme form of altruism. Going back
to the four games in Figure 1, the MMS for players 1 and 2 in PD I would choose C, because
this strategy would yield a payoff of 6+7=13 for the other player (if she chose NC, then this
strategy would yield a payoff of 3+4=7 for the other player). Similarly, in game II, the MMS

profile would select (C, C), while this maximizes the sum of payoffs for the other player.
However, in game III, the MMS prediction is given by (NC, NC) and by (C, NC) in game IV.

What are the appealing features of the MMS solution? We show that, in the original game,
the MMS will always identify the A profile(s) in the nonstrategic component (Proposition 1).
An important advantage of the MMS solution concept is that no decomposition is required
to identify the A profile(s) of the nonstrategic component. Interestingly, as the NE is indif-
ferent between any of the strategy profiles in the nonstrategic component, the MMS is also
indifferent between any of the strategy profiles in the strategic component. Consequently, the
NE will select at least one strategy profile of the strategic component while being indifferent
between any of the strategy profiles in the nonstrategic component, and the MMS will select
at least one of the strategy profiles of the nonstrategic component while being indifferent
between any of the strategy profiles in the strategic component.

In addition to the NE and MMS, how do other solution concepts or behavioral rules
depend on strategic and nonstrategic components? Focusing on A rule, we show that, in the
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original game, A profiles depend on both components and that, in principle, in the original
game we can separate the strategy profiles selected by these main three solution concepts:
NE, MMS and A. This is a very important result of our study, showing that MMS strategy
profiles do not necessarily coincide with those by A. For example, in games I and II, NE is
separated from A and MMS but the last two coincide. In game III, NE, MMS and A are all
confounded. Finally, in game IV, MMS strategy profiles are different from those selected by
NE and A but the last two coincide. To perfectly separate the three different rules, we then
proceed to design 3× 3 games to test whether MMS is behaviorally relevant. The question
of interest in this regard is: when adding and manipulating a nonstrategic component, is
MMS a good indicator of how the nonstrategic component affect individual behavior? This
is a relevant question because the MMS identifies the altruistic profile, and the most sensible
strategy profile, in the nonstrategic component.

To this end, we design two laboratory experiments to address the two questions mentioned
above. First, is individual behavior constant in strategically equivalent games, when the only
difference resides in the nonstrategic component? Second, is MMS behaviorally relevant,
when fully separated from A rule and when joining forces with the A rule’s predictions?

For the design of the experiments, we start with the direct-sum decomposition of games
of normal-form by Candogan et al. (2011), which decomposes the game into the strategic and
nonstrategic, and at the same time the strategic into the potential and harmonic components.
We add to this decomposition the one proposed by Jessie and Saari (2015), which decomposes
the nonstrategic into the behavioral and kernel components. This combination yields a four-
component direct-sum decomposition of games: potential, harmonic, behavioral and kernel

components (see Figure 2).
In the first experiment, and following Candogan et al. (2011), we use three different

classes of games: harmonic games (those without a potential component), potential games
(those without a harmonic component) and constant-sum games (games that have both po-
tential and harmonic components). These further decompositions are useful to see when
different behavioral rules’ predictions will be separated or confounded. If two behavioral
rules yield distinct strategy profiles for each player, then we say the two behavioral rules are
fully separated. In contrast, if two behavioral rules yield the same strategy profiles for each
player, then we say the two behavioral rules are fully confounded. Thus, different classes
of games will be important to understand the experimental design of the games. Harmonic
games are of some use for separating predictions by MMS from predictions by NE, although
they are limited by the fact that predictions by MMS and A are fully confounded. Constant-
sum games are the most useful for separating NE and MMS predictions, as their predictions
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will always be separated (Proposition 2), but by construction all strategy profiles will be com-
patible with the A rule. Finally, potential games are the most useful for separating MMS, A

and NE predictions. With regard to the decomposition by Jessie and Saari (2015), we keep
constant the kernel component in all variations, in contrast to Jessie and Kendall (2022), and
change only the behavioral component. This is important because there is work showing that
underlying stakes can also impact individual behavior, see for example Esteban-Casanelles
and Gonçalves (2020).

In the second experiment, which is a follow up, we focus only on the class of potential
games, which offer the highest separability between the three behavioral rules of interest:
NE, MMS and A. We further explore cases in which the MMS and A show payoff dominance
over the NE and cases in which there is no payoff dominance, to improve our understanding
on when these behavioral rules will help explain deviations of individual behavior from the
NE.

In the empirical test, we find that individual behavior may indeed show very important
differences in strategically equivalent games, when changes occur only in the nonstrategic
component. Although NE is a strong predictor of individual behavior in our games, changes
in the nonstrategic component can clearly change individual behavior in harmonic and po-
tential games when comparing individual behavior in games that are strategically equivalent
but that differ in their nonstrategic component (more particularly, in their behavioral com-
ponent keeping the kernel component constant). Indeed, we find that individual behavior is
statistically different for both player roles in every comparison (both in harmonic games and
in potential games).

Moreover and most importantly, how does individual behavior change? Which rule do
individuals follow? In constant-sum games the NE was by far the highest observed choice,
followed by MMS. When MMS and A rules’ predictions do not coincide and are different
from the NE (necessarily, we need to focus on potential games), then NE prediction is the
leading model to explain individual behavior, followed by the A rule and then to a much
less extent MMS. However, when both types of altruism coincide (harmonic and potential
games), meaning that the MMS and A rules’ predictions coincide, and are different from
NE’s predictions, then the combination of both rules gains relevance and they are able to
explain important deviations from the NE, in particular, when, in addition, there is payoff
dominance over NE. We show these results comparing individual behavior across games but
also through the estimation of mixture-of-types models.

Our results can also be interpreted in the following way: When does the altruistic solution
attract individual behavior in games? Clearly, when both types of altruism, A and MMS,
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go hand in hand, then this combination will be able to explain important part of deviating
behavior from the NE, in particular when the combination of A and MMS shows payoff
dominance over the NE strategy profile. We do not provide a quantitative answer but rather
offer a qualitative one for the class of potential games. It is noteworthy that the relevance of
the NE diminishes when the A solution aligns with the MMS and this strategy profile payoff
dominates that of the NE.

The most related papers are Jessie and Kendall (2022) and Kendall (2022), as they showed
that individual behavior is significantly affected when manipulating the nonstrategic compo-
nent of a game using several 2×2 games and stag-hunt games, respectively. However, in the
designs by Jessie and Kendall (2022) and Kendall (2022), MMS strategy profile always co-
incided with that of the A rule, so they concluded that the A strategy profile in the behavioral
component, in our definition the MMS, is very important for individual behavior. By contrast,
in our design, where MMS can be separated from A (in particular, in potential games) com-
paring observed individual behavior directly but also through the use of a mixture-of-types
econometric model estimation, we found that A and MMS’s empirical relevance heavily de-
pends on whether they are joining forces or not, and when joining forces, whether there is
payoff dominance over NE.

We conclude that Candogan et al. (2011) is useful to inform about individual behavior in
games. As carefully observed in footnote 7 in by Candogan et al. (2011), the nonstrategic
component can affect Pareto optimality ordering in games. We have elaborated on this idea
by empirically showing that changes in the nonstrategic component will affect the Pareto
ordering of different outcomes in the original game depending on the class of games. Fur-
thermore, we empirically show that when the changes in the nonstrategic component make
MMS and A rule to join forces and predict a different strategy combination than the NE, this
is when individual behavior will depart the most from NE, in particular when MMS and A

payoff dominate NE. On the contrary, when the three behavioral rules, NE, A and MMS

are fully separated, then NE play will dominate, and A and MMS will be less behaviorally
relevant. To summarize, going back to the four different versions of PD in Figure 1, our re-
sults would imply that, while individual behavior would follow the MMS and A prediction in
games I, II and III, in game IV the MMS prediction would not explain much of the individual
behavior.

The paper is organized as follows. Section 2 shows the four direct-sum decomposition
of games, adding the decomposition by Jessie and Saari (2015) to the one by Candogan
et al. (2011). This section also relates the decomposition to different behavioral rules, and
to different classes of games. Section 3 describes the experimental design and procedures
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to empirically test whether and when the manipulations of the nonstrategic component will
affect individual behavior and whether MMS is a behaviorally relevant rule. Section 4 shows
the results and finally, Section 5 concludes.

2 Theoretical Framework

2.1 Preliminaries

We first introduce the general framework for two-person normal form games and their corre-
sponding bimatrix representation.

Let G =
〈
I,S,T,(ui){i=1,2}

〉
be a two-person finite normal form game, where I = {1,2} is

the set of players, S= {s1, ...,sh} and T = {t1, ..., th} are the sets of strategies for players 1 and
2, respectively, and ui : S×T → R is player i (i = 1,2) payoff function. A pair (si, t j) (i, j =

1, ...,h) denotes a strategy profile. A mixed strategy for player i (i = 1,2) is a probability
measure over her possible pure strategies, σ ∈ ∆(S) and τ ∈ ∆(T ). We will focus on games
where players have the same number of strategies, although all results are easily generalizable
to games in which players have a different number of strategies.

Game G can be written as a bimatrix square game (A,B). Matrix A corresponds to player
1’s payoffs with elements ai j (i, j = 1, ...,h) where ai j = u1(si, t j). Matrix B corresponds to
player 2’s payoffs with elements bi j (i, j = 1, ...,h), where bi j = u2(si, t j). Since our study
focuses on two-person games, we will use matrix notation when appropriate.

2.2 Direct-Sum Decomposition of Games

We start showing the direct-sum decomposition of games, proposed by Candogan et al.
(2011) and then we add the decomposition of the nonstrategic component, proposed by Jessie
and Saari (2015).3 This combination leads to a four-component direct-sum decomposition,
which is important to understand the underlying reasoning behind the experimental design, in
particular, the selection of the games. Although in this section we will differentiate between
the game and its corresponding components, note that each component can be understood as

3Candogan et al. (2011)’s decomposition was based on the Helmholtz decomposition theorem, which enables
the decomposition of a flow on a graph into three components: globally consistent, locally consistent (but
globally inconsistent), and locally inconsistent components, which are the potential, harmonic and nonstrategic
components, respectively. For a more detailed theoretical description see Section 3 and for its application see
Section 4 in Candogan et al. (2011). Jessie and Saari (2015)’s decomposition was based on the mathematics of
symmetry groups and representation theory.
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a payoff matrix of an independent game.4

Candogan et al. (2011) started normalizing the game by eliminating the nonstrategic in-
formation. In particular, the nonstrategic component is computed by taking the average of
each player’s own payoffs for each of their opponents’ strategies. Then, in order to get the
strategic component, this average is subtracted from the payoffs in the game, such that in the
strategic component the sum of one player’s payoffs, given the other players’ strategies, is
always zero. They further proposed a canonical direct-sum decomposition of the strategic
component into two components: potential and harmonic.

Jessie and Saari (2015) build on Candogan et al. (2011) focusing on the nonstrategic
component, which in turn was decomposed into what they called behavioral and kernel com-
ponents. Although they defined the decomposition for 2×2 games, it is easily generalizable
to h×h games.

The combination of the two proposed decompositions of bimatrix games yields the four-
component decomposition represented in Figure 2.

Game (A,B)

(AS ,BS )
Strategic (normalized)

(AN S ,BN S )
Nonstrategic

(AP ,BP)
Potential

Component

(AH ,BH )
Harmonic

Component

(AB,BB)
Behavioral
Component

(AK ,BK )
Kernel

Component

Figure 2: Diagram of Four-Component Direct-Sum Decomposition of Games

We will now describe the four-component decomposition for a bimatrix square game.
First, we consider the nonstrategic component. Denote the column vector of ones by 1

and its transpose by 1T. The nonstrategic component is then computed as follows:

(AN S ,BN S ) = ((
1
h
)11TA,(

1
h
)B11T)

4The strategic and nonstrategic components correspond to the classes of nonstrategic and µ-normalized
games introduced by Abdou et al. (2022) see Definition 2.2 and Section 2.3 for details.
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Then, we further decompose the nonstrategic component into the kernel component, and the
behavioral component, denoted by (AK ,BK ) and (AB,BB), respectively.

The kernel component is a matrix of payoffs computed by taking the average of all payoffs
for each player of game (A,B). Formally, the kernel component can be computed as follows:

(AK ,BK ) = ((
1
h2 )11TA11T,(

1
h2 )11TB11T)

This component can be interpreted as an “inflationary term” or the underlying stakes that can
vary by player.

The behavioral component is obtained as the difference between the nonstrategic and the
kernel components.

(AB,BB) = (AN S ,BN S )− (AK ,BK )

All rows of matrix AB and all columns of matrix BB have equal payoffs, meaning that both
players are strategically indifferent between their strategies in the behavioral component.
Also, since this component is normalized, there must always be at least one positive payoff
in each row (and column). Therefore, strategy profiles in the behavioral component can be
ordered according to Pareto optimality criterion, Mock (2011). We are interested in the strat-
egy profile selected by the A rule on this component. This is also the case for the nonstrategic
component.

