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Tuned preconditioners for iterative SPD
eigensolvers

Luca Bergamaschi∗, Ángeles Mart́ınez

Department of Civil Environmental and Architectural Engineering
University of Padova, via Trieste 63 Padova
luca.bergamaschi@unipd.it

Department of Mathematics, University of Padova, via Trieste 63 Padova
angeles.martinez@unipd.it

To compute a few of the leftmost eigenpairs of a large and sparse SPD
matrix A, iterative eigensolvers require the solution of a number of inner
linear systems where the system matrix is either A or A − θI with θ a
suitable shift parameter. We are focussing on the tuned preconditioners for
such linear systems. A tuned preconditioner is defined as an initial inverse
approximation of A plus a low-rank matrix. We present both theoretical
and experimental results of the efficiency of such preconditioners in the
acceleration of the Implicitly Restarted Lanczos Method (IRLM) [4] as well
as of Newton’s method in the unit sphere [2, 1]. In particularly we will
discuss a new update formula [3] for IRLM which reveals more efficient than
the preconditioner presented in [4]. We will present results with realistic
matrices (with size up to 106 unknowns and 4× 107 nonzeros) arising from
3D Finite Element discretizations of flow and structural PDEs as well as
from the laplacian of graphs.

1. L. Bergamaschi and A. Mart́ınez, Parallel RFSAI-BFGS preconditioners for
large symmetric eigenproblems, J. Appl. Math. 2013, Article ID 767042, 10
pages.

2. L. Bergamaschi and A. Mart́ınez, Efficiently preconditioned inexact Newton
methods for large symmetric eigenvalue problems, Optim. Methods Softw. (2014),
to appear.

3. L. Bergamaschi and A. Mart́ınez, Tuned preconditioners for iterative SPD
eigensolvers, Numer. Linear Algebra Appl. (2014), submitted.

4. M. A. Freitag and A. Spence, Shift-invert Arnoldi’s method with preconditioned
iterative solves, SIAM J. Matrix Anal. Appl. 31 (2009), 942–969.
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Preconditioners based on the ISM factorization

R. Bru∗, K. Hayami, J. Maŕın and J. Mas

Instituto de Matemática Multidisciplinar, Universitat Politècnica de València,
Camı́ de Vera s/n, València, 46022 Spain
rbru@imm.upv.es

2010 Mathematics Subject Classification. 65F10, 65F35, 65F50

In this work we study preconditioners based on the ISM factorization [1],
which computes the LDU factorization of a matrix A using recursion formu-
las derived from the Sherman-Morrison formula. In the first part, we study
preconditioners which have been constructed successfully when there is no
breakdown in the LDU factorization [2, 3, 4]. In the second part, we present
a modification in the recursion formulas of the ISM factorization that al-
lows pivoting and so the construction of preconditioners for any nonsingular
matrix. The ISM algorithm computes a vector at each step, by contrast the
new pivoting algorithm in the kth step modifies all the vectors from k to
n. Thus, it can be seen as a right-looking version with pivoting of the ISM
factorization.

[1] Bru, R., Cerdán, J., Maŕın, J., Mas, J., Preconditioning sparse nonsymmetric
linear systems with the Sherman-Morrison formula, SIAM J. Sci. Comput. 25
(2) (2003), 701–715.

[2] Bru, R., Maŕın, J., Mas, J., Tůma, M., Balanced incomplete factorization,
SIAM J. Sci. Comput. 30 (5) (2008), 2302–2318.

[3] Bru, R., Maŕın, J., Mas, J., Tůma, M., Improved balanced incomplete factor-
ization, SIAM J. Matrix Anal. Appl. 31 (5) (2010), 2431–2452.

