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Esker mila!!!

Hau tesiaren atalik zailena da idazteko, gauza anitzengatik. Alde batetik jende
asko eskertu behar dudalakotz. Bestetik, bildur naiz jende guztiaz gogoratuko
ote naizen. Norbait ahantziz gero, barka nazala, nahita ez da izan eta. Hasteko,
hastapenetik hasiko gara. Jesusek bere taldean lan egiteko aukera eman zidan,
eta egia esan arras gustora egon naiz. Gauza asko ikasi ditut, eta laguntza
handiak altxatu ere bai. Dudak asaldatzean, edo emaitza batzuk interpre-
tatzen zailtasunak edukitzean, berarengana jo eta arras ideia interesgarriak
eman dizkit. Bestalde, taldeko kideengan jarritako konfidantza eta ematen
duen askatasuna dela eta gaur egun toki gutxitan aurkitzen ahal den lan-giroa
dugu. Horrela, tesiarekin hasi nintzenean hainbat espezimen ezagutzeko au-
kera izan nuen. Joseph izan zen tesi honen ideia izan zuena. Joseph Estatu
Batuetatik Euskal Herrira etorri zen 96an eta haruntza berriz bidali genuen
txapela buruan eta eskupilota eskuan zuela. Aurreko kuadroetan iaioa zen
bai, atzekoetara iristen ez ginelakotz!! Txema taldean sartu aurretik ezagutu
nuen, non eta Irufieko taberna ‘zulo’ batean, bera ameriketan zegoen garaian.
A ze nolako txapadak sartu dizkiodan ondoren, batez ere ordenadore kontue-
tan. Hori bai, sustengu morala eman dit garai anitzetan, berak arras ongi
dakien moduan: ‘El once de Osasuna, valiente y luchador...” Zorionez aurten
ez dugu behar izan, behintzat momentuz. Berarekin komunikazio handia izan
dut, baita emailez ere, nahiz eta atzerrian ez egon! Willy, zu ere eskertu behar
zaitut, nola ez, hasi nintzenean ordenadorea lapurtu zenidan arren. Basurde-
jana oraindik ez dugu egin, baina lasai, Asterix, noizpait eginen dugu. Hala
ere, jakin ezazu bodegon Alejandrora joateko beti prest egonen naizela. Esker-
rik asko Betz apunteengatik eta azalpenengatik. Taldeko beste inmortal bat
Arantxa dugu. Eskerrak zuri ere Rociito, arras giro polita izan dugulakotz, eta
lanean dudak eta askatzen lagundu zenidalakotz. Hasi nintzenean tesiarekin
Ifiaki ere taldean hasi zen, bera oraindik ikaslea izan arren. Lau urte hauetan
gauza dexente ikasi ditut zuregandik, matematika batez ere!! Sartu nintzenean
taldean jende hau guztia zegoen, baina jende gehiago pasa da, eta hasi egin da.
Amerika kubatarra hiru hilabetez egon zen hemen nire tesiaren hasieran, eta
aipatu gabe ezin da gelditu. Elmer ere, Venezuelatik etorri zitzaigun Colon-
biarra, zure pazientziagatik eta azalpenengatik mila esker. Nelaine kubatarra
hilabete batez egon zen gurekin ere, eta kubako kultura apur bat gehiago er-
akutsi zigun. Oso goxoa zegoen Havana Club-al! Eta bukatzeko taldean hasi
den azkenekoa, baina atal berezia merezi duena. Joni, eres el puto amo. Istorio
anitz kontatzen ahal ditut berari buruz, karrera lehenengo mailan elkarrekin
hasi ginelakotz eta handik aitzina dexente elkarrekin ibili garelakotz, baina ez
da plana hemen trapu zikinak astintzea. Gogoratu bakarrik campus erdian
bota egin zenean, parrezka. Besarkada handi bat, Joni. Eskertu nahi nituzke
ere fakultateko beste irakasle batzuk, Xabi, Cecilia eta Jose Mari. Mila esker
Jose Mari euskera kontuetan laguntzeagatik. Beti atsegina da zurekin aritzea.
Tesian zehar Cambridgen hiru hilabetez aritzeko aukera izan nuen, Cavendish
laborategian. Eskertu nahi nuke Richard eta Mike bertan emandako laguntza-
gatik, eta Simone italiarra. Baita bertan ezagututako jendeari ere.

Jende askorekin pisua konpartitu dut. Tesia hastean Miren eta Idoia izan
ziren. Beranduago Agurtzanerekin egon nintzen, urte eta erdiz. Amarako
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etxean gustora egon ginen, ezta, Agurtzane? Noizean behin Asterix etortzen
zitzaigun, eta pozio majikoa hartu beharrean garbantzuak eramaten zituen...
baina tira. Bertatik jende gehiago pasa zen, Juan Luis, Dani, eta gero Raul,
gasteiztarra. Agurtzane joaterakoan Antxon etorri zen... a ze hirukotea bildu
ginen!! El ciego, el sordo y el despistado mayor del reino. Kakauete, how are
you doing Irlandan? Lehendik Lasallen egon nintzen, eta ezin utzi aipatu gabe
bertan eginiko lagunak: Otsobi, Rosino, Oskar, Ivan, Iker, Aritza... ezin denak
aipatu!

Tesia Donostian egin arren, kimika teorikoan Utrecht-en murgildu nintzen.
Bertan bi urte pasa nituen. Frans-ekin eta Jan-ekin lan egin nuen lehenengo
urtean. Baina ez dira beraiek bakarrik taldea osatzen zutenak, Jeanne, Paul,
Joop, Simon, Fokke, Remco, Walter, Elly, Huub, Alekos, Arno eta Rogier.
Esker mila denoi! Eta baita Herbehereetan ezaguturiko beste jenderi, batez
ere Ramon eta Gert Jan (Euskal Herri independientearen Lehenengo Lehen-
dakariall). Eta nola ez, Ritox-eko eta FOC-eko jendea. Euskaldunak ere
ezagutu nituen bertan, eta batzuk oso lagun onak dira gaur egun: Jota, Elsa,
Bertanis, Aizpeia, Ni-Ni, Estela, Martino, Efaut eta Iban. Eta Amsterdam-en
ezaguturiko jendea... Castellonen ezaguturiko jendea ere agurtu nahi nuke.

Kimikako karreran zehar ezagutu dudan jendea ere ezin dut ahantzi, lagun
arras onak egin baititut. Batez ere Jetas, Kasper, Kalbo, Aitor, Fernando eta
berriz Joni. Joni, telepatia ote dugu? Leire, Rakel... mugimendu subersibotan
ibilitako jendea!! Baranaingo lagunak, Cesar, David, Joseba, Ines, Josean,
Samu, Arapa, Ainhoa, Inaki, Nerea (ez naizela ezkontzen!!!), Aitor eta Marta
(oraingoan bai, je je je) Iparraldeko denak, Victor, Loli, Edurne, Mirentxu,
Ixone eta bertan biltzen den txusma, Paco barne! Victor, musean ez diguzu
berriz irabaziko!!! Kartak markatzen dituzula konturatu garal!!l

Eta aipamen berezia familiarendako. Gurasoek beti prest laguntzeko, kanpora
joan nedin esfortzua egin eta beti suporta. Betidanik konfidantza eman didazue
eta edozertarako prest egon zarete. Ez da gauza makala, gurasoek seme-alaben
bidea errespetatzea eta onartzea ez baita orokorrean gertatzen. Mila esker!
Eta anaiei ere, Iker eta Ibai, lasai Ibai, ez baitut Julianek deitzen dizkizun
izenik paratuko etal! Bestela berak ere ikusi beharko lituzkeenak! Eta Erasoko
familia ere, denoi, osaba-izeba, lehengusu-lehengusin, eta nola ez, amona. De-
nen izena ez dut idatziko, bakarrik esan bertan denak biltzen garenean ia 40
pertsona garela, eta bakarrik amaren partetik. Mila esker denoi! Eta ez bakar-
rik pertsonei, bordari ere eskerrak. Gizarte industrializatu honetatik ihesbide
ezinhobea ematen didalakotz.
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Sarrera Orokorra

Gizakiaren aurrerapen nabarmenetako bat historiaurrean gertatu zen, gure ar-
basoek sua egiten eta erabiltzen ikasi zutenean. Aurrerakuntza horrek ener-
gi iturri naturalen erabilpena ekarri zuen, derrigorrezkoa geroago gertatuko
zen zibilizazioaren garapenerako. Gaur egun gure zibilizazioak energi kanti-
tate izugarria behar du. Industriaren garapena, eta noski mendebaldeko bizi-
modu erosoak kontsumitzeko energia anitz behar du. Energia hor da, naturan,
eta gizakiak egin duen gauza ‘bakarra’ energia hori nola erabili eta eraldatu
ikastea izan da, termodinamikaren lehenengo printzipioak erraten duenarekin
bat etorriaz, alegia. Urteen poderioz anitz energi iturri aurkitu eta garatu dira,
gaur egun ezagutzen dugun garapen teknologiko izugarria suertatzeko garran-
tzitsuenak XIX. mendearen bukaeran eta XX. mendearen hasieran garatu zire-
larik. Petrolioa zein energia nuklearra ditugu honen adierazgarri. Edisonek
bonbila asmatu izanak ere bere garrantzia izan zuen. Bonbilak aurretik ezagu-
tzen zen energi mota bat erabiltzen du: elektrizitatea. Elektrizitatea elektro-
nikaren oinarria da, gure teknologiaren oinarrietariko bat izanik. Energi itu-
rrien erabilpenak mendebaldeko zibilizazioaren bizimodua zeharo aldatu du,
baina ez beti era egoki batean. 1 Irudian zorigaiztoko eragin hauetako batzuk
irudikatzen dira.

Energia nuklearraren erabilera ezegokiaren eragin kaltegarriak ezagunak dira,
berotegi efektuaren eragin kaltegarriak ere, marea beltzek eraginiko kalteak,
eta abar. Zoritxarrez, zerrenda luzea da.

Figure 1: a) Urre beltzaren sukarraren garaiko irudia b) Bonba atomikoaren
ziza. ¢) Marea beltzak harrapaturiko pinguinoak.

a)

15
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Figure 2: a) Errota zahar bat b) Elektrizitatea sortzeko errota modernoak c)
Estazio Espazial Internazionalaren irudi bat, bertan estaziorako elektrizitatea
sortzen duten eguzki-zelulak erabiltzen direlarik.

a)

Erabilienak diren energi iturrien eragin kaltegarriak direla eta, ingurugiroa
gutxiago kutsatzen edo kutsatzen ez duten energi iturri berriak beharrezkoak
dira. Hauek dira, alegia, energi iturri berriztagarriak, hauen adierazgarri eguzki-
energia edota energia eolikoa direlarik, besteak beste. Energi berriztagarriak
aspaldi ezagunak dira, errotak garia txikitzeko denbora luzez erabiliak izan dira,
ogia egiteko beharrezkoa den irina lortzeko. Gaur egun errota modernoak era-
biltzen dira elektrizitatea sortzeko. Euskal Herriko mendietan hauetako anitz
ikusten ahal dira. Arbasoek ere eguzki-energia erabiltzen zuten, ura berotzeko,
adibidez. 2 Irudian energi iturri berriztagarri hauetako batzuk irudikatzen dira.

Lan honetan eguzki-zelula fotovoltaikoetan erabiltzen diren material batzuei
buruz arituko gara. Eguzki-zelulek eguzki-energia elektrizitate bihurtzen dute.
Eguzki-zeluletan erabiltzen diren materialak solido ioniko zein metalikoak dira,
ioiak zelulan zehar homogeneoki banatuta direlarik. Dena dela, larogeita hamar-
garren hamarkadan clusterretan oinarrituriko solidoak garatu dira, aplikazio
fotovoltaikoa dutela ikusi delarik. Aurrerapen hau nanoteknologiak ezagutu
duen aurrerakada izugarriaren baitan kokatzen da. Hurrengo ataletan zelula
fotovoltaikoak eta nanoteknologia sakonago aztertuko dira.

Eguzki-zelula fotovoltaikoak

Anitz motatako materialak erabiltzen dira eguzki-zeluletan, baina hauek guz-
tiak propietate bat dute komunean: erdieroaleak dira. Erdieroaleen ezaugarri
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Figure 3: Eguzki-zelula tipikoa

Pl

el
- Sl

Wiy J‘  :

\ e

Wpesln P+ '
nEgl

W'"W"(B')ﬂ
Entewmw

nl
\d

nagusiena okupaturiko azkeneko banda eta okupaturik gabeko lehengo ban-
daren artean dagoen energi langa ingurunetik energia bereganatuz erlatiboki
errez gainditzen ahal dela da. Eguzki-zelulen kasuan bereganatzen den ener-
gia hau eguzkitik heltzen den energia da. Eguzki-energia zelulara heltzerakoan
elektroiek absorbatzen dute, okupaturiko bandatik okupatu gabeko bandara
pasatzen direlarik, modu honetan korronte elektrikoa sortuz. Material des-
berdin anitz erabiltzen dira eguzki-zeluletan. Historikoki lehenbizikoa silizioa
izan zen. Silizioaren propietate eroaleak eta produkzio koste txikiak eguzki-
zeluletan erabiltzeko material egokia egiten zuten silizioa. Hala ere, beste ma-
terial anitz eraginkorragoak direla ikusi da, garestiagoak izanagatik. GaAs
bezalako III-V materialak [1, 2, 3] edo CdTe bezalako II-VI materialak [4-
22] silizioaren ordez erabiltzeko material egokiak dira eraginkortasun handiko
eguzki-zelulak garatzeko. Eguzkitik Lurrera heltzen den energia gehiena eremu
ikuskorrean da, eta gainerakoa honen inguruan, eremu ultramorean zein in-
fragorrian. Eremu ikuskorra 1.75 - 3 eV tartean dago. Hortaz, eguzki-zeluletan
erabilgarria izateko material batek energi langa inguru honetan izan behar luke,
ahalik eta energia gehien absorbatzeko. II-VI konposatuak material hauetako
batzuk dira, beren energi langak 1.45 €V (CdTe) eta 3.66 €V (ZnS) tartean
daudelarik.

Ondoren eguzki-zelula fotovoltaiko baten funtzionamendua 3 irudian adierazten
da [23].

Bi erdieroale mota beharrezkoak dira zelula osatzeko. Alde batetik negatiboki
kargaturiko elektroiak garraiatzen dituen n-motako erdieroale bat eta beste
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aldetik positiboki kargaturiko zuloak garraiatzen dituen p-motako erdieroalea.
Azken honi absorbatzailea deritzo, eta lehenengoari leihoa. Leihoaren energi
langa handiagoa da, eta energiaren absortzioa gehienbat absorbatzailean ger-
tatzen da, izenak adierazten duen bezala. Behin eguzki-energia zelulara hel-
duta, elektroiek energi langa gainditzeko eta okupatu gabeko bandara pasatzeko
behar duten energia absorbatzen dute. Orduan elektroiak n-motako erdieroalera
igaro eta aurreko elektrodoan biltzen dira. Era berean, sorturiko zulo positi-
boak atzeko elektrodoan pilatzen dira. Honen ondorioz bi gainazalen artean
potentzial diferentzia bat sortzen da, eta biak elkartzean korronte elektrikoa
agertzen da. Irudian bonbila piztuta ikusten ahal da honen adierazgarri.

Energi langa egokiez gain, eguzki-zeluletan erabilgarriak izateko materialek
goian aipaturiko ezaugarriak izan behar dituzte, n-motako zein p-motako erdi-
eroankortasuna ukan behar dute. II-VI materialek propietate hauek dituzte,
eta eraginkortasun handiko eguzki-zelulen garapenerako aproposak izaten ahal
dira.

Clusterrak, nanoegiturak eta nanoteknologia

Joan den mendeko lehenengo erdialdean nanoteknologia, teorikoen ustetan,
ez zen aurrera aterako. Erwing Schrédinger-ek ‘atomoak ezin direla gehiago
indibidualki kontsideratu’ ondorioztatu zuen [24], eta ziurgabetasun printzipioa
proposatu zuen Werner Heisenberg-ek ‘atomoek probabilitate eta posibilitateen
munduan daudela, gauzen edo gertakizunen munduan beharrean’ pentsatzen
zuen [25]. Hau da, atomoak izaera indibidualik gabeko enteak zirela pentsatzen
zuten. Dena dela, gaur egun badakigu atomoak indibidualki tratatzen ahal
direla [26]. Richard Feinmann Nobel Saridunak esan zuen bezala [27] ‘There
is plenty of room at the bottom’. Gai honetan aintzidariak ziren Arthur von
Hippel-ek [28] edota K. Erik Drexler-ek [29, 30] iragarri zutenarekin bat dator
gaur egun nanoteknologiak ezagutu duen bultzada ikaragarria.

Gaur egun nanoteknologian zenbait bide zabaldu dira, nanoelektronikaren ingu-
ruan, nanokableak, nanomekanika, eta abar, eta teknika berri eta iraultzaileak
garatu dira, hala nola indar atomikozko mikroskopioa (AFM), edota tunel efek-
tozko mikroskopioa (STM). Nanokableek eta nanoelektronikak txip txiki eta
azkarragoen garapenean posibilitate zabal berriak ireki dituzte [31, 32, 33, 34].
30nm-ko transistoreak garatu dira, eta NewScientist aldizkarian projektuan
parte hartu duen batek erraten duen bezala [35] ‘Gure ikerketak transistore
txiki hauek gaur egungo aparatuak bezala funtzionatzen dutela probatzen du,
eta bolumen handi batean produzitzeko oinarrizko mugarik ez dagoela era-
kusten du’. 20nm-ko beste transistore bat ere aurkeztu dute [36] Grenoblen,
French Atomic Energy Commission’s Electronic, Technological and Instrumen-
tation Laboratory-n (LETT).

Atomo indibidualekin elkarrekintza izateko posibilitatea material eta sistema
berriak garatzeko lehengo pausoa da. Konposatu berdineko sistema kristali-
noak baino aplikazio gehiago izaten ahal duten materialak eratzen ahal dira.
Esparru honetan artikulo garrantzitsuak agertu dira [37, 38, 39, 40, 41]. Hobe-
kien ezagutzen diren cluster edo nanoegitura ‘berriak’ 1985. urtean aurkituriko
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[42] karbono hutsezko esferoideak dira, fulerenoak alegia. Literaturan fulere-
noei buruzko [43, 44, 45, 46] eta beren solidoei buruzko [47, 48] hainbat lan
agertu dira. Clusterretan oinarrituriko solido hauek besteak beste propietate
supereroaleak [49, 50, 51] izaten ahal dituzte, eta horretaz gain zelula foto-
voltaikoetan ere erabilgarriak direla [52, 53] ikusi da.

Karbono-clusterren antzera, balentzi isoelektronikoak diren III-V edo eta II-
VI materialen clusterren gaineko interesa agudo hazten ari da. III-V mate-
rialen clusterren lan teoriko [54, 55, 56, 57, 58, 59| zein esperimentalak [60,
61] aurkitzen ahal dira literaturan. Bestalde, dopaturiko II-VI nanopartikula
fotoluminiszenteak [62, 63], fotosentikorrak [64], eta beste batzuk, dopatuak
[65, 66, 67, 68] zein dopatugabeak [69], argitaratu dira.

Lan honen helburuak

Aurreko ataletan ikusitakoarekin arrunt interesgarria bihurtzen zaigu bi eremu
hauen fusioa, clusterrak alde batetik eta II-VI materialak bestetik, alegia. Lan
honen helburua II-VI materialen clusterren azterketa teorikoa egitea da. Lehen-
bizi minimo global eta lokalak karakterizatu behar dira, behin hau egina da-
goela eszitazio energiak kalkulatu ahal izateko. Modu honetan cluster hauen ab-
sortzio propietateak aztertuko ditugu, eta horrela eguzki-zelula eraginkorragoen
eraketan material aproposak direnentz behatzerik izanen dugu. Clusterretan
oinarrituriko solidoak errealitate dira gaur egun. Fulerenoetan oinarrituriko
solidoak eraiki dira, eta propietate interesgarriak dituzte, lehen ikusi bezala.
Cgo deribatuen solidoak eguzki-zelula eraginkorragoak osatzeko baliogarriak
izaten ahal dira. M3Cgy konposatuak supereroaleak dira, eta Cog-oinarria
duten solidoak tenperatura altuko supereroaleak izaten ahal dira.

Posible izanen litzateke beraz II-VI materialak optimizatzea eragin handiko
eguzki-zelulak osatzeko, sistema kristalinoak baino eraginkorrago diren materi-
alak sortuz. Tesi honen lehenengo atalean (2., 3., 4. eta 5. kapituluak) Zn;X;,
1=1-9,12,15, X=0, S, Se, Te, -ren minimo orokorrak zein lokalen egiturak
karakterizatu ditugu. Bigarren atalean (6., 7., 8. eta 9. kapituluak) mini-
mo orokorren eszitazio energiak kalkulatu ditugu. Bukatzeko, ondorio oroko-
rrak eta gerorako lana aurkezten da. Lan hau guztia burutzeko gaur egun
boteretsuak diren kimika kuantikoaren metodo eta programak erabili ditugu.
Hurrengo atalean kimika kuantikoa laburki gogoratuko dugu.

Kimika kuantikoa

Joan den mendearen hasieran garaturiko teoria kuantikoak [70, 71, 72, 73] ze-
haro aldatu zuen mundu mikroskopikoaren inguruan fisikariek zuten ikuspun-
tua. Teoria hau baino lehenago garaturiko teoria guztiek ezin zuten atomoen
egonkortasuna azaldu. Bohr-ek atomo sinpleenaren egonkortasuna elektroiak
nukleoaren inguruan orbita estazionarioetan bueltaka ibiltzen direla esanez
azaldu zuen. Elektroi batek orbita batetik bestera mugitzeko energi kuantu
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bat askatu edo absorbatu egin behar du. beste hitzetan esanda, energia kuan-
tizaturik dago, ez da jarraia. Teoria kuantikoan hau teoriaren ondorioa da,
ez da aldez aurretik finkaturiko gauza. Hasiera batean teoria fisikarien mun-
duan garatu zen, baina berehala kimikan izaten ahal zituen aplikazioak behatu
ziren, kimika kuantikoa sortuz. Urteen poderioz kimika kuantikoa kimikarien-
dako arrunt erabilgarria bihurtu da, molekulen propietateak kalkulatu, ulertu
eta iragartzeko.

Printzipioz sistema bati buruzko informazio guztia bere uhin funtzioak ematen
digu. Uhin funtzioa zein den jakiteko ‘bakarrik’ Schrédinger-en ekuazioa askatu
behar dugu:

HU = EV (1)

H hamiltondarrak nukleo eta elektroien energia kinetikoa, elektroi-elektroi,
elektroi-nukleo eta nukleo-nukleo elkarrekintzak kontuan hartzen ditu. Born-
Oppenheimer [74] hurbilketa kontuan hartuta, elektroien eta nukleoen higidura
banatzen dira, eta hortaz H-an nukleoen koordenatuak parametro konstanteak
dira. Zoritxarrez, ekuazio hau elektroi bat baino ez duten sistemen kasuan
bakarrik askatzen ahal da, hidrogeno atomoa, adibidez. Hau dela eta metodo
hurbilduak garatu behar izan dira:

1. Uhin-funtzioan oinarritzen diren metodoak: bariazionalak (konfigurazioen
elkarrekintza) edo gorputz-anitzezko perturbazio teoria.

2. Dentsitate-funtzionalaren teoria (DFT).

3. Quantum Monte Carlo (QMC).

Ez da atal honen helburua metodo hauen guztien deskribapen osoa egitea.
Beraz, interesaturik dauden irakurleak gai hauek lantzen dituzten literaturara
zuzentzen ditugu. Ikusi adibidez [75, 76, 77, 78, 79].

Uhin-funtzioan oinarrituriko metodoak garatu ziren lehenengoak izan ziren.
Urteetan zehar erabilienak izan diren bi metodoak Balentzi Lotura (BL) meto-
doa eta Molekula-Orbitalen (MO) metodoa izan dira. BL metodoa 1927.
urtean Heitler eta London-ek formulatu zuten [80]. MO metodoa berandu-
ago garatu zen, Hund [81], Mulliken [82] eta beste batzuen eskutik. Metodo
hau erabiliena bilakatu zen bere botere kuantitatiboaren ondorioz. MO-k or-
bital ortogonalak erabiltzen ditu, kalkulua anitz errazten delarik. Ez ordea VB
metodoak, orbital ez-ortogonalak erabiltzearen ondorioz kalkulua luzeagoa eta
korapilotsuagoa, hortaz garestiagoa, delarik.

Hastapenetan garatu zen lehendabizietako molekula-orbital metodoa Hartree-
Fock metodoa [83, 84] izan zen. Bertan uhin-funtzioa elektroi-bakarreko or-
bitalen antisimetrizaturiko biderkadura da. Elektroiak nukleoaren eta beste
elektroien eraginez sorturiko batezbesteko eremuaren eraginpean higitzen direla
suposatzen da. Metodo honen arazorik handiena da kontrako spina duten elek-
troien arteko korrelazioa kontuan hartzen ez duela. Korrelazio mota hau kon-
tuan hartzeko hainbat bide dago. Mgller-Plesset [85] teoria (MPn, n perturba-
zio-ordena izanik) bezalako perturbazio-metodoetan elektroi-korrelazioa HF
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arazoaren perturbazioa bezala kontsideratzen da. Konfigurazioen Elkarrekintza
(KE) [86, 87] metodoan uhin-funtzioa konfigurazio desberdinen konbinazio line-
ala bezala adierazten da, elektroi-anitzezko uhin-funtzio zehatzaren emaitza
bariazional hobeagoa lortzeko asmoz. Beste metodo sofistikatuagoak egon ba-
daude, Coupled Cluster (CC) [88, 89, 90|, Erreferentzia-Anitzezko Konfigu-
razioen Elkarrekintza (EAKE) edo Espazio Eraginkor Osoa (EEO) [91, 92]
metodoak, oinarrizko egoera zein egoera eszitatuen propietate elektronikoak
aztertzeko tresna arras erabilgarriak direlarik.

Quantum Monte Carlo metodoak sistema anitzen oinarrizko egoeren [93, 94, 95,
43] zein egoera eszitatuen [96, 97] propietate elektronikoak kalkulatzeko orduan
0s0 boteretsuak direla ikusi da. Lan honetan ez dira erabili, eta interesaturik
dagoena ondorengo lanetara bidaltzen ditugu [79, 98].

Tesi honetan aurkezten dugun lanaren gehiena dentsitate-funtzionalean oina-
rrituriko metodoak erabilita burutu da. Ondorengo azpiatalean metodo hauek
sakonago deskribatuko ditugu.

Dentsitate-Funtzionalaren Teoria

Denborarekiko askea den Dentsitate-Funtzionalaren Teoria

Dentsitate-Funtzionalaren Teoriaren formalismoak N elektroiren uhin-funtzioa
eta dagokion Schrédinger-en ekuazioaren ordez askoz ere sinpleagoa den p(7)
elektroi-dentsitatea jartzen du. Hau hiru aldagai espazialen funtzioa da. Ego-
era elektronikoa, energia eta edozein sistemaren propietate elektroniko guztiak
p(7) honen funtzioan deskribatzen ahal dira [77, 78].

Hohenberg eta Kohn-ek [99] degeneratua ez den oinarrizko egoera duen sistema
baten propietate elektronikoak p(7) elektroi-dentsitateak determinatzen dituela
demostratu zuten. Hortaz, Ey oinarrizko egoeraren energia p(7)-ren funtzio-
nala da. Orokortuz, oinarrizko egoearen elektroi-dentsitatea jakinez gero, oina-
rrizko egoeraren propietate elektroniko guztiak kalkulatzea posible da, behin
funtzional-dependentziak finkatu ondoren. Energi funtzionala aurkitzeko ener-
giaren bariazio-printzipio bat finkatu zuten, uhin-funtzioaren bariazio-printzi-
pioaren antzerakoa. Horrela, E|[p] funtzionalaren forma zehatza jakinik oina-
rrizko egoeraren dentsitatea bilatzen ahal dugu (uhin-funtzioaren kasuaren an-
tzera). Tamalez, funtzioanalaren forma esaktoa ezezaguna denez, Kohn eta
Sham-ek [100] funtzional honen hurbilketa ez-zuzen bat garatu zuten, Kohn-
Sham metodoa, alegia. Ondorioz DFT kalkulu zehatzak egiteko tresna erabil-
garria bihurtu zen. Haiek N elektroiz osaturiko eta p oinarrizko egoeraren
elektroi-dentsitate duen molekula baten Fj oinarrizko egoeraren energia elek-
tronikoa ondorengoa dela erakutsi zuten:

By = 3%, < oDV > + [o(r)p()drs

2
+%ff %dﬁd@ + Exclp] @
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u(r) = =X, fl—z nukleoen eraginez dagoen kanpo-potentziala da, 1; Kohn-
Sham orbitalak dira, eta E,.[p] truke-korrelazio energia da.

Kohn-Sham prozeduran oinarrizko egoeraren p esaktoa Kohn-Sham orbitale-
tatik lortzen ahal da,

N
= Il 3)
i=1
eta Kohn-Sham orbitalak
Fres(Lhi(1) = epi(1) (4)

elektroi bakarreko ekuazioak ebatziz lortzen dira, Frs Kohn-Sham operadorea

Fies = ~39% +0(1) 4 Y2 J5(1) + Vael) o)

delarik. J Coulomb operadorea da, eta V. truke-korrelazio potentziala. Fygs
HF ekuazioetan agertzen den Fock operadorea bezalakoa da, gauza batean izan
ezik. Truke operadorearen ordez, truke eta korrelazioa kontuan hartzen dituen
Ve jartzen da.

Ekuazio hauek iteratiboki ebazten dira. Hasierako dentsitate batetik hasita
Fis eraikitzen da, eta (3) ekuazio-taldea ebazten da. Emaitza Fiks berri bat
eratzeko erabiltzen da. Prozedura hau konbergentzia lortu arte errepikatzen
da.

Kohn-Sahm orbitalen esanahi fisikoa eztabaidan dago oraindik. Autore batzuen
arabera ez dute inolako esanahirik, bakarrik p zehatzaren kalkuluan erabil-
garriak dira. FEra berean, Kohn-Sham orbitalen energiak molekula-orbitalen
energiekin ez lirateke nahastu behar. Beste batzuk, ordea, HOMO-ren Kohn-
Sham energia ionizazio potentzialaren negatiboa dela kontuan harturik [101,
102], eta honetaz gain Kohn-Sham ekuazioak, HF kasuaren antzera, partikula
askeen eredua gogora ekartzen duela kontuan harturik, Kohn-Sham orbitalei
HF orbital kanonikoek duten antzeko esanahi fisikoa egokitzen diete.

Azken aldiko argitalpenetan DFT-aren bidez lorturiko molekula-orbitalak eta
estandar MO-LCAO metodoen bidez lorturikoak arras antzekoak direla ikusi
da. Hortaz, molekulei buruzko informazio erabilgarri anitz beraien MO-ak
aztertuz lortzen ahal da, hauek DFT-aren bidez lortuak izan arren [101, 103].

Dena dela, beste arazo bat dago: E,.[p] truke-korrelazio funtzionala eta beraz
vze|p; 7] truke-korrelazio potentziala elektroi-gas uniformearen kasurako baino
ez da ezagutzen. Zorionez, funtzional hurbilduak garatu dira. Hurbilketa sin-
ple bat dentsitate lokalaren hurbilketa (DLH) da. Honen ideia p(7 ) dentsi-
tate lokala duen bolumen elementu bakoitza elektroi-gas homogeneoa bezala
kontsideratzea da. Ikuspuntu honetatik hurbilketa hau dentsitatea espazioan
zehar mantso aldatzekotan zehatza izanen da. FE,.[(p)] ondorengo espresioak
ematen du:

ELPA((p)] = / (s (0)dF (6)
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ezc(p) p elektroi-dentsitate duen elektroi-gas homogeneoaren truke plus korrela-
zio-energia elektroi bakoitzeko da. e,.(p)-rendako espresio zehatz bat Vosko,
Wilk eta Nusair-ek [104] aurkitu zuten. Espresio hau aplikatuta dentsitate
lokalaren hurbilketa (DLH) edo spin dentsitate lokalaren hurbilketa (SDLH)
[105] lortzen dira. Azken honen kasuan spin desberdina duten eleketroiendako
orbital eta p® eta p® dentsitate desberdinak erabiltzen dira. Noski, molekulen
kasuan hauek benetako funtzionalaren hurbilketak besterik ez dira, p homoge-
neoa ez delakotz. Hurbilketa dentsitate-gradientearen araberako espansio bat
eginez hobetzen ahal da. Metodo hauek generalizaturiko gradientearen hur-
bilketa (GGA) dira, eta molekulen azterketan garrantzi handia dute, elektroi-
dentsitatea homogeneoa dela ezin baita kontsideratu.

DFT metodoek sistema kimiko gehienetan emaitza bikainak ematen dituztela
demostratu da [106], CPU intentsiboak diren elektroi-korrelazio metodoekin
konparagarriak izanik. Hala ere, anitzetan loturen disoziazio energiak gaines-
timatzen dituzte [107]. HF eta DFT-ren arteko hibridoak disoziazio energiaren
zehaztasuna handitzen dute, Johnson-ek et. al. erakutsi bezala [108]. Becke 3
[109] hibridoa Lee-Yang-Parr (B3LYP) [99, 110, 111] korrelazio funtzionalarekin
konbinatuta, erabilienetako bat bihurtu da, ondorengo forma duelarik:

(1—ag)EESPA 4 ao EHF 4 0, EB® 4 0 EXYP 4 (1—a)EVWN (7)

Parametroen baloreak a9=0.20, a,=0.72 eta a.=0.81 dira, hurrenez hurren.
Funtzional honi Becke-ren 3 parametrodun funtzionala esaten zaio, BSLYP.