There are two explanatory comments that we would like to make. First, throughout the
paper we will use nonstrategic and behavioral components interchangeably, as the kernel
component is just a constant term for each player (and we make sure we keep this term
constant in all our manipulations in the experimental design). Second, given what our paper
reveals, our preference would be to change the term "behavioral component" to "efficiency
component", as it can affect the efficiency or Pareto optimality of the outcomes in the original
game. However, given this name was originally proposed by Jessie and Saari (2015), we
decided to follow their labeling of these components.

Then, we consider the decomposition of the strategic component. We start by identify-
ing the strategic component, which can be obtained as the difference between (A,B) and its
nonstrategic component (AN S ,BN S ).

(AS ,BS ) = (A− (
1
h
)11TA,B− (

1
h
)B11T).

Then, the potential and the harmonic components are obtained by first calculating the follow-
ing matrices: M = 1

2(A
S +BS ), D = 1

2(A
S −BS ) and Γ = 1

2h(A
S 11T −11TBS ).
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The potential component is, then:

(AP ,BP) = (M+Γ,M−Γ)

while the harmonic component is:

(AH ,BH ) = (D−Γ,−D+Γ)

These two components are also normalized, hence 1T AP = 0,BP1=0 and 1T AH = 0,BH 1=0.
This decomposition separates the cyclical and the acyclical parts of the strategic compo-

nent giving rise to the harmonic and the potential components, respectively. By construction,
the harmonic part is a zero-sum payoff matrix. Consequently, starting from any of its payoff
profiles, there exists a sequence of deviations for a single player that strictly increases her
payoff until the same payoff profile is reached again. By contrast, this iteration always ends
in some strategy profile in the potential component.5

This completes the introduction of the four-component direct-sum decomposition of games.
From now on, when a particular component is a matrix of zeros, we say so or alternatively,
that it does not have that particular component. To illustrate the calculation of the four-
component direct-sum decomposition, please find a detailed step by step calculation for a
particular game, as well as the 11 and 15 experimental games from the laboratory experi-
ments we use in the empirical test decomposed into the four direct-sum components in the
Appendix A.

2.3 Decomposition and Solution Concepts: Nash Equilibrium, Altruis-
tic, Mutual-Max-Sum and Other Rules

A solution concept or behavioral rule can be understood as a prediction of how agents will
play a game. We start by describing the two solution concepts: NE and A. Then, we formally
introduce a new solution concept, the MMS. Finally, we also describe other behavioral rules

5Kalai and Kalai (2013) proposed a decomposition of a two-person normal-form game into an identical
common-interest component, which is potential, and a zero-sum component which is not necessarily a har-
monic component. Clearly, this decomposition is in line with the decomposition of the strategic component
proposed by Candogan et al. (2011) whenever each cell of payoffs of the auxiliary matrix Γ is zero. Demuynck
et al. (2022) develops an index of cooperativeness and competitiveness based on the common-interest and com-
petitiveness components, respectively, by the Kalai and Kalai (2013) decomposition and shows that individual
behavior is more/less cooperative and less/more competitive consistent with this index. Hwang and Rey-Bellet
(2020) show that any two-person normal form game can be uniquely decomposed into a zero-sum normalized
game, a zero-sum equivalent potential game, and an identical interest normalized game.
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that have shown useful to explain individual behavior in games.
The canonical solution concept is the NE. A strategy profile is said to be a NE if no player

can gain by altering its strategy, given the existing strategies of other players. Thus, a NE

represents a best response by any player to the given strategies of other players.
Other solution concepts can be better understood as if they were selected by an external

observer whose aim is to identify the best outcomes for the two players. Pareto optimality
or efficiency stands out as the most popular criterion. With a weak Pareto optimal outcome,
any change will make at least one player no better off, but may not make any party worse
off. With a strong Pareto optimal, any change will make at least one player worse off. Often
there will be multiple strategy combinations that lead to Pareto outcomes. The most salient
Pareto optimal outcome, and therefore our focus, is the altruistic, or social welfare maximiz-
ing behavioral rule (Charness and Rabin, 2002), A, one which can be viewed as an implicit
agreement between players who select the strategy profile that maximizes the sum of their
payoffs. So, when choosing her strategy, the A behavioral rule simply sums her own and
opponent’s payoffs in each cell of the payoff matrix, and applies the max operator. In such
a solution, rather than trying to predict her decision, both players implicitly assume that the
other player is also altruistic (Costa-Gomes et al., 2001).

We now introduce a novel solution concept that we call, Mutual-Max-Sum (MMS). This
solution can be understood as the reciprocal behavior that may take place in bilateral encoun-
ters between empathetic players. Thus, each player when choosing her strategy considers,
not her own payoffs, but instead the payoffs of her opponent. Therefore, it can be understood
as an extreme form of altruism.6

DEFINITION 1. Let G be a two-person normal-form game. A strategy profile (s̃, t̃) ∈ S×T is

Mutual-Max-Sum if:

s̃ ∈ argmax
si∈S

∑
t j∈T

u2(si, t j) and t̃ ∈ argmax
t j∈T

∑
si∈S

u1(si, t j).

Note that this is not an equilibrium concept, as players are not mutually best responding
to each other. Indeed, individuals choose their strategies independently of the behavior of
their opponent but we assume both players are doing this.

6This definition shares similarities with the mutual-max solution defined by Rabin (1993). The difference
relies on the fact that for the selection of a strategy in the mutual-max solution each player considers the maxi-
mum payoff of her opponent while in the MMS solution each player selects the maximum sum of the payoffs of
her opponent. As it is the case for the mutual-max solution, the MMS does not satisfy invariance to the deletion
of dominated strategies. However, in contrast to the mutual-max solution, the MMS satisfies the invariance to
affine transformations.
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In an interesting and useful result, demonstrated in Appendix B, we relate MMS in the
original game and the A payoff profile(s) in the behavioral component. In particular, the MMS

in the (A,B) always identifies the payoff profile(s) that is A in the behavioral component.

PROPOSITION 1. Let (A,B) be a bimatrix game and let (AB,BB) be its behavioral com-

ponent. Then the MMS solution(s) of (A,B) will coincide with the A payoff profile(s) of

(AB,BB).

It is worth noting two points. First, this result allows us to apply the MMS solution to game
(A,B) and identify the most relevant payoff profile(s) in the behavioral component without
having to decompose the game. Second, although the MMS solution may not be unique, in
our experimental exercise we will only consider the case where this is unique or the trivial
case, where the behavioral component is zero, such that any strategy combination is trivially
MMS.

These are the main three behavioral rules we will focus on. However, we will also briefly
describe other behavioral rules that have shown useful to explain individual behavior. Among
the non-equilibrium solution concepts, the level-k thinking model excels. In the so-called
level-k model, each player of type level-k = 0,1, ..., corresponds to the number of steps of
reasoning the player is able to perform. Thus, a level-0 agent chooses her strategies randomly
while a level-1 agent assumes her opponent will act as a level-0 agent and best responds. Al-
ternatively, level-1 players 1 and 2 sum their own payoffs across columns and rows, respec-
tively, and take the strategy that yields the maximum sum of payoffs.7 Finally, also following
Costa-Gomes et al. (2001), we consider both the Pessimistic and the Optimistic behavioral
rules. The Pessimistic (P) can be understood as a conservative player who, when choosing
her strategy, maximizes her minimum payoff. The Optimistic behavioral rule (O) on the other
hand, when choosing her strategy, maximizes her maximum payoff.8

All these behavioral rules that we have presented are defined in the original game (A,B).
Now, if we were to make changes to any of the two main strategic or nonstrategic components,
would their predictions change? We can identify strategic, nonstrategic, and mixed behavioral
rules based on their dependence on the strategic and nonstrategic components. On the one

7k = 2 or higher are similarly defined such that level-k best response to level-k-1 behavior.
8In addition, and in the spirit of the A behavioral rule, we could also define a version of inequity aversion,

who simply takes the absolute difference between her own and opponent’s payoffs in each cell of the payoff
matrix, and applies the minmin operator. However, given other studies have found little evidence of such
extreme inequity aversion, for example in the work by Garcia-Pola and Iriberri (2019), we decided not to
include it in our study. This consideration of inequity aversion was suggested during the refereeing process and
we did check for its relevance. We included it in our estimation exercise in Section 4.3. However, we did not
find any evidence for it so we decided not to include it. Results are available upon request.
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hand, NE and any level-k behavioral rules are strategic rules, such that any change in the
nonstrategic component will never affect their predicted behavior. On the other hand, MMS

is a nonstrategic rule, such that it is invariant to any changes in the strategic component.
Finally, predictions by A, P and O rules can be affected by any changes in any of the two
main components, meaning that we will refer them as mixed behavioral rules.

Looking at this in more detail, we can see that the NE prediction in the original game
(A,B) will always coincide with its prediction in the strategic component. This is also the case
for any behavioral rule that is strategic. In other words, as the strategic component contains
all the strategic information of the original game, the strategic solutions remain invariant
between the original game and the strategic component. Furthermore, the predictions by
every strategic behavioral rule would be trivially indifferent for any of the strategy profiles
in the nonstrategic components. Interestingly, the MMS solution is the mirror image such
that its prediction in the original game (A,B) will always coincide with its prediction in
the nonstrategic component and, further, its prediction in the strategic component will be
trivially indifferent for any of the strategy profiles. In short, the strategic component isolates
all the strategic considerations, while the nonstrategic component isolates all the nonstrategic
considerations. These results are summarized in the following remark.

REMARK 1. (i) The Nash equilibria of (AS ,BS ) coincides with the Nash equilibria of

(A,B), while every strategy profile of (AS ,BS ) is a Mutual-Max-Sum. (ii) The Mutual-

Max-Sum solution (AN S ,BN S ) coincides with the Mutual-Max-Sum of (A,B), while every

strategy profile in the (AN S ,BN S ) is a Nash equilibrium.

Finally, note that we cannot make any similar statements for mixed rules, such as the
A, P and O rules. They can select different strategy profiles for different components and,
therefore, their predictions in the original game are not invariant to changes in any of the
components.

2.4 Decomposition and Classes of Games: Harmonic, Potential and Constant-
Sum Games

Candogan et al. (2011), see their Theorem 5.1, allows to reformulate the classes of potential
and harmonic games in terms of their components as follows: the absence of a harmonic
component defines a potential game, while the absence of a potential component defines a
harmonic game. A potential game admits at least one Nash equilibrium in pure strategies,
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while a square harmonic game admits only a uniformly mixed Nash equilibrium.9 Any other
class of games always has both components. Looking at these other games with both compo-
nents, we will focus on constant-sum games. These are games of conflict where the sum of
all players’ payoffs remains constant for each strategy profile, meaning that the gain for one
player is always at the expense of her opponent. All constant-sum games have both poten-
tial and harmonic components, except the class of matching pennies (rock-paper-scissors for
three strategies).10

Our main objective is to understand whether and when the manipulations in the nonstrate-
gic component will affect individual behavior and also whether the MMS solution is relevant
to behavior. Therefore, we use this classification of games to assess when the MMS solution
will make a different prediction from other relevant behavioral rules. To proceed, we start by
saying that any two solution concepts or behavioral rules are separable if they can provide
a different predicted probability of choosing each of the strategies and for each of the play-
ers, while they are separated if they never coincide. Below is a table that summarizes the
separability between MMS, NE, and A by the classes of games.

Table 1: Separability between MMS, NE and A, by Class of Game

MMS vs NE MMS vs A

Harmonic Games Separated Not separable
Constant-sum Games Separated Not separable*
Potential Games Separable Separable

* In CSG all strategy profiles are A.

Harmonic games. The unique Nash equilibrium prediction in these games is the uniformly
mixed strategy profile. Therefore, the MMS prediction is always separated in these games.
However, such a prediction cannot be separated by the A behavioral rule. Consequently,
harmonic games will not be useful when it comes to separating the MMS solution from the A

behavioral rule.
Constant-sum games. These games are particularly interesting because NE and MMS are

9As pointed out by Candogan et al. (2011), harmonic games have appeared in earlier publications but have
not been defined as a class.

10Furthermore, a constant-sum game can be transformed into a zero-sum game by subtracting half of the
value of the constant from each payoff in the initial game so that in the former the kernel is positive instead of
0. Zero-sum games generalize the generalized rock-paper-scissors games whose decomposition was analyzed
by Candogan et al. (2011).
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always perfectly separated as shown by the proposition below. However, they will not to be
useful when it comes to separating MMS predictions from A rule predictions.

PROPOSITION 2. Let (A,B) be a constant-sum game with a unique Nash equilibrium in pure

strategies and a unique MMS solution. Then, the NE and the MMS solution will never

coincide.

Potential games. These games offer the highest degree of separability. Interestingly, manip-
ulating the behavioral component we can lead to three situations:

(1) All three rules point to the same strategy profile, reinforcing each other. No separation
at all.

(2) All three rules point toward a different strategy profile, such that there is perfect sepa-
ration. There can be two additional subcases, when MMS and A payoff dominate the
NE or when there is no payoff dominance among these three behavioral rules.

(3) The MMS and A rules choose the same strategy profile but their prediction is different
from the prediction by the NE. There can be two additional subcases, when MMS and
A payoff dominate the NE or when there is no payoff dominance among these three
behavioral rules.