[4] Bru, R., Maŕın, J., Mas, J., Tůma, M., Balanced incomplete factorization pre-
conditioners for least squares problems, 2013, submitted.
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Polynomial rootfinding using Fiedler companion
matrices

Fernando De Terán*, Froilán M. Dopico, and Javier Pérez

Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda.
Universidad, 30, 28911, Madrid, Spain
fteran@math.uc3m.es

Computing roots of scalar polynomials as the eigenvalues of Frobenius com-
panion matrices using backward stable eigenvalue algorithms is a classical
approach. The introduction of new families of companion matrices allows
for the use of other matrices in the root-finding problem. In this talk, we
analyze the backward stability of polynomial root-finding algorithms via
Fiedler companion matrices. In other words, given a polynomial p(z), the
question is to determine whether the whole set of computed eigenvalues of
the companion matrix, obtained with a backward stable algorithm for the
standard eigenvalue problem, are the set of roots of a nearby polynomial or
not. We show that, if the coefficients of p(z) are bounded in absolute value
by a moderate number, then algorithms for polynomial root-finding using
Fiedler matrices are backward stable, and Fiedler matrices are as good as
the Frobenius companion matrices. This allows us to use Fiedler companion
matrices with favorable structures in the polynomial root-finding problem.
However, when some of the coefficients of the polynomial is large, compan-
ion Fiedler matrices may produce larger backward errors than Frobenius
companion matrices, although in this case neither Frobenius nor Fiedler
matrices lead to backward stable computations. To prove this we obtain
explicit expressions for the change, to first order, of the characteristic poly-
nomial coefficients of Fielder matrices under small perturbations. We will
show that, for all Fiedler matrices except the Frobenius ones, this change
involves quadratic terms in the coefficients of the characteristic polynomial
of the original matrix, while for the Frobenius matrices it only involves lin-
ear terms. We present extensive numerical experiments that support these
theoretical results. The effect of balancing these matrices will be also inves-
tigated.
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Updating constraint preconditioners for KKT
systems via low-rank correction and scaling
techniques

Valentina De Simone, Daniela di Serafino*

Dipartimento di Matematica e Fisica, Seconda Università degli Studi di Napoli,
viale A. Lincoln 5, I-81100 Caserta, Italy
valentina.desimone@unina2.it, daniela.diserafino@unina2.it

Stefania Bellavia, Benedetta Morini

Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, viale
Morgagni 40/44, I-50134 Firenze, Italy
stefania.bellavia@unifi.it, benedetta.morini@unifi.it

We are interested in preconditioning sequences of KKT systems such as
those arising in interior point methods for convex quadratic programming.
Constraint Preconditioners (CPs) have proved to be very effective in this
case; nevertheless, their factorization may still be too expensive for large-
scale problems, and resorting to cheaper approximations of CPs appears
to be a viable alternative. In this talk we present a procedure for building
inexact CPs for KKT matrices of the sequence, by updating a block LDLT

factorization of a “seed” CP available for a preceding KKT matrix [1, 2].
This procedure consists of two steps: first, the seed CP is updated by per-
forming a low-rank correction of the Schur complement of its (1,1) block;
second, if the (2,2) block of the KKT matrix to be preconditioned is nonzero,
a low-cost technique based on diagonal modification and matrix scaling is
applied to the updated Schur complement, in order to recover information
associated with the (2,2) block that has been neglected in the previous step.
Theoretical results and numerical experiments show that these inexact CPs
can speed up iterative procedures for solving sequences of large-scale KKT
systems, thus enhancing the overall efficiency of interior point methods.

[1] Bellavia S., De Simone V., di Serafino D., Morini B., Updating constraint pre-
conditioners for KKT systems in quadratic programming via low-rank correc-
tions, 2013, submitted (available at http://www.optimization-online.org/
DB\_HTML/2013/11/4141.html and http://arxiv.org/abs/1312.0047).

[2] Bellavia S., De Simone V., di Serafino D., Morini B., On the update of con-
straint preconditioners for regularized KKT systems, 2014, submitted (available
at http://www.optimization-online.org/DB\_HTML/2014/03/4283.html).
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Algorithms for matrix functions arising from
matrix equations

B. Iannazzo

Dipartimento di Matematica e Informatica, Università di Perugia,
Via Vanvitelli 1, Perugia, Italy

Several matrix functions of interest are defined implicitly through a matrix
equation of the type F (X) = A. This will lead to a possibly multivalued
function in the scalar case with an even more complicated situation in the
matrix case [1].