DFT kalkuluek F,. zehatza erabiltzen ez dutenez, ez dira, zehazki mintzatuz,
ab-initio kalkuluak. Dena dela, datu esperimentalak doitzeko parametrorik era-
biltzen ez dutenez, espiritualki ab-initio kalkuluetatik erdienpirikoetatik baino
gertuago daude. Metodo hauen abantaila handienetako bat HF metodoaren
koste konputazional antzekoa izanik elektroi-korrelazioa kontuan hartzen dutela
da. Dena dela, korrelazio efektu hauek ezin dira zehazki sailkatu, hastapenetik
ez-korrelaturiko emaitzarekin nahasturik daudelakotz. Honetaz gain, sofisti-
kazio gehiago aplikatuz, kalkuluak hobetzeko bide sistematikorik ez dago, eta
honen ondorioz emaitzak diren bezala onartu behar dira. Arazo hauek izan
arren, DFT-k sistema kimiko batzuen oinarrizko egoeraren propietateendako
emaitza onak eman ditu, MP2-rekin alderagarria den kalitatearekin [112] batzue-
tan, eta hobeagoa beste kasu batzuetan. Koste konputazional baxua dela eta,
sistema handien kasurako DFT aukeratzen den metodoa da, elektroi-korrelazioa
MP edo CI metodoen bidez kontsideratzea biziki garestia delakotz.

Denboraren menpekoa den Densitsate-Funtzionalaren Teoria

Denborarekiko askea den bertsioan DFT-k oinarrizko egoerendako kalkulu ze-
hatzak burutzen ditu. Tamalez, eszitazio energiak ez ditu zehazki kalkulatzen.
DFT-ren denboraren menpekoa den formalismoak (ikusi [113, 114, 115]) karga-
dentsitatearen erantzun dinamikoaren kalkuluarendako bide zehatza ematen
du. Honek, erantzun linealaren teoriarekin konbinatuta, eszitazio elektroniko
bertikalaren espektroa kalkulatzeko aukera ematen digu [114, 116, 117, 118,
119]. TDDFT arrunt sistema desberdinetan erabili da, konposatu metalikoetan
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[120, 121, 122], organiko [123, 124, 125] zein ezorganikoetan [126, 127], edo eta
sistema zabalduetan [128]. Hortaz, sistema errealen eszitazio energiak kalku-
latzeko tresna hagitz sendoa da. Dena dela, Rydberg egoerak ez ditu zehazki
kalkulatzen [129, 130].

Hohenberg-Kohn teoriaren energi minimoaren printzipioaren antzekoa den ekin-
tza-geldikorraren printzipio bat garatzen ahal da. Hau, v-errepresentagarrita-
sunari buruzko onarpen egokiekin batera, denboraren menpekoa den Kohn-
Sham ekuazioa garatzeko erabiltzen ahal da:

1o p(r't) ) o _ _.9.
2v +v(rat)+/|r_7,,/|dr +Umc(rvt) 1/)]0 (Tvt)*lat%o (Tvt)

v7, (r, t) formalki truke-korrelazio ekintzaren, A,.-ren, deribatu-funtzionala da,
baina hurbilketa gehienek hurbilketa adiabatikoa erabiltzen dute,

¢t
SAsclprop1] o, PP 7t
dpo (ryt) — dpt (r)

Ugc (’I“, t) =

9)

pt (r) t denbora jakin batean kalkulaturiko p, (r,t) funtzioa eta E,. denbo-
rarekiko askea den Kohn-Sham teoriaren truke-korrelazio funtzionala direlarik.

@ (w) polarizabilitate dinamikoak denboraren menpekoa den eremu elektrikoari
dipolo-momentuak emaniko erantzuna deskribatzen du. Honen ondorioz, denbo-
raren menpekoa den dentsitate-funtzionalaren teoriatik lorturiko karga-dentsita-
tearen erantzunetik kalkulatzen ahal da, denboraren menpekoa den dentsitate-
funtzionalaren erantzun teoria erabiliz. Honek eszitazio elektronikoaren espek-
troa normalean erabiltzen den dipolo hurbilketaren bidez kalkulatzeko aukera
ematen du. Egoeren gaineko batura-erlazioaren arabera,

Fw) =Y (10)

oWl w?

polarizazio dinamikoaren poloek eszitazio energiak determinatzen dute, w;, eta
fi erresiduoek dagokien osziladore-indarrak [114]. Oinarri-talde finito forma-
lismo bat erabiltzen da polarizabilitate dinamikoa (10) egoeren gaineko batu-
raren espresioa era tentsionalean paratzeko. Polo egituraren azterketak

OF, = w?F, (11)

balore propio problema ebatziz eszitazio energiak lortzen ahal direla esaten
digu. Q2 [114, 115, 116] erreferentzietan definitzen da, eta f; osziladore-indarrak
-

F} bektore propioetatik lortzen dira. Informazio gehiagorako ikusi lehen aipa-
turiko review-ak eta [131, 132].
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Oinarri-taldeak

Uhin-funtzioan zein dentsitate-funtzionalean oinarrituriko metodoek uhin-fun-
tzioa espanditzeko funtzio-talde bat beharrezkoa dute. Funtzio-talde hauei
oinarri-taldeak deritze. Oinarri-talde egokiaren aukeraketa arras garrantzitsua
da kalkuluaren arrakastarako. Dena dela, oinarri-taldearen zehaztasuna eta
bere tamaina kontuan hartu behar ditugu, oinarriaren tamaina handitzean
kalkuluaren kostea garestiago egiten baita. Kimika kuantikoan egiten diren
kalkuluetan gehien erabiltzen diren funtzioak Kontraituriko Funtzio Gaussia-
rrak (KFG) dira. Hauek funtzio Gaussiarren (hasierakoak) konbinazio linealez
(kontrakzioak) osaturik daude.

L
SDEGF(|F_RA|) = deug(apuaW_RPD (12)

p=1

oy, aintzindarien berretzaileak eta d,, kontrakzioen koefizienteak elementu
desberdinendako optimizatzen dira.

Normalean all-electron oinarri-taldeak erabiltzen dira. Honek oinarri-taldeak
elektroi guztiak kontsideratzen dituela esan nahi du. Hala eta guztiz ere,
kasu batzuetan elektroi kopuru izugarria dugu eta kalkulua arrunt garestia
da. Honen ondorioz elektroi batzuk, barne-elektroiak, kalkulutik kentzen dira
eta bakarrik balentzi elektroiak kontsideratzen dira. Kasu honetan kanpo-
elektroiak nukleo eta barne-elektroiek eraginiko batezbesteko potentzialean higi-
tzen dira. Tesi honetan Stevens eta kideek [133] garaturiko pseudopotentzialak
erabili ditugu. Pseudopotentzial hauek, konfigurazio atomiko egokien kasuan
[134], Dirac-Fock ekuazioaren emaitza numerikoetatik lorturiko balentzi elek-
troien orbital energiak eta dentsitateak erreproduzitzeko eraiki dira.

Pseudopotentzial hauek zink atomoen d elektroiak balentzian sartzen dituzte,
152252 2p% barne-elektroi gisa kontsideratuz. Balentzizko oinarri-taldea ener-
gi optimizaturiko oinarri-taldea da. sp kasurako zeta-bikoitza da eta zeta-
hirukoitza d-rako (8sp6d/4sp3d). VIB zutabeko elementuendako ns® np* elek-
troiak dira balentziazkoak, eta zeta-bikoitza den (5sp/2sp) oinarri-taldea erabili
da.



Chapter 1

(zeneral Introduction

The apprenticeship of the use of fire by humans in the stone age was one of the
most important leaps forward taken by the human race. Qualitatively it sup-
posed the beginning of the control of the natural energy sources, indispensable
for future development of civilization. Nowadays our civilization makes use of
a huge amount of energy. Industrial development, and of course the comforta-
bility of the occidental way of life needs energy to be consumed. This energy is
there, in the nature, and the “only” thing humans have done is to learn how to
manage and transform that energy, in concordance with the first principle of
thermodynamics. Many energy sources have been discovered along the years,
but the most important for the paramount technological development known
in our days were discovered and developed at the end of the XIXth and the
beginning of the XXth centuries. Petroleum and nuclear energy are some clear
examples. Another important discovery was the bulb by Edison, since it made
use of an already known kind of energy: electricity. Electricity is the basis of
all electronics, and very important for the confortableness of our society. This
management of natural energy sources has changed the way of life of occiden-
tal civilization, but not only in a desiderable way. In Figure 1.1 some of these
negative consequences are depicted.

It is not necessary to point out the dramatic consequences of nuclear energy
misuse, or the unforeesable effects of carbon dioxide emissions due to the use of
petroleum derivatives, or the oil slicks... Unfortunately, there are many other
ors as well.

Due to these negative impacts of the mostly used energy sources, new energy
sources, with less or no negative impact in the environment are necessary.
These are the so called alternative energies, i.e. solar energy, eolic energy, etc,
which have been known for a long time. Windmills and watermills have been
used for a long time to mill the grain, obtaining flour for bread. Nowadays
modern windmills are used to generate electricity. Solar energy has also been
historically used, for example, to warm water. In Figure 1.2 some of these
alternative energy sources are shown.

The materials studied in this work are semiconductor materials, which are ideal
for their use in photovoltaic solar cells, which make use of solar energy to ob-
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Figure 1.1: a) A picture of the pioneers of black gold. b) The mushroom of the
atomic bomb. ¢) Penguins on an oil slick.

a)

Figure 1.2: a) An old windmill. b) Modern windmills to generate electricity.
c) A picture of the International Space Station, where there can be seen the
photovoltaic solar cells used to generate electricity for the Station.
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tain electricity. Materials in solar cells have been bulk solids, ionic or metallic
crystals where ions are homogeneously distributed around the cell. However,
in the nineties cluster based solids have been developed, and have been seen
to have photovoltaic applications. This development can be associated to the
huge increase of the nanotechnology, the technology of small. In the follow-
ing subsections photovoltaic devices and nanotechnology are discussed in more
detail.

1.1 Photovoltaic solar cells

There are many different materials which are used in photovoltaic solar cells,
but all of them share an important property: they are semiconductor materi-
als. The main characteristic of semiconductors is that they have energy gaps
between the last occupied and the first unoccupied bands that may be easily
gained achieving a certain amount of energy from the environment. In the case
of solar cells the energy absorbed is the one that arrives from the sun. The
solar energy reach the solar cell and it is absorbed by the electrons, which may
be excited from the occupied band to the unoccupied one, producing current
within the cell. Many different materials are used in solar cells. Historically
the first one was silicon. The semiconductor properties of silicon along with the
relatively cheap cost of production made it one of the most popular materials
for solar cells. Nevertheless, many other materials have been seen to be more
reliable, but are much more expensive. III-V compounds such as GaAs [1, 2, 3],
or II-VI materials [4-22], such as CdS and CdTe are promising alternatives to
substitute silicon in the production of high efficient solar cells. Most of the
energy reaching the earth from the sun lies within the visible spectrum, and
the rest is mainly in its nearby surroundings, ultraviolet (UV) and infrared
(IR). Visible spectrum spans between 1.75-3 V. Therefore an appropriate ma-
terial for solar cells should have band gaps within this range, or below. II-VI
compounds are some of these materials. Their band gaps range from 1.45 eV
in the case of CdTe to 3.66 eV for ZnS.

The functioning of a solar cell is outlined in Figure 1.3 [23].

Two semiconductor types are needed to build the cell. On one hand an n-type
semiconductor, which conducts the negatively charged electrons, and on the
other a p-type semiconductor, which conducts the positively charged holes.
The p-type semiconductor is called absorber, and the n-type one window. The
window material’s band gap is larger than the absorber’s one, and as the name
says, the absorption in the cell mainly occurs in there, although a small part of
the absorption also may happen in the window. Once the sun light reaches the
cell, the photons with the necessary energy to excite electrons to the unoccupied
band are absorbed. The electrons then move to the n-type semiconductor and
are stored in the front electrode. Similarly, positive holes are stored in the
back electrode. In this way a potential difference between both surfaces is
achieved, and connecting them electric current is obtained. In the picture this
is represented by the swichted bulb.

Beside the importance of appropriate band gaps, materials in solar cells must
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Figure 1.3: A typical solar cell
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present the above explained characteristics, i.e., they must combine n- and p-
semiconductors. II-VI materials do have these properties, and are promising
materials for the development of high efficient solar cells.

1.2 Clusters, nanostructures and nanotechnology

Nanotechnology was claimed to be a not viable proposition by the theoreticians
in the first half of the last century. Schrodinger concluded that “atoms must
no longer be regarded as identifiable individuals” [24], and Werner Heisenberg,
who stated the indetermination principle, thought that “atoms form a world of
potentialities of possibilities rather than one of things or facts” [25]. That is,
it was thought that atoms were not entities with individual nature. However,
nowadays we know that atoms may be managed individually [26]. As it was
pointed out by the Nobel Prize winer Richard Feinmann [27], “There is plenty
of room at the bottom”. Indeed, recent expectacular growth of nanotechnology
agrees with the predictions of some of the pioneers in the field, such as Arthur
von Hippel [28] and K. Eric Drexler [29, 30].

Nowadays there are many important developments in nanotechnology, con-
cerning nanoelectronics, nanowires, nanomechanics, and new and revolutionary
techniques have been developed, such as the atomic force microscope (AFM),
the scanning tunneling microscope (STM), and others. Nanoelectronics and
nanowires have provided new broad possibilities in the development of smaller
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and faster chips and other machines. Recent works in this field are in references
[31, 32, 33, 34]. Transistors as small as 30nm have been developed, and as one
of the developers of them says in the NewScientist [35] ‘Our research proves
that these smaller transistors behave in the same way as today’s devices and
shows there are no fundamental barriers to producing these devices in high
volume in the future’. A small chip, around 20nm has been reported as well
[36] at the French Atomic Energy Commission’s Electronic, Technological and
Instrumentation Laboratory (LETI) in Grenoble.

The possibility of interact with individual atoms is the first step for developing
new materials and systems. New compounds that may be useful in a broader
way that their bulk counterparts might be created. In this field important
articles and reviews have appeared [37, 38, 39, 40, 41]. One of the best known
‘new’ clusters or nanostructures are the so called fullerenes, carbon spheroid
structures discovered in 1985 [42]. Many works have been published in the
literature concerning fullerenes [43, 44, 45, 46], and their solids [47, 48], which
have superconductive properties [49, 50, 51] and photovoltaic applications [52,
53], among many other remarkable properties.

As carbon clusters, interest in the valence isoelectronic clusters such as ITI-V or
II-VI materials clusters is rapidly growing. Recent theoretical [54, 55, 56, 57,
58, 59] or experimental [60, 61] works concerning several ITI-V material clusters
or nanostructures may be found in the literature. Photoluminiscent doped II-
VI nanoparticles have been reported [62, 63|, along with other photosensitive
structures [64], and doped [65, 66, 67, 68] or undoped II-VI [69] nanostructures.

1.3 Scope of this work

In view of the comment of the previous section, it appears interesting and
promising the fusion of both fields, namely, clusters and II-VI materials. Our
aim is to study the clusters of II-VI materials theoretically. First the global
and local minima structures have to be characterized, and once this is done
the excitation energies are calculated. In this way the absorption properties
of these clusters are calculated, and then it may be seen if they are feasible
for their use in the development of higher efficient solar cells. Cluster-based
solids are a reality nowadays. Fullerene-based solids have been characterized
and have very promising properties. Cgo derivative-based solids may lead to
higher efficient solar cells. M3Cgy compounds are superconductor, and also
Cog-based solids appear to have superconductivity at high temperatures.

It could be possible to optimize the II-VI materials in order to construct higher
efficient solar cells, more efficient than their bulk counterparts. In Part 1 of
this thesis (Chapters 2, 3, 4 and 5) the structures of global and local minima
of Zn;X;,i=1-9,12,15, X=0, S, Se, and Te, respectively, are characterized.
In Part 2 (Chapters 6, 7, 8 and 9) the excitation energies of the global minima
structures characterized in Part 1 are calculated. In Part 3 general conclusions
and further work are presented and discussed. In order to perform all this
work we make use of the nowadays powerful quantum chemistry methods and
programs. Let us remind briefly a bit of quantum chemistry.
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1.4 Quantum chemistry

The theory of quantum mechanics, developed in the twenties of the last century
[70, 71, 72, 73], changed the viewpoint of physicist over the microscopic world.
Before it, all attempts that tried to explain the stability of atoms failed. Bohr
explained the stability of the simplest atom, hydrogen, by fixing that electrons
were in stationary orbits around the nucleus. An electron needs a quantum
of energy in order to move from one stationary orbit to another. In other
words, the energy is quantized, and not continuous. In quantum mechanics this
statement arises from the theory. At the beginning the theory was mainly the
playground of physicists, but it soon found applications in chemistry, creating
what is called quantum chemistry. Over the years quantum chemistry has
become a very important tool for chemists in order to calculate, understand
and predict molecular properties.

In principle, all the information of a system, a molecule, for instance, may be
obtained from its wave function. In order to know it, we ‘only’ have to solve
the Schrodinger equation (here in its time independent form):

HU = EV (1)

where the Hamiltonian H contains the kinetic energy terms of the electrons and
the nuclei, the interactions between the nuclei, the electrons, and the nuclei-
electrons. Within the Born-Oppenheimer [74] approximation the motion of the
nuclei are separated from that of the electrons, and therefore the coordinates
of the nuclei become fixed parameters in H. Unfortunately, equation (1) can
only be solved for one electron systems, i.e. the hydrogen atom. Therefore
approximate methods have been developed:

1. Wave-function based methods: variational (configuration interaction, di-
rect expansion of ¥ in some suitable basis), and many-body perturbation
theory.

2. Density functional theory (DFT).

3. Quantum Monte-Carlo.

It is beyond the scope of this section to develop a full description of these
methods, so refer the interested reader to the literature devoted to these topics.
See for example [75, 76, 77, 78, 79].

Wave-function based methods were the earliest developed ones. Two of these
methods have been widely used throughout the years, the Valence Bond (VB)
method and the Molecular Orbital (MO) method. The VB method was for-
mulated in 1927 by Heitler and London [80]. The MO method was developed
a bit later in by Hund [81], Mulliken [82] and others. This theory became the
most popular due to its quantitative power, which come from the use of orthog-
onal orbitals, in opposition to the VB theory which plays with non-orthogonal
orbitals.
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One of the first developed molecular orbital method was the Hartree-Fock
method [83, 84|, where the wave function is an antisymmetrized product of
one-electron orbitals. The electrons are treated as moving in a mean field
due to the nucleus and the remaining electrons. The main drawback of this
method is that correlation of electrons with opposite spins is neglected. There
are different ways in which this correlation can be taken into account. One of
them are the perturbational methods such as Mgller-Plesset [85] theory (de-
noted as MPn, where n is the order of the perturbation). In these methods
the electron correlation is treated as a perturbation of the HF problem. In the
Configuration-Interaction (CI) method [86, 87] the wave function is expressed
as a linear conbination of configurations to provide a better variational solution
to the exact many-electron wave function. There are other more sophisticated
methods such as Coupled Cluster [88, 89, 90], Multi-Reference Configuration
Interaction (MR-CI) or Complete-Active-Space (CAS) methods [91, 92|, which
are very useful tools to study electronic properties of both ground and excited
states.

Quantum Monte Carlo methods have been shown to be very powerfull in the
calculation of the electronic properties of ground states [93, 94, 95, 43] or excited
states [96, 97| of many systems. They have not been used in this work, and we
refer the reader to more detailed papers [79, 98].

Mainly all the work presented in this thesis has been carried out within the
density-functional framework. In the following subsection these methods are
described in more detail.

1.4.1 Density Functional methods
Time independent Density Functional Theory

The Density Functional Theory formalism replaces the N-electron wave func-
tion and the associated Schrédinger equation by a much simpler electron den-
sity p(7) which is a function of the three spatial variables. Then, the electronic
state, the energy and all the electronic properties of a system can be described
in terms of this p(7) [77, 78].

Hohenberg and Kohn [99] proved that the electronic properties of a system
with a nondegenerate ground state are uniquely determined by the electron
density p(7). Hence, the ground-state energy Ej is a functional of p(7), and
therefore, if we know the ground-state electron density it is possible to calculate
all the ground-state electronic properties from p once we have been able to set
all the appropriate functional dependencies. In order to find these functionals,
they also established an energy variational principle for the energy functional,
analogous to the variational principle for wave functions. Thus, knowing the
exact form of the E[p] functional, we can search for the ground state density
(as it is the case for the wave function). However, since the exact form of the
functional is unknown, Kohn and Sham [100] developed an indirect approach
to this functional, the Kohn-Sham method, and DFT turned into a practical
tool for rigorous calculations. They showed that the exact ground-state purely
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electronic energy Ey of an N-electron molecule with ground-state electron prob-
ability density p is given by

. Z <TG >+ [or)p(dr+

/ / 2) 47y diy + Eqe[p] (2)

where v(r) = = 7 Za g the external potential due to the nuclei, v; are the
Kohn-Sham orbitals, "and the E..[p] is the exchange-correlation energy.

In the Kohn-Sham procedure, the exact ground state p can be found from the
Kohn-Sham orbitals according to,

p= Z i ? (3)

and the Kohn-Sham orbitals are found by solving the one-electron equations

Fres(L)hi(1) = e(1) (4)
being the Kohn-Sham operator FKS

FKS = ——V1 +U i + Vz(,( ) (5)

where J is the Coulomb operator, and V. is called the exchange-correlation
potential. Fys is like the Fock operator in HF equations, except that the
exchange operators are replaced by V., which handles the effects of both the
exchange and electron correlation.

These equations are iteratively solved. Starting from a guess density, Fyg is
build and the set of equations (3) solved. The solution then is transfered to
FKS, in order to build a new Fyg. This process is repeated until convergence
is achieved.

The physical significance of the Kohn-Sham orbitals is still under debate. Some
authors claim that they do not have any significance other than in allowing the
exact p to be calculated from (2). Likewise, the Kohn-Sham orbital energies
should not be confused with molecular orbital energies. However, others based
on the fact that the exact Kohn-Sham orbital energy for the HOMO is just the
negative of ionization potential [101, 102], and due to the fact that the set of
Kohn-Sham equations remind us, as in the HF case, the independent particle
model, they associate to the Kohn-Sham orbitals a similar physical significance
and legitimacy than to the HF canonical orbitals. In recent publications it
is shown the results obtained from molecular orbitals obtained from DFT are
quite similar to the molecular orbitals from standard MO-LCAQO methods, and
that one can extract a lot of useful information about molecular systems from
analysis of their MOs even if the density functional methods are used [101, 103].
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However, there is one more problem: the exchange-correlation functional Fq.[p]
and hence the exchange-correlation potential v,.[p; 7] is not known except for
the case of the uniform electron gas. Fortunately, approximate functionals
have been developed. One simple approximation is the so called local density
approximation (LDA). The idea is to consider each volume element with local
density p(7) to be a homogeneous electron gas. From this point of view the
approximation would be expected to be accurate if the density varies slowly in
space. Then, E,.[(p)] is given by

ELPA((p)] = / (s (0)dF (6)

where £,.(p) is the exchange plus correlation energy per electron in a homoge-
neous electron gas with electron density p. An accurate expression for ,.(p)
was found by Vosko, Wilk and Nusair [104]. Application of this expression
leads to the local density approximation (LDA), or local spin density approxi-
mation (LSDA) [105], if one uses different orbitals and densities p and p” for
electrons with different spins. Of course, in the case of molecules these are only
approximations to the true functionals, since p is far from being homogeneous.
One might hope to improve the approximation by introducing an expansion in
terms of gradients of the density. These methods are called generalized gradient
approximations (GGA), and are of great importance in the study of molecules,
where the electron density can not be considered as homogeneous.

Density functional methods have proved to give excellent results in most chem-
ical systems [106], with results comparable to those given by CPU intensive
electron-correlation methods. However they frequently overestimate bond dis-
sociation energies [107]. The hybrids of HF and DFT theories increment the
accuracy of the dissociation energy as was validated by Johnson et al. [108].
The hybrid [109] Becke 3 combined with the correlation functional Lee-Yang-
Parr (B3LYP) [99, 110, 111] has become one of the most popular one, having
the following form:

(1 — ag)ELSPA 4 o EBHE 4 0, EP®® + 0 . ELYP 4 (1 —a)EVYVN  (7)

being the values of the parameters ay=0.20, a,=0.72 and a.=0.81. This func-
tional is known as the Becke’s 3 parameter functional, B3LYP.

Since density-functional calculations do not use the exact E,. they are not,
strictly speaking, ab-initio calculations. However, they do not use parameters
fitted to experimental data, hence they lie closer in spirit to ab-initio calcula-
tions than to semiempirical ones. One of the main advantages of these methods
is that with a similar computational cost to HF methods, they include some
kind of electron correlation, being the major drawback that the correlation
effects cannot be sorted out precisely. They are already mixed from the be-
ginning with the uncorrelated solution. Besides, there is not any systematic
way to improve the calculations by applying more and more sophistication, so
the results must be accepted as they stand. In spite of these facts, DFT have
been found to yield good results for ground state properties of various chemi-
cal systems, with a quality comparable to MP2 results [112], or even better in
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some cases. Due to their relative low computational cost, DFT is the method
of choice for large systems, for which the inclusion of electron correlation by
MP or CI methods is prohibitive.

Time-Dependent Density Functional Theory

In the time independent version DFT provides accurate calculations for ground
states. However, excitation energies are not accurately calculated. The Time-
Dependent generalization of the density-functional theory formalism (see [113,
114, 115] for reviews) offers a rigorous route to the calculation of the dynamic
response of the charge density. Combining this with linear response theory
allows the calculation of vertical electronic excitation spectra [114, 116, 117,
118, 119]. TDDFT has been applied to very different systems, i.e. metal
compounds [120, 121, 122], organic [123, 124, 125] or inorganic compounds
[126, 127], extended systems [128], becoming a very powerfull tool to calculate
excitation energies of real systems. However, it has been seen that Rydberg
states are not calculated accurately [129, 130].

A stationary action principle may be derived, analogous to the minimum energy
principle of Hohenberg-Kohn theory, and this can be used, together with appro-
priate assumptions concerning v-representability to derive the time-dependent
Kohn-Sham equation:

1 ., 0
RTINS o A )| M CU R

|r

v7, (1, t) is formally the functional derivative of the exchange-correlation action,
Azc, but most calculations make use of the adiabatic approximation,

¢t
SAsclprip1] o, 0P ot
Spo (ryt) — dpt (1)

Ugc (T, t) =

9)

where p! (1) is the p, (r,t) function evaluated at a fixed time, t, and F,. is the
exchange-correlation functional of time-independent Kohn-Sham theory.

Since the dynamic polarizability, @ (w), describes the response of the dipole
moment to a time-dependent electric field, it may be calculated from the re-
sponse of the charge density obtained from time-dependent density-functional
theory, hence using time dependent density functional response theory. This al-
lows the determination of the electronic excitation spectrum in the usual dipole
approximation, because according to the sum-over-states relation,

Fw) =Y I (10)

! [ w?

the poles of the dynamic polarizability determine the excitation energies, wy,
while the residues, f;, determine the corresponding oscillator strengths [114].
A finite basis set formalism is used to cast the dynamic polarizability in the
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tensorial form of the sum-over-states expresion (10). Examination of the pole
structure then shows that the transition energies may be obtained by solving
a matrix eigenvalue problem,

OF = wiF (11)

where  is defined in references [114, 115, 116] and the oscillator strengths f;
—

are obtained from the eigenvectors Fj. For more information see the above
mentioned reviews and i references [131, 132].

1.4.2 Basis Sets

In both wave function based methods and density functional theory a set of
functions to span the wave function are needed. These sets of function are
the so called basis sets. The choice of an appropriate basis set is an essential
requirement for the success of the calculation. However, we have to balance the
precision of the basis set and its size, since increasing the size of the basis set the
calculation cost becomes more expensive. The Contracted Gaussian Functions
(CGF) are the most used in quantum chemistry calculations. They consist of
linear combinations (contractions) of Gaussian functions (primitives),

L
o (7 = Bal) =) dpug(ipy, 7 — Bpl) (12)

p=1

where the exponent of the primitives a,, and the contraction coeflicients d,,
are optimized for the different elements.

Usually all-electron basis sets are used, which means that all electrons are con-
sidered in the basis set. However, in some cases due to the huge number of
electrons and consequently the prohibitive cost of the calculation, some elec-
trons, the core electrons, are removed from the calculation and only the outer
electrons are considered. In this case the outer electrons move in an averaged
potential due to the core electrons and the nuclei. In this thesis the relativis-
tic compact effective potentials and shared exponent basis sets developed by
Stevens et. al. [133] have been used. These effective potentials are constructed
to reproduce the valence electron orbital energies and densities obtained from
numerical solutions of the Dirac-Fock equations for an appropriate atomic con-
figuration [134].

This RCEP includes the Zn d electrons in the valence, being the 1s2 252 2p°
electrons considered as the core. The Contracted Gaussian valence basis set
is an energy-optimized, double zeta quality sp and triple zeta quality d basis
set (8sp6d/4sp3d). For the VIB column elements the ns?np* electrons are
considered as the valence. A double-zeta quality (5sp/2sp) basis set is used.
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Cluster structures
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Chapter 2

Small Clusters of 1I-VI
Materials: Zn;S;, 1 =1—9

Abstract

The improvements in the characterization of II-VI compounds based solar cells
and the recent experimental characterization of small clusters and nanoparticles
make the study of small II-VI clusters very interesting. In this work, the ground
states of small Zn;S; clusters are studied, ¢ = 1 — 9. Ring-like structures
have been found to be the global minima in the case of the smaller studied
clusters, i.e. ¢ = 1 — 5, and three dimensional spheroid structures for larger
ones, i = 6 — 9. This is due to the stability of obtuse S-Zn-S angles in the first
case, and to the stability gained from higher coordination in the second case.
The three dimensional structures may be envisioned as being built from ZnsSs
and Zn3S3 rings. Cohesive energy and atomic charges show a unequivocal trend
to bulk-like properties even in such small systems.
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2.1 Introduction

Interest in II-VI compound semiconductors has grown spectacularly in recent
years due to their paramount technological potential. In addition to the impor-
tance of experimental research, theoretical studies are of great importance not
only because of their ability to expand our understanding, but also because of
their predictive power. Some theoretical studies of zinc sulfide have appeared
in the literature [139, 140]. Remarkable works are those of Muilu and Pakkanen
[141, 142], and Pollman and coworkers [143, 144, 145, 146, 147, 148|.

In studying bulk and surface properties of crystals, cluster models are and have
been widely used. Cluster properties change from molecular to bulk properties
as size increases. Large enough clusters have bulk-like properties, and may
be used to simulate infinite systems. Nevertheless, the fact that cluster and
nanoparticle characterization is becoming technologically possible have made
clusters specially interesting in themselves. Therefore, the literature in the
field is growing rapidly. Many experimental [149, 150, 151, 152, 153, 154] and
theoretical [155, 156, 157, 158, 159, 160] studies have been reported concerning
clusters of various compositions, which have important and interesting applica-
tions. For example, FeoO3 nanoparticles can be precipitated in a gel, forming
the so-called ferro-gels. These compounds have electromagnetic properties,
making them suitable for applications in human mobile prothesis that are able
to answer mental electrical messages.

Due to the interest in both II-VI compounds and clusters it occurred to us
that it would be interesting to perform a theoretical study of II-VI compound
clusters, fusing in this way both fields, as it is done in the case of carbon
clusters such as fullerenes, which have photovoltaic applications [52, 53]. In
this paper, calculated structure and properties of the Zn;S;, i = 1 — 9, clusters
are reported, All the calculations have been performed at the B3LYP level of
theory, combined with the SKBJ relativistic pseudopotentials.

2.2 Method

All geometries were fully optimized using the Becke3 exchange potential and
Lee-Yang-Parr correlation potential (B3LYP) gradient-corrected density-func-
tional method [99, 109, 110, 111] analytic gradients. Harmonic vibrational
frequencies were determined by analytical differentiation of gradients.

The relativistic compact effective core potentials and shared-exponent basis set
[133] of Stevens, Krauss, Basch and Jasien (SKBJ) was used as the basic basis
set in this study. The d electrons of Zn were included in the valence, and an
extra d function was added on both Zn («=0.3264) and S («=0.7) atoms, due
to their importance in the formation of bonds. We denote the final basis set
used as SKBJ(d).

Because there are so many possible structures for these clusters, several starting
points for these complete B3LYP/SKBJ(d) optimizations were generated using
a simulated annealing approach at the PM3 [161] level of theory. Of course,
additional starting points were derived from simple chemical intuition.
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Table 2.1: Relative energies (kJ/mol) between two minima of the same cluster
size, calculated with the three described basis sets.

SKBJ(d) SKBJ(expan) TZ2P

AE (By,,s6m-By, gon) 11727 130.62 118.32

AE (Bgnysgm-E,, gion) 3840 35.22 42.25
ne 6

AE (Bgpgsem-E,, o) 7515 56.52 70.29
6

All the geometry optimizations and frequency calculations were carried out

with the GAUSSIAN94 [162] and GAUSSIANO98 [163] package. For the PM3
simulated annealing technique the HYPERCHEM [164] program was used.