As summarized in Table 1, although it is relatively easy to separate MMS predictions
from NE predictions, it is not trivial to separate MMS predictions from A rule’s predictions.
Potential games allow for this separation. In our design, we do separate them, and we show
that this separation leads to a very different interpretation of the results on the importance of
both the nonstrategic component and the MMS.

3 Experimental Study

Is individual behavior constant in strategically equivalent games? Do individuals follow
MMS predictions? If not, what does this solution concept contribute regarding the strate-
gic behavior of the players? As these are empirical questions, we carried out a laboratory
experiment. Potentially, we could use existing empirical studies and games to answer this
question. However, the games in existing studies were not designed with our research ques-
tions in mind, and, as such, they would not provide the most informative answer. Therefore,
we designed our own games guided by the four direct-sum decompositions of games.
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3.1 Procedures

Using the ORSEE system (Greiner, 2015), we recruited 400 subjects for two different experi-
ments. The laboratory sessions, which lasted around 1 hour and a half, were conducted using
the computer software z-tree (Fischbacher, 2007). The 10 sessions, with around 40 partici-
pants each, took place in April 2022 and November 2023 in the Laboratory of Experimental
Analysis (Bilbao Labean) at the University of the Basque Country UPV/EHU.11

We started with general instructions that informed subjects that payments would depend
on their own and other participants’ decisions in the same session, as well as on luck. After
that, the participants were given detailed instructions explaining the task in hand, including
examples of games, how their own and the other players’ decisions could affect the payments
and how they were going to be matched. Before subjects started the task, we posed a set
of three questions to ensure the correct understanding of the payoff-matrix representation of
games and payments. Appendix D includes a translated version of the instructions.

In the first experiment, 200 subjects played the same eleven 3×3 normal-form two-player
games in the same order, twice, once as a row player and once as a column player, leading to
a total of 22 decisions per subject. In the second experiment, 200 subjects played the same
fifteen 3× 3 normal-form two-player games in the same order, twice, once as a row player
and once as a column player, leading to a total of 30 decisions per subject. Hence, the two
experiments differ in the games and in the number of decisions.

When the subjects had finished all their decisions, the computer randomly matched sub-
jects in pairs and selected one game per pair, in each of the two parts (the first 11 or 15
decisions and the second 11 or 15 decisions). This ensured that each subject was paid for
one game played in each of the two player roles. After we informed subjects about their pay-
ments, the subjects completed a non-incentivized questionnaire regarding demographic data,
risk preferences following Eckel and Grossman (2002), and a cognitive reflection test. Table
2 shows the descriptive statistics for all these variables. The majority of the subjects were
mostly Spanish, aged between 18 and 22, with a higher presence of women (64%). The latter
is consistent with there being a higher proportion of women studying social sciences, partic-
ularly Business Administration and Management and Economics, which represent more than
60%. Participants are also risk averse, as the most frequent choice is the safe option. We also
requested free-format responses regarding their explanations of how they made their choices
and their expectations of how other subjects made their choices. To finish the session, each

11The CEISH-UPV/EHU Ethics Committee issued a favorable report for carrying out the experiment. Ref.:
M10_2022_102
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subject was paid privately according to the two games selected plus a 3 euros attendance
fee. The average payment was 17.06 euros, with a standard deviation of 3.71, in the first
experiment, and 17.28 euros, with a standard deviation of 5.77, in the second experiment.
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Table 2: Descriptive Statistics

First Experiment Second Experiment
Variables Mean Values (SD) Mean Values (SD)

Women 0.635 0.640
Age 20.75 21.29

(2.817) (3.126)
Spanish 0.96 0.96
University Entry Grade (out of 10) 7.831 7.693

(2.269) (1.099)
Business and Economics Degree 0.625 0.640

Distribution over risk choices:
1.5e with 0.50 or 1.5e with 0.50 0.350 0.375
1.3e with 0.50 or 1.8e with 0.50 0.170 0.115
1.1e with 0.50 or 2.1e with 0.50 0.195 0.150
0.9e with 0.50 or 2.4e with 0.50 0.080 0.075
0.7e with 0.50 or 2.7e with 0.50 0.070 0.105
0.6e with 0.50 or 2.8e with 0.50 0.020 0.025
0.4e with 0.50 or 2.9e with 0.50 0.020 0.015
0e with 0.50 or 3e with 0.50 0.095 0.140

Cognitive reflection test:
Q1. Percent correct answer 0.295 0.285
Q1. Percent intuitive answer 0.210 0.250
Q2. Percent correct answer 0.375 0.220
Q2. Percent intuitive answer 0.370 0.495
Q3. Percent correct answer 0.600 0.495
Q3. Percent intuitive answer 0.280 0.305

Notes: The second column displays the mean values of the first experiment and the third column displays the mean values for the
second experiment. Women is a dummy variable which takes a value of 1 if the subject is female. Age is measured in years. Spanish
is a dummy variable which takes a value of 1 if the subject is Spanish. University Entry Grade is normalized to a grade out of 10.
Risk choices are ordered from safest to riskiest and were elicited via Eckel and Grossman (2002). Finally, the cognitive reflection test
includes questions from Toplak et al. (2014). The questions are as follows: 1. If John can drink one barrel of water in 6 days, and
Mary can drink one barrel of water in 12 days, how long would it take them to drink one barrel of water together? (correct answer 4
days; intuitive answer 9); 2. Jerry received both the 15th highest and the 15th lowest mark in the class. How many students are in the
class? (correct answer 29 students; intuitive answer 30); 3. A man buys a pig for 60, sells it for 70, buys it back for 80, and sells it
finally for 90. How much has he made? (correct answer 20; intuitive answer 10).
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3.2 Experimental Design: Player Roles, Games, Behavioral Rule Pre-
dictions and Separability

The specific structure of the experiments was as follows. The computer randomly divided
the participants into two types, Type 1 and Type 2. Type 1 subjects started the first eleven
and fifteen decisions playing as row players and, then, in the second part of the task, they
played as column players. Type 2 subjects played the opposite way round, first as column
players and then as row players. The subjects were never informed about their types or even
about the existence of types, but at the beginning of the experimental task they were told they
would be presented with 11 and 15 payoff-matrices, one at a time. Only when these 11 and
15 decisions had been taken were they told that they would be presented with an additional
set of 11 and 15 payoff matrices. The subjects did know there would be participants playing
as row and column players, but they were not explicitly told that the total of 22 and 30 matrix
payoffs came from the same 11 and 15 games. In order to facilitate the reading of the games,
we showed all the games to all subjects from the perspective of row players, transposing the
games when the subject was a column player. There were no time restrictions for making
decisions.

When designing the games, the main goal was to separate MMS predictions from the
predictions of other behavioral rules, particularly the predictions by the NE and A behavioral
rules. Therefore, we chose 3× 3 normal-form games instead of 2× 2 normal-form games,
as 2×2 games make it impossible to perfectly separate out the predictions of three different
behavioral rules.

Figures 3 and 4 display the eleven and fifteen 3× 3 normal-form two-player games de-
signed for the first and second experiments, respectively. We presented the games to the
subjects in a randomized order, but in the same order to all subjects.12 By design no game
has dominated strategies in pure strategies.

In the first experiment, the eleven games can be separated into 3 different sets of games,
shown in Figure 3. G1 to G3 are strategically equivalent harmonic games, where G2 and
G3 have a behavioral component, and the MMS points towards a different strategy profile
each, while G1 has no behavioral component. G4 and G5 are the two experimental constant-
sum games we designed. These are interesting because by definition the predictions of NE

and MMS are always fully separated. Finally, G6 to G8 and G9 to G11 are the two sets of

12The actual order of the games was G5, G9, G7, G11, G2, G6, G8, G4, G10, G3, G1 in the first experiment
and G7, G13, G8, G3, G11, G15, G4, G10, G12, G9, G2, G6, G14, G5, G1 in the second experiment. The goal
of randomizing was to prevent the subjects from observing the similarity in some particular games.
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Harmonic Games

G1
6.62⋆ 7.62⋆ 5.62⋆

6.56⋆ 5.56⋆ 7.56⋆

5.62⋆ 6.62⋆ 7.62⋆

7.56⋆ 6.56⋆ 5.56⋆

7.62⋆ 5.62⋆ 6.62⋆

5.56⋆ 7.56⋆ 6.56⋆

G2
6.62⋆ 7.62⋆ 5.62⋆

11.56⋆ 0.56⋆ 7.56⋆

0.62⋆ 1.62⋆ 2.62⋆

12.56⋆ 1.56⋆ 5.56⋆

12.62⋆ 10.62⋆ 11.62⋆

10.56⋆ 2.56⋆ 6.56⋆

G3
6.62⋆ 7.62⋆ 5.62⋆

1.56⋆ 5.56⋆ 12.56⋆

0.62⋆ 1.62⋆ 2.62⋆

2.56⋆ 6.56⋆ 10.56⋆

12.62⋆ 10.62⋆ 11.62⋆
0.56⋆ 7.56⋆ 11.56⋆

Constant-sum Games

G4
4.55⋆ 3.77 1.67

5.45⋆ 6.23 8.33
5.82 3.15 7.76

4.18 6.85 2.24
4.89 9.78 0.98

5.11 0.22 9.02

G5
3.11 4.80 6.67

6.89 5.20 3.33
3.95 3.97⋆ 1.90

6.05 6.03⋆ 8.10
7.72 5.74 0.15

2.28 4.26 9.85

Potential Games. First set

G6
8.53 7.63 8.59

7.18 4.05 6.66
8.29 8.43 8.03

6.82 4.75 5.97
5.11 12.55⋆ 7.08

5.49 10.71⋆ 6.87

G7: MMS payoff dominated
9.68 8.78 9.74

8.44 1.45 8.00
9.73 9.87 9.47

8.08 2.15 7.31
2.52 9.96⋆ 4.49

6.75 8.11⋆ 8.21

G8: NE payoff dominated
8.33 7.43 8.39

6.98 0.05 10.86
12.49 12.63 12.23

6.62 0.75 10.17
1.11 8.55⋆ 3.08

5.29 6.71⋆ 11.07

Potential Games. Second Set

G9
5.56 5.22 5.72

7.53 6.88 7.41
6.32⋆ 5.32 4.85

9.15⋆ 7.84 7.40
4.03 6.30 6.18

5.82 7.78 7.69

G10: MMS payoff dominated
5.86 5.52 6.02

6.63 7.28 7.91
6.12⋆ 5.12 4.65

8.25⋆ 8.24 7.90
3.93 6.20 6.08

4.92 8.18 8.19

G11: NE payoff dominated
9.86 9.52 10.02

3.53 6.58 11.71
2.32⋆ 1.32 0.85

5.15⋆ 7.54 11.70
3.73 6.00 5.88

1.82 7.48 11.99

Notes: For each game, outcomes compatible with the NE play are denoted by ⋆, those compatible with the MMS are in bold, and those compatible with the A play
are underlined. For simplicity purposes, MMS is only shown when the behavioral component of the game is non-zero, so it is not shown in G1, G6, and G9. In the
experiment, we show only two decimals as in the figure. The actual payoffs of the games are displayed in Figure 5 in Appendix A.

Figure 3: 11 Experimental Games in the First Experiment
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First Set

G1 (V0)
34⋆ 12 29

34⋆ 21 31
31 24 20

25 27 16
21 23 31

16 27 28

Second Set

G6 (V0)
15 29 31⋆

23 31 38⋆

26 22 27
27 17 27

27 35 13
25 27 10

Third Set

G11 (V0)
30 14 31

30 21 29
31 24 20

27 27 14
19 21 35⋆

18 27 32⋆

G2 (V1: no payoff dominance)
31⋆ 9 26

29⋆ 25 32
33 26 22

20 31 17
22 24 32

11 31 29

G7 (V1: no payoff dominance)
11 25 27⋆

26 31 35⋆

29 25 30
30 17 24

28 36 14
28 27 7

G12 (V1: no payoff dominance)
31 15 32

29 27 24
33 26 22

26 33 9
16 18 32⋆

17 33 27⋆

G3 (V2: NE payoff dominated)
28⋆ 6 23

27⋆ 26 33
36 29 25

18 32 18
22 24 32

9 32 30

G8 (V2: NE payoff dominated)
11 25 27⋆

29 34 29⋆

29 25 30
33 20 18

28 36 14
31 30 1

G13 (V2: NE payoff dominated)
34 18 35

32 27 21
36 29 25

29 33 6
10 12 26⋆

20 33 24⋆

G4 (V3: no payoff dominance)
29⋆ 7 24

26⋆ 28 32
35 28 24

17 34 17
22 24 32

8 34 29

G9 (V3: no payoff dominance)
11 25 27⋆

28 30 34⋆

31 27 32
32 16 23

26 34 12
30 26 6

G14 (V3: no payoff dominance)
28 12 29

29 27 24
37 30 26

26 33 9
15 17 31⋆

17 33 27⋆

G5 (V4: NE payoff dominated)
29⋆ 7 24

29⋆ 31 26
41 34 30

20 37 11
16 18 26

11 37 23

G10 (V4: NE payoff dominated)
10 24 26⋆

33 26 33⋆

36 32 37
37 12 22

22 30 8
35 22 5

G15 (V4: NE payoff dominated)
25 9 26

25 31 24
41 34 30

22 37 9
14 16 30⋆

13 37 27⋆

Notes: For each game, outcomes compatible with the NE play are denoted by ⋆, those compatible with the MMS are in bold, and those compatible with the A play
are underlined. For simplicity purposes, MMS is only shown when the behavioral component of the game is non-zero, so it is not shown in G1, G6 and G11. The
decomposition for each of the experimental games is displayed in Figures 6, 7 and 8 in Appendix A.