The simplest examples are given by matrix roots which are defined
through the equation Xp = A and by matrix logarithms which are ob-
tained through eX = A. Different equations may give rise to less known
special functions.

We discuss about algorithms for matrix functions arising from matrix
equations. In particular, we focus on matrix roots algorithms, making a
comparison of the features and the numerical performance of some existing
algorithms [3, 4, 2], with some recent updates, also in view of the practical
applications. We consider also the twin problem of computing the action of
the Fréchet derivative of the root functions in one matrix direction.

[1] Higham, N. J., Functions of Matrices: Theory and Computation, SIAM, Philadel-
phia, PA, 2008.

[2] Higham, N. J., Lin, L., A Schur-Padé Algorithm for Fractional Powers of a
Matrix, SIAM J. Matrix Anal. Appl. 32 (3) (2011), 1056–1078.

[3] Iannazzo, B., A family of rational iterations and its application to the com-
putation of the matrix pth root, SIAM J. Matrix Anal. Appl. 30 (4) (2008),
1445–1462.

[4] Iannazzo, B., Manasse, C., A Schur logarithmic algorithm for fractional powers
of matrices, SIAM J. Matrix Anal. Appl., 34 (2) (2013), 794–813.
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On solving KKT linear systems arising in Model
Predictive Control via recursive anti–triangular
factorization

Nicola Mastronardi∗, Raf Vandebril, Paul Van Dooren

Istituto per le Applicazioni del Calcolo “M. Picone”, Consiglio Nazionale delle
Ricerche, sede di Bari, via Amendola 122D, I-70126 Italy
n.mastronardi@ba.iac.cnr.it

The solution of Model Predictive Control problems [1, 2, 3] is often com-
puted in an iterative fashion, requiring to compute, at each iteration, the
solution of a quadratic optimization problem. The most expensive part of
the latter problem is the solution of symmetric indefinite KKT systems,
where the involved matrices are highly structured.

Recently, an algorithm for computing a block anti–triangular factoriza-
tion of symmetric indefinite matrices, based on orthogonal transformations,
has been proposed [4]. The aim of this talk is to show that such a factor-
ization, implemented in a recursive way, can be efficiently used for solving
the mentioned KKT linear systems.

[1] Kirches Kirches, C., Bock, H., Schlöder J.P., Sager S., A factorization with
update procedures for a KKT matrix arising in direct optimal control, Math.
Prog. Comp. 3 (2011), 319–348.

[2] Wang Y., Boyd S., Fast Model Predictive Control Using Online Optimization,
IEEE Trans. Control Syst. Technol. 18 (2010), 267–278.

[3] Zavala V.M., Laird C.D., Biegler L.T., A fast moving horizon estimation al-
gorithm based on nonlinear programming sensitivity, J. Process Control 18
(2008), 876–884.

[4] Mastronardi N., Van Dooren P., The antitriangular factorization of symmetric
matrices, SIAM J. Matrix Anal. Appl. 34 (2013), 173–196.

8



CORK: A compact Rational Krylov method for
solving the nonlinear eigenvalue problem

Karl Meerbergen*, Roel Van Beeumen & Wim Michiels

KU Leuven, Department of Computer Science, Celestijnenlaan 200A,
3001 Leuven, Belgium
Karl.Meerbergen@cs.kuleuven.be

The solution of the nonlinear eigenvalue problem, in its most general form,
written as

A(λ)x = 0 , x 6= 0

where λ is the eigenvalue, is appearing more and more often in applications
arising from PDEs. We consider matrices of the form