2.2.1 Basis set selection

In the previous section it was mentioned that the basis set used during these
calculations was SKBJ(d). Although a larger basis set is not expected to change
significantly the geometry of the obtained structures, the relative energies be-
tween them may be affected. In order to check the reliability of our SKBJ(d)
basis set, single point energy calculations using larger basis sets were performed
on several structures which will be detailed later. Two other basis sets were ex-
amined. The first was a simple expansion of the previously described SKBJ(d)
basis. Two s and p functions (with =1.335122,1.120129), one d («=2.561376),
and one f («=3.115413) were added the Zn basis. The SKBJ(d) basis was
expanded for S as well with the two new s and p functions having exponents
a=1.231541,0.373393, and the f function, «=0.593345. All of these added func-
tions were energy optimized at the MP2 level of theory using the GAMESS US
[165] package. As the SKBJ(d) basis set only has one d function on S, it was
decided that upon the addition of another, the exponents of both should be
energy optimized. The exponents for the two d functions in this expanded ba-
sis were 0.896605 and 0.288732. This expanded basis set will be referred to as
SKBJ(expan). The second examined basis set was an all electron triple-¢ dou-
ble polarization (TZ2P) basis (14s11p6d2f/10s8p3d2f) for Zn [166, 167, 168]
and (13s10p2d1f/6s5p2d1f) for S [169, 170]. The relative energies between two
minima of each cluster size chosen is shown in Table 2.1.

These results demonstrate the reliability of the used SKBJ(d) basis set. The
relative energies calculated using the various basis sets vary little, and the
difference in CPU ussage is great. Thus, we have chosen the SKBJ(d) basis to
be used throughout this work.
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Figure 2.1: Calculated global minima of Zn;S;, i = 2 — 5, labeled, from left
to right, anng, Zn383GM, Zn4SfM and an,Sg*'M, respectively. Dark, larger

atoms are those of Zn.

2.3 Results and discussion

2.3.1 Structure of the calculated minima of Zn;S; clusters.
1=1-09.

In this section the calculated minima are presented. Although our interest
is mainly centred on global minima, structures and properties of higher-lying
local minima are presented as well.

In order to show the calculated structures in a more understandable way, we
have arbitrarily divided these clusters into two groups, according to the struc-
ture of the global minimum. In the first group, Group 1, structures of the
clusters Zn;S;, i = 1 — 5, are included which global minima are planar or near
planar ring-like structures, and in the second group, Group 2, the rest, i = 6—9,
for which the global minima are three dimensional spheroids. Bader analysis
[171] of all these structures have been performed as well. For that purpose the
all electron 6-311G [166, 167] basis for Zn and 6-31G [172, 173, 174, 152, 176]
basis for S were used.

The presented structures are labeled according to the following scheme: Zn;S¢,
where i denotes the number of ZnS units, and the superscript a may be GM
(global minimum) or LM (local minimum).

Group 1

As we have mentioned above, in this section we will describe the calculated
structures of Zn;S;, ¢ = 1 — 5. The principal characteristic of the calculated
global minima is that all are planar, except in the case of Zn;S§™, which is
quasiplanar. The planar Zn;Ss ring is a stationary point of Hessian order two,
and lies 6.95 kJ/mol above the minimum. In Figure 2.1, the calculated global
minima of the different cluster sizes are presented, and the structures of the
characterized local minima are shown in Figure 2.2.

A quick glance at this shows that while the calculated local minima of the
smallest clusters, namely Zn,S5™ and Zn3S4™ | are planar, the local minima
of Zn,S, and ZnsSs5 are not. In Table 2.2 important values such as molecular
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Figure 2.2: Calculated local minima of Zn;S;, i = 2 — 5, labeled, from left to
right, ZnoSIM | ZngSIM | ZnySIM and ZnsSEM | respectively.

oo i G %%

Table 2.2: Zn-S bond lengths, S-Zn-S angles and symmetry groups of the struc-
tures of Fig. 2.1 and Fig. 2.2. For the local minima, energies relative to the
corresponding global minimum are in kJ/mol.

R(Zn-S) A «(S-Zn-S)”  Point Group Rel. E. (kJ/mol)

Zn,S¢M 2.09 - Coou -
Zn,SSM 2.27 114.5 Do, -
ZnySLM 2.34 - Cav + 117.10
Zn3S§M 2.21 157.8 Dsp, -
ZngSIM  2.20-2.26  131.1-141.4 Cs + 233.75
Zn,S§¢M 2.19 177.4 Dup, -
Zn,SiM 2.38 105.4 Ty + 117.27
ZnsSEM 2.18 178.9 Cs -
ZnsSEM 221241 1024 - 159.3 C: + 68.19

geometries, energies, and the symmetry of the presented structures are shown.

Zn,S§M is obviously a linear structure which belongs to the C., point group.
However, while the molecular structure is trivial, the short Zn-S bond length
should be pointed out.

Both the global minimum, Zny S| shown in Figure 2.1 and the next lower-
lying local minimum, ZnySZ* | in Figure 2.2, have been found to be planar.
ZnySEM lies 117.10 kJ/mol above the global minimum. It seems logical that
Zn,S$™M is the most energetically stable structure, since it contains the favor-
able cross-ring Zn-Zn interaction as well as four Zn-S bonds. Noticeable as well
is the shorter Zn-S bond length of ZnySFM | while the Zn-Zn bond-length is
similar to that of ZnySLM . Nevertheless, Zn-S bond lengths are 0.18 A longer
than in Zn; S$M. Zn,SFM belongs to the Doy, point group, and Zn,S5M to the
Cs, point group.

GM LM
S5 S3

Zns is depicted in Figure 2.1 and Zngs in Figure 2.2. As in the case
of ZnySs, only planar structures have been found. This, of course, does not
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mean that the existence of nonplanar structures may be ruled out. However, all
attempts to locate non-planar local minima eventually led to planar structures.

The Bader analysis of this molecule shows a planar ring-like structure where
each atom has a coordination number two; there are no Zn-Zn interactions as in
Zn,S§™M . Nevertheless, as it may be viewed in Table 2.2, the Zn-S bond-length
is 0.06 A shorter than in Zn,S$™, and the S-Zn-S angle is much more open,
as allowed by the larger ring. This structure has D3;, symmetry. ZnzS§™ is a
very important structure, which will become more obvious later. Note that the
two known crystal structures for zinc sulfide, both zincblende and wurtzite, are
built of Zn3S; rings. Zn3zS{M belongs to the C; point group.

The two characterized minima are shown in Figure 2.1, Zn,S$™, and Figure
2.2, Zn,SEM. This latter structure is specially interesting for two reasons.
the first is that it is the first nonplanar minimum found. The second, very
interesting as well, is that it can be viewed as being built from six equivalent
units of an earlier presented structure: ZnySs rings as occurring in ansg;M .
The resulting structure has T4 symmetry. However, in these faces Zn-Zn bonds
are not reported by the Bader analysis. The Zn-S bond is enlongered by 0.11 A,
and the S-Zn-S angle bent by 10 ° in comparison to ZnyS$M. In this structure
all the atoms have coordination number three, compared to Zn,S§*, where
each atom has coordination number two. Thus, one might think that the cage
structure would be more stable. However, it is the planar structure which
lies 117.27 kJ /mol lower in energy. This Dy, planar structure, compared to the
already shown Zn,S$™ and Zn3S$™ rings, presents shorter Zn-S bond-lengths,
and the S-Zn-S angle is close to 180°. This tendency to form near-linear S-Zn-
S angles is strong, and the geometrical constraints of the three dimensional
Zn,SEM result in a strained S-Zn-S angle of 105.4°, and therefore the planar
ring is more stable.

The two ZnsS5; minima characterized in this work are presented in Figure 2.1,
Zn5SS$M | and Figure 2.2, ZnsSEM. At this size, the strictly planar structure is
not the global minimum. The structure when constricted to planarity yields a
stationary point of hessian order two, that is, it has two negative vibrational
frequencies. Departing from that structure, a quasiplanar structure has been
found to be the global minimum, Zn;S$™, which lies 6.95 kJ/mol below the
planar stationary point. Four Zn atoms are contained in the same plane, and
the other, along with the two sulfur atoms bonded to it lie to one side of that
plane. The remaining sulfur atoms alternate up and down around the ring.

This structure allows Zn to form near linear S-Zn-S bonds, as occurring in
ZH4SEM.

As in the case of ZnsSI{M, ZnsSEM is three dimensional, and can be seen as
being built from units of Zn,S$™M | squares, and ZnzS$™ | hexagons. Examining
Figure 2.2 one may picture ZnsSL™ as a structure of two joined rings of ZnsS»
and Zn3S3. In one side a ZnsS, ring is contained, and in the other a bent ZnsSs
ring. These two structures are bonded on one extreme,where new ZnySs rings
appear, and on the opposite extreme the ZnsSs ring is bent. It is interesting
to note that the Zn-S bond lengths are significantly longer than those of the
planar structure. Various lengths are found in a wide range from 2.21 A to
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Figure 2.3: Calculated global minima of Zn;S;, i = 6 — 9, labeled, from left to
right, ZngS$M, Zn;SEM | ZngSSM and ZngS§™M, respectively.

£ & B

Figure 2.4: Calculated local minima of Zn;S;, i = 6 — 9, labeled, from left to
right, ZngSg™", ZngSg™?, Zn;SEM and in the second row ZngSi™", ZngSE M2
and ZngS{M | respectively.

& 4 oAk
® O

2.41 A.

The global minima of the clusters in Group 1 have been found to be planar
rings, ZnoSSM, Zn3zS¢M and ZnyS§M or a mnear-planar ring, ZnsSS$M. In
these structures a strong tendency of Zn to form linear S-Zn-S bonds is seen.
Nonplanar local minima have been found only for ZnsS; and Zn;Ss, and these
can be pictured as being built from squares, Zn,S$", and hexagons, ansg;M .
Nevertheless, the internal geometry of these rings change significantly. In the
three dimensional structures Zn-S bond lengths are longer and S-Zn-S angles
are more bent than in the planar and near-planar global minima.

Group 2

This group contains the clusters of which the global minima are nonplanar,
Zn;S;, i = 6 — 9. In Figure 2.3 the global minima are shown, and in Figure 2.4
the local minima.

In Table 2.3 the Zn-S bond lengths, S-Zn-S angles, and symmetry points of the
presented structures are given.
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Table 2.3: Zn-S bond lengths, S-Zn-S angles and point groups of the struc-
tures of Fig. 2.3 and Fig. 2.4. For the local minima, energies relative to the
corresponding global minimum are in kJ/mol.

R(Zn-S) A (S-Zn-S)”  Point Group Rel. E (kJ/mol)

ZngS§™M  2.31-2.47 140.55 Dsq -
ZneSy™" 2.40 96.7 - 155.2 Dag + 38.40
ZngSEM2 2.18 194.05 De, + 75.15
Zn,S$M  2.20-258 97.4-175.0 Cs -
Zn,StM 2.18 198.30 D7y, + 107.52
ZngS$M 228 -242  100.3 - 137.1 S4 -
ZngSEM 228 -2.50  100.7 - 154.4 Dug + 78.94
ZngSy 2 2.18 177.79 Dua + 166.33
ZngS§™M 228 -2.33  103.8 - 138.0 Can -
IngSEM 229245 92.5- 1472 Dsa + 146.41

As it has been mentioned already, the main difference at first sight between
ZngS§M and the previously seen global minima is that ZngS$™ is nonplanar.
There has been a transition, from a situation in which the planar ring structures
were favoured, to a situation where three-dimensional structures are favoured.
Examining the trend in relative energies between the ring and three-dimensional
structures for ¢ = 4, 5, 6 we find that the ring structure was more stable for i = 4
by 117.27 kJ /mol. That difference was reduced to 68.19 kJ/mol for i = 5, and
here with i = 6 the tree-dimensional structure is finally more stable than the
ring by 75.17 kJ /mol.

As in the case of the smaller three-dimensional structures, ZngS$™ can be en-
visioned as being built up from smaller building blocks: squares and hexagons.
In the case of ZngS§™, it is formed by two bent hexagons, stacked one on top
of the other, which are linked together by six squares. The resulting structure
has D3q symmetry. Bader analysis of this molecule shows that there are no
Zn-7Zn interactions in this structure.

The six zinc atoms of ZneS§"* form a octahedron. The sulfur atoms are
placed as follows: two of them are found on opposite edges, and the rest are
placed above the octahedral faces, two in the upper half, and two in the lower
half. This atomic placement leads to the formation of ZnsS, and ZnsSs rings
as in previous three dimensional structures. The resulting structure has Doy
symmetry.

Of course, an important question arises at this point: why is the ring structure,
ZnSS€M2, not the global minimum? In Table 2.3 it may be seen that the S-
Zn-S angles in ZnGSéM2 are far from linearity. Hence, this planar structure is
not as stable as Zn,S$™ and Zn;S§™. Besides, the coordination number of
ZngSSM is three for all atoms, while it is two for ZngSg™>. The combination
of these factors makes the three-dimensional ZngS$? more stable. In the case
of ZHSS£ My a1l atoms have coordination number three, except the two sulfurs
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placed on the equatorial plane formed by the zincs of the octahedron. This
structure is also more stable than the planar one.

As in ZngSg, nonplanar structures built from small cluster structures are found
to be more stable than a ring structure for Zn;S7. The S-Zn-S angles found in
this ring structure are even further from linearity than those of ZngSg, and one
may think that therefore the energy difference between Zn;S$™ and Zn,S&M
will be larger. Indeed, it is. The energy difference between Zn;S$™ and
Zn;SEM is 107.52 kJ7mol, as compared to 75.17 kJ/mol in the case of ZngSg.

Zn;S$M can be seen as a structure of two joined ring structures: a Zn3Ss and
a bent ZnyS, ring. Half of the Zn,S, ring is linked to the ZnsSs ring, forming
in this way new ZnS» rings as in ZngS$™, and a second bent Zn,S, ring.

Zn;SEM is a planar ring, which belongs to the D7;, point group.

Three calculated structures of ZngSg are presented, ZngS$ in Figure 2.3, and
S¢M and ZngSE ™ in Figure 2.4. These structures are interesting, not only
because of the reappearance of the building blocks, but also for the manner in
which these blocks are used. ZngS$™ may be viewed as a polyhedron formed
by four long faces composed of one Zn,Ss and one Zn3S3 unit that are inverted
on the next face. The polyhedron is closed on the top and the bottom by a
ZnyS, unit. The resulting global minimum has S; symmetry.

anSEfM1 is composed by two “parallel” ZnyS, units bonded together by Zn,So
units, as occurs in the previous structures. The resulting structure is of D4y
symmetry. Zng Sg Mz g 3 ring structure with coplanar zinc atoms, where the sul-
fur atoms alternate up and down around the ring. This break in planarity can
be understood looking at the S-Zn-S angles, which are close to 180, while if the
molecule were planar, they will be far from linearity. Thus, bond-lengths simi-
lar to other ring structures are found. However, the energy difference between
ZngSSM and ZngSg ™ is even larger than in smaller cases, 166.33 kJ /mol, and
this is due to the stability gained by the coordination number three, in a largely
stable geometrical configuration.

The global minimum, ZnQSEM , is given in Figure 2.3, and one local minimum,
namely, ZngS5™M in Figure 2.4. As in the previous cases, these structures can be
envisioned as being built with the same basic Zn,Se and Zn3Ss blocks. In the
case of ZngS§™M | Zn3S3 units may be viewed as caps to a polyhedron joined by
a ring formed of ZnsSy and ZngSs3 units. The ring is formed by alternating one
Zn3S3 and two joined ZnySs units. The resulting structure has Cs;, symmetry.

ZngSIM is formed by three “parallel” Zn3S; rings, bonded together by Zn,Ss
units. It may be constructed by the addition of an extra Zn3S3 unit to ZngS§.
The resulting structure has D3; symmetry.

It is interesting to notice that in all of these structures the coordination number
of some atoms has increased from three to four.

Two main reasons have been given to explain the transition from ring global
minima in Group 1 to three dimensional spheroid global minima in Group
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Table 2.4: Natural charges (e) of the shown global minima.

Zn S
Zn,S¢M 0.900 -0.900
Zn,SSM 1.159 -1.159
Zn3S$M 1.183-1.184 -1.183 - -1.184
Zn,S¢M 1.200 -1.200
ZnsSSM 1.182-1.216 -1.174 - -1.224
ZngSS™M 1.270 -1.270

Zn;S¢M 1194 -1.269 -1.217 - -1.285
ZngSSM  1.276 - 1.201  -1.279 - -1.288
ZngSGM  1.285-1.293  -1.287 - -1.297

2. On one hand, the tendency to form linear S-Zn-S angles, and on the other
hand the achievement of higher coordination number. We have seen that higher
coordination is preferred when achieving that goal does not present too much
of a strain on the bond angle. Three dimensional spheroid structures have been
found as well in other related compounds, i.e. zinc oxide molecules [177].

2.3.2 Natural charges

At this point we analyze the natural orbital charges, obtained by Natural Bond-
ing Analysis [178] at the BBLYP/SKBJ(d) level of theory, which are given in
Table 2.4.

The cationic nature of zinc and the anionic nature of sulfur can be observed in
all the structures. The atomic charges are larger as cluster size increases, and
a trend towards the charge separation in the bulk (]1.43¢|) is seen.

2.3.3 Cohesive energy

The cohesive energy per zinc sulfide unit is calculated as E; = (iEz,, +iEg —
Ezn,s,)/i, where i is the number of ZnS units. The cohesive energy may be
depicted versus the inverse of the cubic root of 7, and then a line can be fit
to the obtained points. Extrapolating it to i~'/3=0, that is, to i =oo, or the
bulk, a theoretical value which can be compared to the experimental one is
obtained'”-®8. We have taken that same approach. Nine points representing
the cohesive energy of the studied global minima, given in Table 2.5, are plotted
in Figure 2.5.

In fitting a line to the data, not all the points are representative, and only
the points belonging to three dimensional structures, i.e. ZngSS$ to ZngS§™
have been taken into account. A line was fit to the cohesive energy of ZngS§™
to ZngSS™M versus i~'/3, and it was found to have the equation y=563.358-

291.893xx. The correlation of this line is 0.99858, which is some indication
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Table 2.5: Cohesive energy, E¢, (kJ/mol) of characterized global minima.

E; (kJ/mol)

Zn;S§M  99.99
Zn,SSM 285.94
Zn3S§M  375.21
Zn,S¢M  392.73
Zn;SS™M  394.85
ZngSS™M  403.12
Zn,S$M  410.21
ZngSSM  417.18
ZngSS™M  423.43

49

Figure 2.5: Cohesive energy (kJ/mol) vs the inverse of the cubic root of ZnS

units (i1/3).
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that we have properly located the global minima of such clusters. The extrap-
olated value, as is obvious from the linear equation, is 563.358 kJ/mol, which
represents 92.73% of the experimental value 607.51 kJ/mol.

These results may be compared to those obtained by Muilu and Pakkanen
[141, 142]. As it has been mentioned earlier, they used a HF-MO method to
study ZnS clusters. They performed calculations for clusters of different size,
the largest one being of size Znag0S240. Their best extrapolated value was
520.72 kJ/mol, 85.7% of the experimental. The fact that electron correlation
is taken into account in our calculations explains why we obtain results closer
to the experimental value, even with smaller clusters.

2.4 Conclusions

There are two main factors determining whether a ring or three-dimensional
structure will be the global minimum for the small zinc sulfide clusters: the
stability of very obtuse S-Zn-S bond angles, and the stability gained from higher
coordination. For Zn;S;, ¢ = 2 — 35, the first term outweighs the second and ring
structures are predicted to be the global minima. For ¢ > 6, however, the size of
the cluster allows for both obtuse S-Zn-S bond angles and higher coordination
in the three dimensional spheroid structures, making these the most stable.

These three dimensional clusters can be envisioned as being built of smaller
building blocks, basically Zn,Ss and Zn3Ss rings, as carbon fullerenes are. The
most stable carbon fullerenes are built of pentagons and hexagons, but less
stable ones are found to be built of squares and hexagons.

Cohesive energy and atomic charges show a unequivocal trend to bulk-like
properties even in such small systems. Moreover, the fact that the cohesive
energies of these clusters fit a line indicates that we are dealing with the real
global minima, otherwise the cohesive energy a local minimum will be clearly
below the line.



Chapter 3

Small Clusters of 1I-VI
Materials: Zn;0;, 1 =1 — 9.

Abstract

The improvements in the characterization of II-VI compounds based solar cells
and the recent experimental characterization of small clusters and nanoparticles
make the study of small II-VI clusters very interesting. In this work, the ground
states of small Zn;O; clusters are studied, ¢ = 1 — 9. Ring-like structures have
been found to be the global minima for clusters as large as i« = 7, and three
dimensional spheroid structures for larger ones, i = 8,9. This is due to the
stability of obtuse O-Zn-O angles in the first case, and to the stability gained
from higher coordination in the second case. The three dimensional structures
may be envisioned as being built from Zn,O, and ZnsOgs rings, as was the
case for ZnS three dimensional global minima, and other ZnO calculations.
Calculated natural orbital charges are larger as cluster size increases, showing
a tendency towards bulk charges.

51
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3.1 Introduction

During the last decade interest in II-VI compounds has increased notably due
to their paramount technological potential. To understand the occurring phe-
nomena it is essential to study the structure and electronic properties of these
compounds, thereby providing more information for the optimization of these
materials in order to enhance their applicability.

Nevertheless, there are some properties related to these compounds that have
been seen to be local phenomena, that is, when they happen, they happen
at a certain point on the surface. A property of this type is the adsorption.
Thus, it is important to study small clusters of these compounds, whose elec-
tronic and structural properties could give insight into understanding these
local properties. In addition to this reason, the fact that cluster and nanopar-
ticle characterization is becoming technologically possible is remarkable.

Due to the interest in both ITI-VI compounds and clusters it occurred to us
that it would be interesting to perform a theoretical study of II-VI compound
clusters, fusing in this way both fields. In this work we focus on zinc oxide
clusters, Zn;0;, i = 1—9. Previous molecular dynamic calculations predict that
spheroid ZnO clusters are stable for ¢ > 11, which may be related to fullerene-
type structures [177]. These spheroid structures are built from hexagons and
rombi, in other words, rings of ZnyOs squares, or Zn3O3 hexagons. In the
previous chapter we found for Zn;S;, i = 1 — 9 similar building blocks used in
order to form related spheroid structures.

3.2 Method

All geometries were fully optimized using the hybrid [109] B3LYP approximate
gradient-corrected density functional procedure [99, 110, 111]. Harmonic vibra-
tional frequencies were determined by analytical differentiation of gradients.

The relativistic compact effective core potentials and shared-exponent basis set
[133] of Stevens, Krauss, Basch and Jasien (SKBJ) was used as the basic basis
set in this study. The d electrons of Zn were included in the valence, and an
extra d function was added on both Zn («=0.3264) and O («=0.85) atoms,
due to their importance in the formation of bonds. Note that pure angular
momentum functions were used throughout this study. We denote the final
basis set used as SKBJ(d).

Because there are so many possible structures for these clusters, several starting
points for these complete BSLYP/SKBJ(d) optimizations were generated using
a simulated annealing approach at the Stewart semiempirical model parame-
terization (PM3) [161] level of theory. Of course, additional starting points
were derived from simple chemical intuition.

All the geometry optimizations and frequency calculations were carried out with
the GAUSSIANOS [163] package. For the PM3 simulated annealing technique
the HYPERCHEM [164] program was used.
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Table 3.1: Relative energies (kJ/mol) between two minima of the same cluster
size, calculated with the three described basis sets.

SKBJ(d) SKBJ(expan) TZ2P
AE (Egn,o0m-Egnorn)  + 24515 1 25473 | 208.83

AFE (EZnsOgM_EZnSOLMl) + 13.54 + 19.55 + 2.18
8
AFE (EZnsOg"M'EanoLM?) + 46.70 + 26.64 + 92.19

3.2.1 Basis set selection

In the previous section it was mentioned that the basis set used during these
calculations was SKBJ(d). Although a larger basis set is not expected to change
significantly the geometry of the obtained structures, the relative energies be-
tween them may be affected. In order to check the reliability of our SKBJ(d)
basis set, single point energy calculations using larger basis sets were performed
on several structures which will be detailed later. Two other basis sets were ex-
amined. The first was a simple expansion of the previously described SKBJ(d)
basis.

Two s and p functions (with a=1.335122, 1.120129), one d (a«=2.561376), and
one f («=3.115413) were added the Zn basis. The SKBJ(d) basis was ex-
panded for O as well with the two new s and p functions having exponents
«=1.206642,0.561051, and the f function, a=1.666029.

All of these added functions were energy optimized at the MP2 level of theory
using the GAMESS US [165] package. As the SKBJ(d) basis set only has one d
function on O, it was decided that upon the addition of another, the exponents
of both should be energy optimized. The exponents for the two d functions
in this expanded basis were 2.179302 and 0.628849. This expanded basis set
will be referred to as SKBJ(expan). The second examined basis set was an
all electron triple-¢ double polarization (TZ2P) basis (14s11p6d2f/10s8p3d2f)
for Zn [166, 167, 168] and (11s5p2d1f/4s3p2dif) for O [169, 170]. The relative
energies between two minima of each cluster size chosen is shown below in
Table 3.1.

All basis sets predict both the same global minima and the sequential posi-
tioning of the local minima. Nevertheless, for ZngQOg the relative energies are
quite small, and therefore we have decided to perform single point calculations
with both SKBJ(expan) and TZ2P for the cases where the relative energies
are smaller than 100 kJ/mol. In this way the validity of the SKBJ(d) relative
energies is checked,

3.2.2 Reliability of BSLYP results

In order to check the feasibility of the B3LYP calculations, Coupled Cluster
[88, 89] with Single, Double [179, 180, 181, 182] and a correction term for the
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Table 3.2: CCSD(T) relative energies (kJ/mol) for Zn;0,, i = 2, 3.

CCSD(T)/TZ2P CCSD(T)/SKBJ(d) B3LYP/SKBI(d)
AE (i=2) + 188.06 T 183.04 +120.17
AE (i =3) - + 368.06 + 328.19

Triple [183] substitutions, CCSD(T), calculations were carried out for Zn,;0;,
i = 2,3. For the smallest cluster, the TZ2P basis set was chosen, but the
computational effort increased dramatically from ¢ = 2 to ¢ = 3. Thus, only
the relative energy corresponding to i = 2 was calculated with this TZ2P basis
set. Nevertheless we performed CCSD(T) calculations for i« = 2,3, with a
smaller basis set, i.e. SKBJ(d). The obtained results for the relative energy of
the first local minimum with respect to the ground state are shown in Table
3.2.

Notice that for i = 2, the CCSD(T)/TZ2P and CCSD(T)/SKBJ(d) relative
energies are very similar: 188.06 kJ/mol and 183.04 kJ/mol, respectively. No-
tice that part of the difference should be ascribed to relativistic effects that,
although they are known [184] to be smaller for the first-row transition metals,
one should recall that Zn is the heaviest of them. This reinforces our state-
ment of section 3.2.1 on the reliability of the SKBJ(d) basis set and validates
the use of CCSD(T)/SKBJ(d) relative energies as reference values instead of
the computationally more demanding CCSD(T)/TZ2P ones for further checks.

Both CCSD(T) and B3LYP predict the same sequence of global and local
minima. The relative energies are found to be larger at the CCSD(T)/SKBJ(d)
level of theory. For i = 2 the difference between both methods is 62.87 kJ/mol,
but it is lowered to 39.87 for i = 3. These results illustrates the agreement
between both methods and therefore BSLYP will be used hereafter.

3.3 Results and discussion

3.3.1 Structure of the calculated minima of Zn;O; clus-
ters. 1 =1—09.

In this section the calculated minima are presented. Although our interest is
mainly centered on global minima, structures and properties of higher-lying
local minima are presented as well.

The presented structures are labeled according to the following scheme: Zn;0¢,
where i denotes the number of ZnO units, and the superscript a may be GM
(global minimum) or LM (local minimum).

In order to make the presentation of the results easier to the reader, we have
divided this section into small parts where structures of the same size are pre-
sented, starting from the smallest and moving on to the largest ones. In Table
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Table 3.3: Zn-O bond lengths, O-Zn-O angles and symmetry groups of the cal-
culated structures. For the local minima, energies relative to the corresponding
global minimum are in kJ/mol.

R(Zn-0) A a(O-Zn-O)” Point Group Rel. E. (kJ/mol)
Zn,0¢M 1.713 - Coov -
Zn,OSM 1.892 103.7 Doy, -
ZnoOFM 1.976 106.2 Cay + 120.17
Znz0§M 1.826 146.3 D3y, -
ZnzOM  1.817 - 2.097 136.15 Cs + 328.19
Zn,OFM 1.794 165.5 Dy, -
Zn,OM 1.996 97 Ty + 245.15
Zns0§M 1.780 174.9 Cs -
ZnsOFM  1.853-2.135 98.4 - 148.2 (o) + 236.28
ZngO§M 1.772 179.8 Deh -
ZngOFM™ 1.907 - 2.102 134.0 D3 + 95.90
ZneO§™>  1.793 - 2.156  143.7 - 157.8 Cs + 99.90
Zn,0§M 1.767 176.6 D7p, -
Zn7OFM 1766 - 1.882  143.6 - 172.6 Cs +43.91
Zn,OFM2 1,783 -2.180 92.93 - 165.2 Cs 174.86
ZngO§M  1.86-2.185  92.6 - 152.5 Dya -
ZngOFM 1.879-2.063 92.7- 131.6 S4 1 13.54
ZngOF™M> 1.766 175.91 Dua + 46.70
ZngO§M  1.89-1.99  93.1-130.7 Can -
ZngOF™ 1.918 - 2.037  92.2- 136.0 Dsq +29.79
ZngOy™M> 1.766 175.1 - 177.7 C, + 127.91

3.3 geometrical values such as bond-lengths and bond angles, point groups and
relative energies of all the calculated structures are given. These energies have
been calculated with the SKBJ(d) basis set.

It can be seen that for larger clusters, i.e. Zn;O;, i > 6 the relative energies
are smaller than 100 kJ/mol, except for Z ngOgMz. Hence single point calcula-
tions for these structures have been performed using the previously described
SKBJ(expan) and TZ2P basis sets. The obtained results are shown in Table
3.4.

ZnsOLM2 - TZ2P

has exactly the opposite effect and the effect is significantly larger. Note that
all cases in which the TZ2P basis makes a large difference, comparison is being
made between 3D and ring structures. The TZ2P basis set stabilizes the 3D
structures in every case. All basis sets predict both the same global minima and
the sequential positioning of the local minima, except the case of Z nGOéMl and
ZneOg™?, where SKBJ(d) and TZ2P predict the same sequential positioning,
but SKBJ(expan) does not. Nevertheless the difference is very small, and all
basis sets predict clearly the same global minimum. These results suggest

SKBJ(expan) raises all relative energies except for E,, oon-E
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Table 3.4: Relative energies (kJ/mol) of the calculated structures of Zn,0;,
i =6 —9, using the SKBJ(d), SKBJ(expan) and TZ2P basis sets.

SKBJ(d) SKBJ(expan) TZ2P

AE (Ezn,004-E,, orn)  95.90 110.50 51.07
AE (Bzn,093-E,, orva)  99.90 102.51 88.27
AE (B 00m-E,, oin) 4391 47.97 34.51
AE (Bgzn,09m-E,, oima)  T4.86 88.04 41.74
AE (Ezn,09m-E,, oin)  13.54 19.55 2.18
AE (Bzn,09m-E,, oima)  46.70 26.64 92.19
AE (Bgp,o9m-E, ) 29.79 32.24 25.54

Figure 3.1: Zn,OSM and Zn,OZM. Small atoms are those of O.

3

that the SKBJ(d) energies given in Table 3.3 describe correctly the sequential
positioning of the global and local minima, and that the calculated relative
energies are correct. Therefore, throughout this paper results from Table 3.3
will be considered.

A linear structure of Co.,, symmetry is found for Zn; OFM. It is interesting to
note the shortness of the bond length compared to the other larger structures,
as can be appreciated in Table 3.3. This length is lengthened to 1.893 A in the
triplet state, which is 22.22 kJ/mol more stable than the singlet reported in
the table.

Zn,05™M | which belongs to the Doy, point group, and ZnyOLM | of Cy, symme-
try, are depicted in Figure 3.1.

Both structures are planar, and Zn,OZM lies 120 kJ/mol above the global
minimum. The Zn-O bond length in both cases is longer than that of Zn;Oq,
but in the case of ZnyO4™ these bonds are remarkably long, 1.976 A compared
to 1.892 A of Zn,O§M.

Zns S5 structures are similar to these ones. In this case, the Dy, structure is the
global minimum as well, and the relative energy between the minima is very
similar: 117.10 kJ/mol for zinc sulfide and 120.17 for zinc oxide.

In Figure 3.2 Zn30$M and Zn3O%M are depicted.
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Figure 3.2: ZnzO§™ and Zn;OLM

Figure 3.3: Zn,O¢M and Zn O™

L 9%

The global minimum belongs to the D3, point group, and the local minimum
has only C; symmetry. Both structures are planar, as was the case for ZnsQOs,
but the energy difference between them is much larger, 328.19 kJ/mol compared
to 120.17 kJ /mol of the smaller one. The Zn-O bond length in ZnzO$™ is 1.826
A, shorter than that in ZnyOS™ by 0.07 A. The O-Zn-O angles are larger here,
of course, due to geometrical reasons.

Zn3S3 structures are similar to these ones, but it must be mentioned that the
energy difference between the global and local minima is much larger in the
case of zinc oxide (328.19 kJ/mol) than that difference for zinc sulfide (233.75
kJ/mol).

In Figure 3.3 Zn,0$™, Dyy, and ZnsOFM | Ty, are given.