Figure 4: 15 Experimental Games in the Second Experiment
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strategically equivalent potential games. Both sets have the same structure. The first game
has no behavioral component, meaning that the behavioral component is composed of all
0s, and the NE and A behavioral predictions coincide in the same strategy profile. Then, in
the second game of each set, we added a behavioral component where the MMS, A and NE

predictions are all separated. Finally, in the last game of each potential set, we increased
the magnitude of the behavioral component to obtain a game where the MMS prediction will
also coincide with the A rule’s prediction. However, these two are separated from the NE

predictions, which is Pareto dominated. With regard to the actual chosen payoff numbers,
we opted for having three digit numbers in order to increase separability between different
behavioral rules and also avoid round numbers.

In the second experiment, we focused only on potential games, as they offer the highest
separability between MMS and A behavioral types and also used payoffs with no decimals,
which simplified subjects’ decision making. The payoffs in the second experiment repre-
sented points that were then translated into euros, in particular, 1 point represented 0.25
euros. We designed three sets of potential games, shown in each of the columns in Figure 4.
In each set, all five potential games are strategically equivalent, such that the NE predictions
remain exactly the same and only differ in the existence and addition of behavioral compo-
nents (as the kernel component is also kept constant), leading to five different games within
each set. The first game, V0, has no behavioral component and the unique Nash equilibrium
profile is also the A prediction. In the next two versions, V1 and V2, the three behavioral
rules, MMS, NE and A are perfectly separated, and in addition, in V1, while there is no pay-
off dominance among the three behavioral rules, in V2, both the MMS and A payoff dominate
the NE. Finally, in the last two versions, MMS and A coincide, and are separated from NE.
In addition, in V3, there is no payoff dominance between the NE and MMS and A, while in
the last version, V4, MMS and A, payoff dominate the NE.
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Table 3: Predicted Strategies by Different Behavioral Rules for the 11 and 15 Games

First Experiment

Behavioral Rules Roles G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11

NE: Nash Equilibrium R 1,2,3 1,2,3 1,2,3 1 2 3 3 3 2 2 2

C 1,2,3 1,2,3 1,2,3 1 2 2 2 2 1 1 1

MMS: Mutual-Max Sum R 1,2,3 3 3 2 1 1,2,3 2 2 1,2,3 1 1

C 1,2,3 1 3 3 3 1,2,3 3 3 1,2,3 3 3

A: Altruistic R 1,2,3 3 3 1,2,3 1,2,3 3 1 2 2 3 1

C 1,2,3 1 3 1,2,3 1,2,3 2 1 3 1 2 3

L1: Level-1 R 1,2,3 1,2,3 1,2,3 1 2 3 3 3 2 2 2

C 1,2,3 1,2,3 1,2,3 2 1 2 2 2 2 2 2

P: Pessimistic R 1,2,3 3 2 1 2 3 3 3 2 2 2

C 1,2,3 3 3 1 2 2 2 2 2 2 1

O: Optimistic R 1,2,3 2 1 3 3 3 1 3 2 2 3

C 1,2,3 1 1 2 1 2 2 2 1 2 3

Second Experiment

Behavioral Rules Roles G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15

NE: Nash Equilibrium R 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3

C 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3

MMS: Mutual-Max Sum R 1,2,3 2 2 2 2 1,2,3 2 2 2 2 1,2,3 2 2 2 2

C 1,2,3 2 2 2 2 1,2,3 1 1 1 1 1,2,3 2 2 2 2

A: Altruistic R 1 3 3 2 2 1 3 3 2 2 3 1 1 2 2

C 1 3 3 2 2 3 2 2 1 1 3 1 1 1,2 2

L1: Level-1 R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

P: Pessimistic R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C 1 1,3 3 3 3 2 2 2 2 2 3 3 3 3 3

O: Optimistic R 1 1 1 2,3 2,3 1 1 1 1 2 3 2,3 2,3 2,3 2,3

C 1 1 1 1 1 2 2 2 2 3 3 1 1 1 1

Notes: The table reports the strategies predicted by all the behavioral rules we consider; 1, 2 and 3 refer to the first, second and third strategies,
respectively. In a few instances, a behavioral rule is indifferent between multiple strategies, so we assume the behavioral rule will predict any
of those strategies with equal probability.

Table 3 shows the predicted strategies by different behavioral rules. We can comment on
the predicted choices by the MMS. In the games with no behavioral component, such that
these games only have the strategic component and the kernel component, we can observe that
MMS is indifferent between any of the strategies (see games G1, G6 and G9, in experiment 1,
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or G1, G6 and G11, in experiment 2). In any other case, i.e., when the behavioral component
is positive, then the games are designed such that the MMS will have a unique prediction.

Table 4: Separation between Different Behavioral Rules

First Experiment

MMS NE A L1 P O

MMS 0 0.6061 0.3636 0.6061 0.5455 0.5455

NE 0.6061 0 0.4848 0.1515 0.1818 0.3636

A 0.3636 0.4848 0 0.4848 0.4242 0.3636

L1 0.6061 0.1515 0.4848 0 0.2121 0.3030

P 0.5455 0.1818 0.4242 0.2121 0 0.3636

O 0.5455 0.3636 0.3636 0.3030 0.3636 0

Second Experiment

MMS NE A L1 P O

MMS 0 0.6667 0.4111 0.6667 0.6778 0.5778

NE 0.6667 0 0.5444 0.2222 0.3000 0.3111

A 0.4111 0.5444 0 0.5000 0.4667 0.4111

L1 0.6667 0.2222 0.5000 0 0.0778 0.3556

P 0.6778 0.3000 0.4667 0.0778 0 0.4333

O 0.5778 0.3111 0.4111 0.3556 0.4333 0

Notes: The table reports the proportions of decisions across all 22 decisions in which the different
behavioral rules predict different strategies. The minimum possible separation value is 0, which occurs
when two behavioral rules prescribe the same strategy in all 22 decisions, and the maximum possible
separation value is 1, which occurs when the two models predict a different strategy in each of the
22 decisions. When one behavioral rule’s prediction is 1,2,3, meaning playing each of the strategies
with equal probability, and another behavioral rule’s prediction is 1,2, meaning playing the first two
strategies with equal probability, the separation value is equal to 1/3, as these two behavioral rules can
be separated only 1/3 of the times, particularly, when a subject plays the third strategy.

Finally, we measure how successful we were in separating MMS predictions from the
predictions of any other behavioral rules. Table 4 shows the separation between different
behavioral rules. The values in the table represent the proportion of games × player roles,
i.e. decisions in which the predictions of two behavioral rules are separated. The numbers
can take any value between 0 (no separation at all, such that two behavioral rules predict
exactly the same strategy in each of the 22 and 30 decisions) and 1 (full separation, such
that two behavioral rules predict a different strategy in each of the 22 and 30 decisions). The
most interesting row in the table is the one referring to the MMS, shown in bold, as the main
goal when designing the games was to have the highest separation between MMS and the
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rest of the behavioral rules. All separation values for MMS are above 50%, as desired, with
the exception of the separation between MMS and A behavioral rules, which is the hardest
to separate. This is closely linked to the results shown in Table 1, as harmonic games and
constant-sum games are not qualified to separate predictions by A and MMS. In the second
experiment, these values are improved, as this was one of the objectives of carrying out the
second experiment.

As far as the separability between other behavioral rules is concerned, we can conclude
that these games are far from ideal in terms of separating predictions by NE and L1 and
predictions by NE and P with perfect confounds between some of these behavioral rules and
particular classes of games. However, the goal was to separate MMS from NE and from A

rules. We will come back to this when interpreting the empirical results.

4 Results

We will start off by performing some preliminary analysis testing for whether different ses-
sions can be pooled and for the effects of player role order, as half of the subjects played
first as row players and then as column players, while the other half played in the reverse
order. We will then analyze how the subjects played game by game to understand whether
the manipulation and addition of a behavioral component affect individual behavior. Finally,
we will carry out mixture-of-types model estimations, across all games and by sets of games,
to get conclusions about the empirical relevance of MMS.

4.1 Preliminaries: Testing for the Effects of Player Role Order

We held 5 different sessions in each of the two experiments and in each of them we had
subjects playing the games in each of the two roles.

We start off by testing whether we can pool all 5 sessions, both overall, and by player role
order. Table A1 shows the p-values for Chi-Square test performed for the overall participants
in each session, and for the subsets of participants corresponding to each player type in the
experiment. We cannot reject the null hypothesis of no significant differences at the 1%
significance level between each of the sessions and the rest. Therefore, we are able to pool
all 5 sessions in each of the experiments.

Due to the two-part design of the experiment, and two types of subjects (Type 1 and
Type 2, as described in Section 3.2), we next check whether there was any kind of effect
from player role order when participants chose their strategies, i.e., whether subjects behaved
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differently when they started playing as row players instead of as column players. Table
A2 displays p-value for the Chi-Square test. We cannot reject the null hypothesis of equal
behavior across different player role orders. This allows us to use the data for each subject in
both roles, and not only in the first role they performed the task. Consequently, we are able
to use 200 observations per game in each of the two experiments.

4.2 Individual Behavior Game by Game: Is Individual Behavior Con-
stant in Strategically Equivalent Games?

We start by analyzing individual behavior game by game. Table 5 shows the frequencies
of play of each of the three strategies in each of the player roles game by game, by all 200
participants in each of the two experiments. The strategies that are in the NE profile, MMS

and A are denoted by ⋆, in bold and underlined, respectively, for each game. For simplicity,
we have only marked the MMS prediction when the behavioral component is non-zero.
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Table 5: Frequencies of Strategy Choices, by Player Role and by Game

Row Players Column Players
Experiment 1 1 2 3 1 2 3

G1 0.225⋆ 0.545⋆ 0.230⋆ 0.205⋆ 0.570⋆ 0.225⋆

G2 0.105⋆ 0.200⋆ 0.695⋆ 0.310⋆ 0.165⋆ 0.525⋆

G3 0.300⋆ 0.420⋆ 0.280⋆ 0.105⋆ 0.255⋆ 0.640⋆

G4 0.805⋆ 0.160 0.035 0.775⋆ 0.205 0.020
G5 0.265 0.700⋆ 0.035 0.360 0.605⋆ 0.035
G6 0.030 0.015 0.955⋆ 0.040 0.920⋆ 0.040

G7 (MMS payoff dominated) 0.100 0.060 0.840⋆ 0.105 0.770⋆ 0.125
G8 (NE payoff dominated) 0.055 0.135 0.810⋆ 0.045 0.735⋆ 0.220

G9 0.045 0.900⋆ 0.055 0.565⋆ 0.345 0.090
G10 (MMS payoff dominated) 0.075 0.795⋆ 0.130 0.455⋆ 0.365 0.180

G11 (NE payoff dominated) 0.380 0.555⋆ 0.065 0.380⋆ 0.235 0.385
Experiment 2 1 2 3 1 2 3

G1 0.975⋆ 0.015 0.010 0.930⋆ 0.005 0.065
G2 (V1: no payoff dominance) 0.875⋆ 0.060 0.065 0.825⋆ 0.010 0.165
G3 (V2: NE payoff dominated) 0.820⋆ 0.125 0.055 0.775⋆ 0.020 0.205
G4 (V3: no payoff dominance) 0.800⋆ 0.125 0.075 0.715⋆ 0.050 0.235
G5 (V4: NE payoff dominated) 0.795⋆ 0.185 0.020 0.640⋆ 0.095 0.265

G6 0.935⋆ 0.040 0.025 0.015 0.560 0.425⋆

G7 (V1: no payoff dominance) 0.745⋆ 0.165 0.090 0.110 0.520 0.370⋆

G8 (V2: NE payoff dominated) 0.745⋆ 0.125 0.130 0.055 0.650 0.295⋆

G9 (V3: no payoff dominance) 0.850⋆ 0.130 0.020 0.120 0.560 0.320⋆

G10 (V4: NE payoff dominated) 0.760⋆ 0.230 0.010 0.225 0.480 0.295⋆

G11 0.585 0.035 0.380⋆ 0.210 0.005 0.785⋆

G12 (V1: no payoff dominance) 0.675 0.100 0.225⋆ 0.260 0.055 0.685⋆

G13 (V2: NE payoff dominated) 0.745 0.050 0.205⋆ 0.340 0.050 0.610⋆

G14 (V3: no payoff dominance) 0.735 0.120 0.145⋆ 0.195 0.120 0.685⋆

G15 (V4: NE payoff dominated) 0.590 0.215 0.195⋆ 0.240 0.100 0.660⋆

Notes: 1,2,3 denote the first, second, and third strategies of the game respectively for each role. For each game, strategies in the NE
strategy profile are denoted by ⋆, those in the MMS strategy profile are in bold, and those in the A strategy profile are underlined. For
simplicity purposes, MMS is only shown when the behavioral component of the game is non-zero.