A(λ) = A0 + λA1 +
m∑
i=1

fi(λ)Bi

with fi a scalar function in the complex plane, and Ai, Bi constant matrices.
In this talk, we discuss methods that lie in between local and global

search methods. The Newton method and the residual inverse iteration
method can be seen as methods that approximate A(λ) by a polynomial
of degree one. We build an interpolating polynomial of degree k for A(λ)
in the points σ0, . . . , σk ∈ C and then perform k iterations of the rational
Krylov method on the linearization of the resulting polynomial eigenvalue
problem. When we use Newton polynomials and choose the poles of the
rational Krylov method equal to the nodes of the Newton interpolation,
then the algorithm can be organized in such a way that the nodes need not
be determined in advance. This allows for tuning these parameters during
the execution of the algorithm. In this way, we obtain a method that can
converge in less iterations than, e.g, the Newton method. The method thus
behaves like a local search method, but can be used for building a global
approximation, but in a dynamic way.

[1] R. Van Beeumen, K. Meerbergen, and W. Michiels, A rational Krylov method
based on Hermite interpolation for nonlinear eigenvalue problems, SIAM J.
Sci. Comput. 35 (1) (2013), A327–A350.

[2] W. Vandenberghe, M. V. Fischetti, R. Van Beeumen, K. Meerbergen, W. Michiels,
and C. Effenberger, Determining bound states in a semiconductor device with
contacts using a non-linear eigenvalue solver, 2013; in preparation.
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Computing the exponential of a large block
triangular block Toeplitz matrix

D.A. Bini, S. Dendievel, G. Latouche, B. Meini∗

Dipartimento di Matematica, Università di Pisa, Italy
meini@dm.unipi.it

2010 Mathematics Subject Classification. 15A, 65F, 60J

The Erlangian approximation of Markovian fluid queues leads to the
problem of computing the exponential eU of an upper block triangular,
block Toeplitz (BTBT) matrix U [2]. The block size ` of U may be huge,
while the size m of the blocks is generally small. The matrix exponential
A = eU is still an upper BTBT matrix; moreover, since U is a subgenerator,
the matrix A is substochastic.

We propose some numerical methods for computing eU , that exploit
the BTBT structure and allow to deal with very large sizes. Two numer-
ical methods rely on the property that a block z-circulant matrix can be
block diagonalized by means of Fast Fourier Transforms [1]. Therefore the
computation of the exponential of an n × n block z-circulant matrix with
m×m blocks can be reduced to the computation of n exponentials of m×m
matrices. The idea of the first method is to approximate A = eU by the ex-
ponential of a block ε-circulant matrix where ε ∈ C and |ε| is sufficiently
small. In the second approach the matrix U is embedded into a K×K block
circulant matrix CK , where K is sufficiently large, and an approximation
of eU is obtained from a suitable submatrix of eCK . Another numerical
method consists in specializing the shifting and Taylor series method of [3].
The BTBT structure is exploited in the FFT-based matrix multiplications
involved in the algorithm, leading to a reduction of the computational cost.

Theoretical and numerical comparisons among the three numerical meth-
ods are presented.

[1] D. Bini. Parallel solution of certain Toeplitz linear systems. SIAM J. Comput.
13 (1984), no. 2, 268–276.

[2] N.J. Higham. Functions of matrices. Theory and computation, SIAM, Philadel-
phia, PA, 2008.

[3] J. Xue, Q. Ye. Computing exponentials of essentially non-negative matrices
entrywise to high relative accuracy. Math. Comp. 82 (2013), no. 283, 1577–
1596.