It may be observed that the global minimum is a planar ring, like Zn,Oq
and Zn303, but the characterized local minimum is the first three dimensional
structure. It is constructed from six Zn,Os units, forming a sort of deformed
cube. It lies 245.15 kJ/mol higher in energy than the global minimum. The
planar global minimum has Zn-O bonds that are shorter than those found in
Zn30$M and, again, O-Zn-O angles which are larger. The Zn-O bond lengths
in Zn,O%™  on the other hand, are almost 0.2 A larger than those in Zn,O§™M.
This, of course, is a result of both the higher coordination number and the
strained O-Zn-O bond angles (97°). In addition to this, O-Zn-O angles tend to
linearity in the ring structures, and in Zn,O§™ are already 165.5°.

Characterized ZnyS, structures are similar to these ones. However, again the
energy difference between global and local minima is much larger in the case
of Zn,Oy4: 245.15 kJ/mol compared to 117.27 kJ/mol for ZnyS,.

The calculated ZnsO$™M of Dy, symmetry and ZnsOEM of C; symmetry are
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Figure 3.4: Zn;05M and Zn;OLM
gng
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Figure 3.5: ZngO§™, ZngOL™ and ZngOf™M?
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shown in Figure 3.4.

As was the case for ZnsQy4, a planar ring structure is found to be the global
minimum and a three dimensional structure to be a local minimum. This
Zn50EM has two different building blocks: four squares and two hexagons. The
relative energy between these two structures is less than that found between
the two Zn4O4 structures by only 9 kJ/mol, being 236.28 kJ /mol. In the planar
ring the Zn-O bond lengths are 1.780 A, similar to those of Zns;O,4, and the
0-Zn-0 bond angles are very close to linearity, 174.9°.

Similar structures, with a smaller energy difference, were found for Zn5S5. The
ring structure of ZnsSs broke planarity somewhat and was only 68.19 kJ/mol
more stable than the three-dimensional local minimum.

The calculated structures ZngO§™, ZngOEM and ZngOf™> are represented
in Figure 3.5.

ZngO$™M belongs to the D¢, point group, ZngO5™" to the D3y group, and
anOéM2 to the Cy point group. ZnGOéM1 is built from two “parallel” ZnzO3
units joined together by six Zn, O units. The same building blocks are found
in the two other cases. ZnGOéM2 is a planar structure with two Zn3Ogs rings
linked together by a ZnsOs ring. As in the smaller cases of planar rings, one
may appreciate in ZngO$™ the tendency to form linear O-Zn-O bond angles
and short bond lengths. Thus, we find angles of 179.8 “and bonds of 1.772 A,
similar to the previous cases. In the three dimensional structure we find larger
bond lengths, in a wide range from 1.907 A to 2.102 A, and bond angles of
134.0 °. Tt should be pointed out that the relative energy between ZngO§™
and an;OfLs My g drastically reduced compared to those seen for the isomers of
Zn,04 and Zn;O5. For ZngOg, the relative energy between planar and three
dimensional structures is 95.90 kJ/mol. We see that there is a tendency to
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Figure 3.6: Zn;0$™, Zn;OL" and Zn, 01>
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form more stable three dimensional structures as cluster size increases.

Related clusters were characterized for ZngSe (though no analog of ZnGOELsM2
was found). For smaller clusters we have seen that the planar ring-like struc-
tures were more stable for zinc oxide. Here that trend continues and while this
ring is the global minimum for the zinc oxide cluster, it is not for zinc sulfide,
where the D34 structure is the global minimum. This stability of planar zinc
oxide structures may explain the relative stability of ZnGOGL Mz while a related
structure was not observed for ZngSg.

The global minimum of D7, symmetry Zn;O$™ and the calculated local min-
ima are depicted in Figure 3.6.

Zn7O$M1 and Zn7O$M2 belong to the C; point group. It is interesting to
point out that again two planar structures are found to be the most stable
ones. Zn;O$M is a onering structure and Zn7O$M1 a threering structure.
Zn;OZM1 lies 43.91 kJ /mol above the global minimum. In both cases the bond
lengths are very similar, but bond angles differ considerably for geometrical
reasons. ZmO?M2 is the lowest lying three dimensional structure, related to
Zn;SYM. This structure lies 74.86 kJ/mol above the global minimum. This
difference is smaller than in the smaller clusters, and therefore one would expect
that in larger clusters the threedimensional structures will become the global
minimum.

A structure related to Zn7O$M2 was found to be the global minimum for Zn;S7,
the ring structure lying 107.52 kJ/mol higher in energy.

As it has been mentioned already, the main difference at first sight between
ZngO§M and the previously seen global minima is that ZngO§ is nonplanar.
There has been a transition, from a situation in which the planar ring structures
were favored, to a situation where three-dimensional structures are favoured.
Examining the trend in relative energies between the ring and three-dimensional
structures for i+ = 4 — 8 we find that the ring structure was more stable for i = 4
by 245.15 kJ/mol. That difference was reduced to 236.28 kJ/mol for i = 5,
but still is large. For i = 6 the threedimensional structure is closer to the ring,
95.9 kJ/mol higher in energy, and this difference is reduced to 43.91 kJ/mol
for ¢ = 7. Finally, the threedimensional anOg*'M is more stable than the ring
by 46.7 kJ /mol, and ZngO§™ by 127.91 kJ/mol. It is clear that as the size of
the cluster increases, the 3D structures become more stable than the rings.
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Figure 3.7: ZngO§M, ZnSO{gLM1 and anOéM2
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In Figure 3.7 the calculated structures are shown. ZngO$™ has D4 symmetry,
ZngOFM S and ZngOF™M? Dyy as well.

Therefore, these three calculated structures are very symmetric. ZngO$™ may
be viewed as being built by two “parallel” Zn4O4 rings linked together by ZnsO-
rings, as was ansgL My The anog M1 i5 also a three dimensional structure built
by six Zny 02 and four Znz O3 rings, related to ZngS$Y . ZngO§M and ZngOF "
are energetically very close, they are separated by only 13.54 kJ/mol. The bond
lengths and bond angles are similar to other three dimensional structures, as
may be observed in Table 3.3. No completely planar ring is found; anOgLM2
has all zincs in the same plane, but the oxygen atoms alternate up and down
along the ring. In this way the bond angles are close to linearity, 175.9 in this
case. In a completely planar ring these angles could not be so obtuse and have
the structure maintain favorable angles about the oxygen atoms, which would
make the molecule less stable. Nevertheless, this ring structure is only 43.70
kJ/mol above the global minimum in energy.

For ZngSg similar structures were found, but the S, structure was the global
minimum, 78.94 kJ/mol more stable.

In Figure 3.8 the calculated structures Zn909GM and anOéM1 are depicted.

ZngO§™M is a three dimensional spheroid structure of Cz;, symmetry composed
by six ZnyOo and five ZnzOs rings, as was ZngSS™M. ZngO5* is formed
by three stacked Zn3Os rings, linked together by ZnsOs units. It may be
constructed by adding an extra Zn3QOg ring to Zn60€Ml. This structure lies
29.79 kJ/mol above the global minimum. As in the previous case, the ring
structure is no longer planar, with the oxygen atoms above and below the
plane formed by the Zn atoms. This structure is labeled anog Mz and belongs

to the C; point group. This structure is predicted to be 127.91 kJ/mol less
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Table 3.5: Natural Orbital charges (e) of the shown global minima.

Zn (0]
Zn,;0F™ 0.973 -0.973
Zn,OF™  1.335 - 1.335
Zn;O$M 1412 - 1.412
Zn,OFM  1.432 -1.432
Zn;08M 1451 - 1.451
ZngO§™M  1.465 - 1.465
Zn,OFM 1477 - 1.477
ZngOF™M  1.532 - 1.532
ZnoOS™  1.559 - 1.559

stable than ZngO§™.

3.3.2 Natural Orbital charges

At this point we analyze the natural orbital charges, obtained by Natural Bond-
ing Analysis [178] at the BBLYP/SKBJ(d) level of theory, which are given in
Table 3.5.

The cationic nature of zinc and the anionic nature of oxygen can be observed in
all the structures. The atomic charges are larger as cluster size increases, and
a trend towards the charge separation of the bulk (|1.91¢|) is clearly observed.

3.3.3 Cohesive energy

The cohesive energy per zinc oxide unit is calculated as Ey = (iEz, + iEo —
Ezn,0,)/i , where i is the number of ZnO units. The cohesive energy may
be plotted versus the inverse of the cubic root of i, and then a line can be fit
to the obtained points. Extrapolating it to i~/3=0, that is, to i =co, or the
bulk, a theoretical value which can be compared to the experimental one may

be obtained.

In the previous chapter ([185]) the same approach was used for Zn;S;. The
representative points were seen to be those corresponding to three dimensional
structures. In the case of Zn;O; only two points belong to three dimensional
structures, those corresponding to ZngO$™ and ZngO§™. Therefore, in or-
der to obtain a meaningful extrapolation the cohesive energy of larger three-
dimensional clusters should be taken into account, and for that purpose further
calculations must be done.

The cohesive energies of the calculated global minima are given in Table 3.6.
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Table 3.6: Cohesive energy, E¢, (kJ/mol) of characterized global minima.

- E; (kJ/mol)
Zn;0 84.06
Zn;o;GM 275.09
Zn;05M 403.26
Zn,O¢M 447.72
ZnsO$M 462.92
ZngO§M 468.55
Zn;O5M 470.47
ZngO§M 476.52
ZnyO§M 484.95

3.4 Conclusions

It has been seen that planar ring structures are the global minima for Zn;0,,
i = 1-7, and three-dimensional structures for i = 8,9. These three-dimensional
global minima, along with the other calculated three dimensional local minima,
may be viewed as being built from ZnsO5 rombi and Zn3O3 hexagons (and an
occasional ZnyO4 unit), as they were for zinc sulfide. However, for zinc sulfide
ring structures were the global minima for ¢ = 2 — 5, and threedimensional
structures the global minima for ¢ = 6 — 9. This different behaviour is mainly
attributable to two factors. The rigidity of angles about the oxygen atom (as
opposed to sulfur’s more flexible bonding) plays a part, but the major difference
is that sulfur atoms benefit much more from additional valence than do oxygen
atoms. These clusters containing oxygen atoms are not highly stabilized by
the additional bonds found in the threedimensional structures, making the
ring structures the global minima for clusters with i < 8.

In [177] the authors predicted stable spheroid structures for Zn;0;, i > 11. We
have seen, however, that these spheroid structures are stable for smaller cases,
such as ¢ = 8,9. Therefore, the onset of the stability for spheroid structures is
1 = 8, according to our calculations.

In summary, there are two main factors determining whether a ring or three-
dimensional structure will be the global minimum for the small zinc oxide
clusters: the stability of very obtuse O-Zn-O bond angles, and the stability
gained from higher coordination. For Zn;0;, i = 2— 7, the first term outweighs
the second and ring structures are predicted to be the global minima. For i = 8
and greater however, the size of the cluster allows for both obtuse O-Zn-O bond
angles and higher coordination in the three dimensional spheroid structures,
making these the most stable.

These three dimensional clusters can be envisioned as being built of smaller
building blocks, basically Zn,O4 (squares) and Zn3Os3 (hexagons) rings. Ba-
sically, the number of squares remains constant and the number of hexagons
increases by one when adding an extra ZnO unit.
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Chapter 4

Small Clusters of 1I-VI
Materials: Zn;X;, X=Se,Te,
1=1-—9

Abstract

The improvements in the characterization of II-VI compound-based solar cells
and the recent experimental characterization of small clusters and nanoparticles
make the study of small II-VI clusters very interesting. In this work, the
ground states of small Zn;X; clusters are studied, X=S8e,Te, i = 1 — 9. Ring-
like structures have been found to be the global minima for clusters as large
as ¢ = b, and three dimensional spheroid structures for larger ones, i = 6 —
9. This trend has been adscribed to the stability of obtuse X-Zn-X angles
in the first case, and to the stability gained from higher coordination in the
second case. The three dimensional structures may be envisioned as being
built from ZnsX, and Zn3Xj3 rings, as it was the case for Zn;S; and Zn;0;
three dimensional structures. Calculated natural charges are larger as cluster
size increases, showing a tendency towards bulk charges.

64
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4.1 Introduction

Semiconductors are materials of great importance in the development of tech-
nology. Computer revolution and other technological devices have been and
are in rapid development basically due to improved semiconductor materials.
Some of these materials are the II-VI compounds, which interest has increased
notably due to their paramount technological potential.

It is important to study small clusters of these compounds, whose electronic
and structural properties could give insight into understanding local properties.
In addition to this reason, the fact that cluster and nanoparticle characteriza-
tion is becoming technologically feasible is remarkable. This makes cluster
science more interesting, since in addition to the capability of understanding
some surface-related properties, the improvement of applications by the use of
nanotechnology could be possible. A neat example of this are the fullerenes,
carbon spheroids discovered by R.F. Curl, R.E. Smalley and H-W. Kroto, which
have also photovoltaic applications [52, 53].

The study of small II-VI clusters appears promising, therefore. Global and local
minima of Zn;S;, i =1 —9 ([185]), and Zn;0;, i =1 — 9 ([187]), clusters have
been presented above in Chapter 2 and 3, respectively. Spheroid fullerene-type
structures were found to be the global minima, for ¢ > 6 for Zn;S;, and i > 8 for
Zn;0;, which is in accordance with previous molecular dynamics calculations
[177]. In this work we focus on zinc selenide and zinc teluride clusters, Zn;Se;
and ZniTei, 1 =1-—-09.

4.2 Method

All geometries were fully optimized using the hybrid [109] Becke 3 Lee-Yang-
Parr (B3LYP) gradient-corrected approximate density-functional procedure [99,
110, 111]. Harmonic vibrational frequencies were determined by analytical dif-
ferentiation of gradients.

The relativistic compact effective core potentials and shared-exponent basis
set [133] of Stevens, Krauss, Basch and Jasien (SKBJ) was used as the basic
basis set in this study. The d electrons of Zn were included in the valence.
An extra d function was added on Zn (@=0.3264) and two extra d and one f
on both Se («=0.537830, «=0.208111 and «=0.396026, respectively) and Te
(@=0.349496, «=0.155852 and a=0.306353, respectively), due to their impor-
tance for the proper description of the high coordination of the atoms in the
three-dimensional cluster structures. The exponents of all of these added func-
tions were energy optimized using the GAMESS [165] package. Note that pure
angular momentum functions were used throughout this study. We denote the
final basis set used as SKBJ(d/2df).

Because there are so many possible structures for these clusters, several starting
points for these complete B3LYP/SKBJ(d/2df) optimizations were generated
using a simulated annealing approach at the PM3 [161] level of theory. Of
course, additional starting points were derived from simple chemical intuition.
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Table 4.1: SKBJ(expan) basis set for Zn, Se and Te atoms.

Zn Se Te
«@ d d « d d « d d

sp 1335122 1.0 1.0 0.750763 1.0 1.0 0.535452 1.0 1.0
sp 1.120129 1.0 1.0 0.375285 1.0 1.0 0.180824 1.0 1.0
d 2.561376 1.0 0.691855 1.0 0.408953 1.0
d 0.326400 1.0 0.463247 1.0 0.237585 1.0
d 0.177490 1.0 0.084947 1.0
f 3.115413 1.0 1.048712 1.0 0.594100 1.0
f 0.366780 1.0 0.228881 1.0

It has to be mentioned that the large amount of structures that appears as the
cluster size increases makes impossible the study of all of them. In this study
only the lowest lying structures of each size have been considered.

All the geometry optimizations and frequency calculations were carried out with
the GAUSSIANOS [163] package. For the PM3 simulated annealing technique
the HYPERCHEM [164] program was used.

4.2.1 Basis set selection

It was mentioned in the previous section that the basis set used during these
calculations was SKBJ(d/2df). Although a larger basis set is not expected to
change significantly the geometry of the obtained structures, relative energies
might be affected. In order to check the reliability of our SKBJ(d/2df) basis
set, single point energy calculations using larger basis sets were performed on
Zn, X, and ZngXg structures, which will be detailed later.

The effect of two more basis sets was examined in the case of ZnSe. The
former was a simple expansion of the previously described SKBJ(d/2df) basis.
Two s and p functions, one d and one f were added to the Zn SKBJ(d) basis,
resulting in a final SKBJ(2sp2d1f) basis. The exponents are given in Table 4.1.
The SKBJ(2df) basis was expanded for Se adding two new s and p functions,
and an extra d and f functions. In addition to this, the previous two d and
f functions included in SKBJ(2df) basis were reoptimized, resulting in a final
SKBJ(2sp3d2f). The exponents may be seen in Table 4.1. This expanded basis
set will be referred to as SKBJ(expan). The latter basis set for ZnSe was an
all electron triple-¢ double polarization (TZ2P) basis (14s11p6d2f/10s8p3d2f)
for Zn [166, 167, 168] and (15s13p6d1f/8s7p2d1f) for Se [188, 189, 190].

In the case of ZnTe only the effect of one larger basis was examined. Namely,
the SKBJ(d/2df) basis was expanded in a similar manner as for ZnSe, with the
same SKBJ(2sp2d1f) for Zn, and a final SBKJ(2sp3d2f) for Te. This expanded
basis set will be denoted hereafter as SKBJ(expan). The exponents are shown
in Table 4.1.
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Table 4.2: Relative energies (kJ/mol) between the lowest-lying structures of
the same cluster size of Zn;X;, with three basis sets.

SKBJ(d/2df) SKBJ(expan) TZ2P

AE (EZn4S€fM_EZn4Se£’1W) + 97.79 + 102.42 + 91.16
AFE (Eznﬁseg:M—EZnﬁseﬁLMl) + 36.84 + 35.70 + 44.01
AFE (EZWGSG(?M_EZnGSefMZ) + 44.71 + 38.53 + 52.01
AFE (EZn4TefM'EZn4Te£M) + 69.13 + 71.10 -
AE (EZHGTGEM_EZnGTeng) + 37.34 + 37.51 -
AFE (EZHGTGgM_EZnGTegMZ) + 49.91 + 47.74 -

Table 4.3: CCSD(T) relative energies (kJ/mol) for Zn;Se; and Zn;Te;, i = 2—3.

CCSD(T)/TZ2P CCSD(T)/SKBJ(d/2df) B3LYP/SKBJ(d/2df)
AE (i =2) + 158.95 +141.82 +96.31
AE (i = 3) - +249.70 + 191.58
CCSD(T)/SKBJ(expan) CCSD(T)/SKBJ(d/2df) B3LYP/SKBJ(d/2df)
AE (i =2) + 103.92 + 114.40 + 74.68
AE (i = 3) - +177.99 + 141.06

The relative energies between the two lowest-lying structures of the clusters
selected are shown below in Table 4.2. Note that the full electron TZ2P basis
set do not include relativistic effects.

All basis sets predict both the same global minima and the same sequential
positioning of the local minima. The differences in the relative energies are
small in all the cases, showing the reliability of our SKBJ(d/2df) basis set.

4.2.2 Method selection

In order to check the feasibility of the B3LYP results, Coupled Cluster [88,
89] with Single, Double [179, 180, 181, 182] and a correction term for the
Triple [183] substitutions, CCSD(T), calculations were carried out for Zn,;X;,
X=8e,Te, i =2 — 3.

The TZ2P basis set was chosen for ZnsSe, and SKBJ(expan) for ZnsTes.
Since the computational effort increased dramatically from i = 2 to i = 3,
we performed CCSD(T) calculations for ¢ = 3 with a smaller basis set, i.e.
SKBJ(d/2df). The relative energies of the first local minimum with respect to
the ground state are shown in Table 4.3.

In Table 4.3 one may see that for i = 2, the CCSD(T)/TZ2P and CCSD(T)/
SKBJ(d/2df) relative energies are very similar: 158.95 kJ/mol and 141.82
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kJ/mol, respectively. Similar behavior is observed for Zn;Te;, where for i = 2,
the CCSD(T)/ SKBJ(expan) and CCSD(T)/SKBJ(d/2df) relative energies are
103.92 kJ/mol and 114.40 kJ/mol. Note that part of the difference should be
ascribed to relativistic effects that, although they are known [184] to be small
for the first-row transition metals, are largest for Zn within the row. This rein-
forces our statement of section 4.2.1 on the reliability of the SKBJ(d/2df) basis
set and validates the use of CCSD(T)/SKBJ(d/2df) relative energies as refer-
ence values instead of the computationally more demanding CCSD(T)/TZ2P
and CCSD(T)/SKBJ(expan) ones for further checks.

Both CCSD(T) and B3LYP predict the same sequence of global and local min-
ima. The relative energies are found to be larger at the CCSD(T) /SKBJ(d/2df)
level of theory. In the case of Zn;Se;, for i = 2 the difference between both
methods is 45.51 kJ/mol, and 58.12 for i = 3. For Zn;Te;, these differences
are similar: 39.72 kJ/mol for i = 2, and 36.93 for ¢ = 3. These results illus-
trates the agreement between both methods and therefore BSLYP will be used
hereafter.

4.3 Results

4.3.1 Structures of characterized minima of Zn;X;,
X=Se,Te, i =1—-9

In this section the calculated minima are presented. Although our interest fo-
cuses on global minima, structures and properties of higher-lying local minima
are presented as well.

In order to show the calculated structures in a more understandable way, we
have arbitrarily divided these clusters into two groups, according to the geomet-
rical structure of the global minimum. In Group 1, Zn;X;, X=8e,Te, i = 1 — 5,
clusters are included which global minima are planar or near planar ring-like
structures. In the second group, Group 2, the rest, for which the global minima
are three dimensional spheroids.

The presented structures are labeled according to the following scheme: Zn;X¢,
where i denotes the number of ZnX units, and the superscript ¢ may be GM
(global minimum) or LM (local minimum), and X may be Se or Te. Hereafter,
when using Zn;X; both Zn;Se; and Zn;Te; will be referred.

Group 1

In this section the calculated structures of Zn;X;, i = 1 — 5 will be described.

In Figure 4.1 the predicted global minima of Zn;X; are shown, and in Figure
4.2 their corresponding local minima. It should be pointed out that equivalent
structures have been found for both Zn;Se; and Zn;Te;. In Table 4.4 proper-
ties such as molecular geometries, energies, and the symmetry of the studied
structures are given.



Cluster Structures: ZnSe, ZnTe 69

Figure 4.1: Calculated global minima of Zn;X;, X=Se,Te, i = 2—5, labeled from
left to right ZnyX§™M | ZnyX$M and in the second row ZngX§™ and Zns XM,
respectively. The dark larger atoms are those of selenium or telurium.

«Le o= I3 3

Figure 4.2: Calculated local minima of Zn,;X;, X=Se,Te, i = 2—5, labeled from
left to right ZnoXZM | ZnsXEM and in the second row ZnsXiM and Zns XM,
respectively.
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The global minima of the clusters in group 1 have been seen to be planar rings
(i = 2 — 3) or near planar rings (¢ = 4 — 5). The main reason to break the
planarity in these ring structures is the observed strong tendency to form linear
X-Zn-X angles. Thus, there are found angles in a range of 170-180 degrees for
Zn;X$M i = 4 — 5. The bond lengths are shorted as the size of the ring
increases. In the case of Zn;SeM they decrease from 2.38 A t02.30 A, and in
the case of Zn; Te¢™ from 2.58 A to 2.51 A. Local minima have been found to
be planar for ¢ = 2 — 3, and 3D local minima were only found for i = 4 — 5.
These structures can be pictured as being built from (squares) Zn, X5 and
(hexagons) ZnzX§M-like structures. Zn, X2 consists of six square-like ZnyXo
units, which share atoms with each other, forming a sort of deformed cube.
ZnsXEM is built by four ZnyXs and two Zn3X3 units. In these 3D structures
the bond lengths are larger than the ring ones, and angles are far from linearity
due to geometrical constraints.

It has to be mentioned that related structures were found for Zn;0O; and Zn;S;
clusters, as seen in Chapters 2 and 3. All global minima were planar rings in
the case of Zn;0;, and all except i = 5 in the case of Zn;S;. This structural
difference may be explained by the fact that linear X-Zn-X angles are preferred
in the ring structures, and due to the larger size of the atoms as one goes down
in the periodic table, the break of the planarity is impossed.

Having a look to the relative energies given in Table 4.4, there is observed that
these values are larger in the case of Zn;Se;. Additionally, in both cases the
largest relative energy occurs in ZnsX3, and when the size increases the energy
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Table 4.4: Zn-X bond lengths, X-Zn-X angles, and symmetry groups of the
structures of Figs. 4.1 and 4.2. For the local minima, energies relative to the
corresponding minimum are in kJ/mol.

R (Zn-X) (A) o (X-Zn-X) (deg) Point Group Rel. E.

Zn;Se$™M 2.20 - Coov -
Zn,Se§M 2.38 116.8 Doy, -
ZnySelM 2.44 - Cay +96.31
Zn3Se§™M 2.321 160.4 D3y, -
Zn3SeiM 2.32-2.36 135.2-145.4 C, +191.58
Zn,Se§M 2.30 177.9 Ca, -
Zn,SelM 2.50 107.0 Ty +97.79
Zn5SeS™M 2.30 172.2-178.5 C, -
ZnsSetM 2.27-2.54 99.2-156.1 C; +49.64
Zn, Te§'M 2.41 - Coouv -
Zn,TeS'M 2.58 120.5 Doy, -
ZnyTelM 2.64 - Cay +74.68
Zn3Te§™M 2.53 163.6 D3, -
ZnzTelM 2.53-2.56 140.2-150.3 C, +141.06
Zn,Te§M 2.52 177.7 Cay -
Zn,TelM 2.70 109.1 Ty +69.13
ZnsTeSM 2.51 171.1-178.4 C, -
ZnsTelM 2.48-2.74 101.0-158.6 C +24.09

difference between the ring structure and the 3D structure decreases. Focusing
on the Zn;Se; case, this variation occurs as follows: 96.31, 191.58, 97.79 and
49.64 kJ/mol for i = 2 — 5, respectively.

Similar behavior of the relative energy was observed for Zn;0; and Zn;S; clus-
ters. If one compares the four combinations, it is seen that the largest energies
happen in Zn;0; and that they decrease as one goes down in the periodic table.
As an example, the relative energies of Zn;Xs are 236.28 kJ /mol, 68.19 kJ/mol,
49.64 kJ/mol and 24.09 kJ/mol, for X= O, S, Se, Te, respectively.

Group 2

This group contains the clusters whose global minima are three dimensional
spheroids, Zn;Se; and Zn;Te;, i = 6 — 9.

In Figure 4.3 the global minima of Zn;X; are shown, and in Figure 4.4 the
local minima. In Table 4.5 the Zn-X bond lengths, X-Zn-X angles, electronic
energies, and symmetry points of the calculated structures are given.

The structures of the characterized clusters are related to the previously seen
Zn;X;, X=0,S, i > 6 structures. Three structures have been characterized for
ZngXs. ZngX§™M is built from two “parallel” Zn3; X3 units joined together by
six ZnoXs units. The same building blocks are found in the lower lying local
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Figure 4.3: Calculated global minima of Zn;X;, X=Se,Te, i = 6—9, labeled from
left, to right ZngX§™, Zn;Se$™ (Zn;TeX*1) and in the second row ZngX$™M

and ZngX§™M | respectively.

s

Figure 4.4: Calculated local minima of Zn,;X;, X=Se,Te, i = 6 — 9, labeled from
left to right ZngXEM | ZngX LMz, Zn7Se$M1 (Zn;Te$M), Zn7X$M2, and in the

Par

second row ZngXg M, ZngX ;M and ZngXLM | respectively.
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Table 4.5: Zn-X bond lengths, X-Zn-X angles, and symmetry groups of the
structures of Figs. 4.3 and 4.4. For the local minima, energies relative to the
corresponding minimum are in kJ/mol.

R (Zn-X) (A) o (X-Zn-X) (deg) Point Group Rel. E.

ZngSeG™ 2.43-2.59 103.4-141.1 D34 -
ZngSel ™ 2.33-2.55 97.6-158.4 Do +36.84
ZngSel M2 2.30 178.1 Cop, +44.71
Zn,SeS™M 2.29-2.70 102.2-176.9 C, -
Zn;SekM 2.29-2.66 95.3-160.0 Co +2.66
Zn;Sel M 2.30 173.4-179.4 Dsq +45.85
ZngSeSM 2.41-2.51 102.0-138.2 Sy -
ZngSel ™ 2.41-2.60 102.6-152.3 Cyo +78.92
ZngSei ™ 2.30 177.3 Dy +156.82
ZngSe§™M 2.40-2.51 101.7-128.9 Can, -
ZngSei™M 2.40-2.71 100.6-149.5 D34 +162.75
ZngTeS™ 2.64-2.77 105.9-134.5 D34 -
ZngTel ™ 2.53-2.76 98.8-161.6 Doy +37.34
IngTef™? 2.51 178.4 Can +49.91
Zn,;TeGM 2.50-2.84 100.7-162.7 Cy -
Zn;Tel 2.51-2.90 101.0-177.7 Cs +6.50
Zn; Tel 2.51 173.6-178.2 D3 +50.76
ZngTeSM 2.62-2.74 103.9-137.9 S, -
ZngTei M 2.63-2.77 105.6-147.6 Cap +83.84
ZngTei > 2.51 177.5 Dug +150.98
ZngTe§M 2.61-2.71 103.7-128.9 Can

ZngTel™  2.60-2.83 100.8-151.6 Dy, 1+199.15
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minimum. anXé M1 i built from four linked ZnsXs forming a ring, caped
at the top and the bottom by two Zn,X, rings. ZnstLsM2 is a ring structure
related to global minima of clusters of group 1.

Zn;Se$™M is a structure of C, symmetry, and can be envisioned as two joined
Zn3Ses and one bent Zn,Se, rings, related to Zn;S$M. Zn;Sef™* is built from
four ZnySe; and four ZngSes rings, yielding a final C, spheroid structure. These
two structures are constructed from the smaller building blocks mentioned in
smaller clusters. Zn7Se$M2 is a ring structure which belongs to the C; point
group. In the case of Zn;Te7, the global minimum resembles the structure of

Zn;SeX™. Conversely the Zn;Tel™" is related to Zn;Se$™.

Three structures have been characterized for ZngXg, which are depicted in
Figure 4.3 and 4.4. ZngX§M is a three dimensional structure built by six
squares and four hexagons, similar to ansSGM and anOng. The anXgM1
may be viewed as being built by two “parallel” ZnsX, rings linked together by
Zn, X, rings. Rings are not entirely planar, thus, anXé M2 has all zincs on the
same plane, but the X atoms alternate up and down with respect to the ring’s
plane.

Two structures have been characterized for ZngXgy. ZngX§™ is a three dimen-
sional spheroid composed by Zn,X5 and Zn3X3 rings, as in smaller clusters. In
total, there are six squares and five hexagons, forming a structure resembling
ZngO§M and ZngS§M. ZngXEM is formed by three stacked Zn3 X3 rings, linked
together by ZnsXs units, like Zng Ong and anngl. No ring structures have
been characterized since they are expected to lie quite high in energy.

Geometrical parameters follow the trend of clusters of group 1. 3D structures
have larger bond lengths than the ring structures, which are similar to the
ZnsXs rings. Besides, linear X-Zn-X angles are found in these rings, as was
found in smaller cases.

For smaller clusters, rings have been found to be the global minima and 3D
spheroids local minima. However, recall that as the cluster size increases, the
relative energies between these rings and three dimensional local minima was
found to decrease. Thus, for i = 4 the relative energies were 97.79 kJ/mol for
Zn;Se; and 69.13 kJ/mol for Zn;Te;. This relative energy shrunk for i = 5
to 49.64 kJ/mol (Zn;Se;) and 24.09 kJ/mol (Zn;Te;). Finally, for ¢ = 6 the
three-dimensional structure became the global minima by 36.84 kJ/mol in the
case of Zn;Se; and by 37.34 kJ/mol in the case of Zn;Te;.

Three-dimensional structures have been seen to be the global minima for the
clusters of group 2. These structures are basically built from rombi and hexagon
building blocks, as were the three-dimensional local minima in group 1. The
relative energies between global minima and ring local minima increase as clus-
ter size becomes larger. These relative energies are similar for Zn;S;, Zn;Se;
and Zn;Te;, but are much smaller for Zn;0O,. This means that ring structures
are more favourable in Zn;0,, which may be explained by the preferrence of S,
Se and Te to achieve coordination numbers higher than two.
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Table 4.6: Natural Orbital charges (e) of the shown global minima.

ZniSeZ— an-Tei

7 Zn Se Zn Te

1 0.864 -0.864 0.739 -0.739

2 1.099 -1.099 0.933 -0.933

3 1.124 -1.124 0.959 -0.959

4 1.139 -1.139 0.972 -0.972

5 1.140-1.152 -1.139--1.153 0.971-0.989 -0.971 - -0.987
6 1.192 -1.192 1.003 -1.003

7 1.139-1.193 -1.157--1.200 1.000-1.004 -0.976 --1.027
8 1.197-1.214 -1.205--1.206 1.007-1.028 -1.010--1.025
9 - - - -

4.3.2 Natural orbital charges

The Natural Bond Orbital analysis [178] was used to compute charges on the
atoms of these clusters, which are given in Table 4.6.

ZngXgy charges have not been calculated since the limit of 500 basis functions
was exceeded.

The cationic nature of zinc and the anionic nature of selenium and telurium
can be observed in all the structures. It has been seen in previous chapters that
natural orbital charges were larger for Zn;S; and even larger for Zn;0;. This
statement is in agreement with the bulk characteristics, where ZnO crystals
are of highest ionic nature.