A straightforward way to analyze whether manipulation of the behavioral component af-
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fects individual behavior is to compare individual behavior across subsets of strategically
equivalent games (G1-G2-G3, G6-G7-G8, G9-G10-G11 in the first experiment and G1-G2-
G3-G4-G5, G6-G7-G8-G9-G10, and G11-G12-G13-G14-G15 in the second experiment). We
check whether the observed differences are significant or not by performing Chi-Square test
between any strategically equivalent games. Table A3 in the appendix contains the corre-
sponding p-value for each of those tests, which show that the behavior is significantly dif-
ferent across strategically equivalent games. Hence, the first result is that behavior is not
constant across strategically equivalent games, such that, modifying behavioral component
affects individual behavior. We now comment these differences by each class of games.

We start with the three strategically equivalent harmonic games, G1 to G3, where each
of them has a unique uniformly mixed NE. First, for neither of the two roles the observed
frequencies are equal to the theoretical predictions (of 1/3 for each strategy), as the subjects
playing in both player roles show a bias towards the central strategy. This bias is consistent
with experimental work on related zero-sum games, see Rubinstein et al. (1997), Rosenthal
et al. (2003) and Crawford and Iriberri (2007). Second, in G2 and G3, once a non-zero
behavioral component is added such that there is a unique MMS prediction, the strategy
choice frequencies change for both of the player roles. In more detail, for the row player, the
frequency of playing the third strategy increases from 0.230 to 0.695 (increment of 200%)
and to 0.280 (increment of 22%) in G2 and G3, respectively. For the column player, the
significance of the effect is similar. The observed frequency of playing the MMS strategy
increases from 0.205 to 0.310 in G2 (increment of 55%) and from 0.225 to 0.640 in G3
(increment of 184%). As shown by the p-values in Table A3, the changes in the strategy
choices from G1 to G2 and from G1 to G3 are significant for both player roles. Therefore,
the addition of a behavioral component with a unique MMS (which is at the same time an A

strategy profile) strategy profile does indeed modify individual behavior in harmonic games.
However, it is worth remembering that in harmonic games, the MMS will always coincide
with A rule predictions, so we cannot conclude that MMS by itself is relevant for behavior.

We observe a similar pattern for the five strategically equivalent sets of potential games.
For both sets of potential games in experiment 1, we start with a game with no behavioral

component, G6 and G9, where the NE and the A solutions coincide, such that the observed
frequencies are clearly the highest: 0.955 and 0.920 in G6, and 0.900 and 0.565 in G9, for
row and column roles, respectively.13 In the first modification, G7 and G10, where all three
behavioral rules are perfectly separated, we observe that the frequencies of the NE strategies

13In G9 and the column player, the second strategy also gets some prevalence with a frequency of 0.34, which
is compatible with L1 and P outcomes.
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decrease, while the strategy choices by MMS and A increase. In G7 and G10, when MMS and
A are directly competing with each other, both gain adherence, although A gets if anything
more frequency than MMS, but are not able to deviate the behavior from NE by a lot. In
more detail, NE predicted strategy changes from 0.955 to 0.84 and from 0.92 to 0.77 for
G7 and from 0.90 to 0.795 and from 0.565 to 0.455 for G10, for each of the player roles,
respectively. Finally, in the second modification, G8 and G11, when we keep modifying
the behavioral components, MMS and A fully coincide and compete with the NE prediction,
which they also payoff dominate, then the frequency of play for the strategies prescribed by
the NE decrease even further, bringing the frequency of play by MMS and A rules’ predictions
close to the frequency of NE. In more detail, we observe that the play for the NE strategies
decreases down to 0.810 and 0.735 in G8, and down to 0.555 and 0.380 in G11, for row and
column players, respectively. One weakness of the design of games G8 and G11 is that on
top of coinciding both A and MMS it is also the case where these two behavioral rules payoff
dominate the NE. Thus, for potential games, we conclude that MMS is most relevant for
behavior when it coincides with the predictions of the A type and when both dominate the
NE.

The games in experiment 2 dig deeper onto the empirical relevance of NE, MMS and A

rules. As in the two potential games in experiment 1, we start with a potential game without
any behavioral component in which NE and A behavioral rules coincide (by construction)
and we find, as expected, and consistent with the results in experiment 1, that this strategy
profile gets very high support. In G1, 97% of row and 93% of column players coordinate
on this strategy profile. In G6, 93% of the row players and 42% of column players play the
NE, and in G11, 38% of row players and 78% of the column players play the NE profile.14

What occurs when behavioral component is added? Table A3 shows that in every of the four
versions, when the behavioral component is added, participants’ play is significantly changed
for both player roles, such that clearly individual behavior is not immune to the modification
of the behavioral component. When the three behavioral rules are fully separated, see games
G2-G3, G7-G8, and G12-G13, then both the A and the MMS are able to attract individual
behavior such that NE loses frequency of play and at the same time, in the competition
between A and MMS, the A rule wins over MMS with a few exceptions (row column in G3
and in G7, where MMS gets slightly higher frequency of play). When A and MMS coincide
but there is no payoff dominance over NE, in G4, G9 and G14, then the combination steals
even higher frequency from the NE, even though the majority of players still coordinate

14In G6, column players’ most played strategy is the second strategy, and in G11 the row players’ most played
strategy is the first strategy, both compatible with L1’s prediction.
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on the NE. Finally, as in experiment 1, in games G5, G10 and G15, when NE is payoff
dominated by the strategy profile in which MMS and A coincide, this is when NE loses its
adherence the most and in which the combination of MMS and A gets the highest support.

Finally, it is worth remembering that the constant-sum games we considered for the ex-
periment were independent games of each other. By contrast with the harmonic and potential
games, we did not modify and add any behavioral component.15 Despite this, we can remark
an important aspect of the observed behavior. For both games, G4 and G5, the strategy in the
NE strategy profile was by far the highest observed choice with frequencies between 0.605 to
0.805, which is in line with the results in Rey-Biel (2009) (please see the next section to note
the lack of separability between P rule and NE rules in constant-sum games). Interestingly,
for row players the strategy predicted by the MMS profile is the second highest observed
frequency, while it is the lowest for the column role.

To sum up, adding a behavioral component where we have a unique MMS seems to affect
individual behavior because the observed behavior between strategically equivalent games
changes significantly. However, and more importantly, as shown by our potential games,
these changes are most relevant when the MMS and A behavioral rules predictions coincide
and they payoff dominate the NE, leading us to conclude that it is not the MMS itself which
has the most impact on behavior but the combination of both types of altruism such that they
can even payoff dominate the NE. This is an important contribution over the findings of
Jessie and Kendall (2022) and Kendall (2022). This result will be more clearly confirmed in
the following section.

4.3 Mixture-of-types Model Estimation: Do Individuals Follow the MMS
Behavioral Rule?

Mixture-of-types models, which are probabilistic models for representing the presence of
sub-populations within an overall population, are useful to understand the prevalence of each
behavioral rule on the subject sample. In this section we carry out mixture-of-types models
estimation, using all 11 and 15 games where we allow for the three behavioral models we
focus on: NE, MMS and A. In the Appendix C, Table A4, we include additional estimation
results where we include more behavioral rules and also estimation results by subsets of
games, that we briefly comment at the end of this section.

We assume that a subject i employing rule k follows type-k’s predicted decision with

15Note that if we start with a constant-sum game and modify the behavioral component, the resulting game
will no longer be a constant-sum game.
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probability (1− εk) but with a probability of making a mistake of εk ∈ [0,1]. In such a case,
the individual would play each of the three available strategies uniformly at random. As
in most mixture-of-types model applications, we assume that the errors are identically and
independently distributed across games and that they are type-specific. The first assumption
facilitates the statistical treatment of the data, while the second considers that some behavioral
rules may be more difficult to follow and thus make more errors than others.

The likelihood of a particular individual of a particular type can be constructed as follows.
First, let Pg, j

k be type-k’s predicted choice probability for strategy j in game g. Some rules
may predict more than one strategy in a particular game. This characteristic is reflected in
the vector Pg

k = (Pg,1
k ,Pg,2

k ,Pg,3
k ) with ∑ j Pg, j

k = 1. When multiple strategies belong to the
predicted set, the predicted choice probabilities are defined as choosing uniformly randomly
over the predicted set. For each individual in each game, we observe the chosen strategy and
whether it is consistent with k. Let xg, j

i = 1 if strategy j is chosen by subject i in game g in
the experiment and xg, j

i = 0 otherwise. The likelihood of observing a sample xi = (xg, j
i )g, j

given type k and subject i is then:

Lk
i (εk|xi) = ∏g ∏ j

[
(1− εk)P

g, j
k +

εk

3

]xg, j
i

(1)

Second, the likelihood function is given by the sum of all the behavioral types that are
considered. We include K = 7 behavioral models: MMS, NE, A, PO, L1, P and O; where
pk assigns probabilities p = (p1, p2, ..., pK) to each behavioral rule. Finally, and as we are
interested in the behavioral rule’s frequency at the sample of subjects in the experiment, we
sum the log likelihood over all 200 subjects.

lnL(p,ε|xi) = ∑i ln∑k pkLk
i (εk|xi) (2)

The output from these models are the estimated frequencies for each of the behavioral
models we consider, p = (p1, p2, ..., pK), as well as their noise levels, ε = (ε1,ε2, ...,εK).
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Table 6: Estimation Results

Exp 1: All 11 Games Exp2: All 15 Games

pk εk pk εk

Rules (1) (2) Rules (3) (4)

NE 0.85 0.34 NE 0.79 0.46
MMS 0.05 0.80 MMS 0.00 —
A 0.10 0.37 A 0.21 0.70

LL 3695.05 LL 5280.73

Notes: The table reports the estimation results for the uniform error specification
for all 11 in columns 1 and 2 and for all 15 games in columns 3 and 4. Columns 1
and 3 present the estimated frequencies of each behavioral model, while columns
2 and 4 show the estimated error for each of the behavioral models.

The main results are shown in Table 6. Consistent with the results in the previous section,
the most frequent behavior is that of NE, followed by the large majority of participants,
followed by the A behavior. We find little evidence that the MMS is a relevant behavioral rule.
Notice that this does not rule out the fact that the addition and modification of the behavioral
component is able to modify individual behavior, which is indeed the case. However, MMS

is able to attract individual behavior only when it fully coincides with the A behavior and in
particular, when both A and MMS payoff dominate the NE. We therefore conclude that the
MMS behavioral rule is most relevant for explaining individual behavior and deviations from
NE, when it coincides with with behavioral rules with efficiency concerns, such as A.

Additional estimation results are shown in Table A4 in the Appendix C. Two comments
are warranted. First, with regard to other behavioral rules on top of the three main we have
focused on, and consistent with existing work, other two behavioral rules are important:
L1 and P rules. L1 rules are important for constant-sum and potential games, while P is
behaviorally very relevant for harmonic and constant-sum games. However, regarding the
relevance of NE, MMS and A, results are qualitatively the same. Second, although we have
mentioned that A is a refinement of strong Pareto optimal and our main focus, we could
keep both strong Pareto and A in the econometric specification as there is some separability
between them. If we include both A and strong Pareto, then, as expected, some of the behavior
explained before by A is now explained by strong Pareto optimal outcomes, but the main
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findings remain. These results are available upon request.

5 Conclusions

In this paper, we empirically test two main questions. First, whether and when changes in
the nonstrategic component of games of normal form are relevant for individual behavior.
Second, after defining the MMS, whether MMS predictions are behaviorally relevant when
they are clearly separated from NE and A behavioral rules and when MMS and A go hand in
hand together. As they are empirical questions, we carry out two laboratory experiments.

Regarding the first question, and consistent with the work by Jessie and Kendall (2022)
and Kendall (2022), we find that additions and manipulations of nonstrategic component
indeed can change individual behavior, particularly when the Pareto optimality ordering of
different outcomes is changed in the original game. In particular, this is the case when we put
side by side, an initial game without any behavioral component and any of the versions when
adding the behavioral component. In other words, individual behavior can vary substantially
in strategically equivalent games. Regarding the second question, in relation to MMS, which
captures the most important considerations of the nonstrategic component of the game, we
find that its empirical relevance crucially depends on whether it reinforces A behavioral rule’s
prediction or not. How useful is then the MMS? From a theoretical point of view, it is an
extreme form of altruism, and importantly, it is the only behavioral rule that depends only
on the nonstrategic component. Moreover, it is very likely that MMS predictions will be
coinciding with the A behavioral rule, which shows Pareto efficiency concerns and indeed
the manipulations of the nonstrategic component could change the efficiency of different
outcomes, as mentioned by Candogan et al. (2011). In those cases, when both forms of
altruism go hand in hand, and in addition when they payoff dominate the unique NE, they
would be most relevant to explain individual behavior and deviations from Nash equilibrium
play. When MMS can be separated from the A rule predictions and they point toward a
different strategy profile than the prediction by the NE, then we find some empirical relevance
for altruism but very little empirical evidence for MMS. We conclude that the decomposition
proposed by Candogan et al. (2011) is a useful tool to explain deviations from the NE, in
particular when the efficiency ordering of strategy profiles is changed when the non-strategic
component is added or modified.