10



First order expansions for eigenvalues of
multiplicatively perturbed matrices

Fredy Ernesto Sosa & Julio Moro∗

Departamento de Matemáticas, Universidad Carlos III de Madrid,
Avda. Universidad 30, 28911 Leganés (Madrid), Spain
fsosa@math.uc3m.es, jmoro@math.uc3m.es

Given a square matrix A and one of its eigenvalues λ0, first order eigenvalue
perturbation theory is usually applied to additive perturbations A(ε) =
A+εB, where ε is a small real parameter and B is any perturbation matrix,
either structured or unstructured. Fractional expansions in ε are typically
obtained for the eigenvalues λ(ε) of A(ε) such that λ(0) = λ0. In this talk
we consider multiplicative perturbations Â(ε) = (I+εB)A(I+εC) instead,
which are more natural when analyzing perturbations for families of ma-
trices with an underlying multiplicative structure. Any Jordan structure is
allowed for A. We use the Newton Polygon technique to derive first order
expansions for the splitting of an eigenvalue λ0 of A under such perturba-
tions. Explicit formulas for both the leading exponents and coefficients are
obtained, involving the perturbation matrices B and C and appropriately
normalized eigenvectors of A. If λ0 6= 0 corresponds to a Jordan block
of size n, the expansions are shown to be generically of the order of ε1/n,
very much like those for additive perturbations. If λ = 0, the situation is
quite different, due in part to the fact that rank is preserved by multiplica-
tive perturbations: in that case, the perturbed eigenvalues are generically
of order ε1/(n−1), and the formulas are valid only for blocks of dimension
n > 2.
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Tropical roots as approximations of eigenvalues of
regular matrix polynomials

Vanni Noferini

School of Mathematics, The University of Manchester, Manchester, M13 9PL,
England (United Kingdom)
vanni.noferini@manchester.ac.uk

Let P (x) =
∑k

j=0Ajx
j , Aj ∈ Cn×n, be a regular matrix polynomial and

let ‖ · ‖ : Cn×n → R≥0 be any operator norm. The tropical roots of the
associated max-times polynomials t : R≥0 → R≥0, x 7→ maxj ‖Aj‖xj are
the points of nondifferentiability of t contained in its domain of definition.
Recently, for the spectral norm, it was showed in [1] that if all the coefficents
Aj have 2-norm condition number equal to 1 then, under some assumptions
on ‖Aj‖2, the tropical roots of t define localization annuli that contain all
the eigenvalues of P (x). We extend this result to any induced norm and,
importantly, we relax the hypothesis that all the coefficients are perfectly
conditioned. We obtain localization results depending on (1) the shape of
the Newton polygon associated with t and (2) the condition number of those
coefficients Aj corresponding to vertices of the Newton polygon. Hence, we
discuss when the tropical roots of t yield good order-of-magnitude approxi-
mations for the eigenvalues of P (x). Finally, we clarify the mutual relations
between the tropical localization results and those coming from the gener-
alized Pellet theorem both in the version given in [1] and the one appeared
in [2]. In particular, we show that the generalized Pellet theorem of [1] al-
ways provides the tightest bounds. On the other hand, the tropical roots
are extremely cheap and easy to compute, and our analysis provides suf-
ficient conditions for their reliability as estimators for the moduli of the
eigenvalues of a matrix polynomial.

This talk is based on joint work with Meisam Sharify and Françoise
Tisseur (both from the University of Manchester).

[1] D. A. Bini, V. Noferini, and M. Sharify, Locating the eigenvalues of matrix
polynomials, SIAM J. Matrix Anal. Appl. 34 (2013), 1708–1727.

[2] A. Melman, Generalization and variations of Pellet’s theorem for matrix poly-
nomials, Linear Algebra Appl. 439 (2013), 1550–1567.
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Accurate computations for subclasses and
superclasses of totally positive matrices

J.M. Peña

Department of Applied Mathematics, University of Zaragoza, 50009 Zaragoza,
Spain
jmpena@unizar.es

A matrix is totally positive if all its minors are nonnegative. Sign regular
matrices and SBD matrices (matrices with signed bidiagonal decomposi-
tions) contain the class of totally positive matrices. For some subclasses of
nonsingular totally positive matrices, accurate methods for computing their
singular values, eigenvalues or inverses have been obtained, assuming that
adequate natural parameters related to their bidiagonal decompositions are
provided. We present some recent results in this field and some extensions
of these methods to other related classes of matrices such as sign regular
matrices and SBD matrices, assuming that adequate natural parameters
related to their bidiagonal decompositions are provided.
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Multivariate time series estimation via projections
and matrix equations