4.3.3 Cohesive energies

The cohesive energy per zinc selenide unit is calculated as Ef = (1Ez, +iEx —
Ezn,x,)/i , where i is the number of ZnX units. When the cohesive energy is
plotted versus the inverse of the cubic root of i, a straight line can be fitted to
the obtained points. Extrapolating to i~/3=0, that is, to i =oo, or the bulk,
the theoretical value obtained for the cohesive energy can be compared to the
experimental one.

Muilu et. al. used the same approach for large ZnS clusters [141]. The rep-
resentative points were seen to be those corresponding to three dimensional
structures. Four points are therefore available for both Zn;Se; and Zn;Te;.
The cohesive energies of the Zn;X; predicted global minima are given in Table
4.7, and are ploted vs i~!/3 in Figure 4.5.

Note that Ef decreases with 4, smoothly for 3D structures and sharply for ring
structures.

Figure 4.5 shows that ¢ = 7 points lie below the fitted lines for both Zn;Se; and
Zn;Te;. All attempts to locate global minima which fit the line eventually led
to already characterized structures.
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Table 4.7: Cohesive energy, E¢, (kJ/mol) of characterized global minima.

) Ef (ZniSei) Ef (ZniTei)
1 85.18 56.69
2 259.85 216.61
3 338.74 280.51
4 352.29 289.41
5 353.71 289.86
6 362.47 299.46
7 361.10 297.76
8 374.68 309.82
9 379.91 313.95

Hence, it is not clear if these four point are meaningful in each case, or only
three of them, those corresponding to ¢ = 6,8,9. Both cases have been studied
and the obtained extrapolations are the following. If we take into account
four poits, the predicted cohesive energies are 511.28 kJ/mol for Zn;Se; and
425.06 kJ /mol for Zn,;Te;, and removing the points corresponding to i = 7, the
predicted cohesive energies are 499.43 kJ/mol for Zn,;Se; and 413.76 kJ/mol
for Zn;Te;. The experimental values are calculated according to the CODATA
data [191], by the next equation:

Efeap = |[AH}(ZnX) — AH}(Zn) — AH}(X)| — RT

which are 518.0 kJ/mol and 487.6 kJ/mol for Zn;Se; and Zn,Te;, respectively.
We observe that the cohesive energy is better predicted by taking into ac-
count all the points corresponding to 3D structures. Anyway, we believe that
to obtain a more reliable extrapolation the cohesive energies of larger three-
dimensional structures should be taken into account. Nevertheless, it is worth
mentioning that no enthalpy of formation was found for Zn;Te; in the CODATA
data, and this value was taken from [192]. The provided Zn;Te; enthalpy of
formation is surprisingly similar to that of Zn;Se; as provided by CODATA.
According to the trend provided by our calculations we believe that this ex-
perimental estimate requires further verification. This might account for the
poorer prediction of the Zn,Te; cohesive energy.

The extrapolated Ey are smaller than the bulk values. This is due to some
aspects. On one hand the fact that the coordination number in the clusters
is three, whereas it is four in the bulk crystals. On the other hand, long-
range effects of the electrostatic attractive forces of the crystals do a sizeable
contribution to the total cohesive energy of bulk crystals.
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1

Figure 4.5: Cohesive energy (kJ/mol) vs i~'/3. Above dots represent Zn;Se;

clusters, and below dots Zn;Te; ones.
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4.4 Conclusions

The lowest energy minima of the clusters Zn;Se; and Zn;Te;. studied in the
present work, have been found to undergo a ring-to-three-dimensional struc-
tural transition. This behavior parallels that of the previously investigated
Zn;S; clusters (chapter 2), but differs markly from that of Zn;O; clusters (chap-
ter 3).

The structural transition allued to above, arises from a delicate balance between
two opposite tendencies. On the one hand rings are favored by the tendency
to linearity of the X-Zn-X bonds and, on the other hand, three-dimensional
structures are favored by the tendency of achieving higher coordination. Our
calculations indicate that the former dominates when the higher coordination
does not carry to much of strain for the bond angles. This takes place at i = 6
for Zn;X;, with X=8,Se,Te and at i = 6 for X=0. Naturally, the smaller size
of the oxygen valence orbitals accounts for its transition occurring at higher
cluster sizes.

The predicted structures of the lowest energy three-dimensional spheroid struc-
tures of Zn;X;, X=Se,Te, can be envisioned as being built of smaller basic
building units, namely, the ZnyXs rombi and Zn3X3 hexagons. These struc-
tures appear to be the basic structural units for larger cluster in the same
sense that Cs pentagons and Cg hexagons constitute the basic structural units
of fullerenes.
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Chapter 5

Large Spheroid Clusters of
II-VI Materials: Zn;X;, X=0,
S, Se, Te, 1 = 12,15

Abstract

In this chapter Zn;X;, X=0, S, Se, Te, i = 12, 15 spheroid structures are char-
acterized. These structures are built by smaller building blocks, namely squares
and hexagons, as were smaller spheroid clusters characterized in previous chap-
ters. The study of the cohesive energy of these species shows a trend towards
bulk values. Moreover, since the cohesive energy may be taken as an indicator
of the stability, our work shows that Zn;52X;5 spheroids are the most stable
ones according to this criterium. The most spheric fullerene, Cgo, is also the
most stable one, and this is a behavior observed in II-VI clusters as well, since
Zn15X1, structures are the most spheric ones. Therefore, one can picture a
relationship between the sphericity and the stability, at least in a qualitatively
way.

78
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Table 5.1: Structural characteristics of spheroid carbon clusters and II-VI clus-
ters

CQO 032 C5O CGO C’?O C84

Hexagons 0 6 15 20 25 32
Pentagons 12 12 12 12 12 12
ZH4X4 Zn6X6 ZII8X8 ZHQXQ
Hexagons 0 2 4 5
Rombi 6 6 6 6

5.1 Introduction

Recent expectacular growth of nanotechnology agrees with the predictions of
some of the pioneers in the field, such as Arthur von Hippel [28] and K. Eric
Drexler [29, 30]. Revolutionary techniques such as the atomic force micro-
scope (AFM), and the scanning tunneling microscope (STM) have been de-
veloped. These techniques allow the interaction with individual atoms, which
is a remarkable step forward for the development of new materials and sys-
tems. Henceforth, new nanocompounds that could be useful in a more broad
way than their bulk counterparts might be created. One of the best known
‘new’ clusters or nanostructures are the so called fullerenes, carbon spheroid
structures discovered in 1985 [42].

Fullerenes are built by pentagons and hexagons. As the cluster size increases
the number of hexagons also increases, one per two added carbon atoms, while
the number of pentagons remains constant. Thus, the smallest spheroid Csg
is formed by twelve pentagons. Adding more carbon atoms Cos, formed by
12 pentagons and 1 hexagon, Co4, 12 pentagons and two hexagons, and so
on are obtained. The most spheric and most stable fullerene is Cgo, which
is formed by 12 pentagons and 20 hexagons, similar to a football ball, while
larger fullerenes loose systematically the sphericity, and consequently stability.
Related structures characterized for Zn;X,;, i = 1—9, X=0, S, Se, Te, have been
presented previously in this thesis. Spheroid structures were found to be the
global minima for ¢ > 6 in the case of X=8, Se, Te, and ¢ > 8 for X=0. These
spheroids are built by squares and hexagons. The number of squares remains
constant, six, while the number of hexagons augments by one for every ZnX
unit added, that is, two atoms. So, similar structural tendencies are observed
in both carbon fullerenes and II-VI spheroids, as may be observed in Table 5.1.

According to the structural tendencies observed in Table 5.1, one could imagine
larger structures that are built by hexagons and squares as well. Concretely,
in [177], Zn12012 and Zn;5045 structures built by 8 hexagons and 6 rombi and
11 hexagons and 6 rombi, respectively, were studied. In the present study two
different aspects have been analyzed. On the one hand we have characterized
these spheroid structures for Zn;X;, ¢ = 12,15, X=0,5,Se,Te, and then have
studied their electronic properties. Additionally an extensive study of the sta-
bility of all clusters, i =1 — 9,12, 15 has been performed. All the calculations
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have been performed at the B3LYP level of theory, combined with the SKBJ
relativistic pseudopotentials.

5.2 Method

All geometries were fully optimized using the hybrid [109] Becke 3 Lee-Yang-
Parr (B3LYP) gradient-corrected approximate density-functional procedure [99,
110, 111]. Harmonic vibrational frequencies were determined by analytical dif-
ferentiation of gradients.

The relativistic compact effective core potentials and shared-exponent basis set
[133] of Stevens, Krauss, Basch and Jasien (SKBJ) was used as the basic basis
set in this study. The d electrons of Zn were included in the valence. An extra d
function was added on Zn, O, and S, and two extra d and one f on both Se and
Te, as described in Chapters 2,3 and 4, respectively, due to their importance
for the proper description of the high coordination of the atoms in the three-
dimensional cluster structures. The exponents of all of these added functions
were energy optimized using the GAMESS US [165] package. Note that pure
angular momentum functions were used throughout this study. We denote the
final basis set used as SKBJ(d) for Zn;X;, X=0, S, and SKBJ(d/2df) for X=Se,
Te.

All the geometry optimizations and frequency calculations were carried out
with the GAUSSIANOS [163] package.

5.3 Results

In this section the obtained results are presented and discussed. In section 5.3.1
the structures of Zn;X;, i = 12,15, X=0, S, Se, Te, clusters are presented,
along with several electronic and structural properties. Besides, an extensive
discussion on the cohesive energy of these structures along with the cohesive
energies of smaller clusters is performed.

5.3.1 Characterized structures of Zn;X;, : = 12,15, X=0,
S, Se, Te, clusters

The Zn;X;, i = 1-9, X=0, S, Se, Te, clusters have been presented in previous
chapters. There we show that spheroid clusters were preferred for large systems,
and henceforth only spheroid clusters have been considered for i = 12,15.
These spheroids are shown in Figure 5.1 for ¢ = 12 and Figure 5.2 for ¢ = 15.
In Table 5.2 molecular geometries, energies and the symmetry of the structures
are presented.

The four Zn;3X;o structures belong to the Doj symmetry point group, and
are built by Zn,X, and Zn3X3 units, as were smaller spheroids. Moreover, the
number of squares is the same as smaller cases, being six, and the number of
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Figure 5.1: characterized structures of Zn;2X;2, X=0,5,5e and Te respectively.

Figure 5.2: characterized structures of Zn;5X15, X=0,5,5¢ and Te respectively.

hexagons is eight. The way these building blocks are linked is similar in the four
cases. Rombi are positionated in the top, bottom, front, back, left and right,
and are linked by the hexagons, four in the upper half and four in the lower
half. The bond lengths and bond angles are similar to the smaller spheroids
(see previous chapters).

The Zn;5X;5 structures belong to the Cs; symmetry point group. Again,
these structures are built by hexagons and squares. One hexagon is located
at the top of the structure and another one in the bottom, both being linked
to three rombi. These two parts of the structure are bonded by the remaining
nine hexagons. The bond lengths and bond angles are similar to the Zn;5X;,
structures and the smaller spheroids.

Table 5.2: Zn-X bond lengths (A), X-Zn-X angles (degrees), symmetry groups,
and cohesive energies (kJ/mol) of structures of Figure 1 and 2.

R (Zn-X) « (X-Zn-X) Symmetry Cohes. E.

Zn12010  1.87-1.96  90.9-127.5 Doy, 512.65
Zn12812 2.27-2.35 97.7-130.1 Dgh 438.16
ZnioSe12 2.39-2.48  98.9-130.6 Dop, 395.78
ZnioTe;s  2.61-2.68 100.8-129.6 Doy, 322.82
Zny5015  1.90-1.97 91.2-1314 Cap, 519.65
Zn15815 2.26-2.36 97.6-130.4 C3h 440.91
Zn15Se15 2.38-2.48 98.9-131.9 C3h 397.55

Zny5Te;s  2.60-2.68 100.5-130.6 Cap, 324.17
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Table 5.3: Experimental and theoretical cohesive energies of Zn;X; materials,
in kJ/mol.

Theoretical Experimental

anOl 718.7 727.6
ZniSi 556.1 611.1
Zn;Se; 505.2 518.0
Zn;Te; 398.4 487.6

Figure 5.3: Cohesive energy (kJ/mol) vs the inverse of the cubic root of the
ZnX units (i1/3).
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The cohesive energy per ZnX unit is calculated as Ef = (iEz, + iEx —
Ezn,x;)/1 , where i is the number of ZnX units. When the cohesive energy is
plotted versus the inverse of the cubic root of i, a straight line can be fitted to
the obtained points. Extrapolating to i~/3=0, that is, to i =oco, or the bulk,
the theoretical value obtained for the cohesive energy can be compared to the
experimental one.

We have previously shown that the representative points are those correspond-
ing to three dimensional structures. Four points are therefore available for
7Zn;0,, six for Zn;S;, and five for Zn;Se; and Zn;Te;.

The cohesive energies of the Zn;X; predicted global minima are plotted vs
i~1/3 in Figure 5.3. The extrapolated theoretical values are given in Table 5.3
along with the experimental data, which have been calculated according to the
CODATA data [191], by the next equation:

Efeap = |AHY(ZnX) — AHY(Zn) — AHY(X)| — RT

Therefore, our predicted values represent the 98.8% for Zn;0;, the 91.0% for
Zn;S;, the 97.5% for Zn;Se; and the 81.2% for Zn;Te;. Nevertheless, it is
worth mentioning that no enthalpy of formation was found for Zn;Te; in the
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CODATA data, and this value was taken from [192]. The provided Zn;Te;
enthalpy of formation is surprisingly similar to that of Zn;Se; as provided by
CODATA. According to the trend provided by our calculations we believe that
this experimental estimate requires further verification. This might account for
the poorer prediction of the Zn;Te; cohesive energy.

As expected, the extrapolated £ are smaller than the bulk values. Recall that
the coordination number in the clusters is three, whereas it is four in the bulk
crystals. On the other hand, long-range effects of the electrostatic attractive
forces of the crystals do a sizeable contribution to the total cohesive energy of
bulk crystals.

The cohesive energy may be also interpreted as a measurement of the stability
of a system. In Figure 5.3 it can be seen that in all cases Zn;2Xj, points
lie above the line. Likewise, Zn;X; points lie below. This situation might
be interpreted in the following way: Zn;2Xjs are the most stable spheroids.
Nevertheless, in order to asses this point further analysis are needed.

5.4 Conclusions

Zn;X;, X=0 8§, Se, Te, i = 12 — 15 spheroid structures have been found
to be built by ZnsX, and Zn3Xj3 rings, squares and hexagons, respectively.
This structural characteristic was previously found for smaller spheroids. The
number of squares remains constant in all structures, 6, while the number
of hexagons increases by one as the number of ZnX unit increases by one as
well. In this way ZnsX, spheroids are the smallest ones, having 6 squares and 0
hexagons. ZngXg structures have 2 hexagons, ZngXg structures 4, ZngXg struc-
tures 5, ZnioX1o structures 8 and Zni5X;5 structures 11. A related trend is
found in carbon fullerenes as well. They are built by pentagons and hexagons.
The number of pentagons remains constant (6), while the number of hexagons
increases by one when two C atoms are added.

The analysis of the cohesive energies of these combinations show that even with
such small clusters a very accurate prediction of the bulk values are achieved,
98.8%, 91.0%, 97.5% and 81.2% for Zn;0;, Zn;S;, Zn;Se; and Zn,;Te;, respec-
tively. The cohesive energy also gives a first insight into the relative stability
of these clusters, and predict that Zn,5X2 structures are the most stable ones.
These Zn2X15 structures are the most spherical ones, similar to Cgg in the
case of fullerenes. This points forward to a relationship between the stability
and the sphericity in cluster physics, which awaits theoretical rationalization.
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Chapter 6

Electronic Excitation
Energies of Small Zn;S;
Clusters: Method comparison

Abstract

In Chapter 2 the global minima of small Zn;S; clusters, i = 1 — 9, were charac-
terized. In order to calculate the excitation energies of these clusters basically
two methods are available: Configuration Interaction Singles (CIS) and Time
Dependent Density Functional Theory (TDDFT). Calculations of the excita-
tion energies of small Zn;S¢™ clusters, i = 1 — 3, have been performed with
both methods, in an attempt to find the most appropriate one. The relativis-
tic compact effective core potentials and shared-exponent basis set of Stevens,
Krauss, Basch and Jasien (SKBJ), systematically enlarged with extra functions,
was used along this work. These basis sets were combined with both methods.
In this way the most appropriate method/basis set combination was chosen,
for further excitation energy calculations on larger Zn;S&M clusters. The cho-
sen combination has been TDDFT/SKBJ(1sp2d2f). Due to the fact that no
experimental data are available, some results confirming the TDDFT ones are
necessary, ensuring in this way that our choice is the correct one. Multi Refer-
ence Configuration Interaction (MR-CI) calculations combined with a triple-¢
double polarization (TZ2P) basis set were carried out These results were clearly
in agreement with the TDDF'T results, and confirm our previous choice.

87



Excitation Energies: Methods 88
6.1 Introduction

Interest in II-VI compound semiconductors has grown spectacularly in recent
years due to their paramount technological potential.

The band gaps of these compounds make them specially interesting for photo-
voltaic solar cells. The sun irradiates the most of the energy within the visible
range. This region of the electromagnetic spectrum is very narrow, from 1.75 to
3 eV. Therefore, a good material for its use in photovoltaic solar cells must have
band gaps close to the energies given above. In addition to this property, the
solar cell must have an n-type semiconductor and a p-type semiconductor in
order to obtain a potential difference between the two materials, which is nec-
essary to produce electricity. The II-VI compound semiconductors have these
properties. The band gaps go from 1.45 eV for CdTe to 3.66 eV for ZnS, and
all these compounds present either p or n-type semiconduction [13]. Therefore
these materials are ideal for solar cells.

Nowadays all the II-VI based solar cells are composed of bulk systems, which
basically have one absorbing band gap. Nevertheless, the fact that cluster
and nanoparticle characterization is becoming technologically possible opens
new possibilities. Cluster properties change as size increases, and henceforth
different-sized clusters should have different excitation energies. Combined
together in an hypothetic cluster-based solar cell, the efficiency of it could
increase considerably.

Theoretically the excitation energies may be accurately calculated at the Com-
plete Active Space Second Order Perturbation [91, 92] (CASPT2) level of the-
ory. However, the large amount of electrons of the systems under study makes
impossible the use of it. Henceforth less sophisticate methods have to be con-
sidered. The Configuration Interaction Single (CIS) method and recently de-
veloped Time Dependent Density Functional Theory (TDDFT) method have
been considered. The later one has been claimed to yield more accurate results
[124, 193]. However, it has been seen that Rydberg states are not calculated
accurately [130].

Our goal is to find the most proper method in order to calculate the excitation
energies of Zn;S¢M i = 1 — 9, characterized previously in Chapter 2 ([185]).
For that purpose CIS and TDDFT calculations have been performed for i =
1 — 3, using the SKBJ basis set, to which extra sp, d and f functions were
systematically added in order to find the most proper basis. Unfortunately, in
dealing with such compounds which have not been experimentally characterized
has a clear drawback: the no availability of experimental data. Hence, it
is difficult to perform a proper comparison between both methods. In order
to dispel the uncertainties that may arise about this choice, Multi Reference
Configuration Interaction (MR-CI) calculations have been performed. These
results will be used as a confirmation of our previous choice.
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Table 6.1: Extra functions added to the SKBJ basis.

7n S

« d d a d d
sp 0.017900 1.00 1.00 0.033139 0.21652 0.30748
sp 0.005967 1.00 1.00 0.01104 0.21652 0.30748
sp 0.001989 1.00 1.00 0.00368 0.21652 0.30748
d 0.3264 1.00 0.7 1.00
d 0.1088 1.00 0.2333 1.00
d 0.03627 1.00 0.07777 1.00
d 0.01209 1.00 0.02592 1.00
f 3.1109 1.00 0.55 1.00
f 1.037 1.00 0.1833 1.00
f 0.3457 1.00 0.0611 1.00
f 0.1152 1.00 0.02037 1.00

6.2 Methods

Two methods have been tested in order to find the most accurate one in order
to calculate the excitation energies of small Zn;S; global minima, i = 1—3. On
one hand the CIS [?] and on the other the TDDFT [131, 119, 132].

In order to perform the TDDFT calculations the hybrid Becke-style one pa-
rameter functional using modified Perdew-Wang exchange and Perdew-Wang
91 correlation (MPW1PW91) [195] was used. This combination was seen to
provide the best results [124], along with the Becke3 [109] Perdew86 [196] func-
tional B3P86. Both CIS and TDDFT calculations were performed with the rel-
ativistic compact effective core potentials and shared-exponent basis set [133]
of Stevens, Krauss, Basch and Jasien (SKBJ). The Zn d electrons were treated
as valence electrons. In order to analyze the influence of the basis set size on
the calculated excitation energies, extra functions were systematically added
to SKBJ to a maximum of extra 3sp4d4f functions. The exponents are given in
Table 6.1. These larger basis sets are labeled according to the number of added
functions. Thus, as an example, the largest one is denoted SKBJ(3sp4d4f).

CIS and TDDFT calculations were carried out with the GAUSSIAN94 [162]
and GAUSSIANO8 [163] packages.

Previously, the fact that unfortunately no experimental data are available for
these compounds has been mentioned. In order to obtain some “confirma-
tion” values ensuring that our choice is correct, Multireference Configuration
Interaction (MR-CI) calculations were carried out with the PSI [197] pro-
gram package. The all electron triple-¢ double polarization (TZ2P) basis set
(14s11p6d2f/10s8p3d2f) for Zn [166, 167, 168] and (13s10p2d1f/6s5p2d1f) for
S [169, 170] was used, except for Zn3Ss. In the case of Zn3S; no polariza-
tion functions were used, due to the fact that the basis set limit in PSI, 255
functions, was exceeded.
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Table 6.2: CIS results for Zn;S{M. AE: excitation energy (eV).

I Y I ED)

SKBJ + AE AFE AFE AFE
- 1.1361 3.8757 0.5344 1.3347
1d 1.1410 3.8914 0.4932 1.4064
1spld 1.1564 3.8821 0.5142 1.4207
2spld 1.1573 3.8834 0.5154 1.4211
2d 1.1260 3.8970 0.4818 1.4106
3d 1.1328 3.9022 0.4916 1.4119
1sp2d 1.1389 3.8906 0.5002 1.4244
1sp3d 1.1394 3.8903 0.5027 1.4234
2sp2d 1.1398 3.8915 0.5014 1.4246
2sp3d 1.1403 3.8906 0.5034 1.4240
1f 1.1942 3.8925 0.5401 1.4122
1splf 1.2090 3.8827 0.5603 1.4271
1sp2d1f 1.1966 3.8934 0.5493 1.4304
1sp3d1f 1.1974 3.8931 0.5516 1.4307
2splf 1.2099 3.8839 0.5614 1.4276
2sp2d1f 1.1975 3.8941 0.5504 1.4307
2sp3dif 1.1982 3.8934 0.5512 1.4313
2sp3d2f 1.2397 3.8949 0.5991 1.4908
2sp3d3f 1.2557 3.8980 0.6165 1.5083
3sp4d4f 1.2576 3.8985 0.6186 1.5107

6.3 Results and discussion

The results of this study have been divided in three parts, hoping that in this
way it will be more understandable for the reader. In section 5.3.1 the CIS
results are analyzed and in section 5.3.2 the TDDFT results. In both sections
the basis set size effect is analyzed. Finally, in section 5.3.3 the MR-CI values
are shown and compared to the previously obtained CIS and TDDFT results.
In this way, the best behaved method/basis set combination is chosen, which
will be further used to calculate the excitation energies of larger Zn;S; clusters.

6.3.1 CIS results

In this section the CIS excitation energies for Zn;S¢™, i = 1 — 3, are pre-
sented. This method is combined with the SKBJ effective core potential, and
extra functions are systematically added to SKBJ in order to find the most ap-
propriate combination. Only the results of Zn; S are fully discussed, since
the conclusions are similar for the rest.

In Table 6.2 the CIS excitation energies from the '3 ground state of Zn;S{M are
shown. For the sake of brevity, we will focus the discussion into the calculated
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Table 6.3: CIS results for ZnyS$M. AE : excitation energy (eV).

1BQg 1Blu 1Au BBQg sBlu 3Au

SKBJ + AFE AFE AFE AFE AFE AFE
1d 3.3668 4.0397 4.1394 3.1271 3.2631 3.5060
1spld 3.3627 4.0299 4.1329 3.1262 3.2659 3.5084
1sp2d 3.3604 4.0823 4.1339 3.1059 3.3158 3.5098
1sp3d 3.3645 4.0843 4.1361 3.1072 3.3169 3.5091
2spld 3.3650 4.0240 4.1349 3.1276 3.2667 3.5088
2sp2d 3.3613 4.0825 4.1346 3.1061 3.3158 3.5101
2sp3d 3.3644 4.0842 4.1366 3.1062 3.3163 3.5084
1d1f 3.4117 4.0401 4.1816 3.1713 3.2613 3.5105
1d2f 3.4362 4.0701 4.2035 3.1942 3.2923 3.5325
1d3f 3.4495 4.0932 4.2145 3.2058 3.3101 3.5398
1spldlf 3.4064 4.0227 4.1742 3.1692 3.2643 3.5131
1spld2f 3.4299 4.0533 4.1971 3.1915 3.2964 3.5369
1spld3f 3.4443 4.0792 4.2061 3.2046 3.3145 3.5447
2spldlf 3.4086 4.0239 4.1762 3.1705 3.2652 3.5135
2spld2f 3.4320 4.0548 4.1988 3.1929 3.2976 3.5376
2spld3f 3.4461 4.0804 4.2072 3.2060 3.3157 3.5457
1sp2d2f 3.4383 4.0976 4.2081 3.1827 3.3294 3.5385
2d3f 3.4460 4.1101 4.2193 3.1875 3.3296 3.5359
1sp2d3f 3.4491 4.1070 4.2178 3.1929 3.3383 3.5440
1sp2d1f 3.4098 4.0770 4.1808 3.1544 3.3083 3.5164
3d3f 3.4605 4.1204 4.2233 3.2019 3.3427 3.5463
1sp3d3f 3.4540 4.1117 4.2212 3.1960 3.3421 3.5468
2sp3d3f 3.4541 4.1120 4.2216 3.1954 3.3419 3.5466

excitation energies with different basis sets for the 'II excitation. Observe that
the basis set size effect is similar in all states. The influence of extra sp, extra
d and extra f functions is analyzed separately, a procedure used along all this
work.

In order to study the influence of extra sp functions, the results of SKBJ(1d),
SKBJ(1spld) and SKBJ(2spld) are compared, which are 1.1410 eV, 1.1564 eV
and 1.1573 eV, respectively. It is seen that while the addition of an extra s
and an extra p function to SKBJ(1d) changes the resulting excitation energies
significantly, more s and p additions do not. The same behaviour was observed
comparing the SKBJ(1sp2d1f) and SKBJ(2sp2d1f) results, i.e. 1.1966 eV and
1.1975 V.

Analyzing the influence of extra d functions, from the SKBJ(2sp1d), SKBJ(2sp
2d) and SKBJ(2sp3d) results, 1.1573 €V, 1.1398 €V and 1.1403 eV, respectively,
the need of at least two extra d functions is concluded. Similar conclusion is
obtained comparing the SKBJ(1sp1dif), SKBJ(1sp2d1f) and SKBJ(1sp3d1f)
results, 1.2090 eV, 1.1966 eV and 1.1974 eV, respectively. A third extra d
function does not change significantly the final result.
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Table 6.4: CIS results for ZnzS$™. AE: excitation energy (eV).

7 77 7 77

'E 'E SE 3E
SKBJ + AE AFE AFE AFE
1d 2.8602 2.8676 2.4687 2.5739
2d 2.8689 2.8438 2.4559 2.5426
3d 2.8857 2.8674 2.4725 2.5643
1spld 2.8693 2.8816 2.4808 2.5877
2spld 2.8702 2.8834 2.4817 2.5892
1sp2d 2.8835 2.8625 2.4727 2.5601
2sp2d 2.8840 2.8633 2.4732 2.5607
1d1f 2.9132 2.9387 2.5206 2.6439
1d2f 2.9735 2.9988 2.4559 2.5426
1d3f - - - -

The largest jump in the AF is produced by the addition of extra f functions.
Comparing the results of SKBJ(2sp3d), SKBJ(2sp3d1f), SKBJ(2sp3d2f), SKBJ
(2sp3d3f) and SKBJ(3sp4d4f)), which are 1.1403 eV, 1.1982 eV, 1.2397 €V,
1.2557 eV and 1.2576 eV, respectively, we conclude that at least three extra f
functions are needed. From these CIS results, for the Zn;S{M structure the
SKBJ(1sp2d3f) basis set appears to be the best choice.

Similar analysis may be performed for the excitation energies of Zn,SS™, of
Dy, symmetry and ' A, ground state, given in Table 6.3.

It may be seen that again SKBJ(1sp2d3f) seems to be the smallest proper basis.

The CIS excitation energies for ZnszS$™, of Dg;, symmetry and 'A] ground
state, are given in Table 6.4.

There it can be viewed that the SKBJ basis only was enlarged by a maximum
of two f functions. This was due to the fact that the addition of a third one
required too large disc space. Hence, it was not possible to perform an analysis
as in the previous cases.

These results show the importance of including polarization functions in the
basis set. Although it is too large even for Zn3S$*, SKBJ(1sp2d3f) basis set
has been seen to be the smallest proper basis to be combined to CIS in order to
calculate reliable excitation energies. Nevertheless, this combination can not
be used for larger clusters, and therefore does not seem to be a practical choice.

6.3.2 TDDFT results

In this section the calculated TDDFT excitation energies for Zn;SF™ i = 13,
are shown. As in the CIS case, the SKBJ effective core potential systematically
enlarged in order to find the most proper basis set. Similarly to the CIS case,
only the Zn;S¢M case is fully discussed.
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Table 6.5: TDDFT results for Zn;S{™. AFE : excitation energy (eV).

I Y I ED)

SKBJ + AE AFE AFE AFE
1d 0.7633 3.9933 -0.3156 1.8412
1spld  0.7687 3.9782 -0.3068 1.8457
2spld  0.7685 3.9777 -0.3068 1.8448
1sp2d  0.7414 3.9808 -0.3244 1.8296
2sp2d  0.7416 3.9803 -0.3243 1.8292
1sp3d  0.7393 3.9775 -0.3247 1.8226
2sp3d  0.7394 3.9770 -0.3247 1.8226
1d1f 0.8051 3.9795 -0.3188 1.8204
1d2f 0.8203 3.9646 -0.3095 1.8438
1spldlf 0.8094 3.9649 -0.3098 1.8253
1sp2d1f 0.7844 3.9678 -0.3302 1.8092
1spld2f 0.8243 3.9506 -0.2997 1.8510
1sp2d2f 0.8061 3.9560 -0.3159 1.8384
2sp3d3f 0.8135 3.9537 -0.3130 1.8409
3sp4d4f 0.8135 3.9536 -0.3128 1.8400

In Table 6.5 the TDDFT excitation energies of Zn;S{™ are shown.

It may be observed that the addition of extra functions to the SKBJ basis
changes significantly the final result. As in the CIS case, we follow a step by
step method. First the influence of extra sp is studied, then the influence of
extra d and finally the influence of extra f functions.

An extra sp function seems to be not very important for the 'II state, as
SKBJ(1d) yields an excitation energy of 0.7633 ¢V and SKBJ(1spld) 0.7687
éV. Nevertheless, for the 13 state it is, notice that the SKBJ(1d) energy is
3.9933 eV and the SKBJ(1sp1ld) 3.9782 eV. The influence of a second extra
sp function, on the other hand, is small in all the cases. For instance, for the
I state, SKBJ(1spld) and SKBJ(2spld) almost yield the same AE: 0.7687
eV and 0.7685 eV, respectively. One extra sp function seems a good choice
at this point. At least two extra d functions are needed, as follows from the
results of SKBJ(1sp1d), SKBJ(1sp2d) and SKBJ(1sp3d), which are 0.7687 €V,
0.7414 eV and 0.7393 €V, respectively. The results obtained adding two and
three extra d functions do not differ significantly. Two extra f functions have
been seen to be necessary as well. For the 'II state we focus now on the
SKBJ(1sp2d), SKBJ(1sp2d1f) and SKBJ(1sp2d2f) excitation energies, 0.7414
eV, 0.7844 eV and 0.8061 eV, respectively. This last value still diverges consid-
erably from the one with only one extra f function. However, comparing it to
the SKBJ(2sp3d3f), which is 0.8135 €V, it is seen that a third one is not nec-
essary. This value is also found for a larger basis set. The difference between
SKBJ(1sp2d2f) and SKBJ(2sp3d3f) is small enough that we can choose this
first basis as a proper one to combine with TDDFT, saving in this way CPU
usage. It should be also pointed out the negative excitation energy calculated
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Table 6.6: TDDFT results for Zn,S§™. AE: excitation energy (eV).