We see two avenues for further research. First, the empirical analysis could also be ap-
plied to games with more than 3 strategies, as this would expand the possibility of separating
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out more than the three behavioral rules we have focused on: NE, MMS and A. Second,
and more challenging, the analysis could be extended to games with more than two players,
where a potential re-definition of MMS is needed.
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A Appendix: Decomposition of Games, An Example and
the Case for the 11 and 15 Experimental Games

We start by showing an example of how to compute the four-components of the decomposi-
tion of a game. We specifically decompose G4, and Figure 5 displays the decomposition of
the 11 experimental games.16

G4 is represented in matrix notation as follows:

A =

5.45 6.23 8.33
4.18 6.85 2.24
5.11 0.22 9.02

 ; B =

4.55 3.77 1.67
5.82 3.15 7.76
4.89 9.78 0.98


Recall that we can decompose a game starting either from the strategic component or

from the nonstrategic components. We will start by obtaining the nonstrategic components.
The kernel component is obtained as AK = ( 1

h2 )11TA11T, and BK = ( 1
h2 )11TB11T, for row

and column player, respectively, which can be computed, alternatively, as follows:

k1 =
5.45+6.23+8.33+4.18+6.85+2.24+5.11+0.22+9.02

9
= 5.29

k2 =
4.55+3.77+1.67+5.82+3.15+7.76+4.89+9.78+0.98

9
= 4.71

With the kernel payoffs, which are the average of each player’s payoffs, the resulting
matrix of the kernel component, for each player, is:

AK =

k1 k1 k1

k1 k1 k1

k1 k1 k1

=

5.29 5.29 5.29
5.29 5.29 5.29
5.29 5.29 5.29

 ; BK =

k2 k2 k2

k2 k2 k2

k2 k2 k2

=

4.71 4.71 4.71
4.71 4.71 4.71
4.71 4.71 4.71


As the game is a 3× 3 game, we have 3 behavioral payoffs for each player. To obtain

each value, for each of the opponent’s strategies, we just compute the average payoff, keeping
constant the opponent’s strategy, and subtract the own kernel value. That is,

b1
1 =

5.45+4.18+5.11
3

−5.29 =−0.38

b2
1 =

6.23+6.85+0.22
3

−5.29 =−0.86

16In both cases, for simplicity, we rounded up all payoffs to two decimals, as in the experiment.
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b3
1 =

8.33+2.24+9.02
3

−5.29 = 1.24

Analogously we obtain the behavioral payoffs for column player: b1
2 =−1.38, b2

2 = 0.87,
and b3

2 = 0.51.
The matrices of the behavioral component, given the behavioral payoffs obtained above,

are:

AB =

b1
1 b2

1 b3
1

b1
1 b2

1 b3
1

b1
1 b2

1 b3
1

=

−0.38 −0.86 1.24
−0.38 −0.86 1.24
−0.38 −0.86 1.24

 ; BB =

b1
2 b1

2 b1
2

b2
2 b2

2 b2
2

b3
2 b3

2 b3
2

=

−1.38 −1.38 −1.38
0.87 0.87 0.87
0.51 0.51 0.51


To obtain the strategic component, we can either normalize the original game or take

the differences between the original game and the sum of the nonstrategic component. The
strategic component of the game is:

AS =

 0.54 1.80 1.80
−0.73 2.42 −4.29
0.20 −4.21 2.49

 ; BS =

 1.22 0.44 −1.66
0.24 −2.43 2.18
−0.33 4.56 −4.24


Once we obtain the strategic component, denoted by AS and BS for row and column

player, respectively, we can compute the potential and harmonic components. To do so, we
need to calculate first three auxiliary matrices: M = 1

2(A
S +BS ), D = 1

2(A
S −BS ), and

Γ = 1
2h(A11T −11TB). In our case,

M =
1
2

 0.54+1.22 1.80+0.44 1.80−1.66
−0.73+0.24 2.42−2.43 −4.29+2.18
0.20−0.33 −4.21+4.56 2.49−4.24

=

 0.88 1.12 0.07
−0.25 −0.01 −1.05
−0.06 0.17 −0.87



D =
1
2

 0.54−1.22 1.80−0.44 1.80+1.66
−0.73−0.24 2.42+2.43 −4.29−2.18
0.20+0.33 −4.21−4.56 2.49+4.24

=

−0.34 0.68 1.73
−0.49 2.42 −3.24
0.26 −4.39 3.36


To obtain the matrix Γ we need first two more auxiliaries matrices, denoted by ΓA and

ΓB, when ΓA = A11T, and ΓB = 11TB
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Γ
A =

 0.54+1.80+1.80 0.54+1.80+1.80 0.54+1.80+1.80
−0.73+2.42−4.29 −0.73+2.42−4.29 −0.73+2.42−4.29
0.20−4.21+2.49 0.20−4.21+2.49 0.20−4.21+2.49

=

 4.13 4.13 4.13
−2.61 −2.61 −2.61
−1.53 −1.53 −1.53



Γ
B =

1.22+0.24−0.33 0.44−2.43+4.56 −1.66+2.18−4.24
1.22+0.24−0.33 0.44−2.43+4.56 −1.66+2.18−4.24
1.22+0.24−0.33 0.44−2.43+4.56 −1.66+2.18−4.24

=

1.14 2.58 −3.71
1.14 2.58 −3.71
1.14 2.58 −3.71


Then,

Γ=
1
2h

(ΓA−Γ
B)=

1
6

 4.13−1.14 4.13−2.58 4.13+3.71
−2.61−1.14 −2.61−2.58 −2.61+3.71
−1.53−1.14 −1.53−2.58 −1.53+3.71

=

 0.50 0.26 1.31
−0.62 −0.86 0.18
−0.44 −0.68 0.36


Finally, the potential component is obtained as (M+Γ,M−Γ) and the harmonic compo-

nent as (D−Γ,−D+Γ).

AP =

 0.88+0.50 1.12+0.26 0.07+1.31
−0.25−0.62 −0.01−0.86 −1.05+0.18
−0.06−0.44 0.17−0.68 −0.87+0.36

=

 1.38 1.38 1.38
−0.87 −0.87 −0.87
−0.51 −0.51 −0.51



BP =

 0.88−0.50 1.12−0.26 0.07−1.31
−0.25+0.62 −0.01+0.86 −1.05−0.18
−0.06+0.44 0.17+0.68 −0.87−0.36

=

0.38 0.86 −1,24
0.38 0.86 −1.24
0.38 0.86 −1.24



AH =

−0.34−0.50 0.68−0.26 1.73−1.31
−0.49+0.62 −0.49+0.86 −3.24−0.18
0.26+0.44 −4.39+0.68 3.36−0.36

=

−0.84 0.42 0.42
0.14 3.29 −3.42
0.71 −3.70 3.00
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BH =

 0.34+0.50 −0.68+0.26 −1.73+1.31
0.49−0.62 0.49−0.86 3.24+0.18
−0.26−0.44 4.39−0.68 −3.36+0.36

=

 0.84 −0.42 −0.42
−0.14 −3.29 3.42
−0.71 3.70 −3.00


The final decomposition for G4 is:

5.45,4.55 6.23,3.77 8.33,1.67
4.18,5.82 6.85,3.15 2.24,7.76
5.11,4.89 0.22,9.78 9.02,0.98

=

 1.38,0.38 1.38,0.86 1.38,−1.24
−0.87,0.38 −0.87,0.86 −0.87,−1.24
−0.51,0.38 −0.51,0.86 −0.51,−1.24



+

0.84,−0.84 0.42,−0.42 0.42,−0.42
0.14,−0.14 3.29,−3.29 −3.42,3.42
0.71,−0.71 −3.70,3.70 3.00,−3.00



+

−0.38,−1.38 −0.86,−1.38 1.24,−1.38
−0.38,0.87 −0.86,0.87 1.24,0.87
−0.38,0.51 −0.86,0.51 1.24,0.51



+

5.29,4.71 5.29,4.71 5.29,4.71
5.29,4.71 5.29,4.71 5.29,4.71
5.29,4.71 5.29,4.71 5.29,4.71
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Harmonic Games

G1
6.62 7.62 5.62

6.56 5.56 7.56

5.62 6.62 7.62
7.56 6.56 5.56

7.62 5.62 6.62
5.56 7.56 6.56

=

Potential
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Harmonic
0 1 -1

0 -1 1

-1 0 1
1 0 -1

1 -1 0
-1 1 0

+

Behavioral
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Kernel
6.62 6.62 6.62