Federico Poloni*, Giacomo Sbrana

Dipartimento di Informatica, Università di Pisa, Largo Pontecorvo, 2,
56127 Pisa, Italy
fpoloni@di.unipi.it

Department of Information Systems, Supply Chain Management and Decisions,
Neoma Business School, 1 Rue du Marchal Juin, 76825 Mont Saint Aignan,
Rouen, France
Giacomo.SBRANA@neoma-bs.fr

The Exponentially Weighted Moving Average model is a stochastic time
series model that takes the form

xt = ut −Θut−1,

where ut ∈ Rn is a white noise random variable (zero mean and fixed vari-
ance Σ), and Θ ∈ Rn×n. Its scalar version is widely used in economics and
production planning; in the multivariate case, though, the main difficulty
is its estimation, i.e., reconstructing the (unknown) value of the parameter
Θ given only a number of observation x1, x2, . . . , xT . The cost of Maximum
Likelihood (ML) estimation grows badly with the dimension n, and conver-
gence problems are often encountered. We focus first on a special version
of the problem coming from a random-walk-plus-noise model, and propose
a new estimator that uses the following strategy, using a combination of
applied linear algebra and statistics/econometrics techniques:

1. Given vectors w1, w2, . . . , wk ∈ Rn, take each of the series y
(j)
t :=

wT
j xt and estimate it using a “tamer” scalar Maximum Likelihood.

2. Use the obtained results to estimate of the original time series, by
solving a Riccati-type matrix equation for the autocovariance function
of the time series.

The resulting estimator has good performance compared to ML and is
cheaper to compute. We discuss its properties and possible generalizations
to other models.
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Robust Preconditioners for Optimal Control
problems with State and Control Constraints

Margherita Porcelli*, Valeria Simoncini, Mattia Tani

Dipartimento di Matematica, Università di Bologna, Italy
margherita.porcelli@unibo.it

We address the problem of preconditioning a sequence of saddle-point linear
systems arising in the solution of PDE-constrained optimal control prob-
lems via Primal-Dual Active-Set methods. Specifically, we consider prob-
lems with control and (regularized) state constraints; these yield nonlinear
optimality systems with saddle-point Jacobian matrices with variable di-
mension blocks containing information on the current active-set. We present
two new preconditioners based on a full block-matrix factorization of the
Schur complement of the Jacobian matrices where the active-set blocks are
merged into the constraint blocks. The first preconditioner is block-diagonal
and positive definite and the second one is symmetric and indefinite. We
show the robustness of the new preconditioners with respect to the param-
eters of the continuous problem, e.g. the mesh-size and the regularization
coefficient. We also discuss the spectral properties of the preconditioned ma-
trix. Numerical experiments on 3D problems are presented together with
comparisons with existing approaches based on PCG in a nonstandard inner
product.
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Recent advances in the numerical solution of
dense polynomial eigenvalue problems

Meisam Sharify and Françoise Tisseur?

School of Mathematics, The University of Manchester, Oxford Road, Manchester,
M13 9PL, UK
Francoise.Tisseur@manchester.ac.uk

The most widely used approach for solving dense, small to medium size
polynomial eigenvalue problems (PEPs) P (λ)x = 0, y∗P (λ) = 0, where