1BQg 1Blu 1BSu BBQg sBlu 3Au

SKBJ + AFE AFE AFE AFE AFE AFE
1d 2.0627 2.8697 2.9279 1.8958 2.2998 2.5978
1spld 2.06561 2.8654 2.9274 1.8997 2.3031 2.5992
2spld 2.0655 2.8654 2.9275 1.8999 2.3030 2.5997
1sp2d 2.0597 2.8898 2.9081 1.8863 2.3287 2.5863
2sp2d 2.0596 2.8891 2.9079 1.8863 2.3278 2.5867
1sp3d 2.0612 2.8877 2.9086 1.8878 2.3264 2.5887
2sp3d 2.0611 2.8876 2.9086 1.8873 2.3260 2.5889
1d1f 2.1036 2.8674 2.9662 1.9363 2.2936 2.6285

1d2f 2.1215 2.8845 2.9817 1.9540 2.3109 -

1spldlf 2.1048 2.8633 2.9647 1.9391 2.2973 2.6287
1spld2f 2.1225 2.8813 2.9801 1.9566 2.3159 2.6462
1sp2d1f 2.1035 2.8845 2.9482 1.9300 2.3182 2.6177
1sp2d2f 2.1251 2.8978 2.9669 1.9521 2.3295 2.6388
2sp3d3f 2.1296 2.8928 2.9691 1.9559 2.3226 2.6448
3spdd4f 2.1332 2.8963 2.9723 1.9594 2.3259 2.6463

for the 31I state.

Of course, one should think that maybe the proper basis for Zn; S is not for
larger clusters. Following the results for Zn,S$™ are studied, which are given
in Table 6.6.

Having a look to this table, one may observe that the smallest basis yielding
good values is SKBJ(1sp2d2f).

The Zn3S$M data, given in Table 6.7, also shows SKBJ(1sp2d2f) basis set as
the smallest one yielding good results. These calculations were performed with
Ca, symmetry, ' A; ground state, for better comparison with MR-CI results.

It seems logical then to choose this SKBJ(1sp2d2f) for further calculations. It
is seen, as happened for CIS, that the inclusion of more than one polariza-
tion functions in the basis set is indispensable. For TDDFT, two polarization
functions are enough, and three for CIS.

6.3.3 MR-CI results

Already we have obtained results with both CIS and TDDFT, and have found
a proper basis to combine with each one. However, the no availability of exper-
imental data makes one uncertain about the accuracy of these calculations. In
order to check the suitability of CIS/SKBJ(1sp2d3f) or TDDFT/SKBJ(1sp2d2f),
MR-CI/TZ2P calculations were performed, and the obtained results were used
as reference values.
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Table 6.7: TDDFT results for Zn3S$™. AE: excitation energy (eV).

AFE AFE AFE AFE AFE AFE

1d 3.6054 3.6056 4.3346 3.4464 3.4467 4.0456
1spld  3.5996 3.5997 4.3279 3.4406 3.4408 4.0385
2spld  3.5995 3.5997 4.3277 3.4403 3.4406 4.0382
1sp2d  3.5502 3.5503 4.2747 3.3859 3.3861 3.9868
2sp2d  3.5503 3.5504 4.2748 3.3859 3.3861 3.9870
2sp3d  3.5535 3.5536 4.2774 3.3866 3.3868 3.9867

1d1f 3.6409 3.6410 4.3688 3.4813 3.4815 4.0792

1d2f 3.6423 3.6424 4.3705 3.4818 3.4820 4.0809
1spldlf 3.6338 3.6339 4.3610 3.4742 3.4744 4.0711
1spld2f 3.6343 3.6345 4.3618 3.4740 3.4742 4.0722
1sp2d1f 3.5873 3.5874 4.3099 3.4225 3.4227 4.0219
1sp2d2f 3.5969 3.5970 4.3205 3.4320 3.4022 4.0325
2sp3d3f 3.6017 3.6018 4.3273 3.4339 3.4341 4.03 54

The MR-CI calculations were carried out with the PSI program package, as
mentioned earlier. This program makes use of the molecular point group and
the corresponding irreducible representations. Nevertheless, one of the draw-
backs is that the largest available symmetry is Dop. Therefore, in the cases
of Zn;SFM and Zn3S$™, belonging to the Coo, and D3y, respectively, lower
symmetries must be used. For Zn;S{M 13 states Cy, symmetry was used, and
for the 'II state Cs, as will be explained further. an,S3GM calculations were
carried out with the Cs, symmetry, as the TDDFT calculations. Two electron
excitations were allowed in the MR part, and in the configuration interaction
as well, resulting in final CISD(TQ) calculations.

In Table 6.8 MR-CI results are shown for Zn;S¢. The energy of the 'S
states, both the ground state and the excited state, were calculated with 461
determinants in the valence reference, and 217013 determinants in the CISD,
with Cy, symmetry. The 'II excited state energy was calculated with 524
determinants as reference for the 221666 determinants of the CISD, with Cs
symmetry. The obtained MR-CI excitation energies for the Il and the !X
states are 0.7562 eV and 3.9221 eV, respectively. These results are in agreement
with the TDDFT/SKBJ(1sp2d2f) energies, i. e. 0.8061 eV and 3.9560 eV.

The excitation energy of the 'II state was calculated with Cs, symmetry at
the beginning. The obtained AF was close to that of CIS, 1.13 eV. With Cs,
symmetry there were two degenerate states, a B; and a By states, that due to
the fact that they belong to different irreducible representations they do not
mix. That is, this excitation is treated as a single excitation. If this is correct,
calculations with Cy symmetry should be similar. We have seen that they are
not. If the calculation is performed with Cy symmetry, both B; and B- states
in Co, belong to the B irreducible representation. In this way they mix and
the excitation is correctly described as a double excitation. CIS method is
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Table 6.8: MR-CI results for ans?M different electronic states. N, g indicates
the number of reference determinants and N the number of determinants used
in the CI part of the calculation. The obtained MR-CI energy in Hartrees, and
the MR-CI, CIS and TDDFT excitation energies in eV.

'Y (gs.) I (e-s.) 13 (e.s.)
Noin 461 524 461
Ner 217013 221666 217013
E (MR-CI) -2175.418042 -2175.390274 -2175.273990
AE (MR-CI) ] 0.7562 3.9221
AFE (CIS/SKBJ(3spddaf)) ; 1.2576 3.8985
AE (TDDFT/SKBJ(1sp2d2f)) - 0.8061 3.9560

Table 6.9: MR-CI results for anng different electronic states. N, g indicates
the number of reference determinants and N the number of determinants used
in the CI part of the calculation. The obtained MR-CI energy in Hartrees, and
the MR-CI, CIS and TDDFT excitation energies in e€V.

lAg 1B2g 1Blu
Nur 905 1598 1596
Ner 281382 773112 772023
E (MR-CI) -4350.814847 -4350.733628 -4350.692521
AE (MR-CI) - 2.211 3.284
AE (CIS/SKBJ(1sp2d3f)) - 3.4491 4.1070
AE (TDDFT/SKBJ(1sp2d2f)) - 2.1251 2.8978

not able to describe these excitations, since only single excitations are taken
into account. On the other hand TDDFT method describes these excitations
correctly. At this point the use of TDDFT method seems logical in further
calculations.

In Table 6.9 the obtained MR-CI results for anng are given, and are com-
pared to the CIS and TDDFT results.

The 'A, state energy was calculated using 905 determinants as reference, and
the CISD calculation made use of 281382 determinants. The energy of !By,
was calculated with 1598 determinants in the reference and 773112 determi-
nants in the CISD, similarly to ! By, state, 1596 determinants in the reference
and 772023 in the CISD level. The calculated excitation energies again are
in more agreement with the TDDFT /SKBJ(1sp2d2f) method. The AE (MR-
CI) !By, excitation energy, 2.211 €V, is very close to that obtained at the
TDDFT/SKBJ(1sp2d2f) level, which is 2.1251 €V. However, the ' By, excita-
tion energy is not so accurately calculated, 3.284 eV at MR-CI level and 2.8978
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Table 6.10: MR-CI results for Zn3S§M different electronic states. Njpsr in-
dicates the number of reference determinants and N¢; the number of deter-
minants used in the CI part of the calculation. The obtained MR-CI energy
in Hartrees, and the MR-CI, CIS and TDDFT excitation energies in eV. In
parenthesis the states corresponding to the CIS Ds;, calculations.

TA, 1B, ('E)) 1B, ('E")
Nun 121 115 115
Nci 141337 191195 191195
E (MR-CI) -6526.144962 -6525.983187 -6525.953076
AE (MR-CI) - 4.4046 5.2245
AE (CIS/SKBJ(1d2f) - 2.9735 2.9988
AE (TDDFT /SKBJ(1sp2d2f)) - 3.5969 4.3205

at the TDDFT level. Again CIS result is further, 4.1070 eV.
In Table 6.10 the Zn3S§™ MR-CI results may be seen.

The symmetry of Zn3S$M was reduced from D3, to Ca,, as explained before.
The 'E’ state found in the CIS D3y, calculations splits into the near degenerate
1By and 'A, states found in the C,, calculations. The remaining !B, state
corresponds to the 'E” state. No polarization functions were added to the
T7Z basis set. This was due to the fact that the limit of 255 functions was
exceeded. One may think that the obtained results will not be very accurate,
but nevertheless could be very useful to compare qualitatively to the CIS and
TDDEFT results. It may be seen that the MR results are a bit far from the
TDDEFT results, but are even further from the CIS results. In addition to this,
the energy difference between the two 'B; excited states are very similar in
both MR and TDDFT, 0.8199 eV and 0.7236 €V, respectively, which compare
well and lends further support to the TDDFT calculations.

These results show that TDDFT is more appropriate than CIS in order to
perform this type of calculations. It describes better both single and double
excitations. Therefore, for further calculations of the excitation energies of
Zn,;S§M clusters TDDFT /SKBJ(1sp2d2f) is chosen.

6.4 Conclusions

It has been seen that both CIS and TDDFT methods need basis sets with more
than one polarization functions. SKBJ(1sp2d2f) was seen to be the smallest
basis yielding converged results with TDDFT, and SKBJ(1sp2d3f) with CIS.
Nevertheless, this basis was too large to be used even for an,SngM , S0 it ap-
peared to be a bad choice for further calculations.

The MR-CI results used as reference show a clear advantage of TDDFT method.
It describes sensible better than CIS the two-fold degenerate 'II excitation
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in Zn;S¢M and also appears to be superior for the rest of the studied ex-
citation in all the clusters investigated. Therefore, for further calculations
TDDFT/SKBJ(1sp 2d2f) combination is recommended.



Chapter 7

Electronic Excitation
Energies of ZniSZ-GM Clusters

Abstract

Time Dependent Density Functional Theory (TDDFT) excitation energies are
calculated for Zn;SFM clusters, i = 1—9. The geometry of the global minima is
ring like for ¢ = 1 — 5 and three dimensional spheroids for i = 6 — 9. In general,
the calculated excitations happen from non-bonding p orbitals of sulfur. These
orbitals are perpendicular to the molecular plane in the case of the rings, and
normal to the spheroid surface for 3D clusters. The calculated excitation ener-
gies are larger for ring like clusters as compared to 3D ones, with the excitation
energies of the latter structures lying close to the visible spectrum. The differ-
ence between Kohn-Sham eigenvalues of the orbitals involved in the electronic
excitations studied have also been compared with the TDDFT results for two
approximate density functionals, i.e.: MPW1PW091 and B3LYP, being the lat-
ter more accurate. The B3LYP excitation energies calculated as the difference
between Kohn-Sham eigenvalues of the orbitals involved in the excitation have
been found to be only 0.30-0.40 eV too high for the smaller 3D like clusters and
to decrease as the cluster size increases. Therefore, this might be a practical
approach to estimate exctitation energies of large Zn;S¢ clusters.

99
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7.1 Introduction

The end of the 20th century has seen an spectacular growth of the interest in II-
VI compound allows. Semiconduction arises from the existence of no nule band
gaps that may be gained getting energy from the environment. One manner
of achieving this is absorbing the energy of the photons that come from the
sun. This is basically the physical fenomenum occurring in solar cells. The
II-VI compound semiconductors fullfil the necessary requirements in order to
be used in solar cells.

Since the recent development of nanotechnology, clusters and nanostructures
have become interesting in themselves. They might be experimentally char-
acterized, hence, they are not longer only a theoretical tool to study infinite
systems. A neat example of this are the fullerenes, carbon spheroids discov-
ered by R.F. Curl, R.E. Smalley and H.W. Kroto, which have also photovoltaic
applications [52, 53].

In this paper a full investigation of the electronic excitation energies of Zn;S&M
1 = 1—9, clusters as characterized in Chapter 2 is presented. For that purpose
the method/basis set combination chosen in Chapter 6 is used. The motivation
of this study is to calculate the absorption properties of these small clusters,
in order to see if they are suitable for constructing higher efficient solar cells.

7.2 Method

The electronic excitation energies have been calculated with the Time Depen-
dent Density Functional Theory (TDDFT) [131, 119, 132], as recommended
in our previous analysis [199] of the excitation energies of small clusters. For
the TDDFT calculations the hybrid Becke-style one parameter functional using
modified Perdew-Wang exchange and Perdew-Wang 91 correlation (MPW1PW91)
[195] was used.

The relativistic compact effective core potentials with shared-exponent basis
set [133] of Stevens, Krauss, Basch and Jasien (SKBJ) was used as the starting
basis set. We demonstrated previously [199] that polarization and diffusion
functions were needed in order to yield accurate results, and showed that the
SKBJ(1sp2d2f) basis, where there were added one s and p, two d and two f
functions, was the ideal one for an accurate though affordable calculation of
the electronic excitation energies of small ZniSiGM clusters. Nevertheless, the
size of the basis set makes the calculation of the excitation energies of large
clusters prohibitive. Henceforth, the smaller SKBJ(d) basis set was chosen for
these larger clusters. All the exponents of the expanded SKBJ basis are the
same as used in Chaper 5 ([199]).

All the calculations were carried out with the GAUSSIAN9S [163] package.
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Table 7.1: Valence configuration of the clusters of Group 1, Zn;S{™ i =1 —5.

1 Val. Conf. LUMO
1 262 402 502 5t 60

2 503, 3b§g 3v2, 4b3, 2b§g Tag

3 14a2 12b2 6b2 5a2 7b2 15a;
4 4b§g 3a3, 763 863 202, Taig
5 33a’?29a"? 344’ 35a'% 30a’"? 36a’

7.3 Results and Discussion

In Chapter 2 ([185]) it was concluded that the global minima of small Zn;S;,
i = 1 — 5, clusters were ring structures while the global minima for larger
clusters, i = 6 — 9, were three dimensional spheroids. Ring like structures will
constitute our Group 1 and the three dimensional structures Group 2, in an
attempt to present the results in a more understandable way.

For clusters of Group 1 the previously mentioned SKBJ(1sp2d2f) basis was
used. However, as mentioned in the previous section, for clusters of Group 2
this basis is too large. Henceforth, the smaller SKBJ(d) basis set was chosen
for these larger clusters. However, for the clusters of Group 1 we have obtained
the electronic excitation energies with both SKBJ(d) and SKBJ(1sp2d2f) basis
sets. This allows us to asses the performance of the smaller basis set and
consequently to highlight the limitations of the SKBJ(d) basis set with respect
to SKBJ(1sp2d2f).

7.3.1 TD-DFT excitation energies of Zn,S¢M i=1-9
Group 1

In Table 7.1 the valence configuration and LUMO orbital symmetry of the
clusters of Group 1, namely Zn;S;, i = 1 — 5, depicted in Figure 2.1, are given.
Table 7.2 collects the SKBJ(d) and SKBJ(1sp2d2f) excitation energies and
oscillator strengths for the mentioned clusters.

The lowest excitation of Zn; S?M occurs when an electron is excited from the
HOMO to the LUMO, yielding a 'II excited state. This transition needs 0.81
eV to happen, and has a small oscillator strength, f = 0.002. The other
calculated transition involves the '3 ground state and an excited state of the
same symmetry. Now the electron is excited from the inner 50 orbital to the
LUMO. The excitation energy is 3.96 €V, 3.15 eV larger than the 'Y —! II
excitation, but the oscillator strength is one order of magnitude larger.

The excitation of an electron from the HOMO to the LUMO is dipole forbid-
den in ZnyS§™ | as shown in Table 7.2. The lowest energy allowed excitation
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Table 7.2: SKBJ(d) and SKBJ(1sp2d2f) excitation energies (eV) and oscilla-
,i=1—5 A(AE) is the difference between
SKBJ(1sp2d2f) AE and SKBJ(d) AE. Similarly for Af.

tor strengths of small Zn;S

GM
i

Transition SKBJ(1sp2d2f) SKBJ(1d)

) orbitals states AE f AE f A(AE) Af
1 51 — 60 Iy »1m 0.81 0.002 0.76 0.001 0.05 0.001
50 — 60 Iy -ty 3.96 0.062 3.99 0.060 0.03 0.002

2 2byy — Tag 144 =1 By 2.13 forbidden 2.06 forbidden 0.07 -
4b1y, — Tag YAy —! B, 2.90 0.015 2.87 0.014 0.03 0.001
3bgy — Tag  'Ag —' B3,  2.97 0.020 2.93 0.015 0.04 0.005

3 7hy — 15a1 TA; - By 3.60 forbidden 3.61 forbidden 0.01 -

5a3 — 15a1 14, -1 Ay 3.60 forbidden 3.61 forbidden 0.01 -
6b1 — 15a1 A, =1 B 4.32 0.038 4.33 0.042 0.01 0.004

4 2byy — Tary 'Aig —! Biw 3.74 forbidden 3.72 forbidden 0.02 -
3agy — Taig 1Aig —! Ay 4.66 0.005 4.65 0.011 0.01 0.006
3agy — 8a1g  1Aig —! Ay 4.92 0.088 4.95 0.096 0.03 0.008

5  30a" — 36a’ TAr -1 AY 4.01 0.001 3.97 0.001 0.04 -

35a’ — 36a’ TAr 1A 4.21 0.001 4.18 0.001 0.03 -
30a’” — 37a’ tar -1 A" 4.39 0.001 4.39 0.007 0 0.006

happens when an electron is excited from the 4by, orbital to the LUMO, result-
ing in a !By, excited state. This transition absorbs 2.90 eV and the oscillator
strength is f = 0.015. The second allowed excitation occurs exciting an elec-
tron from the 3bs, orbital to the LUMQ. This transition needs 2.97 €V, and
f =0.020, a bit larger than the previous one. These two excitation energies lie
within the range of the visible spectrum.

Two dipole forbidden transitions have been reported for Zn3S$*. The only
allowed transition calculated occurs exciting an electron from the 6b; orbital
to the LUMO, yielding a !B; state. The excitation energy is 4.32 eV, and
f = 0.038. This excitation energy is larger than the allowed excitation energies
of Zn,S$™M | and lies within the UV spectrum.

The two calculated 'A;, —! Ay, transitions are allowed for Zn,S$*. The
electron is excited from the 3aq, orbital to the LUMO in one case, being the
excitation energy 4.66 eV and the oscillator strength 0.005. The other transition
is likely to be more intense, since the oscillator strength is much larger, 0.088,
and the excitation energy is only 0.26 eV larger. In this last transition the
electron is excited from the 3ag, orbital to the second virtual orbital, 8ag.

Finally, three dipole allowed transitions of Zn5S$ are collected in Table 7.2.
The first one occurs when an electron from the HOMO is excited to the LUMO.
The resulting excited state has ' A” electronic structure. The excitation energy
is 4.01 €V, and the oscillator strength 0.001. Exciting an electron from the 35a’
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Table 7.3: Valence configuration of the clusters of Group 2, Zn;S{™ i =6 —9.

i Val. Conf. LUMO
6  21a16b; 2207 22a2 17D, 33a,
7 38a"? 39@”5 50a’? 51a’? 404’2 52a’
8 5062 51a? 52a? 5162 522 53a
9 50a"?51a""? 64a’? 65a’? 664’2 67a’

orbital to the LUMO needs 4.21 eV, and the oscillator strength is 0.001. The
resulting excited state has ' A’ electronic structure. Finally, the last calculated
transition is 1A’ —! A”. Now, the electron is excited from the HOMO to the
second virtual orbital, 37a’. The oscillator strength of this excitation is similar
to the previous ones, 0.001. The excitation energy is 4.39 €V, which lies in the
ultraviolet but close to the visible spectrum.

SKBJ(d) vs. SKBJ(1sp2d2f)

In Table 7.2 both the SKBJ(d) and SKBJ(1sp2d2f) excitation energies and
oscillator strengths are given. Besides, the differences between them may also
be viewed there. Having a look to these differences, one may observe that they
are not very large. The largest difference in the excitation energy is 0.07 eV
for the 1A, —! B, transition in Zn,S$™, which represents only 3% of the
total excitation energy. Nevertheless, most of the differences are smaller than
0.04 €V, which are less than 1% of the total excitation energies. Therefore,
the SKBJ(d) results for the clusters of Group 2 are expected to be reasonably
accurate.

Group 2

In Table 7.3 the valence configuration and LUMO orbital symmetry of the
clusters of Group 2, namely Zn;S;, i = 6 — 9, depicted in Figure 2.3, are given.
Table 7.4 collects the SKBJ(d) and SKBJ(1sp2d2f) excitation energies and
oscillator strengths for the mentioned clusters.

In Table 8.4 three excitations are shown for ZngS§?. Two of them are dipole
forbidden, and the only predicted to be dipole allowed occurs from the ground
state to the ! B, excited state, where an electron from the inner 22b,, orbital is
excited to the LUMO. The excitation energy of 3.60 eV lies nearby the visible
spectrum, and the oscillator strength is 0.029.

For Zn;S$M | three transitions are given in Table 8.4. The two transitions with
smallest excitation energies occur from the 'A’ ground state to 'A” excited
states. In one case an electron from the HOMO is excited to the LUMO, being
the excitation energy 3.10 €V, and in the other case the electron is excited
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Table 7.4: SKBJ(d) excitation energies (eV) and oscillator strengths of small
Zn;S¢M i=6-9.

Transition SKBJ(d)

orbitals states AFE f
6 17by — 33a, ‘A, —' B, 3.37 forbidden
22ay — 33a, 'Ay —' A, 3.37 forbidden
22b, — 33a, ‘A, —' B, 3.60 0.029
7 40" — 52« 'A’='A” 310 0.000
400" — 53a’ 1A’ =P A" 3.27 0.000
51a’ — 52’ 1A’ =P A’ 3.53 0.004
8  52b— 53a A-'B 3.5 0.009
51b — 53a 'A—-'B  3.65 0.009
5la — 53a 'A—-'A  3.94 forbidden
9 66a’ — 67a’ TA4” 51 A" 377  forbidden
650" — 67’ 1A' =P A" 4.05 0.023
64a’ — 67’ 1A' =P A" 4.05 0.023
620’ — 67’ A’ ST AT 4.40 0.034
6la’ — 67’ A" =P A 440 0.034

.

to the second virtual orbital, 53a’. The excitation energy in this case is 3.27
eV. In both cases the oscillator strength is very small, 0.0001. The transition
with larger oscillator strength, 0.004, occurs exciting an electron from the 51a’
orbital to the LUMO. The excitation energy of this transition is 3.53 eV.

anSSGM has two dipole allowed transitions and one dipole forbidden transition.
The two allowed ones end up in 'B excited states, and are near degenerate.
The excitation, therefore, consists of promoting one electron from either of the
near degenerate 52b or the 51b orbital into the LUMO. Its excitation energy
is 3.65 eV and the oscillator strength is 0.009. Exciting an electron from the
inner 51a orbital to the LUMO another excitation is obtained which ends up
in the ' A excited state. Its energy is 3.94 €V, but the transition is not dipole
allowed.

Finally, for ZngS§$™ | two groups of degenerate excitations with large oscillator
strengths have been predicted. In one group the exctitation energies are 4.05
eV, and the oscillator strength 0.023. These transitions occur when an elec-
tron is excited from the 65a’ orbital and from the 64a’ orbital to the LUMO,
respectively. In the other group the excitation energies are 4.40 eV, electrons
being excited from the 62a’ orbital and from the 61a’ orbital to the LUMO,
respectively. The oscillator strength of both transitions is 0.034. When the
electron is excited from the HOMO to the LUMO the excitation energy is 3.77
eV, but the oscillator strength is zero. All these five excitations happen from
the ' A’ ground state to various of the ! A’ excited states.
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Group 1 vs. Group 2

The excitation energies of the clusters of Group 1 are larger than those of
Group 2. The basic main structural difference between Groups 1 and 2 is
that structures in Group 1 are rings, whereas the structures of Group 2 are
three dimensional spheroids. However, in all cases the excitations happen from
orbitals that are non-bonding p-type of the sulfur. This agrees with the bulk’s
behaviour, for its highest occupied band is the p band associated to sulfur
atoms.

From the photovoltaic viewpoint the excitation energies of spheroid clusters are
the most interesting ones, since they lie closer to the visible spectrum. The ring
structures have excitation energies larger than 4 eV, except i = 1, 2, which make
them not very promising for photovoltaic applications. The smallest excitation
energies of the spheroid clusters are lower than 4 eV. This is an interesting
feature since the use of these spheroidal clusters in some hypothetical cluster
based solids might increase the efficiency of the cell. We call for additional
experimental investigation of the optical absortion properties of these clusters.

7.3.2 Excitation energies calculated as Kohn-Sham eigen-
value differences

The problem of the reliability of virtual orbitals within DFT is a topic of great
controversy [101, 103, 200]. Are the energies of these virtual orbitals reliable
enough in order to calculate excitation energies via Koopman’s theorem? It has
been recently demonstrated that working with an exact exchange-correlation
functional the calculated excitation energies using the Kohn-Sham orbital en-
ergies are very reliable [201]. Nevertheless, in real problems one does not use
exact but approximate exchange-correlation functionals. In this section we es-
timate the excitation energies using the Kohn-Sham eigenvalues, with B3LYP
and MPW1PW091 approximate exchange correlation functionals. Those func-
tionals were chosen because of their great usability. In particular BSLYP is
becoming a standard for geometry optimizations and MPW1PW91 is one of
the most employed approximate exchange-correlation functionals for the calcu-
lation of electronic excitation energies. Results are shown in Table 7.5.

A quick glance to Table 7.5 reveals that BSLYP orbital energy differences (D2
column) performed remarkably better than MPW1PWP91 differences (D1 col-
umn), as compared to the TDDFT excitation energies. It is also observed
that as the cluster size increases both orbital energy differences get closer to
their corresponding TDDF'T predicted excitation energy value. Notice that the
B3LYP orbital energy differences do it faster.

Further inspection of Table 7.5 shows that the B3LYP orbital energy differences
for ring like (Group 1) clusters are always greater that 1 €V. However, for the
3D spheroidal (Group 2) clusters these differences are always less than 1 €V.
Notice that for the largest cluster studied, ZngS$? the deviation of the orbital
energy differences with respect to the TDDFT excitation energy is less than
0.4 €V, which represents less than 10% of the total excitation energy. Hence,
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Table 7.5: Excitation energies calculated with TDDFT (AE(1)), MPW1PW91
Kohn-Sham HOMO LUMO differences (AE(2)) and B3LYP Kohn-Sham
HOMO LUMO differences (AE(3)). D1 (AE(2) — AE(1)) and D2 (AE(3) —
AE(1)) denote the differences between MPW1PW91 and B3LYP with respect

to TDDFT, respectively. All energies are in eV.

i  Excitation AE(l) AE(2) D1 AE(3) D2
1 Iy i1 0.81 229 148 182 1.01
Iy Lty 3.96 475 0.79 436  0.40

2 A, —! By 2.13 337 124 278 065
1A, = B 2.90 3.95 1.05 3.40 0.50

1A, —! Bz, 2.97 420 1.23 361 0.64

3 A= 3.60 475 115 421  0.61
1A, =1 A, 3.60 475 115  4.21  0.61

T4, = By 4.32 549 1.17 494  0.62

4 Ay —'B 3.74 488 1.14 448 0.74
YAy —' Ao 4.66 583 117 542  0.76
YAy =t Az 4.92 6.01 1.09 548  0.56

5 1At A4 4.01 5.07 1.06 459  0.58
tAT oA 4.21 526 1.05 4.78  0.57
ey 4.39 549 1.10 5.01  0.62

6 ‘4,—-'B, 3.37 433 0.96 3.87 0.50
A, =t A, 3.37 434 0.97 3.87 0.0

A, ' B, 3.60 451 091 404 044
7tA St A 3.10 385 0.75 334 0.24
TAT S AY 3.27 429 102 396 0.69

TAN 51 A 3.53 430 0.77 3.79  0.26

8 At B 3.66 456  0.90 4.04 0.38
At B 3.65 456 091 4.04 0.39
A1 A 3.94 482 088 435 041

9 A tA 3.77 465 0.88 4.13  0.36
1A 51 A 4.05 490 0.85 4.38  0.33

tAT A 4.40 526 0.8  4.72  0.32
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it is concluded that the B3LYP orbital energy differences perform reasonably
well to estimate the excitation energies from the Koopman theorem.

According to this statement, the excitation energies of Zni5S12 and Zny5S1s5,
characterized in Chapter 5, may be estimated. The HOMO-LUMO differences
in both cases are 4.48 eV and 4.34 eV for i = 12 and i = 15, respectively.
Nevertheless, in view of the error made in smaller cases, one may thing that
the energy differences will be around 4 €V, similar to that of ZngS§*. However,
no oscillation strength may be stimated, and there is no way to state whether
these transitions are dipole allowed or not. Therefore, some calculations that
could confirm these estimations and could provide oscillator strengths are still
to be done.

7.4 Conclusions

TDDFT calculations yield interesting results for the excitation energies of
Zn,;S¢M clusters. Ring like structure clusters, i = 2 — 5 have larger excita-
tion energies than three dimensional spheroidal clusters, ¢ > 6. However, for
both type of clusters the excitation occur from non bonding p type orbitals
of sulfur. Recall that for the two crystal structures of bulk ZnS, wurtzite and
zincblende, the highest occupied band is also associated with the non bonding
p type orbitals of the sulfur atoms.

The predicted electronic excitation energies of the spheroidal clusters lie near
the range of the visible spectrum, and in some cases are smaller than the bulk
one. Therefore, those clusters constitute promising materials for its use in
photovoltaic solar cells.

The difference between the BSLYP Kohn-Sham energies of the orbitals involved
in the sought electronic excitation appears to be a reliable practical approach
to the calculation of the electronic excitation energies for larger clusters, where
TDDFT calculations become prohibitive. This approach has been found to
yield better results as the cluster size increases. Nevertheless, its most salient
drawback is that no oscillator strengths are obtained.



Chapter 8

Electronic Excitation
Energies of ZniOZ-GM Clusters

Abstract

Time-dependent density-functional theory (TDDFT) is used to study the exci-
tation energies of previously characterized global minima of small Zn;0; clus-
ters, ¢ = 1 — 9. The relativistic compact effective core potentials and shared-
exponent basis set of Stevens, Krauss, Basch and Jasien (SKBJ), systemati-
cally enlarged with extra functions, was used along this work. In general, the
calculated excitations happen from non-bonding p orbitals of oxygen. These
orbitals are perpendicular to the molecular plane in the case of the rings, and
normal to the spheroid surface for 3D clusters. The calculated excitation en-
ergies are larger for ring like clusters as compared to 3D ones, with the excita-
tion energies of the latter structures lying close to the visible spectrum. The
difference between Kohn-Sham eigenvalues of the orbitals involved in the elec-
tronic excitations studied have also been compared with the TDDFT results
of the corresponding excitations for two approximate density functionals, i.e.:
MPW1PW91 and B3LYP, being the later more accurate. Moreover, they ap-
proach to the TDDFT value as the cluster size increases. Therefore, this might
be a practical approach to estimate excitation energies of large Zn;O; clusters.

108
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8.1 Introduction

Computer revolution and other technological devices have been and are in rapid
development basically due to improved semiconductor materials. Some of these
materials are the II-VI compounds, which interest has increased notably due
to their paramount technological potential.

Many theoretical studies have been reported concerning the bulk electronic
structure of these compound semiconductors [141, 142, 143, 144, 145, 146, 147,
148]. However, for many practical applications these materials are ensemble as
layered stacks of different chemical composition. Recently, it has been pointed
out that the boundaries between layers are not as sharp as previously assumed.
Chemical reactions at the interface can cause an ultrathin layer of a new ma-
terial to form. The characterization of the structures formed at the interface
has revealed to be critical to understand how these layered materials work at
the microscopic level [202]. Clusters of elements coming from adjacent layers
are likely structures to be found at the interfaces. Hence, learning more on the
structures and properties of the clusters could yield important information to
develop more efficient devices.

The fact that cluster and nanoparticle characterization is becoming technolog-
ically possible opens new possibilities in the development of materials which
could improve the efficiency of the cells. One of the best known ‘new’ clus-
ters or nanostructures are the so called fullerenes, carbon spheroid structures
discovered in 1985 [42].

Our goal is to calculate the excitation energies of Zn;0¢M i = 1 — 9, charac-
terized previously in Chapter 3 ([187]). As Cgp has very different properties
compared to diamond and graphite, Zn;O; clusters have very different proper-
ties compared to the bulk system. Therefore the study of the Zn;0O; clusters
can provide new insight in the physics of these materials, and can be compared
to the Zn;S; cluster excitatin energies.

8.2 Methods

The relativistic compact effective core potentials with shared-exponent basis
set [133] of Stevens, Krauss, Basch and Jasien (SKBJ) was used as the starting
basis set. We demonstrated previously [199] that polarization and diffusion
functions were needed in order to yield accurate results, and showed that the
SKBJ(1sp2d2f) basis, where there were added one s and p, two d and two f
functions, was the ideal one for an accurate though affordable calculation of
the electronic excitation energies of Zn;S¢™ clusters. Nevertheless, the size of
the basis set makes the calculation of the excitation energies of large clusters
prohibitive. Henceforth, the smaller SKBJ(d) basis set was chosen for these
larger clusters.

All the calculations were carried out with the GAUSSIAN9S [163] package.

TDDFT [131, 119, 132] calculations have been performed to calculate the ex-
citation energies of Zn;O%M | in which the hybrid Becke-style one parameter
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Table 8.1: Extra functions added to the SKBJ basis.