6.56 6.56 6.56

6.62 6.62 6.62
6.56 6.56 6.56

6.62 6.62 6.62
6.56 6.56 6.56

G2
6.62 7.62 5.62

11.56 0.56 7.56

0.62 1.62 2.62
12.56 1.56 5.56

12.62 10.62 11.62
10.56 2.56 6.56

=

Potential
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Harmonic
0 -1 1

0 1 -1

1 0 -1
-1 0 1

-1 1 0
1 -1 0

+

Behavioral
5 -5 0

0 0 0

5 -5 0
-5 -5 -5

5 -5 0
5 5 5

+

Kernel
6.56 6.56 6.56

6.62 6.62 6.62

6.56 6.56 6.56
6.62 6.62 6.62

6.56 6.56 6.56
6.62 6.62 6.62

G3
1.56 5.56 12.56

6.62 7.62 5.62

2.56 6.56 10.56
0.62 1.62 2.62

0.56 7.56 11.56
12.62 10.62 11.62

=

Potential
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Harmonic
0 1 -1

0 -1 1

-1 0 1
1 0 -1

1 -1 0
-1 1 0

+

Behavioral
0 0 0

-5 0 5

-5 -5 -5
-5 0 5

5 5 5
-5 0 5

+

Kernel
6.62 6.62 6.62

6.56 6.56 6.56

6.62 6.62 6.62
6.56 6.56 6.56

6.62 6.62 6.62
6.56 6.56 6.56

Constant-Sum Games

G4
4.55 3.77 1.67

5.45 6.23 8.33

5.82 3.15 7.76
4.18 6.85 2.24

4.89 9.78 0.98
5.11 0.22 9.02

=

Potential
0.38 0.86 -1.24

1.38 1.38 1.38

0.38 0.86 -1.24
-0.87 -0.87 -0.87

0.38 0.86 -1.24
-0.51 -0.51 -0.51

+

Harmonic
0.84 -0.42 -0.42

-0.84 0.42 0.42

-0.14 -3.29 3.42
0.14 3.29 -3.42

-0.71 3.70 -3.00
0.71 -3.70 3.00

+

Behavioral
-1.38 -1.38 -1.38

-0.38 -0.86 1.24

0.87 0.87 0.87
-0.38 -0.86 1.24

0.51 0.51 0.51
-0.38 -0.86 1.24

+

Kernel
4.71 4.71 4.71

5.29 5.29 5.29

4.71 4.71 4.71
5.29 5.29 5.29

4.71 4.71 4.71
5.29 5.29 5.29

G5
3.11 4.80 6.67

6.89 5.20 3.33

3.95 3.97 1.90
6.05 6.03 8.10

7.72 5.74 0.15
2.28 4.26 9.85

=

Potential
0.70 0.61 -1.32

-0.64 -0.64 -0.64

0.70 0.61 -1.32
0.95 0.95 0.95

0.70 0.61 -1.32
-0.31 -0.31 -0.31

+

Harmonic
-2.45 -0.67 3.13

2.45 0.67 -3.13

-0.03 0.08 -0.06
0.03 -0.08 0.06

2.48 0.59 -3.07
-2.48 -0.59 3.07

+

Behavioral
0.64 0.64 0.64

-0.70 -0.61 1.32

-0.95 -0.95 -0.95
-0.70 -0.61 1.32

0.31 0.31 0.31
-0.70 -0.61 1.32

+

Kernel
4.22 4.22 4.22

5.78 5.78 5.78

4.22 4.22 4.22
5.78 5.78 5.78

4.22 4.22 4.22
5.78 5.78 5.78

Potential Games: First Set

G6
8.5294 7.624 8.5927

7.1827 4.051 6.6561

8.287 8.4327 8.0261
6.824 4.7427 5.9827

5.1127 12.5527 7.083
5.4927 10.7061 6.871

=

Potential
0.2805 −0.624 0.3438

0.6827 −2.448 0.1561

0.038 0.1838 −0.2227
0.324 −1.7572 −0.5272

−3.1361 4.3038 −1.16
−1.0072 4.2061 0.371

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Kernel
8.25 8.25 8.25

6.50 6.50 6.50

8.25 8.25 8.25
6.50 6.50 6.50

8.25 8.25 8.25
6.50 6.50 6.50

G7
9.6805 8.775 9.7438

8.4427 1.451 7.9961

9.728 9.8738 9.4672
8.084 2.1427 7.3127

2.5238 9.9638 4.492
6.7527 8.1061 8.21

=

Potential
0.2805 −0.624 0.3438

0.6827 −2.448 0.1561

0.038 0.1838 −0.2227
0.324 −1.7572 −0.5272

−3.1361 4.3038 −1.16
−1.0072 4.2061 0.371

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
1.15 1.15 1.15

1.26 -2.60 1.34

1.44 1.44 1.44
1.26 -2.60 1.34

-2.59 -2.59 -2.59
1.26 -2.60 1.34

+

Kernel
8.25 8.25 8.25

6.50 6.50 6.50

8.25 8.25 8.25
6.50 6.50 6.50

8.25 8.25 8.25
6.50 6.50 6.50

G8
8.3305 7.425 8.3938

6.9827 0.051 10.8561

12.48 12.6338 12.227
6.624 0.7427 10.1727

1.1138 8.5538 3.082
5.2927 6.7061 11.071

=

Potential
0.2805 −0.624 0.3438

0.6827 −2.448 0.1561

0.038 0.1838 −0.2227
0.324 −1.7572 −0.5272

−3.1361 4.3038 −1.16
−1.0072 4.2061 0.371

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
-0.20 -0.20 -0.20

-0.20 -4.00 4.20

4.20 4.20 4.20
-0.20 -4.00 4.20

-4.00 -4.00 -4.00
-0.20 -4.00 4.20

+

Kernel
8.25 8.25 8.25

6.50 6.50 6.50

8.25 8.25 8.25
6.50 6.50 6.50

8.25 8.25 8.25
6.50 6.50 6.50

Potential Games: Second Set

G9
5.56 5.22 5.72

7.53 6.88 7.41

6.323 5.323 4.853
9.15 7.84 7.40

4.026 6.296 6.176
5.82 7.78 7.69

=

Potential
0.06 -0.28 0.22

0.03 -0.62 -0.09

0.823 −0.176 −0.646
1.65 0.34 -0.10

−1.473 0.796 0.676
-1.68 0.28 0.19

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Kernel
5.50 5.50 5.50

7.50 7.50 7.50

5.50 5.50 5.50
7.50 7.50 7.50

5.50 5.50 5.50
7.50 7.50 7.50

G10
5.86 5.52 6.02

6.63 7.28 7.91

6.123 5.123 4.653
8.25 8.24 7.90

3.926 6.196 6.076
4.92 8.18 8.19

=

Potential
0.06 -0.28 0.22

0.03 -0.62 -0.09

0.823 −0.176 −0.646
1.65 0.34 -0.10

−1.473 0.796 0.676
-1.68 0.28 0.19

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
0.30 0.30 0.30

-0.90 0.40 0.50

-0.20 -0.20 -0.20
-0.90 0.40 0.50

-0.10 -0.10 -0.10
-0.90 0.40 0.50

+

Kernel
5.50 5.50 5.50

7.50 7.50 7.50

5.50 5.50 5.50
7.50 7.50 7.50

5.50 5.50 5.50
7.50 7.50 7.50

G11
9.86 9.52 10.02

3.53 6.58 11.71

2.323 1.323 0.853
5.15 7.54 11.70

3.726 5.996 5.876
1.82 7.48 11.99

=

Potential
0.06 -0.28 0.22

0.03 -0.62 -0.09

0.823 −0.176 −0.646
1.65 0.34 -0.10

−1.473 0.796 0.676
-1.68 0.28 0.19

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
4.30 4.30 4.30

-4.00 -0.30 4.30

-4.00 -4.00 -4.00
-4.00 -0.30 4.30

-0.30 -0.30 -0.30
-4.00 -0.30 4.30

+

Kernel
5.50 5.50 5.50

7.50 7.50 7.50

5.50 5.50 5.50
7.50 7.50 7.50

5.50 5.50 5.50
7.50 7.50 7.50

Notes: The figure displays the 11 experimental games used in the experiments and the corresponding four-components decomposition. In some games and components the actual value is periodic, 1.234 denotes the periodicity
of the third decimal.

Figure 5: Decomposition of the 11 Experimental Games
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G1
34 12 29

34 21 31

31 24 20
25 27 16

21 23 31
16 27 28

=

Potential
9 -13 4

9 -4 6

6 -1 -5
0 2 -9

-4 -2 6
-9 2 3

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Kernel
25 25 25

25 25 25

25 25 25
25 25 25

25 25 25
25 25 25

G2
31 9 26

29 25 32

33 26 22
20 31 17

22 24 32
11 31 29

=

Potential
9 -13 4

9 -4 6

6 -1 -5
0 2 -9

-4 -2 6
-9 2 3

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
-3 -3 -3

-5 4 1

2 2 2
-5 4 1

1 1 1
-5 4 1

+

Kernel
25 25 25

25 25 25

25 25 25
25 25 25

25 25 25
25 25 25

G3
28 6 23

27 26 33

36 29 25
18 32 18

22 24 32
9 32 30

=

Potential
9 -13 4

9 -4 6

6 -1 -5
0 2 -9

-4 -2 6
-9 2 3

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
-6 -6 -6

-7 5 2

5 5 5
-7 5 2

1 1 1
-7 5 2

+

Kernel
25 25 25

25 25 25

25 25 25
25 25 25

25 25 25
25 25 25

G4
29 7 24

26 28 32

35 28 24
17 34 17

22 24 32
8 34 29

=

Potential
9 -13 4

9 -4 6

6 -1 -5
0 2 -9

-4 -2 6
-9 2 3

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
-5 -5 -5

-8 7 1

4 4 4
-8 7 1

1 1 1
-8 7 1

+

Kernel
25 25 25

25 25 25

25 25 25
25 25 25

25 25 25
25 25 25

G5
29 7 24

29 31 26

41 34 30
20 37 11

16 18 26
11 37 23

=

Potential
9 -13 4

9 -4 6

6 -1 -5
0 2 -9

-4 -2 6
-9 2 3

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
-5 -5 -5

-5 10 -5

10 10 10
-5 10 -5

-5 -5 -5
-5 10 -5

+

Kernel
25 25 25

25 25 25

25 25 25
25 25 25

25 25 25
25 25 25

Figure 6: Decomposition of the 15 Experimental Games: First Set of 5

Second Set

G6
15 29 31

23 31 38

26 22 27
27 17 27

27 35 13
25 27 10

=

Potential
-10 4 6

-2 6 13

1 -3 2
2 -8 2

2 10 -12
0 2 -15

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Kernel
25 25 25

25 25 25

25 25 25
25 25 25

25 25 25
25 25 25

G7
11 25 27

26 31 35

29 25 30
30 17 24

28 36 14
28 27 7

=

Potential
-10 4 6

-2 6 13

1 -3 2
2 -8 2

2 10 -12
0 2 -15

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
-4 -4 -4

3 0 -3

3 3 3
3 0 -3

1 1 1
3 0 -3

+

Kernel
25 25 25

25 25 25

25 25 25
25 25 25

25 25 25
25 25 25

G8
11 25 27

29 34 29

29 25 30
33 20 18

28 36 14
31 30 1

=

Potential
-10 4 6

-2 6 13

1 -3 2
2 -8 2

2 10 -12
0 2 -15

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
-4 -4 -4

6 3 -9

3 3 3
6 3 -9

1 1 1
6 3 -9

+

Kernel
25 25 25

25 25 25

25 25 25
25 25 25

25 25 25
25 25 25

G9
11 25 27

28 30 34

31 27 32
32 16 23

26 34 12
30 26 6

=

Potential
-10 4 6

-2 6 13

1 -3 2
2 -8 2

2 10 -12
0 2 -15

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
-4 -4 -4

5 -1 -4

5 5 5
5 -1 -4

-1 -1 -1
5 -1 -4

+

Kernel
25 25 25

25 25 25

25 25 25
25 25 25

25 25 25
25 25 25

G10
10 24 26

33 26 33

36 32 37
37 12 22

22 30 8
35 22 5

=

Potential
-10 4 6

-2 6 13

1 -3 2
2 -8 2

2 10 -12
0 2 -15

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
-5 -5 -5

10 -5 -5

10 10 10
10 -5 -5

-5 -5 -5
10 -5 -5

+

Kernel
25 25 25

25 25 25

25 25 25
25 25 25

25 25 25
25 25 25

Figure 7: Decomposition of the 15 Experimental Games: Second Set of 5
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Third Set

G11
30 14 31

30 21 29

31 24 20
27 27 14

19 21 35
18 27 32

=

Potential
5 -11 6

5 -4 4

6 -1 -5
2 2 -11

-6 -4 10
-7 2 7

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Kernel
25 25 25

25 25 25

25 25 25
25 25 25

25 25 25
25 25 25

G12
31 15 32

29 27 24

33 26 22
26 33 9

16 18 32
17 33 27

=

Potential
5 -11 6

5 -4 4

6 -1 -5
2 2 -11

-6 -4 10
-7 2 7

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
1 1 1

-1 6 -5

2 2 2
-1 6 -5

-3 -3 -3
-1 6 -5

+

Kernel
25 25 25

25 25 25

25 25 25
25 25 25

25 25 25
25 25 25

G13
34 18 35

32 27 21

36 29 25
29 33 6

10 12 26
20 33 24

=

Potential
5 -11 6

5 -4 4

6 -1 -5
2 2 -11

-6 -4 10
-7 2 7

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
4 4 4

2 6 -8

5 5 5
2 6 -8

-9 -9 -9
2 6 -8

+

Kernel
25 25 25

25 25 25

25 25 25
25 25 25

25 25 25
25 25 25

G14
28 12 29

29 27 24

37 30 26
26 33 9

15 17 31
17 33 27

=

Potential
5 -11 6

5 -4 4

6 -1 -5
2 2 -11

-6 -4 10
-7 2 7

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
-2 -2 -2

-1 6 -5

6 6 6
-1 6 -5

-4 -4 -4
-1 6 -5

+

Kernel
25 25 25

25 25 25

25 25 25
25 25 25

25 25 25
25 25 25

G15
25 9 26

25 31 24

41 34 30
22 37 9

14 16 30
13 37 27

=

Potential
5 -11 6

5 -4 4

6 -1 -5
2 2 -11

-6 -4 10
-7 2 7

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
-5 -5 -5

-5 10 -5

10 10 10
-5 10 -5

-5 -5 -5
-5 10 -5

+

Kernel
25 25 25

25 25 25

25 25 25
25 25 25

25 25 25
25 25 25

Figure 8: Decomposition of the 15 Experimental Games: Third Set of 5
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B Appendix: Proofs

A two-person game G can be written as a h× h bimatrix game (A,B) with ai j = u1(si, t j)

(i, j = 1, ...,h) and bi j = u2(si, t j) (i, j = 1, ...,h). To be specific,

A =


a11 · · · a1h

... . . . ...
ah1 · · · ahh

 and B =


b11 · · · b1h

... . . . ...
bh1 · · · bhh


Proof of Proposition 1. A strategy profile (s̃i, t̃ j) ∈ S × T in game G is mutual-max-sum

MMS if:
s̃i ∈ argmax

si∈S
∑

t j∈T
u2(si, t j) and t̃ j ∈ argmax

t j∈T
∑
si∈S

u1(si, t j).

We now define the following matrices Ã, B̃ as follows: the players add their opponent’s
payoffs for each of their own strategies.

Ã =


∑ j b1 j · · · ∑ j b1 j

... . . . ...

∑ j bh j · · · ∑ j bh j

 and B̃ =


∑i ai1 · · · ∑i aih

... . . . ...

∑i ai1 · · · ∑i aih


The MMS can be alternatively defined by requiring from each player to choose the strategies
with the highest payoff in matrices Ã and B̃.

Next, the nonstrategic component (AN S ,BN S ) can be displayed as follows:

AN S =
1
h


∑i ai1 · · · ∑i aih

... . . . ...

∑i ai1 · · · ∑i aih

 and BN S =
1
h


∑ j b1 j · · · ∑ j b1 j

... . . . ...

∑ j bh j · · · ∑ j bh j


Observe that B̃= 1

h ×AN S and Ã= 1
h ×BN S . Since the altruistic solution in (AN S ,BN S )

is computed by selecting the strategy profile that maximizes the sum of both players payoffs,
then we can state that the MMS solution in (A,B), computing by selecting the strategies
with the highest payoffs in Ã and B̃, coincides with the altruistic solution in (AN S ,BN S ).
Finally, the behavioral component is defined by,

(AB,BB) = (AN S ,BN S )− (AK ,BK ).

Given that subtracting the kernel component (AK ,BK ) means subtracting a fixed amount for
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each player then the altruistic solution in (AN S ,BN S ) coincides with the altruistic solution
in (AB,BB) and consequently with the MMS solution in (A,B).

Proof of Proposition 2. Let (A,B) be a constant-sum game in which an amount C > 0 is to
be divided between players 1 and 2. W.l.o.g. let (a11,b11) be the Nash equilibrium and the
MMS outcome of the game.
First, we show that a1 j > ai1, i = j ̸= 1.