P (λ) = λdPd + λd−1Pd−1 + · · ·+ λP1 + P0, Pi ∈ Cn×n, Pd 6= 0,

is to linearize to produce a larger order pencil L(λ) = A − λB, whose
eigensystem is then found by the QZ algorithm. There is currently no
linearization-based eigensolver for dense matrix polynomials of degree d > 2
with guaranteed backward stability. Indeed solving the PEP by applying a
backward stable algorithm to a linearization L(λ) can be backward unsta-
ble for the PEP. Also, the conditioning of the solutions of the larger linear
problem can be worse than that for the original polynomial, since the class
of admissible perturbations is larger. Now the exponential of the roots of
the max-times scalar polynomial

tp(x) = max
0≤k≤d

(‖Pk‖+ kx)

are known to be good order of magnitude approximations to the eigenvalues
of P (λ) [2]. These roots are interesting from the numerical point of view
since they are cheap to compute and can be used to define a family of
eigenvalue parameter scalings for P (λ) [1]. We show that these scalings
improve both the backward stability of polynomial eigensolvers based on
linearizations and do not increase the eigenvalue condition numbers of the
linearized problem.

[1] S. Gaubert and M. Sharify, Tropical scaling of polynomial matrices, Positive
systems, Lecture Notes in Control and Information Sciences, vol. 389, Springer
Verlag, Berlin, 2009, 291–303.

[2] V. Noferini, M. Sharify, and F. Tisseur, Tropical roots as approximations to
eigenvalues of matrix polynomials, MIMS EPrint 2014.16, Manchester Institute
for Mathematical Sciences, The University of Manchester, UK, 2014.
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Roots of polynomials: a new fast QR algorithm

Raf Vandebril

Dept. Computer Science, KU Leuven, Celestijnenlaan 200A, 3000 Leuven
raf.vandebril@cs.kuleuven.be

In this lecture we will propose a new fast and stable manner of comput-
ing roots of polynomials. Roots of polynomials are typically computed by
putting the coefficients of the polynomial in the companion matrix and then
computing the eigenvalues of this matrix. Exploiting the available low-rank
structure leads to an algorithm of quadratic instead of cubic complexity.

Several low-cost algorithms have already been proposed. Either they
fully exploit the low-rank properties of the involved matrices by represent-
ing them for instance via quasiseparable factors, or they write the compan-
ion matrix as the sum of a unitary plus low rank matrix and exploit this
structure.

In this lecture we will use the second manner. However, only few QR
steps (deflation of a single eigenvalue) require the use of the low rank part.
After that we can put the low rank term aside and continue only with the
unitary matrix, translating the problem thereby to a unitary eigenvalue
problem. Only in the end the low rank matrix is reconstructed to retrieve
the eigenvalues.

Numerical experiments validate the approach, illustrate its reliability
and speed. The algorithm is compared against other available methods.

This research is joint work with David S. Watkins and Jared L. Aurentz
from Washington State University, USA and Thomas Mach from the KU
Leuven, Belgium.
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Coprime Rational Matrix Functions and
Equivalence

A. Amparan, S. Marcaida, I. Zaballa∗

Departamento de Matemática Aplicada y EIO, UPV/EHU, Apdo. Correos 644,
Bilbao 48080, Spain
ion.zaballa@ehu.es

Strict system equivalence of polynomial system matrices was introduced by
Rosenbrock to classify linear control systems with the same transfer function
matrix. Rosenbrock’s equivalence heavily relies on the Smith equivalence of
matrix polynomials and so, on the use of unimodular matrices. Fuhrmann
discovered that unimodular matrices can be replaced by more general ma-
trices provided that some coprimeness constraints are satisfied. Since then
these coprimeness conditions have been consistently present in numerous
papers dealing with the problem of providing an equivalence relation in
closing form (i.e., using elementary operations) that classifies the matrix
polynomials according to their finite and infinite elementary divisors.

Coprimeness is a natural concept for matrices defined on rings but poly-
nomials are not elements of the ring at infinity. As a consequence, in order
to characterize when two matrix polynomials have the same infinite ele-
mentary divisors using Fuhrmann’s approach, the concept of coprimeness
must be extended to cover matrix polynomials which are coprime at infinity.
Several attempts have been made in this respect. It will be shown in this
contribution that the concept of coprimeness can be extended to matrices
of rational functions, that it is a local property and a new characterization
of equivalence of matrix polynomials at infinity will be given in terms of
coprime matrices at infinity.
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