7n 0

« d d a d d
sp 0.017900 1.00 1.00 0.066667 0.28472 0.30727
sp 0.005967 1.00 1.00 0.022222 0.28472 0.30727
sp 0.001989 1.00 1.00 0.007407 0.28472 0.30727
d 0.3264 1.00 0.85 1.00
d 0.1088 1.00 0.283333 1.00
d 0.03627 1.00 0.094444 1.00
d 0.01209 1.00 0.031481 1.00
f 3.1109 1.00 0.6 1.00
f 1.037 1.00 0.2 1.00
f 0.3457 1.00 0.066667 1.00
f 0.1152 1.00 0.022222 1.00

functional using modified Perdew-Wang exchange and Perdew-Wang 91 corre-
lation (MPW1PW091) [195] was used. This combination was seen to provide
the best results [199], along with the Becke3 [109] Perdew86 [196] functional
B3P86.

The relativistic compact effective core potentials and shared-exponent basis
set [133] of Stevens, Krauss, Basch and Jasien (SKBJ) was used throughout
this study, being the Zn d electrons treated as valence electrons. In order to
analyze the influence of the basis set size on the calculated excitation energies,
extra functions were systematically added to SKBJ to a maximum of extra
3sp4d4f functions. These functions were systematically generated dividing the
exponent of the previous function by three. The final exponents are given in
Table 8.1. These larger basis sets are labeled according to the number of added
functions. Thus, as an example, the largest one is denoted SKBJ(3sp4d4f).

TDDFT calculations were carried out with the GAUSSIAN9S8 [163] package.

8.3 Results and discussion

In section 8.3.1 the basis set influence is discussed for small Zn, 0™ clusters,
i = 1—3. In section 8.3.2 the obtained TDDFT excitation energies of Zn; 0%
clusters, i = 1 — 9 are fully discussed. Finally, in section 8.3.3, the reliability

of the Kohn-Sham eigenvalues is discussed.
8.3.1 Basis set influence on the TDDFT excitation ener-
gies

In this section the calculated TDDFT excitation energies for Zn,0¢M i = 1-3,
are shown. The SKBJ effective core potential systematically enlarged in order
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Table 8.2: TDDFT results for Zn;Of™. AFE : excitation energy (eV), and f
the oscillator strength.

IH IE

SKBJ + AE f AE f
1d 0.7637 0.0020 3.8173 0.1007
2d 0.7592 0.0018 3.8227  0.1043
3d 0.7801 0.0017 3.8359 0.1130
1spld  0.7877 0.0019 3.8180 0.1129
2spld  0.7875 0.0019 3.8181 0.1135
1sp2d  0.7801 0.0018 3.8237 0.1126
2sp2d  0.7804 0.0018 3.8238 0.1128
1sp3d  0.7786 0.0018 3.8225 0.1128
2sp3d  0.7771 0.0018 3.8210 0.1128
1d1f  0.8181 0.0022 3.8000 0.0996
1spldif 0.8396 0.0021 3.7999 0.1116
1sp2dlf 0.8351 0.0020 3.8033 0.1128
1sp3dlf 0.8339 0.0020 3.8025 0.1128
1sp2d2f  0.8629 0.0021 3.7928 0.1106
1sp2d3f 0.8719 0.0021 3.7972  0.1099
2spldlf 0.8394 0.0021 3.7999 0.1121
2spld2f 0.8671 0.0022 3.7887 0.1104
2spld3f 0.8805 0.0023 3.7957 0.1086
2sp2dlf 0.8352 0.0020 3.8033 0.1130
2sp2d2f  0.8630 0.0021 3.7926 0.1107
2sp2d3f 0.8718 0.0021 3.7963 0.1100
2sp3dlf 0.8328 0.0020 3.8011 0.1129
2sp3d2f  0.8618 0.0021 3.7924  0.1107
2sp3d3f 0.8726 0.0021 3.7954  0.1097
3spdddf  0.8743  0.0021 3.7951  0.1098

to find the most proper basis set. Only the Zn;O§M case is fully discussed,

since the conclusions are similar for the rest.

In Table 8.2 the TDDFT excitation energies of Zn; O™ are shown. In a rapid
glance it may be observed that the addition of extra functions to the SKBJ
basis changes significantly the final result. For the sake of brevity, we will focus
the discussion on the calculated excitation energies with different basis sets for
the 'II state. Observe that the basis-set size effect is similar in the 'Y state,
and therefore only the small differences will be pointed out. The influence of
extra sp, d and f functions is analyzed separately.

In order to study the influence of extra sp functions, the results of SKBJ(1d),
SKBJ(1spld) and SKBJ(2spld) are compared, which are 0.7637 eV, 0.7877 eV
and 0.7875 €V, respectively. It is seen that while the addition of an extra s and
p functions to SKBJ(1d) changes the resulting excitation energy significantly,
more s and p additions do not. The same behavior is observed comparing
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Table 8.3: TDDFT results for Zn,OF*. AFE : excitation energy (eV). f: the
oscillator strength.

!By, !B, !B,

SKBJ + AE 7 AE 7 AE 7
1d 1.6979 0.0000 1.9192 0.0088 2.7118 0.0238
2d 1.7575 0.0000 1.9933 0.0089 2.7322 0.0221
3d 1.8092 0.0000 2.0265 0.0101 2.7688 0.0220

1spld 1.7987 0.0000 1.9879 0.0102 2.7716 0.0237
2spld 1.7988 0.0000 1.9880 0.0102 2.7715 0.0236
1sp2d 1.8100 0.0000 2.0267 0.0102 2.7636 0.0224
2sp2d 1.8102 0.0000 2.0266 0.0102 2.7639 0.0223
1sp3d 1.8138 0.0000 2.0260 0.0103 2.7679 0.0221
2sp3d 1.8131 0.0000 2.0244 0.0103 2.7671 0.0221

1spldlf 1.8535 0.0000 2.0055 0.0102 2.8244 0.0241

1sp2d1f 1.8737 0.0000 2.0410 0.0103 2.8235 0.0229

1sp2d2f 1.9061 0.0000 2.0743 0.0105 2.8517 0.0231

1sp2d3f 1.9166 0.0000 2.0791 0.0103 2.8587 0.0228

2sp2d2f  1.9061 0.0000 2.0741 0.0105 2.8517 0.0231

2sp2d3f  1.9167 0.0000 2.0792 0.0103 2.8588 0.0228

2sp3d3f 1.9182 0.0000 2.0808 0.0104 2.8606 0.0228

3sp4d4f  1.9205 0.0000 2.0828 0.0104 2.8638 0.0227

the SKBJ(1d1f), SKBJ(1sp1dif) and SKBJ(2sp1d1f) results, i.e. 0.8181 €V,
0.8396 eV and 0.8394 eV, respectively. We henceforth conclude that one extra
sp function seems a good choice at this point.

Analyzing the influence of extra d functions, it is seen that the addition of three
extra d functions is not necessary, as follows from the results of SKBJ(1sp1d),
SKBJ(1sp2d) and SKBJ(1sp3d), which are 0.7877 €V, 0.7801 €V and 0.7786
eV, respectively. The results obtained adding two and three extra d functions
do not differ significantly, but they do in a considerable manner adding only
one. Therefore, two d functions were added.

Three extra f functions have been seen to be necessary as well. For the 'II
state we focus now on the SKBJ(2sp2d), SKBJ(2sp2d1f), SKBJ(2sp2d2f) and
SKBJ(2sp2d3f) excitation energies, 0.7804 eV, 0.8352 €V, 0.8630 and 0.8718
eV, respectively. This last value still diverges considerably from the one with
only two extra f functions. However, comparing it to the SKBJ(2sp3d3f) AE,
which is 0.8726 €V, and to the SKBJ(2sp3d3f) AFE, which is 0.8743, a conver-
gence is achieved. Therefore, the differences between SKBJ(1sp1d3f) AE and
SKBJ(1sp2d3f) AE with SKBJ(3sp4d4f) AE are small enough that we can
choose one of these basis as a proper one to combine with TDDFT, saving in
this way CPU usage.

Following the results for Zn, O™ and Zn3O$M are given in Table 8.3 and 8.4,
respectively.
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Table 8.4: TDDFT results for Zn3O$*. AE : excitation energy (eV). f: the
oscillator strength.

1A2 lB1 lB1

SKBJ + AE f AE ¥ AE ¥
1d 3.5782  0.0000 3.5793 0.0000 4.5588 0.0668
2d 3.6006 0.0000 3.6015 0.0000 4.5606 0.0615
3d 3.6232  0.0000 3.6242 0.0000 4.5794 0.0628
1spld  3.6170 0.0000 3.6180 0.0000 4.5771 0.0686
1sp2d  3.6109 0.0000 3.6118 0.0000 4.5633 0.0639
1sp3d  3.6140 0.0000 3.6149 0.0000 4.5687 0.0634
1sp2d1f 3.6570 0.0000 3.6578 0.0000 4.6115 0.0645
1sp2d2f  3.6642 0.0000 3.6650 0.0000 4.6197 0.0645
1sp2d3f  3.6697 0.0000 3.6704 0.0000 4.6246 0.0636
1sp3d2f  3.6655 0.0000 3.6663 0.0000 4.6208 0.0637
1sp3d3f  3.6708 0.0000 3.6715 0.0000 4.6261 0.0634
2sp2d2f  3.6642 0.0000 3.6650 0.0000 4.6197 0.0644
2sp2d3f  3.6700 0.0000 3.6707 0.0000 4.6249  0.0637
2sp3d3f  3.6713  0.0000 3.6721 0.0000 4.6267 0.0634

These data also shows SKBJ(1sp2d3f) basis set as the smallest one yielding
good results.

It seems logical then to choose this SKBJ(1sp2d3f) for further calculations. It
is seen that the inclusion of more than one polarization functions in the basis
set is indispensable.

8.3.2 TDDFT Excitation energies of small Zn,0f" clus-
ters, : =1—9.

We have concluded above that the MPW1PW91/SKBJ(1sp2d3f) level of the-
ory is the addecuate one for an accurate though affordable calculation of the
electronic excitation energies of small ZniOiGM clusters. However, for clusters
as big as i = 6 the size of the basis set makes the calculations prohibitive.
Henceforth, the smaller SKBJ(d) basis set was chosen for these larger clusters.
According to this statement, we have divided the clusters in two groups. In
group 1 the excitation energies of Zn,0¢* i = 1 — 5 are discussed, and in
group 2 the excitation energies of Zn,0¢™, i =6 — 9.

The range of the excitations we are interested in are those close to the visible
spectrum, smaller than 5 eV. Since in some cases there may be many excitations
within this range we have basically calculated the lowest lying three excitations.
Nevertheless, in some cases more have been calculated due to the fact that
dipole allowed transitions did not lie within that range.
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Table 8.5: Valence configuration of the clusters of Group 1, Zn;0¢M  j = 1-5.

i Val. Conf. LUMO

1 262 402 502 57t 6o

2 503, Sbgg 3b3, 203, 4b3, Tag

3 6b2 15a2 12b3 5as 7b3 16a;

4 18¢2 763 863 4b§g 203, Taig

5 28a?34a"?29a"?30a"? 35a"*  36a’
Group 1: Zn,0¢M clusters, i=1-5

For the small clusters we have obtained the electronic excitation energies with
both SKBJ(d) and SKBJ(1sp2d3f) basis sets. This allows us to asses the per-
formance of the smaller basis set and consequently to highlight the limitations
of the SKBJ(d) basis set with respect to SKBJ(1sp2d3f).

In Table 8.5 the valence configuration and LUMO orbital symmetry of the
clusters of Group 1, namely Zn;0;, i = 1 — 5, depicted in Chapter 3, are given.
Table 8.6 collects the SKBJ(d) and SKBJ(1sp2d2f) excitation energies and
oscillator strengths for the mentioned clusters.

Two different possible excitations for Zn; O?M are shown. The lowest excita-
tion occurs from the '3 ground state to a 'II excited state, exciting an electron
to the LUMO vacant orbital from the HOMO. This transition needs 0.87 eV to
happen, and has a small oscillator strength (f = 0.002). The other calculated
transition involves the '3 ground state and an excited state of the same sym-
metry. Now the electron is excited from the inner 5o orbital to the LUMO.
The excitation energy is 3.80 €V, 2.93 eV larger than the 'Y —! II excitation,
but the oscillator strength is two orders of magnitude larger.

Three excitations of Zn,O$™ have been calculated. The lowest excited state
is dipole forbidden. The lowest-energy allowed excitation happens when an
electron is excited from the HOMO 4bs, orbital to the LUMO, resulting in a
1 By, excited state. This transition absorbs 2.08 eV and the oscillator strength
is f = 0.010. The second allowed excitation occurs exciting an electron from
the 3b3,, orbital to the LUMOQO. This transition needs 2.86 €V, and f = 0.023, a
bit larger than the previous one. These two excitation energies lie within the
range of the visible spectrum.

Three excitations have been calculated for ZnzO§™. The lowest transition ex-
cites an electron from the 5as orbital to the LUMO, but this is dipole forbidden,
i.e. f = 0. Similarly, the transition to the lowest ! B; state is not allowed either.
The only allowed transition calculated occurs exciting an electron from the 6b,
orbital to the LUMO, yielding a ! B; state. The excitation energy is 4.62 €V,
and f = 0.064. This excitation energy is larger than the allowed excitation
energies of Zn,O§™M.
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Table 8.6: SKBJ(d) and SKBJ(1sp2d2f) excitation energies (eV) and oscilla-
,4=1-=5. A(AE) is the difference between
SKBJ(1sp2d3f) AE and SKBJ(d) AE. Similarly for Af.

tor strengths of small Zn;O

GM
4

Transition SKBJ(d) SKBJ(1sp2d3f)

) orbitals states AE f AE f A(AE) Af

1 51 — 60 Iy »1m 0.76 0.002 0.87 0.002 0.11 0
50 — 60 Iy -ty 3.82 0.101 3.80 0.110 0.02 0.009

2 2big — Tag 149 =1 Big 170 forbidden 1.92 forbidden 0.22 -
4boy, — Tag YAy —! By, 1.92 0.009 2.08 0.010 0.16 0.001
3bgy — Tag 1Ay —! Bz, 271 0.024 2.86 0.023 0.15 0.001

3 Sag — 16a1 TA; =t Ay 3.58 forbidden 3.67 forbidden 0.09 -

7b1 — 16a1 14, -1 By 3.58 forbidden 3.67 forbidden 0.09 -
6b1 — 16a1 A, =1 By 4.56 0.067 4.62 0.064 0.06 0.003

4 2byy — Tary 'Aig —! Biw 3.78 forbidden 3.83 forbidden 0.05 -
3agy — Taig A1y —! Az, 5.17 0.095 5.19 0.084 0.02 0.011
18ey — Tary 'A1g —1 E, 5.24 0.111 5.24 0.110 0 0.001

5  35a’ — 36a’ TAY -1 A 4,00 forbidden 4.02 forbidden 0.02 -
32a’ — 36a’ TAr -1 A 5.27 0.106 5.28 0.091 0.01 0.015
31la’ — 36a’ TAr 1A 5.60 0.164 5.57 0.157 0.03 0.007

For ZnsO§M three excitations are reported. The excitation to the * By, state is
not dipole allowed. However, the other calculated ' A;, —! Ay, and 1A4;, —1
FE, transitions are allowed. The electron is excited from the 3as,, orbital to the
LUMO in the first case, being the excitation energy 5.19 eV and the oscillator
strength 0.084. The other transition is likely to be more intense, since the
oscillator strength is much larger, 0.110, and the excitation energy is only 0.06
eV larger. In this last transition the electron is excited from the 18e, orbital
to the LUMO 7ay,.

Three transitions, two of them dipole allowed, are collected for Zn;O§™. One
of the allowed transition occurs exciting an electron from the 32a’ orbital to the
LUMO, resulting in a ! A’ state, which needs 5.28 eV, and the oscillator strength
is 0.091. The other allowed transition is a 1A’ —! A” transition, .where the
electron is excited from the 31a’ orbital to the LUMO. The oscillator strength
of this excitation is the largest calculated one, 0.157. The excitation energy is
5.57 eV, which lies in the ultraviolet spectrum.

SKBJ(1sp2d2f) vs SKBJ(d)

In Table 7.5 the SKBJ(d) and SKBJ(1sp2d2f) excitation energies and oscillator
strengths are given. Besides, the differences between them may also be viewed
there. Having a look to these differences, one may observe that although im-
portant for smaller clusters (i = 1 — 3), they are not very large for the rest.



Excitation Energies: ZnO 116

Table 8.7: Valence configuration of the clusters of Group 2, Zn;0¢M i = 6—9.

i Val. Conf. LUMO
6 53a’? 54a’? 224’2 2342 244’7 55a’
7 432 442 45a2 464> 45b2 47a
8 (GM) 1842 13b2 1302 51¢2 52¢2 19a;
8 (LM) 50a® 51a? 52a2 5162 52b2 53a
9 50a"? 51a"? 64a’* 650’2 66a’

The largest difference in the excitation energy is 0.22 eV for the 1A, —! By,
transition in Zn,OSM | which represents more than 10% of the total excitation
energy. Nevertheless, in the case of Zn3O$M | the differences are reduced to 3-
4% of the total energy. This percentage is reduced to less than 1% for ZnsOSM.
Therefore, the SKBJ(d) results for the clusters of Group 2 are expected to be
reasonably accurate. These conclusion was also obtained in the case of the
excitation energies of Zn;S¢M | as seen in Chapter 6.

Group 2: ZniOZ—GM clusters, i =6 —9

In Table 8.7 the valence configuration and LUMO orbital symmetry of the
clusters of Group 2, namely Zn;0;, i = 6 — 9, depicted in Chapter 3, are given.
Table 8.8 collects the SKBJ(d) and SKBJ(1sp2d2f) excitation energies and
oscillator strengths for the mentioned clusters.

Three calculated excitations of ZngO§ are shown, two of them being dipole
forbidden. The only calculated dipole allowed transition occurs from the ground
state to other ' A” excited state, where an electron from the inner 19a” orbital
is excited to the LUMO. The excitation energy is 5.34 eV, and the oscillator
strength is 0.136.

Three transitions of Zn;O$Y, one of them dipole forbidden, have been calcu-
lated. The first allowed excitation occurs when the electron is excited from the
42a orbital to the LUMO. The excitation energy in this case is 4.69 eV, but has
a very small oscillator strength, 0.0004. The transition with larger oscillator
strength, 0.004, occurs exciting an electron from the inner 42b orbital to the
LUMO. The excitation energy of this transition is 5.18 eV.

In the case of ZngQOg, two structures very close in energy were found, as was
explained in Chapter 3. Henceforth calculations of the excitation energies of
both structures have been carried out. It has to be mentioned that these
structures are three-dimensional spheroids, instead of ring-like structures as
were for i =1—17.

Three excitations have been calculated, two dipole forbidden and one allowed,
for the ZngOS™ structure. The two forbidden ones end up in ' F excited states.
The calculated allowed transition occurs when an electron from the 18a; orbital
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Table 8.8: SKBJ(d) excitation energies (eV) and oscillator strengths of
Zn;,06M i =6—9, and anong.

Transition SKBJ(d)
i orbitals states AFE f
6 24a” — 550" 'A" =" A" 3.96 forbidden

54a’ — 550’ A’ =1 A’ 4.69 forbidden
19¢” — 550" A’ -1 A" 5.34 0.136

7 45h — 4Ta 'A—1'B  4.11 forbidden
42a — 47a lA-1A 5.06 0.000
42b — 47a lA-tB 518 0.004

8 (GM) 5le — 19a; A1 -'E  3.50 forbidden
18a1 — 19a1 'A4; —' A1  3.92 0.086

49¢ — 19a; 'A; —' E  4.39 forbidden
8 (LM)  52b— 53a lA—='B 324 0.010
52a — 53a 414 336 0.025
50b — 53a 'A-1'B 377 0.017
48b — 53a lA—='B 405 0.070
48a — 53a la-tA 409 0.021

9 650" — 66a’ A" 1 A" 320 forbidden
64a’ — 660’ A’ -1 A 341 0.019
63a’ — 66a’ 1A’ -1 A" 3.88 0.054

is excited to the LUMO, where 3.65 €V are needed, and the oscillator strength
is 0.086.

Five allowed transitions have been seen to happen for the anong structure
in a quite narrow energy range, in comparison to previous cases. Three exci-
tations end up in a ' B state, exciting an electron from the 52b, 50b and 48b
to the LUMO. The excitation energies are 3.24 €V, 3.77 €V and 4.05 eV, and
the oscillator strengths 0.010, 0.017 and 0.070, respectively. The other two
calculated transitions end up in a 'A state. In the first case an electron is
excited from the 52a orbital to the LUMO, absorbing 3.36 €V, and f =0.025.
The second transition needs 4.09 €V to happen, being the oscillator strength
0.021.

Two dipole allowed excitations have been predicted for anog’M . The first
transition needs 3.41 eV to happen, and the second 3.88 V. This last transition
is predicted to be more intense since the oscillator strength is larger, 0.054 in
opposite to 0.019. Both transitions are degenerate. The lowest one occurs when
an electron is excited from the 65a’ orbital or the 64a’ orbital to the LUMO.
The one with the largest oscillator may happen exciting an electron from the
62a’ or the 63a’ orbital to the LUMO.

The transition in the structure of the global minima, ring-like structures for
i < 7 and 3D spheroids for ¢ > 8, has dramatic consequences in the obtained
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excitation energies. We observe that the lowest-energy transitions increases
from ¢ = 3 — 6 from 4.62 eV to 5.34 eV. Then, for : = 7 this value is decreases
to 5.06 eV. And in 3D structures the obtained values are already smaller. 3.92
eV for ZngOF™ and 3.24 €V for ZngOF™', and 3,41 €V for i = 9. This differ-
ence in the values is explained as follows. The transitions in all cases occurs
from non-bonding p orbitals of O to the LUMO. In the ring structures these
orbitals lie perpendicular to the plane, while in the 3D case they lie perpen-
dicular to the spheroid’s surface. This situation was also found for Zn;S&M
clusters (Chapter 6), but the excitation energies were larger, around 3.6 €V.
The excitation energies of the 3D clusters are very similar to the bulk one,
which is 3.20 eV. This fact makes attractive the idea of calculating the excita-
tion energies of larger clusters, and the study of the band gaps of cluster-based
solids, as carbon fullerenes solids. Therefore, it seems that Zn;O; clusters are
more appropriate as window materials for solar cells. Of course, further work
are needed, but this is a promising beggining.

8.3.3 Excitation energies calculated as Kohn-Sham eigen-
value differences

The problem of the reliability of virtual orbitals within DFT is a topic of great
controversy [101, 103, 200]. Are the energies of these virtual orbitals good
in order to calculate excitation energies? It has been recently demonstrated
that working with an exact exchange-correlation potential the calculated ex-
citation energies using the Kohn-Sham orbital energies are very reliable [201].
Nevertheless, in real problems one does not use exact potentials, and deals
with approximate exchange-correlation potentials. In this section we estimate
the excitation energies using the Kohn-Sham eigenvalues, with B3LYP and
MPW1PW91 approximate exchange correlation potentials. Those potentials
were chosen because of their great usability. In particular BSBLYP is becoming
a standard for geometry optimizations and MPW1PW91 is one of the most
employed approximate exchange-correlation functional for the calculation of
electronic excitation energies. Results are shown in Table 8.9.

A quick glance to this table shows that B3LYP gives better results than MPW1PW91,
as compared to the TDDFT excitation energies. The difference between B3LYP

and TDDFT (D2 column) is much smaller than the difference between MPW1PW91
and TDDFT (D1 column).This is due to the fact that BSLYP HOMO lies higher

and LUMO lower than the MPW1PW91 ones. Analyzing the results closer, it

is observed that as the cluster size increases the D1 and D2 differences decrease.

D1 and D2 are smaller for 3D structures rather than for ring structures. Let

us see now more carefully the D1 and D2 results.

In the case of D1 it is seen that the values are always greater than 1 eV. but as
the cluster size increases, the difference becomes smaller, and is smaller than 1
eV for ZngO§™. Nevertheless, the descent is paulatine and does not have large
oscillations.

The analysis is similar for D2. Ringlike clusters have values larger than 0.5 eV,
being the values closer to 0.5 as cluster size increases. Then, for 3D clusters
are smaller than 0.5 eV. It is observed that these values become smaller and
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Table 8.9: Excitation energies calculated with TDDFT (AE(1)), MPW1PW91
Kohn-Sham orbital differences (AFE(2)) and B3LYP Kohn-Sham orbital differ-
ences (AE(3)). D1 (AE(2) — AE(1)) and D2 (AE(3) — AE(1)) denote the
differences between MPW1PW91 and B3LYP with respect to TDDFT, respec-

tively. All energies are in eV.

i Excitation ~AFE(1) AE(2) D1 AE@3) D2
1 Iy 111 0.87 297 210 249 1.62
Iy L1y 3.80 449 0.69 4.08 0.28

2 TA, =T By, 1.92 3.42 150 2.67 0.75
14, = By, 2.08 329 121 259 0.51

14, —! Bs, 2.86 429 143 3.58 0.72

3 T4, =1 A, 3.66 506 140 437 0.71
14, =1 By 3.67 506 139 437 0.70

14, - By 4.62 597 135 529  0.67

4 Ay —' By, 3.83 521 1.38 4.61 0.78
Ay, = Ao 5.19 6.51 132 593 0.74

14, -1 E, 5.24 6.39 1.15 5.82  0.58

5 TA ST 4”7 4.02 531 1.29 476 0.74
T 51 4 5.28 6.53 125 5.98 0.70

A7 1 4”7 5.57 6.69 1.12 6.15 0.58

6 T -1 A" 3.96 519 1.23 4.63 0.67
T 51 4 4.69 563 0.94 507 0.38

Lgr -1 A 5.34 6.54 120 5.99 0.65

7 TASTRB 4.11 530 1.19 474 0.63
14514 5.06 6.34 128 5.78 0.72

14 1B 5.18 6.21 1.03 5.65 0.47

8 (LM) TA-TRB 3.24 426 1.02 3.69 045
14514 3.36 438 1.02 381 045

14 1B 3.77 483 1.06 424 047

14 1B 4.05 507 1.02 449 044
14514 4.09 525 1.16 4.64 0.55

8 (GM) 1A TR 3.50 456 1.06 3.99 0.49
14 1B 3.92 489 097 433 041
14514 4.39 548 1.09 4.88 0.49

9 TAT ST A 3.20 419 099 331 0.11
T 51 4 3.41 438 097 369 028

g7 51 A 3.88 487 099 429 041
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smaller as cluster size increases, and in ZngO§, the values are smaller than
0.40 eV. This is an important point, since approximate excitation energies may
be calculated for larger clusters where TDDFT calculations are prohibitively
expensive. Henceforth, the excitation energies of Zn15012 and Zn;5015, char-
acterized in Chapter 5, may be estimated. The HOMO-LUMO differences in
both cases are 4.12 eV and 3.90 eV for ¢ = 12 and ¢ = 15, respectively. Nev-
ertheless, in view of the error made in smaller cases, one may thing that the
energy differences will be around 3.6 eV, smaller than those for Zn;2S;2 and
Zn15515. However, no oscillation strength may be stimated, and there is no way
to state wheter these transitions are dipole allowed or not. Therefore, some
calculations that could confirm these estimations and could provide oscillator
strengths are still to be done.

8.4 Conclusions

TDDFT calculations yield interesting results for the excitation energies of
Zn;0; clusters. The calculated electronic excitation energies show a strong
dependence on the geometry of the cluster. Our study reveals that ring like
structure clusters, ¢+ = 2 — 7 have larger excitation energies than three di-
mensional spheroidal clusters, ¢ > 8. However, for both type of clusters the
excitation occurs from occupied non bonding p type orbitals of oxygen to the
LUMO.

The predicted electronic excitation energies of the spheroidal clusters are close
to the bulk minimum energy gap, and lie near the range of the visible spectrum.
These energies are smaller than the energies of Zn;S; clusters, and therefore, the
clusters considered in the present investigation constitute promising materials
for its use in photovoltaic solar cells as window materials.

The difference between the BSLYP Kohn-Sham energies of the orbitals involved
in the sought electronic excitation appears to be a reliable practical approach
to the prediction of the electronic excitation energies for larger clusters, where
TDDFT calculations become prohibitive. This approach has been found to
yield better results as the cluster size increases. Nevertheless, its most salient
drawback is that no oscillator strength are obtained.



Chapter 9

Electronic Excitation
Energies of ZniSeZ-GM and
Zn,L-TeZ-GM Clusters

Abstract

Time-dependent density-functional theory (TDDFT) is used to study the exci-
tation energies of previously characterized global minima of small Zn;Se{™ and
ZniTeZ-GM clusters, i = 1 — 9. The relativistic compact effective core potentials
and shared-exponent basis set of Stevens, Krauss, Basch and Jasien (SKBJ),
systematically enlarged with extra functions, was used along this work. In gen-
eral, the calculated excitations happen from non-bonding p orbitals of oxygen.
These orbitals are perpendicular to the molecular plane in the case of the rings,
and normal to the spheroid surface for 3D clusters. The calculated excitation
energies are larger for ring like clusters as compared to 3D ones, with the ex-
citation energies of the latter structures lying close to the visible spectrum.
The difference between Kohn-Sham eigenvalues of the orbitals involved in the
electronic excitations studied have also been compared with the TDDFT re-
sults of the corresponding excitations for two approximate density functionals,
t.e.. MPW1PW91 and B3LYP, being the later more accurate. Moreover, they
approach to the TDDFT value as the cluster size increases. Therefore, this
might be a practical approach to estimate excitation energies of large Zn;Se;
and Zn;Te; clusters.

121
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9.1 Introduction

Computer revolution and other technological devices have been and are in rapid
development basically due to improved semiconductor materials. Some of these
materials are the II-VI compounds, which interest has increased notably due
to their paramount technological potential.

The fact that cluster and nanoparticle characterization is becoming technolog-
ically possible opens new possibilities in the development of materials which
could improve the efficiency of the cells. One of the best known ‘new’ clus-
ters or nanostructures are the so called fullerenes, carbon spheroid structures
discovered in 1985 [42].

Our goal is to calculate the excitation energies of ZniXiGM , X=Se, Te,i=1-9,
characterized previously in Chapter 4 ([198]). Further studies of the excitation
energies of other II-VI cluster materials are in mind. The study of the Zn;X;
clusters can provide new insight in the physics of these materials, and can be
compared to the Zn;0; and Zn;S; cluster excitation energies.

9.2 Methods

The relativistic compact effective core potentials with shared-exponent basis
set [133] of Stevens, Krauss, Basch and Jasien (SKBJ) was used as the starting
basis set. We demonstrated previously [199] that polarization and diffusion
functions were needed in order to yield accurate results, and showed that the
SKBJ(1sp2d2f) basis, where there were added one s and p, two d and two f
functions, was the ideal one for an accurate though affordable calculation of the
electronic excitation energies of small Zn;S¢M clusters. However, for Zn;0§™
an extra f function was needed compared to Zn;S{™ case. Nevertheless, the
size of the basis set makes the calculation of the excitation energies of large
clusters prohibitive. Henceforth, the smaller SKBJ(d) basis set was chosen for
these larger clusters.

All the calculations were carried out with the GAUSSIAN98 [163] package.

TDDFT [131, 119, 132] calculations have been performed to calculate the ex-
citation energies of Zn;X{™  in which the hybrid Becke-style one parameter
functional using modified Perdew-Wang exchange and Perdew-Wang 91 corre-
lation (MPW1PW91) [195] was used. This combination was seen to provide
the best results [199], along with the Becke3 [109] Perdew86 [196] functional
B3P86.

The relativistic compact effective core potentials and shared-exponent basis
set [133] of Stevens, Krauss, Basch and Jasien (SKBJ) was used throughout
this study, being the Zn d electrons treated as valence electrons. In order to
analyze the influence of the basis set size on the calculated excitation energies,
extra functions were systematically added to SKBJ to a maximum of extra
3sp4d4f functions. These functions were systematically generated dividing the
exponent of the previous function by three. The final exponents are given in
Table 9.1, being all the coefficients equalized to 1.00. These larger basis sets
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Table 9.1: Extra functions added to the SKBJ basis. All the coefficients are
1.00

Zn Se Te

o o Q
sp 0.017900 0.02607 0.022457
sp 0.005967 0.008690 0.007486
sp 0.001989 0.0029 0.002495
d 0.3264 0.53783 0.349496
d 0.1088 0.208111 0.155952
d 0.03627 0.06937 0.051984
d 0.01209 0.023123 0.017328
f 3.1109 0.396026 0.306353
f 1.037 0.132009 0.102118

f 0.3457 0.044003 0.03404

f 0.1152 0.014668 0.011347

are labeled according to the number of added functions. Thus, as an example,
the largest one is denoted SKBJ(3sp4d4f).

TDDFT calculations were carried out with the GAUSSIAN98 [163] package.

9.3 Results and discussion

In section 9.3.1 the basis set influence is discussed for small Zn; XM clusters,
X=Se,Te, i = 1 — 3. In section 9.3.2 the obtained TDDFT excitation energies
of Zn;X§M clusters, i = 1 — 9 are fully discussed. Finally, in section 9.3.3, the
reliability of the Kohn-Sham eigenvalues is discussed.

9.3.1 Basis set influence on the TDDFT excitation ener-
gies

In this section the calculated TDDFT excitation energies for Zn; XM i = 1-3,
are shown. The SKBJ effective core potential systematically enlarged in order
to find the most proper basis set. Only the Zn; XM cases are fully discussed,
since the conclusions are similar for the rest.