Since (a11,b11) is the NE outcome, necessarily b1 j ≤ b11 and ai1 ≤ a11 for i, j = 2, ...,h.
By definition of the constant-sum-game, a1 j + b1 j = a11 + b11 = C. As b1 j ≤ b11 we have
a11 ≤ a1 j and by NE outcome we have that ai1 ≤ a11 ≤ a1 j. Therefore, by transitivity we
have:

a1 j ≥ ai1, i = j ̸= 1 (3)

Second, given (a11,b11) is the MMS outcome, by definition we have:

for each i = 2, ...,h,
h

∑
j=1

b1 j >
h

∑
j=1

bi j , and

for each j = 2, ...,h,
h

∑
i=1

ai1 >
h

∑
i=1

ai j

Summing over these two expressions we obtain:

(h−1)
h

∑
j=1

b1 j +(h−1)
h

∑
i=1

ai1 >
h

∑
j=1

b2 j + ...+
h

∑
j=1

bh j +
h

∑
i=1

ai2 + ...+
h

∑
i=1

aih

Considering that for each i, j, bi j =C−ai j and substituting it in the previous expression, by
simple algebraic manipulations, we obtain:

h

∑
i=2

ai1 >
h

∑
j=2

a1 j

which contradicts condition (3).
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C Appendix: Additional Tables

Table A1: Poolability of Sessions: p-value of Chi-Square Test

First Experiment Second Experiment
H0 Overall Type 1 Type 2 Overall Type 1 Type 2

S1 = Rest 0.7580 0.7982 0.9310 0.9987 0.9980 0.9982
S2 = Rest 0.6353 0.7301 0.2378 0.9992 0.9964 0.9998
S3 = Rest 0.7592 0.4227 0.9338 0.9957 0.9973 0.9936
S4 = Rest 0.5858 0.5763 0.6310 0.9993 0.9995 0.9988
S5 = Rest 0.9864 0.1004 0.0693 0.9994 0.9978 0.9983

Notes: The null hypotheses are H0 : µ1 = µ2 where µ1 and µ2 correspond to the means of the
distributions of the strategy choices for participants for a given session and for the remaining
sessions jointly, respectively. For p-values lower than the significance level, the null hypothesis is
rejected in favor of the alternative, H1 : µ1 ̸= µ2. S1, S2,..., S5 refer to different sessions, while
Rest refers to the remaining sessions pooled together. Type 1 and 2 refer to those subjects who
played first as row players and then as column players and then the other way round, respectively.
Results are robust to using paired two-sided t-test and Kolgomorov-Smirnof test.

Table A2: Player Role Order Effects: p-value of Chi-Square Test

H0 Overall
Experiment 1 Type 1 = Type 2 0.2616

Experiment 2 Type 1 = Type 2 0.2834
Notes: The null hypotheses are H0 : µ1 = µ2 where µ1 and µ2 correspond to the
means of the distributions of the strategy choices for participants labeled as type
1 (started as a row player and then as a column players) and type 2 (started as a
column player and then as a row player), respectively, for a given session. For
p-values lower than the significance level, the null hypothesis is rejected in favor
of the alternative, H1 : µ1 ̸= µ2. Results are robust to using paired two-sided
t-test and Kolgomorov-Smirnof test.
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Table A3: Significance of the Behavioral Effects, p-value of Chi-Square Test

Row Players Column Players
Experiment 1 Harmonic

G1-G2 2.2e−16 2.2e−16
G1-G3 0.0415 5.35e−13

Potential 1

G6-G7 0.0007 0.0002
G6-G8 0.0099 0.0005

Potential 2

G9-G10 0.0118 0.0144
G9-G11 8.77e−13 3.67e−08
Experiment 2 Potential 1

G1-G2 0.0005 0.0026
G1-G3 0.0001 0.0001
G1-G4 0.0001 0.0001
G1-G5 0.0001 0.0001

Potential 2

G6-G7 0.0001 0.0002
G6-G8 0.0001 0.0042
G6-G9 0.0033 0.0001
G6-G10 0.0001 0.0001

Potential 3

G11-G12 0.0006 0.0038
G11-G13 0.0005 0.0002
G11-G14 0.0001 0.0001
G11-G15 0.0001 0.0001

Notes: The null hypotheses are H0 : µ1 = µ2 where µ1 and µ2 correspond to the means
of the distributions of the strategy choices for each of the two games considered (first
column), respectively. For p-values lower than the significance level, the null hypothesis
is rejected in favor of the alternative, H1 : µ1 ̸= µ2. Results are similar, although qualita-
tively weaker, when using paired two-sided t-test and Kolgomorov-Smirnof test.
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Table A4: Estimation Results

Experiment 1: 11 Games

All 11 Games Harmonic CSG Potential
pk εk pk εk pk εk pk εk

Rules (1) (2) Rules (3) (4) Rules (5) (6) Rules (7) (8)

NE 0.45 0.30 NE = L1 0.00 – NE = P 0.78 0.35 NE 0.53 0.28
MMS 0.06 0.80 MMS = A 0.19 0.25 MMS 0.00 – MMS 0.06 0.64
A 0.09 0.35 A – – A 0.08 0.38
L1 0.12 0.36 L1 0.17 0.40 L1 0.18 0.27
P 0.27 0.23 P 0.58 0.45 P 0.12 0.12
O 0.01 0.47 O 0.23 0.95 O 0.00 – O 0.03 0.40

LL 3502.49 1191.55 603.33 1672.12

Experiment 2: 15 Games
All 15 Games
pk εk

Rules (1) (2)
NE 0.15 0.30
MMS 0.05 0.80
A 0.09 0.49
L1 0.55 0.20
P 0.08 0.46
O 0.13 0.66

LL 3930.14

Notes: The first part of the table reports the estimation results for the uniform error specification for all 11 games, in columns 1 and 2, for the
three harmonic games, in columns 3 and 4, for the two constant-sum games in columns 5 and 6 and for the 6 potential games, in columns 7 and
8. Columns 1, 3, 5 and 7 present the estimated frequencies of each behavioral model, while columns 2, 4, 6 and 8 show the estimated error for
each of the behavioral models. All models are identifiable in all 11 games and in the 6 potential games. In the harmonic games, NE and L1 are
confounded, as well as MMS and A. In the constant-sum games, NE and P are confounded. The second part of the table reports the estimation
results for the uniform error specification for all 15 games in columns 1 and 2.
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D Appendix: English Translation of Experimental Instruc-
tions

[The original experimental instructions were in Spanish.]
[These general instructions were read aloud and provided in paper only.]
[The experimental instructions were identical between experiments 1 and 2 with a few
exceptions, which will be explained below in []. N is equal to 11 in experiment 1 and
equal to 15 in experiment 2.]

THANK YOU FOR PARTICIPATING IN OUR EXPERIMENT!

Let’s start the experiment. From now on, you are not allowed to talk, watch what other
participants are doing or walk around the classroom. Please turn off and put away your mo-
bile phone. If you have any questions or need help, raise your hand and one of the researchers
will come and talk to you. Please do not write over these instructions. If you do not com-
ply with these rules, YOU WILL BE ASKED TO LEAVE THE EXPERIMENT WITH NO
PAYMENT. Thank you.

The University of the Basque Country UPV/EHU and the research projects have provided
the funds for this experiment. You will receive 3 Euros for coming on time. Additionally,
if you follow the instructions correctly you have the chance to win more money. This is a
group experiment. The amount you can earn depends on your decisions, the decisions of
other participants, as well as on chance. Different participants can earn different amounts.

No participant will be able to identify any other participant by his or her decisions or by
his or her earnings in the experiment. We, the researchers, will be able to observe at the end
of the experiment the earnings of each participant, but we will not associate the decisions you
have made with the names of any participant.

EARNINGS:
[First Experiment] During the experiment you will be able to earn experimental points.

At the end, each experimental point will be exchanged for Euros, exactly 1 experimental
point is worth 1 Euro. In addition, we will round up decimals to the nearest tenth.

Everything you earn will be paid to you in cash in a strictly private manner at the end of
the experimental session. Your final earnings will be the sum of the 3 Euros you receive
for participating plus whatever you earn during the experiment.

If, for example, you get a total of 25.19 experimental points you will get a total of 28.20
Euros (3 Euros as payment for participating and 25.20 Euros from converting the 25.19 ex-
perimental points to 25.20 Euros).
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If, for example, you get 0.20 experimental points you will get 3.20 Euros (3+0.20 = 3.20).
If, for example, you get 12.83 experimental points you will get 15.90 Euros (3+12.90 =

15.90).
[Second Experiment] During the experiment you will be able to earn experimental

points. At the end, each experimental point will be exchanged for Euros, exactly 1
experimental point is worth 0.25 Euro. In addition, we will round up decimals to the
nearest tenth.

Everything you earn will be paid to you in cash in a strictly private manner at the end of
the experimental session. Your final earnings will be the sum of the 3 Euros you receive
for participating plus whatever you earn during the experiment.

If, for example, you get a total of 60 experimental points you will get a total of 18 Euros (3
Euros as payment for participating and 15 Euros from converting the 60 experimental points
to 15 Euros).

If, for example, you get 70 experimental points you will get 20.50 Euros (3+17.50 =
20.50).

If, for example, you get 30 experimental points you will get 10.50 Euros (3+7.50 = 10.50).
Before starting the experiment, we will explain in detail what kind of decisions you can

make and how you can get experimental points.

[From now on, the instructions were read aloud and they were only provided on the
computer screen.]

DETAILED INSTRUCTIONS OF THE EXPERIMENT:

This experiment consists of several rounds of decisions. In each of the rounds, you will
be paired with a randomly chosen participant from this session. From now on, we will refer
to you as "You" (in red) and the other participant as "Other Participant" (in blue) in these
instructions.

In each round you will see a table and you will have to make a decision, choosing from
three possible options. Each decision will be presented in the form of a table similar to the
one below (but each time with different values). You will see the corresponding table each
time you have to choose an option. Each row of the table corresponds to an option you can
choose and the red numbers are the possible experimental points you can earn.

The other participant will also have to choose, independently from you, between her op-
tions, which correspond to the columns of the table and the blue numbers are the possible
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experimental points that the other participant can earn. That is, you choose rows, while
the other participant chooses columns. However, to simplify things, the experiment is pro-
grammed in such a way that all participants - including the person you are paired with -
see their decisions just as in our example. That is, each of you will be presented with your
possible actions in the rows of the table.

When choosing, you will not know the option chosen by the other participant, and when
the other participant is choosing among her options she will not know the option you have
chosen either.

The amount of experimental points you can get in each of the rounds depends on the
option you have chosen and the option the other participant has chosen.

The experimental points table you see is an example of what you will see in each of the
rounds.

[Experiment 1:]

Example 1: if this round is chosen at random and you take the first choice (row) and the
other participant takes the second choice (column), you will get 13.14 experimental points
and the other participant 12.03 experimental points.

Example 2: if this round is chosen at random and you take the third option (row) and the
other participant takes the first option (column), you will get 15.14 experimental points and
the other participant 9.86 experimental points.

[Experiment 2:]
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Example 1: if this round is chosen at random and you take the first choice (row) and the
other participant takes the second choice (column), you will get 26 experimental points and
the other participant 24 experimental points.

Example 2: if this round is chosen at random and you take the third option (row) and the
other participant takes the first option (column), you will get 30 experimental points and the
other participant 18 experimental points.

These are just two examples to better understand how to read the table, as well as to better
understand how decisions affect the experimental points you can earn, but are not intended to
suggest which decisions you should make.

To make your decision, click on the white button next to the option you want to make.
The button will then turn red to indicate which option you have selected. Once you have
chosen an option, the choice is not final and you can change it as many times as you like by
clicking on another button, until you click on the "OK" button that will appear in the lower
right corner of each screen. Once you have clicked "OK" your choice will be final and you
will move on to the next round. You will not be able to move on to the next round until you
have chosen an option and clicked "OK". You will not have any time restrictions. Take as
much time as you need in each round.

Summary:

– Your experimental points will be in red and the other participant’s experimental points
will be in blue.

– You will participate in several different rounds. In each round you will be paired with
a random participant and the experimental points table will be different.

– In each round, you can choose between three different options (rows) and the exper-
imental points you earn depend on which option you have chosen, which option the
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other participant has chosen, as well as whether that round is randomly chosen at the
end of the experiment.

We will start the experiment in a few moments. Before we begin, you will see an example
again and you will have to answer several questions. If you have any questions or need help
at any point during the experiment, please raise your hand and one of the researchers will
come and talk to you.

[From now on, the instructions were not read aloud and they were provided on the com-
puter screen.]

UNDERSTANDING TEST:

To make sure you understand the game, on the next screen we will ask you to answer
some questions about the game.

[The table displayed on the screen was the same as the one shown above.]

– Write here your points earned in this round if you choose your second choice and the
other participant chooses her third choice, if this round is randomly selected for your
payment. [Correct answer: 12.72 in the first experiment and 24 in the second
experiment]

– Write here the points earned by the other participant if you choose your third choice
and the other participant chooses her second choice, if this round is chosen for payment.
[Correct answer: 7.19 in the first experiment and 14 in the second experiment.]

DECISION SCREEN:

We will now show you N tables, one at a time, and will ask you to make a choice from
each table.

At the end of the experiment, we will choose one of the N tables at random and pay you
for that table.

Click OK to start viewing the tables.
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[Once each participant made choices for the first N tables in the second experiment,
they were shown the following instructions on the screen.]

DECISION SCREEN:

We will now show you other N tables, one at a time, and will ask you to make a choice
on each table. After these N tables the experiment ends.

At the end of the experiment, we will choose one of these N tables at random and pay you
for that table.

Click OK to start viewing the tables.
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