In Table 9.2 the TDDFT excitation energies of Zn;X{M are shown. In the
previous chapters we have shown the importance of polarization functions in
obtaining accurate results, and therefore small basis have not been checked
for Zn;X{™. Tt may be observed that in all cases the differences between
SKBJ(1sp2d2f) AE and SKBJ(3sp4d4f) AE are small enough that we can
choose the first as a proper one to combine with TDDFT, saving in this way
CPU usage.
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Table 9.2: TDDFT results for Zn; X{™. AFE : excitation energy (eV), and f
the oscillator strength.

SKBJ +

1d-2d1f
1sp2daf
1sp2d3f
2sp3d3f
3spdd4f

0.0466
0.0428
0.0429
0.0425
0.0434

an

oM
Tef

Bt

SKBJ +

AFE

AFE

1d/2d1f
1sp2d2f
1sp2d3f
2sp3d3f
3sp4d4f

0.5939
0.6141
0.6170
0.6150
0.6162

0.0013
0.0014
0.0014
0.0014
0.0014

3.8305
3.7899
3.7858
3.7834
3.7867

0.0165
0.0131
0.0133
0.0131
0.0136

Table 9.3: TDDFT results for ZnoX$M. AFE : excitation energy (eV), and f
the oscillator strength.

7055
1BQg 1B3u 1Blu
SKBJ + AE f AE I AL 7
1d/2d1f 1.9887 0 2.7841 0.0204 2.8901 0.0166
1sp2d2f 2.0107 0 2.8046 0.0203 2.9157 0.0175
1sp2d3f 2.0110 0 2.8038 0.0202 2.9097 0.0175
2sp3d3f 2.0148 0 2.8059 0.0201 2.9111 0.0181
3spd4d4f 2.0106 0 2.8033 0.0201 2.9078 0.0181
ZHQTGQGM
1B2g 1BBu 1Blu
SKBI + AE [ AFE 7 AE I
1d/2d1f 1.9051 0 2.6109 0.0160 2.8843 0.0130
1sp2d2f 1.9126 0 2.6194 0.0167 2.8928 0.0140
1sp2d3f 1.9117 0 2.6182 0.0167 2.8866 0.0140
2sp3d3f 1.9104 0 2.6166 0.0165 2.8851 0.0142
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Table 9.4: TDDFT results for ZnzX§™. AE : excitation energy (eV), and f
the oscillator strength.

Zn3Se§M
1A2 (131) 1Bl 1A2 (131)
SKBJ + AE f  AE 7 AE f
1d/2d1f 3.3027 0 3.9716 0.0317 4.1811 0
1sp2d2f 3.2983 0 3.9667 0.0319 4.1440 0
1sp2d3f 3.3010 0 3.9719 0.0323 4.1481 0.
2sp3d3f 3.3018 0 3.9724 0.0331 4.1491 0
Zn3Te§M
1A2 (lBl) IB1 1142 (lBl)
SKBJ + AE ¥ AE 7 AE f
1d/2d1f 2.8317 0 3.4088 0.0109 3.6453 0
1sp2d2f 2.8218 0 3.4006 0.0119 3.6101 0
1sp2d3f 2.8268 0 3.4078 0.0121 3.6128 0
2sp3d3f 2.8259 0 3.4069 0.0125 3.6113 0

Following the results for ZnoX$™ and Zn3X§ are given in Table 9.3 and 9.4,
respectively.

These data also shows SKBJ(1sp2d2f) basis set as the smallest one yielding
good results.

It seems logical then to choose this SKBJ(1sp2d2f) for further calculations. It
is seen that the inclusion of more than one polarization functions in the basis
set is indispensable.

9.3.2 TDDFT Excitation energies of small Zn,X¢" clus-
ters, 1 =1—0.

We have concluded above that the MPW1PW91/SKBJ(1sp2d2f) level of the-
ory is the addecuate one for an accurate though affordable calculation of the
electronic excitation energies of small ZniXZ-GM clusters. However, for clus-
ters as big as i = 6 the size of the basis set makes the calculations prohibitive.
Henceforth, the smaller SKBJ(d/2df) basis set was chosen for these larger clus-
ters. According to this statement, we have divided the clusters in two groups.
In group 1 the excitation energies of Zn;X$M i =1 — 5 are discussed, and in
group 2 the excitation energies of Zn,X{M, i =6 — 9.

The range of the excitations we are interested in are those close to the visible
spectrum, smaller than 5 eV. Since in some cases there may be many excitations
within this range we have basically calculated the lowest lying excitations.
Nevertheless, in some cases more have been calculated due to the fact that
dipole allowed transitions did not lie within that range.
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Table 9.5: Valence configuration of the clusters of Group 1, Zn; XM i = 1-5.

Zn¢Sei ZniTei
7 Val. Conf. LUMO Val. Conf. LUMO
1 262 462 502 5t 60 26% 402 502 51t 60
2 5b3,, 3b3, 3b3, 4b7,, 203, Tag 5b3,, 3b3, 4b3,, 3b3, 2b3, Tag
3 12b3 1542 6b2 7b? 5a3 16a1 15a2 12b2 6b2 543 7b? 16a1
4 2362 24b2 25b% 2642 274 28a 23b2 24b? 2642 25b° 274 28a
5  33a’? 34a’? 29a"? 35a’? 30a’"? 36a’  28a"? 34a’? 29a’? 30a’"? 354" 36a’

Group 1: Zn; XM clusters, i =1-5

For the small clusters we have obtained the electronic excitation energies with
both SKBJ(d) and SKBJ(1sp2d2f) basis sets. This allows us to asses the per-
formance of the smaller basis set and consequently to highlight the limitations

of the SKBJ(d) basis set with respect to SKBJ(1sp2d2f).

In Table 9.5 the valence configuration and LUMO orbital symmetry of the
clusters of Group 1, namely Zn;X$™ i = 1 — 5, described in Chapter 4, are
given. Table 9.6 and 9.7 collects the SKBJ(d) and SKBJ(1sp2d2f) excitation
energies and oscillator strengths for the mentioned clusters.

Two different possible excitations for Zn, X?M are shown. The lowest excitation
occurs from the 'Y ground state to a 'II excited state, exciting an electron to
the LUMO vacant orbital from the HOMO. The other calculated transition
involves the ' ground state and an excited state of the same symmetry. Now
the electron is excited from the inner 50 orbital to the LUMO. For X=Se the
first transition needs 0.73 eV (0.61 €V for X=Te) to happen, and the second
3.94 eV (3.79 eV for X=Te). Nevertheless, the oscillator strength is in both
cases an order of magnitude larger in the second transition.

Three excitations of ZnyX$™ have been calculated. The lowest excitation
is dipole forbidden. The lowest-energy allowed excitation happens when an
electron is excited from the 3bs, orbital to the LUMO, resulting in a !Bz,
excited state, and the second one exciting it from the 4b;,, orbital to the LUMO.
For X=8Se the excitation energies are 2.80 eV and 2.92 eV, respectively, both
having similar f. In the X=Te case, AE’s are smaller, 261 eV and 2.88 €V,
respectively, being f similar. All these energies lie within the range of the
visible spectrum.

Three excitations have been calculated for ZnzX$™. The lowest transition
excites an electron from the 5as orbital to the LUMO, but this is dipole forbid-
den, i.e. f = 0. Similarly, the transition to the second ! A, state is not allowed
either. The only allowed transition calculated occurs exciting an electron from
the 6b; orbital to the LUMO, yielding a 'B; state. The excitation energy is
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Table 9.6: SKBJ(d) and SKBJ(1sp2d2f) excitation energies (eV) and oscillator
strengths of small Zn;Se™ i = 1 — 5. A(AE) is the difference between
SKBJ(1sp2d2f) AE and SKBJ(d) AE. Similarly for Af.

Transition SKBJ(1d/2d1f) SKBJ(1sp2d2f)
) orbitals states AE f AE f A(AE) Af
1 57 — 60 Iy =11 0.70 0.002 0.73 0.002 0.03 0
50 — 60 Iy -1y 3.97 0.047 3.94 0.043 0.03 0.004
2 2byy —Tag YAy —! By, 1.99 forbidden 2,01 forbidden 0.02 -
3bgy — Tag  'Ag —' B3, 2.78 0.020 2.80 0.020 0.02 0
4byy — Tag YAy —' Br, 2.89 0.017 2.92 0.018 0.03 0.001
3 bBas — 16a; TA; -1 Ay 3.30 forbidden 3.30 forbidden 0 -
6b1 — 16a1 TA; - By 3.97 0.032 3.97 0.032 0 0
5as — 17a1 TA; -1 Ay 4.18 forbidden 4.14 forbidden 0.04 -
4 27a — 28a A1 A 3.55 forbidden 3.52 forbidden 0.03 -
25b — 28a 1A-1B 3.89 0.004 3.86 0.004 0.03 0
26a — 29a A1 A 4.09 0.001 4.06 0.001 0.03 0
5 30a” — 36a’ 1A’ =1 A” 375 0.001 3.73 0.001 0.02 0
35a’ — 36a’ TAr =1 A7 3.99 0.001 3.97 0.001 0.02 0
29a” — 360’ 1A’ =1 A7 411 0.007 4.09 0.008 0.02 0.001

Table 9.7: SKBJ(d) and SKBJ(1sp2d2f) excitation energies (V) and oscillator
strengths of small Zn;Tef™, i = 1 — 5. A(AE) is the difference between
SKBJ(1sp2d2f) AE and SKBJ(d) AE. Similarly for Af.

Transition SKBJ(1d-2d1f) SKBJ(1sp2d2f)
) orbitals states AE f AE f A(AE) Af
1 51 — 60 Iy =110 0.59 0.001 0.61 0.001 0.02 0
50 — 60 Iy 51y 3.83 0.017 3.79 0.013 0.04 0.004
2 2byy —Tag 1Ay —! By, 1.91 forbidden 1.91 forbidden 0 -
3b3y, — Tag 1Ay —! B3, 2.61 0.016 2.62 0.017 0.01 0.001
4byy — Tag  'Ag —' By, 2.88 0.013 2.89 0.014 0.01 0.001
3 bBas — 16a; TA; -1 Ay 2.83 forbidden 2.82 forbidden 0.01 -
6b; — 16a1 1A, =1 By 341 0.011 3.40 0.012 0.012 0.001
5ae — 17a1 1A; -1 A>  3.65 forbidden 3.61 forbidden 0.04 -
4 27a — 28a a1 4 3.16 forbidden 3.14 forbidden 0.02 -
25b — 28a A1 B 3.35 0.006 3.33 0.006 0.02 0
24b — 28a l1A-1B 3.66 0.002 3.64 0.002 0.02 0
26a — 29a A1 A 3.72 0.005 3.69 0.005 0.03 0
5 30a” — 36a’ 1A’ -1 A"  3.36 0.000 3.34 0.000 0.02 0
35a’ — 36a’ TA" -1 A7 353 0.000 3.49 0.001 0.04 0.001
29a’ — 36a’ U LA ) 0.004 3.67 0.004 0.02 0
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3.97 eV, and f = 0.032 for X=Se. For X=Te AFE is much smaller, 3.40 eV,
but f as well, f = 0.012. These excitation energies are larger than the allowed
excitation energies of Zn, X§M.

Three excitations are reported for Zn,Se$™ and four for Zn,Te§™. The exci-

tation to the lowest lying ! A state is not dipole allowed. However, the other
calculated 'A —! B and '4 —! A transitions are allowed. The electron is
excited from the 25b orbital to the LUMO in the first case, being the excitation
energy 3.86 eV and the oscillator strength 0.004 in the case of X=Se, and 3.33
eV and f = 0.006 for X=Te. The last transition occurs when the electron is
excited from the 26a orbital to the 29a. For X=Se, this transition is likely to
be less intense, since the oscillator strength is much smaller, 0.001, and the
excitation energy is 0.20 eV larger. When X=Te, f is similar to the previous
excitation, but the energy is 0.36 eV larger. For Zn,Te, a forth transition is
found when an electron is excited from the 24b orbital to the LUMO, having a
small f.

Three transitions dipole allowed are collected for Zn;X$*. The lowest lying
transition occurs exciting an electron from the HOMO to the LUMO, resulting
in a 1 A" state, which needs 3.73 eV for X=Se and 3.34 eV for X=Te. In both
cases [ is very small. Exciting an electron from the 35a’ orbital to the HOMO a
LA’ state is achieved. 3.97 eV are needed for that purpose when X=Se, and 3.49
eV when X=Te. The transition with the largest f is found when an electron
is excited from the 29a” to the LUMO. This transition needs 4.09 ¢V and 3.67
eV, for X=Se and Te, respectively.

SKBJ(1sp2d2f) vs SKBJ(d)

In Table 9.6 and 9.7 the SKBJ(d) and SKBJ(1sp2d2f) excitation energies and
oscillator strengths are given. Besides, the differences between them may also
be viewed there. Having a look to these differences, one may observe that they
are not very large, specially for the larger clusters. The percentage is less than
1% for ZnsSe$™ and ZnsTeS'™. Therefore, the SKBJ(d/2df) results for the
clusters of Group 2 are expected to be reasonably accurate. This conclusion was
also obtained in the case of the excitation energies of Zn;S¢ and Zn;0FM.

Group 2: ZniXiGM clusters, i =6 —9

In Table 9.8 the valence configuration and LUMO orbital symmetry of the
clusters of Group 2, namely Zn, XM i = 6 — 9, depicted in Chapter 4, are
given. The SKBJ(d/2df) excitation energies and oscillator strengths are shown
in Tables 9.9 and 9.10.

Three calculated excitations of ZngX§? are shown, only two of them being
dipole allowed. The lowest-energy dipole allowed transition occurs from the
ground state to other ' A” excited state, where an electron from the inner 22b,,
orbital is excited to the LUMO. This transition needs 3.25 €V to occur, for
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Table 9.8: Valence configuration of the clusters of Group 2, Zn; XM i = 6—09.

ZniSei ZniTei
7 Val. Conf. LUMO Val. Conf. LUMO
6 17a2 2107 2207, 22a2 170, 23a, 17a2 16b2 22b2 22a 170, 23a,
7 384?394/ 50a’% 51a/? 40a’"? 52a’ 44a? 4502 46a2 44b* 45b° 47a
8 5062 51a? 5242 512 52b2 53a 5002 51a® 52a? 51b% 52b2 53a
9 644’ 65a’% 500" 51a’"? 664> 67a’  64a’® 65a"? 50a"? 51a"? 66a’>  67a’

Table 9.9: SKBJ(d/2df) excitation energies (V) and oscillator strengths of
Zn;SeM i =6—9.

Transition SKBJ(d/2df)
orbitals states AFE f
6 17by — 23a, 'A,—'B, 299 forbidden
22b, — 23a, ‘A, —'B, 325  0.023
21b, — 23a, 'A, —'B, 3.73 0.004
7 40a” — 524’ 1A’ -1 A7 2.78  forbidden
5la’ — 52a’ TA' -t A 3.17 0.002
5la’ — 53a’ 1A' =t A’ 3.40 0.002
8 52b — 53a A -TB 3.26 0.007
5la — 53a T4t A 3.61 0.026
500 — 53a 'A-'B 3.91 0.016
9 66ad’ —67d) A’ -1 A’ 3.3566 forbidden
65a’ — 67a’ TA" -t A7 3.6762 0.0201
62a’ — 67a’ TAm -t A7 3.9808 0.0266

.
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Table 9.10: SKBJ(d) excitation energies (V) and oscillator strengths of
Zn;TeSM i =6-9.

Transition SKBJ(d)
orbitals states AFE f
17by — 23a, 'A, —' B, 2.51 forbidden
22b, — 23a, 'A, —'B, 2.79 0.006
17by — 23b, A, —' A, 3.07 0.015
7  45b — 47a 1A=1'B  1.96 0.001
44b — 47a lA-1B 284 0.001
46a — 47a A=t A 292 0.011
8 52b— 53a TA-tB 277 0.002
5la — 53a A=A 315 0.014
50b — 53a 'A—-1B 336 0.007
9 66ad’ —67¢) 'A' ' A" 283 forbidden
65a’ — 67a’ A’ —-' A’ 298 forbidden
62a’ — 67a’ A’ -t A 3.18 0.009

| =.

X=S8Se, and 2.79 eV for X=Te. Nevertheless, f is larger for X=Se. The second
calculated excitation needs 3.73 €V when X=Se, and 3.07 eV when X=Te. In
the first case it happens when an electron is excited from the 215, orbital to
the LUMO, but in the second case the electron is excited from the 17b, to the
second virtual orbital 23b,,.

Two dipole allowed transitions of Zn;Se$" | are reported in Table 9.9. The first
allowed excitation occurs when the electron is excited from the 51a’ orbital to
the LUMO. The excitation energy in this case is 3.17 €V, but has a small f,
0.002. The second reported transition occurs exciting an electron from the
inner 51a’ orbital to the 53a’ orbital, being the excitation energy 3.40 €V.
For Zn;Te$M three dipole allowed transitions are given in Table 9.10. The
excitation with largest f occurs exciting an electron from the inner 46a orbital
to the LUMO, which absorbs 2.92 €V.

In the case of anng , three dipole allowed excitations have been calculated.
The first one is a HOMO-LUMO transition. The second one occurs when an
electron moves from the inner 51a orbital to the LUMO, and the last one from
the 50b orbital to the LUMO, resulting in ' A and ' B states, respectively. The
HOMO-LUMO transition absorbs 3.26 €V for X=Se, and 2.77 eV for X=Te. In
the other two cases the excitation energies are smaller for X=Te as well, but
the oscilator strength are larger.

Finally, three excitations are reported for ZngX$™. The excitation of an elec-
tron from the HOMO to the LUMO is dipole forbidden in both cases. For
X=Te, to excite an electron from the 654’ to the LUMO is not allowed, but
it is for X=Se, absorbing 3.68 eV. The last transition, allowed for both cases,
occurs when an electron moves from the 62a’ to the LUMO. In the X=Se case
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the absorbed photon is more energetic, as in previous cases, but the oscillator
strength is three times larger.

The transition in the structure of the global minima, ring-like structures for
1 < 5 and 3D spheroids for ¢ > 6, has dramatic consequences in the obtained
excitation energies. We observe, for X=Se, that the lowest-energy transitions
are bigger than 3.5 €V for the formers, but smaller for 3D structures. This
value decreases to roughly 3 eV when X=Te.

This difference in the values is explained as follows. The transitions in all cases
occurs from non-bonding p orbitals of X to the LUMO. In the ring structures
these orbitals lie perpendicular to the plane, while in the 3D case they lie per-
pendicular to the spheroid’s surface. This situation was also found for ZniSiGM
and Zn;0FM clusters (Chapters 7 and 8). The excitation energies of the 3D
clusters are somewhat larger than the bulk ones, which are 2.67 eV and 2.25
eV for ZnSe and ZnTe, respectively, but lie within the visible spectrum. This
fact makes attractive the idea of calculating the excitation energies of larger
clusters, and the study of the band gaps of cluster-based solids, as carbon
fullerenes solids. Therefore, it seems that Zn;Te; clusters may be appropriate
as both window or absorber materials in solar cells, while Zn;Se; may be more
suitable as window materials, similarly to Zn;S; and Zn;0;. Of course, further
studies are needed, but this constitutes a promising evidence.

9.3.3 Excitation energies calculated as Kohn-Sham eigen-
value differences

The problem of the reliability of virtual orbitals within DFT is a topic of great
controversy [101, 103, 200]. Are the energies of these virtual orbitals good
in order to calculate excitation energies? It has been recently demonstrated
that working with an exact exchange-correlation potential the calculated ex-
citation energies using the Kohn-Sham orbital energies are very reliable [201].
Nevertheless, in real problems one does not use exact potentials, and deals
with approximate exchange-correlation potentials. In this section we estimate
the excitation energies using the Kohn-Sham eigenvalues, with B3LYP and
MPW1PWO91 approximate exchange correlation potentials. Those potentials
were chosen because of their great usability. In particular B3LYP is becoming
a standard for geometry optimizations and MPW1PW91 is one of the most
employed approximate exchange-correlation functional for the calculation of
electronic excitation energies. Results are shown in Table 9.11 and 9.12.

A quick glance to these tables shows that B3LYP gives better results than
MPW1PW091, as compared to the TDDFT excitation energies. The difference
between B3LYP and TDDFT (D2 column) is much smaller than the difference
between MPW1PW91 and TDDFT (D1 column).This is due to the fact that
B3LYP HOMO lies higher and LUMO lower than the MPW1PW91 ones. An-
alyzing the results closer, it is observed that as the cluster size increases the D1
and D2 differences decrease. D1 and D2 are smaller for 3D structures rather
than for ring structures. Let us see now more carefully the D1 and D2 results.
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Table 9.11: Excitation energies of Zn;Se{™ calculated with TDDFT (AE(1)),
MPW1PW91 Kohn-Sham orbital differences (AFE(2)) and BSLYP Kohn-Sham
orbital differences (AE(3)). D1 (AE(2)— AE(1)) and D2 AE(3) — AE(1)) de-
note the differences between MPW1PW91 and B3LYP with respect to TDDFT,
respectively. All energies are in €V.

i Excitation AFE(1) AE(2) D1 AE(3) D2
1 Iy SI1 0.73 2.13 1.4 1.70  0.97
Iy 51y 3.94 4.78 084 439 0.45

2 14, -1 By, 201 320 1.19 2.69 0.68
A, —>' Bs,  2.80 399 1.19 346 0.66
A, = By, 292 392 1.00 341 049

3 14, 51 A4, 3.30 440 1.10 3.92 0.62
14, ' B; 3.97 508 1.11 460 0.63

14, >t A, 4.14 535 1.21  5.03 0.89

4 A1 A4 3.52 458 1.06 4.22 0.70
141 B 3.86 493 1.07 4.56 0.70
1451 4 4.06 510 1.04 4.69 0.63

5 147 1 A7 3.73 474 101 433 0.60
g 51 4 3.97 497 1.00 4.56 0.59

L ey 4.09 510 1.01 4.69 0.60

6 A, —'B, 2.99 397 098 3.52 0.53
A, -t A, 3.25 416 091 3.72 047

1A, ' B, 3.73 472 099 425 0.52

7 A LAY 2.78 353 0.75 3.09 0.31
g7 1 4 3.17 394 0.77 3.50 0.33

g 51 4 3.40 435 095 3.98 0.58

8 1A-TRB 3.26 414 0.88 3.68 0.42
14514 3.61 446 0.85 4.00 0.39
141 B 3.91 478 0.87 4.31 040

9 AT A 3.36 421 0.85 3.76 0.40
1g 1 4 3.68 450 0.82 4.05 0.37

Lgr -t 4 3.98 481 083 434 036
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For X=Se, D1 is seen to have values greater than 1 eV for ring-like structures,
but as the cluster size increases, the difference becomes smaller, and is smaller
than 1 eV for spheroid clusters. Nevertheless, the descent is paulatine and does
not have large oscillations. For X=Te, similar behavior is observed, but the
transition value is smaller, 0.9 €V. The analysis is similar for D2. Ring-like
clusters have values larger than 0.6 €V, being the values closer to 0.6 as cluster
size increases. Then, for 3D clusters are smaller than 0.6 eV. It is observed
that these values become smaller and smaller as cluster size increases, and in
ZngX§™M | the values are roughly 0.40 eV.

This is an important point, since approximate excitation energies may be calcu-
lated for larger clusters where TDDFT calculations are prohibitively expensive.
Henceforth, the excitation energies of Zn;5X;5 and Zni5X;5, characterized in
Chapter 5, may be estimated. In the X=Se case, the HOMO-LUMO differences
are 3.98 eV and 3.87 eV for : = 12 and ¢ = 15, respectively. However, according
to the errors given in Table 9.11, one may stimate that the energy differences
will be around 3.5 €V, similar to ZngSe§". For X=Te we find the HOMO-
LUMO differences to be smaller, 3.40 eV and 3.33 eV, respectively, for i = 12
and ¢ = 15, and according to the errors of Table 9.12 we estimate values close
to 3 eV. However, no oscillation strength may be stimated, and there is no way
to state wheter these transitions are dipole allowed or not. Therefore, some
calculations that could confirm these estimations and could provide oscillator
strengths are still to be done.

9.4 Conclusions

TDDFT calculations yield interesting results for the excitation energies of
Zn;X$M clusters. The calculated electronic excitation energies show a strong
dependence on the geometry of the cluster. Our study reveals that ring like
structure clusters, ¢+ = 2 — 5 have larger excitation energies than three di-
mensional spheroidal clusters, ¢ > 6. However, for both type of clusters the
excitation occurs from occupied non bonding p type orbitals of selenium or
tellurium to the LUMO.

The predicted electronic excitation energies of the spheroidal clusters are close
to the bulk minimum energy gap, and lie near the range of the visible spectrum
for X=Se case, and within it for X=Te. These energies are smaller than the
energies of Zn;S¢M and Zn;0¢™ clusters, and therefore, the clusters consid-
ered in the present investigation constitute promising materials for its use in
photovoltaic solar cells as absorbers (X=Te) or both absorbers and window
materials (X=Se).

The difference between the BSLYP Kohn-Sham energies of the orbitals involved
in the sought electronic excitation appears to be a reliable practical approach
to the prediction of the electronic excitation energies for larger clusters, where
TDDFT calculations become prohibitive. This approach has been found to
yield better results as the cluster size increases. Nevertheless, its most salient
drawback is that no oscillator strength are obtained.
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Table 9.12: Excitation energies of Zn;Te$'™ calculated with TDDFT (AE(1)),
MPW1PW91 Kohn-Sham orbital differences (AFE(2)) and B3LYP Kohn-Sham
orbital differences (AE(3)). D1 (AE(2)—AE(1)) and D2 (AE(3)—AE(1)) de-
note the differences between MPW1PW91 and B3LYP with respect to TDDFT,
respectively. All energies are in eV.

i Excitation AFE(1) AE(2) D1 AEFE(3) D2
1 Iy ST11 0.61 1.90 129 151 0.90
y L1y 3.79 4.73 094 437  0.58

2 14, -1 By, 1.91 301 110 256 0.65
1A, =1 By, 2.62 3.73 1.11 325 0.63

1A, —! Bs, 2.89 38 097 339 0.50

3 14, 514, 2.82 387 105 3.49 0.67
14, ' B; 3.40 447 1.07 4.08 0.68

14, -1 B 4.61 469 1.08 438 0.77

4 '4,,-'By,  3.14 409 0.95 377 063
YAy, —' 4o, 3.33 429 096 397 064
A, - B, 3.64 462 098 430 0.66

5 A" St A7 3.34 430 096 3.96 0.62
g 51 4 3.49 441  0.92 4.03 054

tAr 1 A 3.67 459 0.92 424 057

6 1A -lA” 2.51 344 093 3.10 0.59
g 51 4 2.79 367 088 334 0.55

tAr 1 A 3.07 380 082 349 042

7 418 1.96 269 073 234 0.38
14514 2.84 365 081 328 044
141 B 2.92 3.74 0.82 338 0.46

8 418 2.77 361 084 326 049
1451 RB 3.15 396 081 3.58 043
14514 3.36 420 0.84 3.83 047

9 AT A 2.83 365 082 329 046
147 1 4 2.98 380 082 344 046

g 1 4 3.18 397 079 361 043
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Chapter 10

Final Conclusions

10.1 Structures

Throughout this thesis we have observed that ring structures are the global
minima for the small Zn;X; clusters and three-dimensional spheroids for the
larger ones. The transition occurs at ¢« = 8 for X=0, and at ¢ = 6 for the
remaining elements of group VIB. The evolution of the relative energies between
the ring and spheroid structures is depicted in Figure 10.1. Notice that relative
energies for ¢ = 9,12,15 are not plotted, since no ring structures have been
characterized. Points above the dashed line represent the situation where the
ring structures are more stable than spheroids. It may be seen that as the
cluster size increases the three dimensional structures are favoured, and all the
lines tend to sunk into the spheroid stability region.

There are two main factors determining whether a ring or a three-dimensional
structure will be the global minimum for the small Zn;X; clusters: the stabil-
ity of very obtuse X-Zn-X bond angles, and the stability gained from higher
coordination. For small clusters the first term outweighs the second and ring
structures are predicted to be the global minima. For i > 6, (i > 8 for X=0)
however, the size of the cluster allows for both obtuse X-Zn-X bond angles and
higher coordination in the three dimensional spheroid structures, making these
the most stable.

These three dimensional clusters can be envisioned as being built of smaller
building blocks, basically Zn, Xy (squares) and ZnzSs (hexagons) rings. These
structures are also found in carbon fullerenes, where the most stable structures
are formed by pentagons and hexagons. In binary clusters, however, structures
based on pentagons are not so stable because of the formation of isoatomic
bonds. The number of squares shared by the spheroid structures remains con-
stant as the size increases, while the number of hexagons is augmented by
one adding a ZnX unit. The number of hexagons and squares found in each
spheroid is detailed in Table 10.1.

The representation of the cohesive energies versus the inverse cubic root of the
ZnX units shows a trend towards bulk cohesive energies. The predicted cohesive
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Figure 10.1: Evolution of the relative energies calculated as AE = E g —

Epheroid (kJ/mol) as the cluster size increases.
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Table 10.1: Structural characteristics of spheroid carbon clusters and II-VI
clusters

ZH4X4 Zn6X6 ZI’ngg ZI’IQXQ Zn12X12 ZH15X15
Hexagons 0 2 4 5 8 11
Rombi 6 6 6 6 6 6

energies are more than 90% the experimental values, although these clusters are
too small to represent the bulk. Moreover, the fact that the cohesive energies
of these clusters fit a line indicates that we are dealing with the real global
minima. The cohesive energy also gives a first insight into the relative stability
of these clusters, and predict that Zn,5X2 structures are the most stable ones,
as was seen in Chapter 5.

10.2 Excitation energies

The MR-CI results used as reference show a clear advantage of the TDDFT
method vs the CIS method. It describes sensibly better than CIS the two-
fold degenerate 'II excitation in Zn;S¥M and also appears to be superior for
the rest of the studied excitations in all the investigated clusters. It has been
seen that both CIS and TDDFT methods need basis sets with more than one
polarization functions. SKBJ(1sp2d2f) is the smallest basis yielding converged
results for X=S, Se and Te, and SKBJ(1sp2d3f) for X=0. Nevertheless, this
basis is too large for larger clusters.

The calculated electronic excitation energies show a strong dependence on the
geometry of the cluster. Our study reveals that the ring like structure clusters,
t = 2 — 5 have larger excitation energies than three dimensional spheroidal
clusters, i > 6. However, for both type of clusters the excitation occurs from
occupied non bonding p type orbitals of X to the LUMO. The predicted elec-
tronic excitation energies of the spheroidal clusters lie near the range of the
visible spectrum for X=0,5,Se case, and within it for X=Te. When one goes
down in the periodic table from O to Te the excitation energies are smaller,
as may be appreciated in Figure 10.2, where the lowest allowed transitions are
depicted. Four regions may be seen in Figure 10.2, the ultraviolet, which is
entirely absorbed by the ozone shell in the atmosphere, the close ultraviolet,
visible and the part corresponding to less energetic regions of the electromag-
netic spectrum, i.e. infrared and so on. Only the radiation belonging to these
last three regions reach the earth surface.

There are few clusters whose excitation energies lie within the visible region,
which are Zn,X¢M i = 2, and Zn;Te“™ spheroids. Most of the clusters
are in the close ultraviolet region, which are Zn;Sf™ and Zn;Se%M rings and
spheroids and Zn;0%™ spheroids. Finally, in the ultraviolet region we find
Zn;0O¢M ring structures, which might be good protectors from the dangerous
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Figure 10.2: Lowest allowed excitation energies of Zn,X{™ clusters.
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ultraviolet radiation. For Zn,X{™ X=S Se,Te cases it is interesting to point
out that the lowest lying excitation energy correspond to the i = 7 case.

Therefore, the clusters considered in the present investigation constitute promis-
ing materials for its use in photovoltaic solar cells as absorbers (X="Te) or both
absorbers and window materials (X=Se) or only window materials (X=0 and

9).

The difference between the BSLYP Kohn-Sham energies of the orbitals involved
in the sought electronic excitation appears to be a reliable practical approach
to the stimation of the electronic excitation energies for larger clusters, where
TDDFT calculations become prohibitive. This approach has been found to
yield better results as the cluster size increases. Nevertheless, its most salient
drawback is that no oscillator strengths are obtained.

10.3 Further work

Nowadays parallel machines allows one to perform calculations that few years
ago were too expensive. Therefore, spheroids as large as ¢ = 12,15 have been
characterized, and the characterization of the remaining large spheroids, i.e.
Zn;X;, ¢ = 10,11,13, 14, is still in process. In addition to this, the excitation
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energies of these large spheroids could be performed. Once this is done a
thermodynamical study of the stability of these clusters may be performed,
in order to find which one is the most chemically stable one. Remember that
according to the cohesive energies the i = 12 were the most stable ones.

Similar study is being performed for Cd;X; clusters. Besides, it is known that
most of the absorption occurred in a solar cell happens in the junction of the
two semiconductors. Therefore, ternary clusters such as Cd;S1Te,_; may be
characterized and their excitation energies calculated.

Fullerene-based solids have many different applications as we have mentioned
throughout this thesis. The interaction between the fullerenes in these solids
is of Van der Waals type. Studies of the interactions between these clusters
would be interesting in order to study the possibility of stable or metastable
cluster-based solids, which could have very interesting properties.

Quantum Monte Carlo calculations have become a very powerfull tool in recent
years. Diffusion Monte Carlo calculations may be performed for these solids,
in order to calculate their band gaps.
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