Entering Gaussian System, Link 0=g09 Input=co-kurba.com Output=co-kurba.log Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 24874. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %mem=7520mb %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 0.9 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 0.900000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.514286 2 8 0 0.000000 0.000000 0.385714 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 91.0014164 91.0014164 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 28.2227844581 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) (SG) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20675891. SCF Done: E(RB3LYP) = -113.155193681 A.U. after 8 cycles Convg = 0.4423D-08 -V/T = 1.9871 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (SG) (PI) (PI) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PHI) (PHI) (PI) (PI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.22064 -10.21527 -1.29535 -0.58607 -0.58087 Alpha occ. eigenvalues -- -0.58087 -0.36034 Alpha virt. eigenvalues -- 0.02085 0.02460 0.02460 0.05010 0.08318 Alpha virt. eigenvalues -- 0.08318 0.13114 0.13921 0.13921 0.19153 Alpha virt. eigenvalues -- 0.20819 0.20819 0.30311 0.34391 0.34391 Alpha virt. eigenvalues -- 0.38075 0.38075 0.41752 0.54877 0.57711 Alpha virt. eigenvalues -- 0.57711 0.68142 0.68142 0.69467 0.88460 Alpha virt. eigenvalues -- 0.88461 0.91638 0.92199 0.92199 0.94794 Alpha virt. eigenvalues -- 0.94794 1.03876 1.03876 1.13809 1.15186 Alpha virt. eigenvalues -- 1.15190 1.19376 1.37562 1.37562 1.62202 Alpha virt. eigenvalues -- 1.90698 1.90698 1.95090 1.95090 2.04475 Alpha virt. eigenvalues -- 2.04475 2.15442 2.29329 2.38650 2.38650 Alpha virt. eigenvalues -- 2.41093 2.41095 2.52019 2.65562 2.65562 Alpha virt. eigenvalues -- 3.12308 3.12308 3.15905 3.15905 3.37149 Alpha virt. eigenvalues -- 3.42245 3.42245 3.73138 3.73139 3.78693 Alpha virt. eigenvalues -- 3.86075 3.86075 4.31068 5.21296 5.21296 Alpha virt. eigenvalues -- 5.78714 6.02330 6.02330 6.42036 6.42036 Alpha virt. eigenvalues -- 6.56838 6.56839 6.71566 6.71566 7.17384 Alpha virt. eigenvalues -- 7.28780 7.28780 7.86971 13.00745 20.40403 Condensed to atoms (all electrons): 1 2 1 C 5.298218 0.882617 2 O 0.882617 6.936547 Mulliken atomic charges: 1 1 C -0.180835 2 O 0.180835 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.180835 2 O 0.180835 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 33.3917 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.8465 Tot= 0.8465 Quadrupole moment (field-independent basis, Debye-Ang): XX= -9.7115 YY= -9.7115 ZZ= -12.1509 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.8131 YY= 0.8131 ZZ= -1.6262 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.0997 XYY= 0.0000 XXY= 0.0000 XXZ= 1.4321 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.4321 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -8.8631 YYYY= -8.8631 ZZZZ= -29.3308 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -2.9544 XXZZ= -5.9850 YYZZ= -5.9850 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.822278445813D+01 E-N=-3.234565210679D+02 KE= 1.146350156404D+02 Symmetry A1 KE= 1.058200039033D+02 Symmetry A2 KE= 5.768121293668D-51 Symmetry B1 KE= 4.407505868546D+00 Symmetry B2 KE= 4.407505868546D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,0.9\\Ver sion=EM64L-G09RevB.01\State=1-SG\HF=-113.1551937\RMSD=4.423e-09\Dipole =0.,0.,0.3330498\Quadrupole=0.6045375,0.6045375,-1.2090751,0.,0.,0.\PG =C*V [C*(C1O1)]\\@ ON A TOMBSTONE, "HERE LIES LESTER MOORE, FOUR SLUGS FROM A 44, NO LES, NO MORE". Job cpu time: 0 days 0 hours 0 minutes 5.6 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:24:57 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 24963. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 0.95 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 0.950000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.542857 2 8 0 0.000000 0.000000 0.407143 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 81.6744014 81.6744014 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 26.7373747498 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20675891. SCF Done: E(RB3LYP) = -113.250819328 A.U. after 8 cycles Convg = 0.6073D-08 -V/T = 1.9930 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PHI) (PHI) (PI) (PI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.22712 -10.23205 -1.27199 -0.58639 -0.55642 Alpha occ. eigenvalues -- -0.55642 -0.36686 Alpha virt. eigenvalues -- 0.01611 0.01611 0.02103 0.04935 0.06980 Alpha virt. eigenvalues -- 0.06980 0.12939 0.13809 0.13809 0.19123 Alpha virt. eigenvalues -- 0.20807 0.20807 0.30359 0.33597 0.33597 Alpha virt. eigenvalues -- 0.38019 0.38019 0.41216 0.54436 0.57777 Alpha virt. eigenvalues -- 0.57778 0.67720 0.67720 0.68745 0.88037 Alpha virt. eigenvalues -- 0.88039 0.89311 0.92139 0.92139 0.93889 Alpha virt. eigenvalues -- 0.93889 1.03821 1.03821 1.12921 1.14321 Alpha virt. eigenvalues -- 1.14324 1.18463 1.35002 1.35002 1.52499 Alpha virt. eigenvalues -- 1.90195 1.90196 1.93678 1.93678 2.04490 Alpha virt. eigenvalues -- 2.04490 2.13472 2.25583 2.39766 2.39767 Alpha virt. eigenvalues -- 2.41921 2.41921 2.47274 2.58609 2.58609 Alpha virt. eigenvalues -- 3.10846 3.10847 3.15186 3.15186 3.32439 Alpha virt. eigenvalues -- 3.39160 3.39160 3.64871 3.64871 3.77317 Alpha virt. eigenvalues -- 3.77317 3.79109 4.16839 5.15742 5.15742 Alpha virt. eigenvalues -- 5.57401 6.01604 6.01604 6.39422 6.39422 Alpha virt. eigenvalues -- 6.53593 6.53593 6.76525 6.76525 7.09785 Alpha virt. eigenvalues -- 7.09785 7.10909 7.57545 12.79294 19.28332 Condensed to atoms (all electrons): 1 2 1 C 5.275120 0.825449 2 O 0.825449 7.073982 Mulliken atomic charges: 1 1 C -0.100569 2 O 0.100569 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.100569 2 O 0.100569 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 34.7992 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.6937 Tot= 0.6937 Quadrupole moment (field-independent basis, Debye-Ang): XX= -9.8572 YY= -9.8572 ZZ= -12.2291 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.7906 YY= 0.7906 ZZ= -1.5812 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.1903 XYY= 0.0000 XXY= 0.0000 XXZ= 1.3968 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.3968 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.0399 YYYY= -9.0399 ZZZZ= -31.0595 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.0133 XXZZ= -6.2617 YYZZ= -6.2617 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.673737474981D+01 E-N=-3.202214994998D+02 KE= 1.140470625540D+02 Symmetry A1 KE= 1.054092423611D+02 Symmetry A2 KE= 1.274751103480D-50 Symmetry B1 KE= 4.318910096466D+00 Symmetry B2 KE= 4.318910096466D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,0.95\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.2508193\RMSD=6.073e-09\Dipol e=0.,0.,0.2729303\Quadrupole=0.5878103,0.5878103,-1.1756206,0.,0.,0.\P G=C*V [C*(C1O1)]\\@ DEFINE YOUR TERMS, YOU WILL PERMIT ME AGAIN TO SAY, OR WE SHALL NEVER UNDERSTAND ONE ANOTHER. -- VOLTAIRE Job cpu time: 0 days 0 hours 0 minutes 5.7 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:25:03 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 25053. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 0.98 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 0.980000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.560000 2 8 0 0.000000 0.000000 0.420000 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 76.7504657 76.7504657 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 25.9188836860 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20675891. SCF Done: E(RB3LYP) = -113.290110095 A.U. after 8 cycles Convg = 0.7870D-08 -V/T = 1.9960 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PHI) (PHI) (PI) (PI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.23071 -10.24298 -1.25646 -0.58630 -0.54283 Alpha occ. eigenvalues -- -0.54283 -0.37062 Alpha virt. eigenvalues -- 0.00863 0.00863 0.02110 0.04883 0.06408 Alpha virt. eigenvalues -- 0.06408 0.12844 0.13775 0.13775 0.19108 Alpha virt. eigenvalues -- 0.20796 0.20797 0.30348 0.33182 0.33182 Alpha virt. eigenvalues -- 0.38007 0.38007 0.40932 0.54200 0.57802 Alpha virt. eigenvalues -- 0.57802 0.67500 0.67500 0.67991 0.87769 Alpha virt. eigenvalues -- 0.87772 0.87773 0.92095 0.92095 0.93250 Alpha virt. eigenvalues -- 0.93250 1.03882 1.03882 1.12268 1.13813 Alpha virt. eigenvalues -- 1.13816 1.18165 1.33612 1.33612 1.46867 Alpha virt. eigenvalues -- 1.89961 1.89961 1.92900 1.92900 2.04301 Alpha virt. eigenvalues -- 2.04301 2.12168 2.23961 2.38799 2.38800 Alpha virt. eigenvalues -- 2.42286 2.42286 2.44770 2.56444 2.56444 Alpha virt. eigenvalues -- 3.10014 3.10015 3.14803 3.14803 3.29640 Alpha virt. eigenvalues -- 3.37414 3.37414 3.60399 3.60400 3.72770 Alpha virt. eigenvalues -- 3.72770 3.78480 4.10291 5.11042 5.11042 Alpha virt. eigenvalues -- 5.44203 6.01275 6.01275 6.37580 6.37580 Alpha virt. eigenvalues -- 6.52258 6.52259 6.79550 6.79550 6.99633 Alpha virt. eigenvalues -- 6.99633 7.06337 7.42365 12.66147 18.52271 Condensed to atoms (all electrons): 1 2 1 C 5.268470 0.791648 2 O 0.791648 7.148234 Mulliken atomic charges: 1 1 C -0.060118 2 O 0.060118 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.060118 2 O 0.060118 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 35.6611 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.5976 Tot= 0.5976 Quadrupole moment (field-independent basis, Debye-Ang): XX= -9.9405 YY= -9.9405 ZZ= -12.2684 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.7760 YY= 0.7760 ZZ= -1.5519 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.2337 XYY= 0.0000 XXY= 0.0000 XXZ= 1.3738 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.3738 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.1455 YYYY= -9.1455 ZZZZ= -32.1320 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.0485 XXZZ= -6.4326 YYZZ= -6.4326 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.591888368604D+01 E-N=-3.184371507472D+02 KE= 1.137458746044D+02 Symmetry A1 KE= 1.051979915185D+02 Symmetry A2 KE= 1.116431155286D-51 Symmetry B1 KE= 4.273941542919D+00 Symmetry B2 KE= 4.273941542919D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,0.98\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.2901101\RMSD=7.870e-09\Dipol e=0.,0.,0.2351087\Quadrupole=0.5769178,0.5769178,-1.1538357,0.,0.,0.\P G=C*V [C*(C1O1)]\\@ THERE'S NOTHING SO GREAT AS THE GREAT OUTDOORS. -- ZIGGY Job cpu time: 0 days 0 hours 0 minutes 4.6 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:25:08 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 25142. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.000000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.571429 2 8 0 0.000000 0.000000 0.428571 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 73.7111473 73.7111473 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 25.4005060123 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20675891. SCF Done: E(RB3LYP) = -113.310218637 A.U. after 8 cycles Convg = 0.9344D-08 -V/T = 1.9978 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.23293 -10.25046 -1.24569 -0.58617 -0.53416 Alpha occ. eigenvalues -- -0.53416 -0.37306 Alpha virt. eigenvalues -- 0.00278 0.00278 0.02114 0.04846 0.06122 Alpha virt. eigenvalues -- 0.06122 0.12785 0.13761 0.13761 0.19098 Alpha virt. eigenvalues -- 0.20788 0.20788 0.30322 0.32926 0.32926 Alpha virt. eigenvalues -- 0.38006 0.38006 0.40758 0.54055 0.57812 Alpha virt. eigenvalues -- 0.57812 0.67308 0.67364 0.67364 0.86729 Alpha virt. eigenvalues -- 0.87587 0.87591 0.92062 0.92062 0.92795 Alpha virt. eigenvalues -- 0.92795 1.03951 1.03951 1.11783 1.13478 Alpha virt. eigenvalues -- 1.13480 1.18072 1.32743 1.32743 1.43334 Alpha virt. eigenvalues -- 1.89827 1.89827 1.92409 1.92409 2.04100 Alpha virt. eigenvalues -- 2.04100 2.11281 2.23029 2.38092 2.38093 Alpha virt. eigenvalues -- 2.41389 2.41389 2.43258 2.56301 2.56301 Alpha virt. eigenvalues -- 3.09481 3.09483 3.14566 3.14566 3.27764 Alpha virt. eigenvalues -- 3.36287 3.36287 3.57606 3.57607 3.69996 Alpha virt. eigenvalues -- 3.69996 3.77540 4.06852 5.07408 5.07408 Alpha virt. eigenvalues -- 5.35347 6.01097 6.01097 6.36288 6.36289 Alpha virt. eigenvalues -- 6.51564 6.51565 6.81458 6.81458 6.93381 Alpha virt. eigenvalues -- 6.93381 7.02621 7.33811 12.57085 17.98812 Condensed to atoms (all electrons): 1 2 1 C 5.266104 0.769473 2 O 0.769473 7.194950 Mulliken atomic charges: 1 1 C -0.035577 2 O 0.035577 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.035577 2 O 0.035577 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 36.2429 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.5319 Tot= 0.5319 Quadrupole moment (field-independent basis, Debye-Ang): XX= -9.9944 YY= -9.9944 ZZ= -12.2911 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.7656 YY= 0.7656 ZZ= -1.5311 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.2582 XYY= 0.0000 XXY= 0.0000 XXZ= 1.3579 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.3579 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.2159 YYYY= -9.2159 ZZZZ= -32.8608 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.0720 XXZZ= -6.5485 YYZZ= -6.5485 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.540050601232D+01 E-N=-3.173073984855D+02 KE= 1.135640856020D+02 Symmetry A1 KE= 1.050701603709D+02 Symmetry A2 KE=-9.085401423566D-51 Symmetry B1 KE= 4.246962615525D+00 Symmetry B2 KE= 4.246962615525D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.\\Vers ion=EM64L-G09RevB.01\State=1-SG\HF=-113.3102186\RMSD=9.344e-09\Dipole= 0.,0.,0.2092459\Quadrupole=0.5691796,0.5691796,-1.1383593,0.,0.,0.\PG= C*V [C*(C1O1)]\\@ "ANNA, YOU MUSN'T SPEAK OF OXIDIZED MURIATIC ACID ANYMORE, FROM NOW ON YOU MUST SAY CHLORINE." -- JENS JACOB BERZELIUS, IN 1820, TO HIS COOK, WHO HAD COMPLAINED OF THE SMELL OF THE FLASK SHE WAS CLEANING. Job cpu time: 0 days 0 hours 0 minutes 6.0 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:25:13 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 25233. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.01 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.010000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.577143 2 8 0 0.000000 0.000000 0.432857 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 72.2587465 72.2587465 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 25.1490158538 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20675891. SCF Done: E(RB3LYP) = -113.318668503 A.U. after 9 cycles Convg = 0.7906D-09 -V/T = 1.9986 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.23399 -10.25424 -1.24021 -0.58609 -0.52994 Alpha occ. eigenvalues -- -0.52994 -0.37426 Alpha virt. eigenvalues -- -0.00035 -0.00035 0.02116 0.04827 0.06004 Alpha virt. eigenvalues -- 0.06004 0.12757 0.13756 0.13756 0.19093 Alpha virt. eigenvalues -- 0.20783 0.20783 0.30303 0.32803 0.32803 Alpha virt. eigenvalues -- 0.38008 0.38008 0.40675 0.53986 0.57815 Alpha virt. eigenvalues -- 0.57815 0.66902 0.67299 0.67299 0.86213 Alpha virt. eigenvalues -- 0.87495 0.87499 0.92046 0.92046 0.92560 Alpha virt. eigenvalues -- 0.92560 1.03993 1.03993 1.11528 1.13311 Alpha virt. eigenvalues -- 1.13313 1.18055 1.32325 1.32325 1.41653 Alpha virt. eigenvalues -- 1.89767 1.89767 1.92172 1.92172 2.03978 Alpha virt. eigenvalues -- 2.03978 2.10835 2.22589 2.37721 2.37722 Alpha virt. eigenvalues -- 2.40638 2.40638 2.42553 2.56578 2.56578 Alpha virt. eigenvalues -- 3.09222 3.09224 3.14452 3.14452 3.26819 Alpha virt. eigenvalues -- 3.35733 3.35733 3.56263 3.56265 3.68680 Alpha virt. eigenvalues -- 3.68680 3.76895 4.05417 5.05456 5.05456 Alpha virt. eigenvalues -- 5.30925 6.01018 6.01018 6.35634 6.35634 Alpha virt. eigenvalues -- 6.51265 6.51266 6.82360 6.82360 6.90408 Alpha virt. eigenvalues -- 6.90408 7.00506 7.30079 12.52435 17.71471 Condensed to atoms (all electrons): 1 2 1 C 5.265418 0.758493 2 O 0.758493 7.217596 Mulliken atomic charges: 1 1 C -0.023911 2 O 0.023911 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.023911 2 O 0.023911 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 36.5360 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.4985 Tot= 0.4985 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.0209 YY= -10.0209 ZZ= -12.3013 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.7601 YY= 0.7601 ZZ= -1.5203 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.2690 XYY= 0.0000 XXY= 0.0000 XXZ= 1.3498 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.3498 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.2512 YYYY= -9.2512 ZZZZ= -33.2291 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.0837 XXZZ= -6.6071 YYZZ= -6.6071 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.514901585378D+01 E-N=-3.167595596534D+02 KE= 1.134784897772D+02 Symmetry A1 KE= 1.050098743588D+02 Symmetry A2 KE=-5.300985799164D-51 Symmetry B1 KE= 4.234307709199D+00 Symmetry B2 KE= 4.234307709198D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.01\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.3186685\RMSD=7.906e-10\Dipol e=0.,0.,0.1961345\Quadrupole=0.5651496,0.5651496,-1.1302991,0.,0.,0.\P G=C*V [C*(C1O1)]\\@ ERROR IS THE FORCE THAT WELDS MEN TOGETHER.... TRUTH IS COMMUNICATED TO MEN ONLY BY DEEDS OF TRUTH. TOLSTOI,MY RELIGION Job cpu time: 0 days 0 hours 0 minutes 5.4 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:25:18 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 25323. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.02 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.020000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.582857 2 8 0 0.000000 0.000000 0.437143 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 70.8488536 70.8488536 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 24.9024568748 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20675891. SCF Done: E(RB3LYP) = -113.326137223 A.U. after 9 cycles Convg = 0.8586D-09 -V/T = 1.9994 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.23500 -10.25803 -1.23468 -0.58599 -0.52580 Alpha occ. eigenvalues -- -0.52580 -0.37544 Alpha virt. eigenvalues -- -0.00360 -0.00360 0.02117 0.04807 0.05900 Alpha virt. eigenvalues -- 0.05900 0.12729 0.13752 0.13752 0.19087 Alpha virt. eigenvalues -- 0.20778 0.20778 0.30281 0.32684 0.32684 Alpha virt. eigenvalues -- 0.38012 0.38012 0.40595 0.53920 0.57817 Alpha virt. eigenvalues -- 0.57817 0.66449 0.67235 0.67235 0.85705 Alpha virt. eigenvalues -- 0.87403 0.87406 0.92029 0.92029 0.92322 Alpha virt. eigenvalues -- 0.92322 1.04039 1.04039 1.11265 1.13144 Alpha virt. eigenvalues -- 1.13146 1.18055 1.31917 1.31917 1.40038 Alpha virt. eigenvalues -- 1.89711 1.89711 1.91940 1.91940 2.03843 Alpha virt. eigenvalues -- 2.03843 2.10387 2.22160 2.37340 2.37342 Alpha virt. eigenvalues -- 2.39740 2.39740 2.41887 2.57031 2.57031 Alpha virt. eigenvalues -- 3.08968 3.08970 3.14340 3.14340 3.25868 Alpha virt. eigenvalues -- 3.35187 3.35187 3.54955 3.54957 3.67410 Alpha virt. eigenvalues -- 3.67410 3.76135 4.04164 5.03421 5.03421 Alpha virt. eigenvalues -- 5.26521 6.00947 6.00947 6.34976 6.34976 Alpha virt. eigenvalues -- 6.50994 6.50995 6.83215 6.83215 6.87543 Alpha virt. eigenvalues -- 6.87543 6.98216 7.26720 12.47693 17.43829 Condensed to atoms (all electrons): 1 2 1 C 5.265020 0.747581 2 O 0.747581 7.239818 Mulliken atomic charges: 1 1 C -0.012601 2 O 0.012601 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.012601 2 O 0.012601 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 36.8306 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.4649 Tot= 0.4649 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.0471 YY= -10.0471 ZZ= -12.3108 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.7546 YY= 0.7546 ZZ= -1.5091 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.2789 XYY= 0.0000 XXY= 0.0000 XXZ= 1.3416 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.3416 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.2865 YYYY= -9.2865 ZZZZ= -33.5999 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.0955 XXZZ= -6.6660 YYZZ= -6.6660 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.490245687482D+01 E-N=-3.162226927539D+02 KE= 1.133962573830D+02 Symmetry A1 KE= 1.049518932677D+02 Symmetry A2 KE=-7.783867137976D-51 Symmetry B1 KE= 4.222182057667D+00 Symmetry B2 KE= 4.222182057667D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.02\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.3261372\RMSD=8.586e-10\Dipol e=0.,0.,0.1829096\Quadrupole=0.5610051,0.5610051,-1.1220103,0.,0.,0.\P G=C*V [C*(C1O1)]\\@ YOU WILL NEVER "FIND" TIME FOR ANYTHING. IF YOU WANT TIME, YOU MUST MAKE IT. -- CHARLES BIXTON Job cpu time: 0 days 0 hours 0 minutes 5.8 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:25:24 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 25413. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.03 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.030000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.588571 2 8 0 0.000000 0.000000 0.441429 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 69.4798259 69.4798259 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 24.6606854489 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20675891. SCF Done: E(RB3LYP) = -113.332686236 A.U. after 9 cycles Convg = 0.9273D-09 -V/T = 2.0001 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.23597 -10.26183 -1.22912 -0.58590 -0.52172 Alpha occ. eigenvalues -- -0.52172 -0.37660 Alpha virt. eigenvalues -- -0.00693 -0.00693 0.02119 0.04786 0.05808 Alpha virt. eigenvalues -- 0.05808 0.12703 0.13749 0.13749 0.19081 Alpha virt. eigenvalues -- 0.20773 0.20773 0.30254 0.32568 0.32568 Alpha virt. eigenvalues -- 0.38018 0.38018 0.40517 0.53856 0.57818 Alpha virt. eigenvalues -- 0.57818 0.65948 0.67173 0.67173 0.85211 Alpha virt. eigenvalues -- 0.87310 0.87314 0.92011 0.92011 0.92080 Alpha virt. eigenvalues -- 0.92080 1.04088 1.04088 1.10994 1.12978 Alpha virt. eigenvalues -- 1.12979 1.18071 1.31521 1.31521 1.38493 Alpha virt. eigenvalues -- 1.89658 1.89658 1.91714 1.91714 2.03694 Alpha virt. eigenvalues -- 2.03694 2.09938 2.21736 2.36949 2.36951 Alpha virt. eigenvalues -- 2.38738 2.38738 2.41262 2.57615 2.57615 Alpha virt. eigenvalues -- 3.08719 3.08721 3.14232 3.14232 3.24910 Alpha virt. eigenvalues -- 3.34646 3.34646 3.53681 3.53683 3.66184 Alpha virt. eigenvalues -- 3.66184 3.75263 4.03082 5.01308 5.01308 Alpha virt. eigenvalues -- 5.22143 6.00883 6.00883 6.34319 6.34320 Alpha virt. eigenvalues -- 6.50748 6.50749 6.83935 6.83935 6.84867 Alpha virt. eigenvalues -- 6.84867 6.95764 7.23721 12.42847 17.15971 Condensed to atoms (all electrons): 1 2 1 C 5.264880 0.736732 2 O 0.736732 7.261656 Mulliken atomic charges: 1 1 C -0.001612 2 O 0.001612 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.001612 2 O 0.001612 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 37.1267 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.4310 Tot= 0.4310 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.0730 YY= -10.0730 ZZ= -12.3196 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.7488 YY= 0.7488 ZZ= -1.4977 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.2879 XYY= 0.0000 XXY= 0.0000 XXZ= 1.3333 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.3333 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.3220 YYYY= -9.3220 ZZZZ= -33.9733 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.1073 XXZZ= -6.7254 YYZZ= -6.7254 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.466068544885D+01 E-N=-3.156965209198D+02 KE= 1.133172688271D+02 Symmetry A1 KE= 1.048961355141D+02 Symmetry A2 KE=-4.219309966569D-51 Symmetry B1 KE= 4.210566656510D+00 Symmetry B2 KE= 4.210566656510D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.03\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.3326862\RMSD=9.273e-10\Dipol e=0.,0.,0.1695759\Quadrupole=0.5567415,0.5567415,-1.1134831,0.,0.,0.\P G=C*V [C*(C1O1)]\\@ ALTHOUGH J.J. COULD DIAGNOSE THE FAULTS OF AN APPARATUS WITH UNCANNY ACCURACY, IT WAS JUST AS WELL NOT TO LET HIM HANDLE IT. -- GEORGE THOMPSON, ABOUT HIS FATHER Job cpu time: 0 days 0 hours 0 minutes 4.7 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:25:29 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 25519. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.04 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.040000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.594286 2 8 0 0.000000 0.000000 0.445714 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 68.1500992 68.1500992 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 24.4235634734 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20675891. SCF Done: E(RB3LYP) = -113.338373314 A.U. after 8 cycles Convg = 0.1966D-08 -V/T = 2.0009 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.23690 -10.26564 -1.22353 -0.58580 -0.51772 Alpha occ. eigenvalues -- -0.51772 -0.37775 Alpha virt. eigenvalues -- -0.01034 -0.01034 0.02120 0.04765 0.05728 Alpha virt. eigenvalues -- 0.05728 0.12677 0.13747 0.13747 0.19075 Alpha virt. eigenvalues -- 0.20767 0.20768 0.30224 0.32454 0.32454 Alpha virt. eigenvalues -- 0.38025 0.38025 0.40442 0.53796 0.57817 Alpha virt. eigenvalues -- 0.57818 0.65395 0.67112 0.67112 0.84734 Alpha virt. eigenvalues -- 0.87217 0.87221 0.91835 0.91835 0.91993 Alpha virt. eigenvalues -- 0.91993 1.04139 1.04139 1.10718 1.12812 Alpha virt. eigenvalues -- 1.12813 1.18100 1.31135 1.31135 1.37022 Alpha virt. eigenvalues -- 1.89610 1.89610 1.91493 1.91493 2.03533 Alpha virt. eigenvalues -- 2.03533 2.09487 2.21312 2.36549 2.36550 Alpha virt. eigenvalues -- 2.37666 2.37666 2.40680 2.58297 2.58297 Alpha virt. eigenvalues -- 3.08475 3.08477 3.14127 3.14127 3.23943 Alpha virt. eigenvalues -- 3.34111 3.34111 3.52440 3.52442 3.65000 Alpha virt. eigenvalues -- 3.65000 3.74292 4.02157 4.99124 4.99124 Alpha virt. eigenvalues -- 5.17802 6.00825 6.00825 6.33665 6.33665 Alpha virt. eigenvalues -- 6.50524 6.50525 6.82025 6.82025 6.84873 Alpha virt. eigenvalues -- 6.84873 6.93181 7.21054 12.37886 16.87982 Condensed to atoms (all electrons): 1 2 1 C 5.264974 0.725942 2 O 0.725942 7.283142 Mulliken atomic charges: 1 1 C 0.009084 2 O -0.009084 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.009084 2 O -0.009084 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 37.4242 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.3969 Tot= 0.3969 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.0987 YY= -10.0987 ZZ= -12.3275 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.7429 YY= 0.7429 ZZ= -1.4859 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.2960 XYY= 0.0000 XXY= 0.0000 XXZ= 1.3249 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.3249 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.3575 YYYY= -9.3575 ZZZZ= -34.3492 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.1192 XXZZ= -6.7852 YYZZ= -6.7852 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.442356347338D+01 E-N=-3.151807746786D+02 KE= 1.132414088699D+02 Symmetry A1 KE= 1.048425222844D+02 Symmetry A2 KE=-1.351333904106D-51 Symmetry B1 KE= 4.199443292729D+00 Symmetry B2 KE= 4.199443292729D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.04\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.3383733\RMSD=1.966e-09\Dipol e=0.,0.,0.1561381\Quadrupole=0.5523543,0.5523543,-1.1047087,0.,0.,0.\P G=C*V [C*(C1O1)]\\@ THESE ARE THE TIMES THAT TRY MENS SOULS. THE SUMMER SOLDIER AND THE SUNSHINE PATRIOT WILL IN THIS CRISIS, SHRINK FROM THE SERVICE OF HIS COUNTRY. BUT HE THAT STANDS NOW, DESERVES THE LOVE AND THANKS OF MAN AND WOMAN. TYRANNY, LIKE HELL, IS NOT EASILY CONQUERED, YET WE HAVE THIS CONSOLATION WITH US, THAT THE HARDER THE CONFLICT, THE MORE GLORIOUS THE TRIUMPH. WHAT WE OBTAIN TOO CHEAP, WE ESTEEM TOO LIGHTLY, 'TIS DEARNESS ONLY THAT GIVES EVERYTHING ITS VALUE. -- TOM PAINE Job cpu time: 0 days 0 hours 0 minutes 5.5 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:25:34 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 25612. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.05 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.050000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.600000 2 8 0 0.000000 0.000000 0.450000 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 66.8581835 66.8581835 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 24.1909581070 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20675891. SCF Done: E(RB3LYP) = -113.343252822 A.U. after 8 cycles Convg = 0.2064D-08 -V/T = 2.0015 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.23778 -10.26944 -1.21791 -0.58570 -0.51378 Alpha occ. eigenvalues -- -0.51378 -0.37887 Alpha virt. eigenvalues -- -0.01381 -0.01381 0.02120 0.04743 0.05657 Alpha virt. eigenvalues -- 0.05657 0.12652 0.13746 0.13746 0.19069 Alpha virt. eigenvalues -- 0.20762 0.20762 0.30189 0.32343 0.32343 Alpha virt. eigenvalues -- 0.38033 0.38033 0.40370 0.53738 0.57816 Alpha virt. eigenvalues -- 0.57816 0.64790 0.67053 0.67053 0.84278 Alpha virt. eigenvalues -- 0.87124 0.87128 0.91589 0.91589 0.91974 Alpha virt. eigenvalues -- 0.91974 1.04193 1.04193 1.10436 1.12646 Alpha virt. eigenvalues -- 1.12647 1.18139 1.30760 1.30760 1.35630 Alpha virt. eigenvalues -- 1.89564 1.89564 1.91278 1.91278 2.03359 Alpha virt. eigenvalues -- 2.03359 2.09035 2.20884 2.36140 2.36142 Alpha virt. eigenvalues -- 2.36550 2.36550 2.40144 2.59048 2.59048 Alpha virt. eigenvalues -- 3.08236 3.08239 3.14024 3.14024 3.22967 Alpha virt. eigenvalues -- 3.33583 3.33583 3.51231 3.51233 3.63858 Alpha virt. eigenvalues -- 3.63858 3.73232 4.01366 4.96873 4.96873 Alpha virt. eigenvalues -- 5.13508 6.00774 6.00774 6.33015 6.33015 Alpha virt. eigenvalues -- 6.50319 6.50320 6.79459 6.79459 6.85579 Alpha virt. eigenvalues -- 6.85579 6.90505 7.18681 12.32798 16.59954 Condensed to atoms (all electrons): 1 2 1 C 5.265283 0.715204 2 O 0.715204 7.304309 Mulliken atomic charges: 1 1 C 0.019513 2 O -0.019513 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.019513 2 O -0.019513 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 37.7232 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.3625 Tot= 0.3625 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.1241 YY= -10.1241 ZZ= -12.3347 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.7369 YY= 0.7369 ZZ= -1.4737 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.3031 XYY= 0.0000 XXY= 0.0000 XXZ= 1.3164 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.3164 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.3931 YYYY= -9.3931 ZZZZ= -34.7275 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.1310 XXZZ= -6.8455 YYZZ= -6.8455 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.419095810697D+01 E-N=-3.146751926399D+02 KE= 1.131685670459D+02 Symmetry A1 KE= 1.047909781834D+02 Symmetry A2 KE=-2.169187836742D-52 Symmetry B1 KE= 4.188794431255D+00 Symmetry B2 KE= 4.188794431255D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.05\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.3432528\RMSD=2.064e-09\Dipol e=0.,0.,0.1426012\Quadrupole=0.5478394,0.5478394,-1.0956789,0.,0.,0.\P G=C*V [C*(C1O1)]\\@ IN THE WOODS WE RETURN TO REASON AND FAITH. -- EMERSON Job cpu time: 0 days 0 hours 0 minutes 5.0 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:25:39 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 25704. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.06 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.060000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.605714 2 8 0 0.000000 0.000000 0.454286 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 65.6026587 65.6026587 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.9627415211 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20675891. SCF Done: E(RB3LYP) = -113.347375976 A.U. after 8 cycles Convg = 0.2144D-08 -V/T = 2.0022 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.23863 -10.27323 -1.21228 -0.58559 -0.50991 Alpha occ. eigenvalues -- -0.50991 -0.37998 Alpha virt. eigenvalues -- -0.01731 -0.01731 0.02121 0.04721 0.05595 Alpha virt. eigenvalues -- 0.05595 0.12627 0.13746 0.13746 0.19061 Alpha virt. eigenvalues -- 0.20756 0.20757 0.30151 0.32235 0.32235 Alpha virt. eigenvalues -- 0.38044 0.38044 0.40299 0.53682 0.57814 Alpha virt. eigenvalues -- 0.57814 0.64133 0.66994 0.66994 0.83846 Alpha virt. eigenvalues -- 0.87031 0.87035 0.91340 0.91340 0.91956 Alpha virt. eigenvalues -- 0.91956 1.04248 1.04248 1.10150 1.12481 Alpha virt. eigenvalues -- 1.12481 1.18184 1.30397 1.30397 1.34319 Alpha virt. eigenvalues -- 1.89522 1.89522 1.91067 1.91067 2.03173 Alpha virt. eigenvalues -- 2.03173 2.08579 2.20447 2.35411 2.35411 Alpha virt. eigenvalues -- 2.35723 2.35725 2.39659 2.59848 2.59848 Alpha virt. eigenvalues -- 3.08003 3.08005 3.13923 3.13923 3.21980 Alpha virt. eigenvalues -- 3.33060 3.33060 3.50052 3.50055 3.62756 Alpha virt. eigenvalues -- 3.62756 3.72100 4.00690 4.94560 4.94560 Alpha virt. eigenvalues -- 5.09275 6.00729 6.00729 6.32372 6.32372 Alpha virt. eigenvalues -- 6.50133 6.50133 6.76974 6.76974 6.86248 Alpha virt. eigenvalues -- 6.86248 6.87780 7.16555 12.27567 16.31976 Condensed to atoms (all electrons): 1 2 1 C 5.265788 0.704514 2 O 0.704514 7.325184 Mulliken atomic charges: 1 1 C 0.029698 2 O -0.029698 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.029698 2 O -0.029698 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 38.0237 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.3278 Tot= 0.3278 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.1493 YY= -10.1493 ZZ= -12.3411 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.7306 YY= 0.7306 ZZ= -1.4612 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.3093 XYY= 0.0000 XXY= 0.0000 XXZ= 1.3078 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.3078 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.4288 YYYY= -9.4288 ZZZZ= -35.1082 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.1429 XXZZ= -6.9062 YYZZ= -6.9062 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.396274152106D+01 E-N=-3.141795220532D+02 KE= 1.130986379167D+02 Symmetry A1 KE= 1.047414311201D+02 Symmetry A2 KE=-6.329013140468D-54 Symmetry B1 KE= 4.178603398296D+00 Symmetry B2 KE= 4.178603398296D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.06\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.347376\RMSD=2.144e-09\Dipole =0.,0.,0.1289699\Quadrupole=0.5431931,0.5431931,-1.0863862,0.,0.,0.\PG =C*V [C*(C1O1)]\\@ REFRAIN FROM ILLUSIONS, INSIST ON WORK AND NOT WORDS, PATIENTLY SEEK DIVINE AND SCIENTIFIC TRUTH. LAST WORDS OF MARIA MENDELEEVA TO HER SON DMITRI, C. 1850 Job cpu time: 0 days 0 hours 0 minutes 4.9 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:25:44 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 25805. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.07 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.070000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.611429 2 8 0 0.000000 0.000000 0.458571 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 64.3821707 64.3821707 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.7387906657 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20675891. SCF Done: E(RB3LYP) = -113.350791080 A.U. after 8 cycles Convg = 0.2202D-08 -V/T = 2.0028 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.23943 -10.27701 -1.20663 -0.58549 -0.50610 Alpha occ. eigenvalues -- -0.50610 -0.38107 Alpha virt. eigenvalues -- -0.02085 -0.02085 0.02121 0.04698 0.05540 Alpha virt. eigenvalues -- 0.05540 0.12604 0.13747 0.13747 0.19053 Alpha virt. eigenvalues -- 0.20750 0.20751 0.30108 0.32129 0.32129 Alpha virt. eigenvalues -- 0.38055 0.38055 0.40231 0.53630 0.57810 Alpha virt. eigenvalues -- 0.57810 0.63423 0.66936 0.66936 0.83442 Alpha virt. eigenvalues -- 0.86937 0.86941 0.91090 0.91090 0.91937 Alpha virt. eigenvalues -- 0.91937 1.04304 1.04304 1.09861 1.12315 Alpha virt. eigenvalues -- 1.12315 1.18231 1.30044 1.30044 1.33096 Alpha virt. eigenvalues -- 1.89483 1.89483 1.90862 1.90862 2.02974 Alpha virt. eigenvalues -- 2.02974 2.08120 2.19998 2.34261 2.34261 Alpha virt. eigenvalues -- 2.35299 2.35300 2.39227 2.60682 2.60682 Alpha virt. eigenvalues -- 3.07774 3.07777 3.13825 3.13825 3.20981 Alpha virt. eigenvalues -- 3.32544 3.32544 3.48905 3.48908 3.61693 Alpha virt. eigenvalues -- 3.61693 3.70912 4.00102 4.92192 4.92192 Alpha virt. eigenvalues -- 5.05113 6.00689 6.00689 6.31736 6.31737 Alpha virt. eigenvalues -- 6.49962 6.49962 6.74578 6.74578 6.85048 Alpha virt. eigenvalues -- 6.86865 6.86865 7.14634 12.22179 16.04141 Condensed to atoms (all electrons): 1 2 1 C 5.266474 0.693868 2 O 0.693868 7.345791 Mulliken atomic charges: 1 1 C 0.039658 2 O -0.039658 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.039658 2 O -0.039658 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 38.3257 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.2929 Tot= 0.2929 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.1741 YY= -10.1741 ZZ= -12.3467 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.7242 YY= 0.7242 ZZ= -1.4484 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.3145 XYY= 0.0000 XXY= 0.0000 XXZ= 1.2992 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.2992 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.4646 YYYY= -9.4646 ZZZZ= -35.4913 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.1549 XXZZ= -6.9673 YYZZ= -6.9673 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.373879066572D+01 E-N=-3.136935178318D+02 KE= 1.130315204626D+02 Symmetry A1 KE= 1.046938121308D+02 Symmetry A2 KE=-4.275450431395D-51 Symmetry B1 KE= 4.168854165918D+00 Symmetry B2 KE= 4.168854165918D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.07\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.3507911\RMSD=2.202e-09\Dipol e=0.,0.,0.1152489\Quadrupole=0.5384118,0.5384118,-1.0768236,0.,0.,0.\P G=C*V [C*(C1O1)]\\@ BUT 'GLORY' DOESN'T MEAN 'A NICE KNOCK DOWN ARGUMENT', ALICE OBJECTED. WHEN I USE A WORD, HUMPTY DUMPTY SAID, IN A RATHER SCORNFUL TONE, IT MEANS JUST WHAT I CHOOSE IT TO MEAN.... NEITHER MORE NOR LESS.... THE QUESTION IS, SAID ALICE, WHETHER YOU CAN MAKE WORDS MEAN SO MANY DIFFERENT THINGS... THE QUESTION IS, SAID HUMPTY DUMPTY, WHICH IS TO BE MASTER.... THAT IS ALL..... ALICE THROUGH THE LOOKING GLASS Job cpu time: 0 days 0 hours 0 minutes 4.7 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:25:49 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 25928. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.08 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.080000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.617143 2 8 0 0.000000 0.000000 0.462857 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 63.1954281 63.1954281 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.5189870484 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20675891. SCF Done: E(RB3LYP) = -113.353543726 A.U. after 8 cycles Convg = 0.2246D-08 -V/T = 2.0034 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.24019 -10.28077 -1.20099 -0.58539 -0.50235 Alpha occ. eigenvalues -- -0.50235 -0.38214 Alpha virt. eigenvalues -- -0.02441 -0.02441 0.02122 0.04675 0.05492 Alpha virt. eigenvalues -- 0.05492 0.12581 0.13748 0.13748 0.19045 Alpha virt. eigenvalues -- 0.20744 0.20745 0.30060 0.32026 0.32026 Alpha virt. eigenvalues -- 0.38069 0.38069 0.40164 0.53579 0.57805 Alpha virt. eigenvalues -- 0.57806 0.62662 0.66880 0.66880 0.83066 Alpha virt. eigenvalues -- 0.86844 0.86848 0.90839 0.90839 0.91917 Alpha virt. eigenvalues -- 0.91917 1.04361 1.04361 1.09568 1.12149 Alpha virt. eigenvalues -- 1.12150 1.18273 1.29702 1.29702 1.31963 Alpha virt. eigenvalues -- 1.89447 1.89447 1.90662 1.90662 2.02764 Alpha virt. eigenvalues -- 2.02764 2.07656 2.19533 2.33112 2.33112 Alpha virt. eigenvalues -- 2.34867 2.34868 2.38852 2.61537 2.61537 Alpha virt. eigenvalues -- 3.07551 3.07554 3.13729 3.13729 3.19970 Alpha virt. eigenvalues -- 3.32033 3.32033 3.47786 3.47790 3.60669 Alpha virt. eigenvalues -- 3.60669 3.69681 3.99580 4.89774 4.89774 Alpha virt. eigenvalues -- 5.01037 6.00655 6.00655 6.31110 6.31110 Alpha virt. eigenvalues -- 6.49805 6.49806 6.72271 6.72271 6.82347 Alpha virt. eigenvalues -- 6.87430 6.87430 7.12876 12.16613 15.76541 Condensed to atoms (all electrons): 1 2 1 C 5.267329 0.683260 2 O 0.683260 7.366150 Mulliken atomic charges: 1 1 C 0.049410 2 O -0.049410 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.049410 2 O -0.049410 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 38.6291 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.2578 Tot= 0.2578 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.1988 YY= -10.1988 ZZ= -12.3515 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.7176 YY= 0.7176 ZZ= -1.4351 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.3189 XYY= 0.0000 XXY= 0.0000 XXZ= 1.2905 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.2905 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.5006 YYYY= -9.5006 ZZZZ= -35.8767 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.1669 XXZZ= -7.0288 YYZZ= -7.0288 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.351898704844D+01 E-N=-3.132169420667D+02 KE= 1.129671176520D+02 Symmetry A1 KE= 1.046480549525D+02 Symmetry A2 KE=-8.235284423363D-51 Symmetry B1 KE= 4.159531349751D+00 Symmetry B2 KE= 4.159531349751D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.08\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.3535437\RMSD=2.246e-09\Dipol e=0.,0.,0.1014429\Quadrupole=0.5334926,0.5334926,-1.0669851,0.,0.,0.\P G=C*V [C*(C1O1)]\\@ I KNOW YOU BELIEVE YOU UNDERSTAND WHAT YOU THINK I SAID, BUT I AM NOT SURE YOU REALIZE THAT WHAT YOU HEARD IS NOT WHAT I MEANT. Job cpu time: 0 days 0 hours 0 minutes 4.7 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:25:54 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 26045. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.09 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.090000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.622857 2 8 0 0.000000 0.000000 0.467143 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 62.0411979 62.0411979 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.3032165251 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20675891. SCF Done: E(RB3LYP) = -113.355676953 A.U. after 8 cycles Convg = 0.2281D-08 -V/T = 2.0040 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.24090 -10.28451 -1.19535 -0.58530 -0.49867 Alpha occ. eigenvalues -- -0.49867 -0.38318 Alpha virt. eigenvalues -- -0.02797 -0.02797 0.02122 0.04651 0.05449 Alpha virt. eigenvalues -- 0.05449 0.12559 0.13750 0.13750 0.19035 Alpha virt. eigenvalues -- 0.20738 0.20738 0.30008 0.31924 0.31924 Alpha virt. eigenvalues -- 0.38084 0.38084 0.40098 0.53531 0.57800 Alpha virt. eigenvalues -- 0.57800 0.61854 0.66824 0.66824 0.82721 Alpha virt. eigenvalues -- 0.86751 0.86755 0.90588 0.90588 0.91898 Alpha virt. eigenvalues -- 0.91898 1.04417 1.04417 1.09272 1.11984 Alpha virt. eigenvalues -- 1.11985 1.18304 1.29371 1.29371 1.30927 Alpha virt. eigenvalues -- 1.89413 1.89413 1.90467 1.90467 2.02543 Alpha virt. eigenvalues -- 2.02543 2.07187 2.19050 2.31971 2.31971 Alpha virt. eigenvalues -- 2.34429 2.34430 2.38535 2.62404 2.62404 Alpha virt. eigenvalues -- 3.07333 3.07336 3.13635 3.13635 3.18944 Alpha virt. eigenvalues -- 3.31529 3.31529 3.46697 3.46700 3.59682 Alpha virt. eigenvalues -- 3.59682 3.68423 3.99100 4.87312 4.87312 Alpha virt. eigenvalues -- 4.97059 6.00626 6.00626 6.30494 6.30494 Alpha virt. eigenvalues -- 6.49661 6.49662 6.70052 6.70052 6.79707 Alpha virt. eigenvalues -- 6.87939 6.87939 7.11248 12.10849 15.49270 Condensed to atoms (all electrons): 1 2 1 C 5.268342 0.672690 2 O 0.672690 7.386278 Mulliken atomic charges: 1 1 C 0.058968 2 O -0.058968 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.058968 2 O -0.058968 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 38.9341 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.2225 Tot= 0.2225 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.2232 YY= -10.2232 ZZ= -12.3555 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.7108 YY= 0.7108 ZZ= -1.4215 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.3222 XYY= 0.0000 XXY= 0.0000 XXZ= 1.2817 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.2817 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.5367 YYYY= -9.5367 ZZZZ= -36.2644 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.1789 XXZZ= -7.0908 YYZZ= -7.0908 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.330321652506D+01 E-N=-3.127495634179D+02 KE= 1.129053359354D+02 Symmetry A1 KE= 1.046040955726D+02 Symmetry A2 KE=-5.997459304544D-51 Symmetry B1 KE= 4.150620181417D+00 Symmetry B2 KE= 4.150620181417D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.09\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.355677\RMSD=2.281e-09\Dipole =0.,0.,0.0875565\Quadrupole=0.5284326,0.5284326,-1.0568652,0.,0.,0.\PG =C*V [C*(C1O1)]\\@ A DANDELION FROM A LOVER MEANS MORE THAN AN ORCHID FROM A FRIEND. Job cpu time: 0 days 0 hours 0 minutes 4.8 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:25:59 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 26134. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.1 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.100000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.628571 2 8 0 0.000000 0.000000 0.471429 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 60.9183035 60.9183035 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.0913691021 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20676037. SCF Done: E(RB3LYP) = -113.357231373 A.U. after 8 cycles Convg = 0.2312D-08 -V/T = 2.0045 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.24157 -10.28823 -1.18972 -0.58521 -0.49505 Alpha occ. eigenvalues -- -0.49505 -0.38421 Alpha virt. eigenvalues -- -0.03153 -0.03153 0.02122 0.04626 0.05411 Alpha virt. eigenvalues -- 0.05411 0.12538 0.13752 0.13752 0.19024 Alpha virt. eigenvalues -- 0.20731 0.20732 0.29951 0.31825 0.31825 Alpha virt. eigenvalues -- 0.38100 0.38100 0.40034 0.53485 0.57793 Alpha virt. eigenvalues -- 0.57794 0.61001 0.66769 0.66769 0.82407 Alpha virt. eigenvalues -- 0.86658 0.86662 0.90337 0.90337 0.91878 Alpha virt. eigenvalues -- 0.91878 1.04473 1.04473 1.08974 1.11818 Alpha virt. eigenvalues -- 1.11820 1.18313 1.29052 1.29052 1.29993 Alpha virt. eigenvalues -- 1.89382 1.89382 1.90277 1.90277 2.02309 Alpha virt. eigenvalues -- 2.02309 2.06712 2.18547 2.30844 2.30844 Alpha virt. eigenvalues -- 2.33985 2.33986 2.38281 2.63277 2.63277 Alpha virt. eigenvalues -- 3.07121 3.07124 3.13543 3.13543 3.17904 Alpha virt. eigenvalues -- 3.31030 3.31030 3.45635 3.45639 3.58731 Alpha virt. eigenvalues -- 3.58731 3.67149 3.98639 4.84810 4.84810 Alpha virt. eigenvalues -- 4.93194 6.00602 6.00602 6.29889 6.29890 Alpha virt. eigenvalues -- 6.49528 6.49529 6.67919 6.67919 6.77151 Alpha virt. eigenvalues -- 6.88393 6.88393 7.09721 12.04861 15.22420 Condensed to atoms (all electrons): 1 2 1 C 5.269503 0.662155 2 O 0.662155 7.406188 Mulliken atomic charges: 1 1 C 0.068343 2 O -0.068343 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.068343 2 O -0.068343 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 39.2405 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.1871 Tot= 0.1871 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.2474 YY= -10.2474 ZZ= -12.3587 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.7038 YY= 0.7038 ZZ= -1.4075 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.3247 XYY= 0.0000 XXY= 0.0000 XXZ= 1.2729 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.2729 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.5729 YYYY= -9.5729 ZZZZ= -36.6544 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.1910 XXZZ= -7.1533 YYZZ= -7.1533 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.309136910211D+01 E-N=-3.122911566514D+02 KE= 1.128460848549D+02 Symmetry A1 KE= 1.045618718679D+02 Symmetry A2 KE=-4.909672040508D-51 Symmetry B1 KE= 4.142106493506D+00 Symmetry B2 KE= 4.142106493505D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.1\\Ver sion=EM64L-G09RevB.01\State=1-SG\HF=-113.3572314\RMSD=2.312e-09\Dipole =0.,0.,0.0735942\Quadrupole=0.5232294,0.5232294,-1.0464588,0.,0.,0.\PG =C*V [C*(C1O1)]\\@ THE UNDERLYING PHYSICAL LAWS NECESSARY FOR THE MATHEMATICAL THEORY OF A LARGE PART OF PHYSICS AND THE WHOLE OF CHEMISTRY ARE THUS COMPLETELY KNOWN, AND THE DIFFICULTY IS ONLY THAT THE EXACT APPLICATION OF THESE LAWS LEADS TO EQUATIONS MUCH TOO COMPLICATED TO BE SOLUBLE. -- P. A. M. DIRAC, 1929 Job cpu time: 0 days 0 hours 0 minutes 5.4 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:26:04 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 26229. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.11 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.110000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.634286 2 8 0 0.000000 0.000000 0.475714 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 59.8256207 59.8256207 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 22.8833387498 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20676037. SCF Done: E(RB3LYP) = -113.358245279 A.U. after 8 cycles Convg = 0.2344D-08 -V/T = 2.0050 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.24220 -10.29192 -1.18411 -0.58512 -0.49148 Alpha occ. eigenvalues -- -0.49148 -0.38521 Alpha virt. eigenvalues -- -0.03509 -0.03509 0.02121 0.04601 0.05378 Alpha virt. eigenvalues -- 0.05378 0.12517 0.13755 0.13755 0.19011 Alpha virt. eigenvalues -- 0.20725 0.20725 0.29890 0.31727 0.31727 Alpha virt. eigenvalues -- 0.38118 0.38118 0.39970 0.53441 0.57786 Alpha virt. eigenvalues -- 0.57786 0.60110 0.66714 0.66714 0.82124 Alpha virt. eigenvalues -- 0.86565 0.86569 0.90086 0.90086 0.91857 Alpha virt. eigenvalues -- 0.91857 1.04528 1.04528 1.08675 1.11653 Alpha virt. eigenvalues -- 1.11654 1.18292 1.28744 1.28744 1.29170 Alpha virt. eigenvalues -- 1.89354 1.89354 1.90092 1.90092 2.02065 Alpha virt. eigenvalues -- 2.02065 2.06230 2.18021 2.29735 2.29735 Alpha virt. eigenvalues -- 2.33536 2.33537 2.38089 2.64150 2.64150 Alpha virt. eigenvalues -- 3.06913 3.06916 3.13453 3.13453 3.16848 Alpha virt. eigenvalues -- 3.30538 3.30538 3.44601 3.44605 3.57817 Alpha virt. eigenvalues -- 3.57817 3.65869 3.98176 4.82273 4.82273 Alpha virt. eigenvalues -- 4.89457 6.00583 6.00583 6.29297 6.29297 Alpha virt. eigenvalues -- 6.49406 6.49407 6.65871 6.65871 6.74695 Alpha virt. eigenvalues -- 6.88791 6.88791 7.08275 11.98619 14.96087 Condensed to atoms (all electrons): 1 2 1 C 5.270802 0.651656 2 O 0.651656 7.425887 Mulliken atomic charges: 1 1 C 0.077543 2 O -0.077543 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.077543 2 O -0.077543 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 39.5485 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.1514 Tot= 0.1514 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.2713 YY= -10.2713 ZZ= -12.3610 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.6966 YY= 0.6966 ZZ= -1.3931 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.3262 XYY= 0.0000 XXY= 0.0000 XXZ= 1.2641 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.2641 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.6093 YYYY= -9.6093 ZZZZ= -37.0466 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.2031 XXZZ= -7.2162 YYZZ= -7.2162 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.288333874984D+01 E-N=-3.118415023622D+02 KE= 1.127892768095D+02 Symmetry A1 KE= 1.045213233875D+02 Symmetry A2 KE=-1.574071981106D-51 Symmetry B1 KE= 4.133976710996D+00 Symmetry B2 KE= 4.133976710996D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.11\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.3582453\RMSD=2.344e-09\Dipol e=0.,0.,0.0595606\Quadrupole=0.5178809,0.5178809,-1.0357619,0.,0.,0.\P G=C*V [C*(C1O1)]\\@ FRICTION IS A DRAG, AND ENTROPY AIN'T WHAT IT USED TO BE. Job cpu time: 0 days 0 hours 0 minutes 4.9 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:26:09 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 26337. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.12 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.120000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.640000 2 8 0 0.000000 0.000000 0.480000 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 58.7620753 58.7620753 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 22.6790232253 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20676037. SCF Done: E(RB3LYP) = -113.358754748 A.U. after 8 cycles Convg = 0.2380D-08 -V/T = 2.0055 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.24279 -10.29558 -1.17851 -0.58505 -0.48797 Alpha occ. eigenvalues -- -0.48797 -0.38618 Alpha virt. eigenvalues -- -0.03863 -0.03863 0.02121 0.04575 0.05347 Alpha virt. eigenvalues -- 0.05347 0.12497 0.13759 0.13759 0.18997 Alpha virt. eigenvalues -- 0.20718 0.20719 0.29823 0.31631 0.31631 Alpha virt. eigenvalues -- 0.38137 0.38137 0.39906 0.53396 0.57777 Alpha virt. eigenvalues -- 0.57778 0.59184 0.66660 0.66660 0.81872 Alpha virt. eigenvalues -- 0.86473 0.86477 0.89835 0.89835 0.91837 Alpha virt. eigenvalues -- 0.91837 1.04581 1.04581 1.08375 1.11487 Alpha virt. eigenvalues -- 1.11489 1.18228 1.28448 1.28448 1.28465 Alpha virt. eigenvalues -- 1.89328 1.89328 1.89912 1.89912 2.01810 Alpha virt. eigenvalues -- 2.01810 2.05740 2.17474 2.28648 2.28648 Alpha virt. eigenvalues -- 2.33082 2.33083 2.37962 2.65017 2.65017 Alpha virt. eigenvalues -- 3.06711 3.06714 3.13365 3.13365 3.15776 Alpha virt. eigenvalues -- 3.30053 3.30053 3.43593 3.43597 3.56938 Alpha virt. eigenvalues -- 3.56938 3.64593 3.97690 4.79708 4.79708 Alpha virt. eigenvalues -- 4.85861 6.00568 6.00568 6.28717 6.28717 Alpha virt. eigenvalues -- 6.49294 6.49294 6.63904 6.63904 6.72352 Alpha virt. eigenvalues -- 6.89133 6.89133 7.06890 11.92089 14.70362 Condensed to atoms (all electrons): 1 2 1 C 5.272230 0.641195 2 O 0.641195 7.445381 Mulliken atomic charges: 1 1 C 0.086576 2 O -0.086576 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.086576 2 O -0.086576 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 39.8579 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.1155 Tot= 0.1155 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.2950 YY= -10.2950 ZZ= -12.3626 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.6892 YY= 0.6892 ZZ= -1.3784 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.3267 XYY= 0.0000 XXY= 0.0000 XXZ= 1.2552 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.2552 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.6458 YYYY= -9.6458 ZZZZ= -37.4410 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.2153 XXZZ= -7.2796 YYZZ= -7.2796 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.267902322529D+01 E-N=-3.114003868383D+02 KE= 1.127348269524D+02 Symmetry A1 KE= 1.044823912684D+02 Symmetry A2 KE=-5.197128959926D-52 Symmetry B1 KE= 4.126217842003D+00 Symmetry B2 KE= 4.126217842003D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.12\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.3587547\RMSD=2.380e-09\Dipol e=0.,0.,0.0454602\Quadrupole=0.5123854,0.5123854,-1.0247708,0.,0.,0.\P G=C*V [C*(C1O1)]\\@ A SUCCESSFUL PURSUIT OF SCIENCE MAKES A MAN THE BENEFACTOR OF ALL MANKIND OF EVERY AGE. -- JOSEPH PRIESTLEY, "EXPERIMENTS AND OBSERVATIONS ON DIFFERENT KINDS OF AIR", 1774 Job cpu time: 0 days 0 hours 0 minutes 5.5 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:26:15 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 26427. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.13 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.130000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.645714 2 8 0 0.000000 0.000000 0.484286 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 57.7266405 57.7266405 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 22.4783239047 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20676037. SCF Done: E(RB3LYP) = -113.358793733 A.U. after 8 cycles Convg = 0.2422D-08 -V/T = 2.0060 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.24334 -10.29921 -1.17294 -0.58498 -0.48452 Alpha occ. eigenvalues -- -0.48452 -0.38713 Alpha virt. eigenvalues -- -0.04215 -0.04215 0.02120 0.04549 0.05320 Alpha virt. eigenvalues -- 0.05320 0.12478 0.13763 0.13763 0.18981 Alpha virt. eigenvalues -- 0.20711 0.20712 0.29751 0.31536 0.31536 Alpha virt. eigenvalues -- 0.38158 0.38158 0.39842 0.53351 0.57768 Alpha virt. eigenvalues -- 0.57768 0.58233 0.66607 0.66607 0.81649 Alpha virt. eigenvalues -- 0.86381 0.86385 0.89586 0.89586 0.91816 Alpha virt. eigenvalues -- 0.91816 1.04632 1.04632 1.08074 1.11322 Alpha virt. eigenvalues -- 1.11324 1.18111 1.27885 1.28163 1.28163 Alpha virt. eigenvalues -- 1.89304 1.89304 1.89736 1.89736 2.01543 Alpha virt. eigenvalues -- 2.01543 2.05240 2.16905 2.27585 2.27585 Alpha virt. eigenvalues -- 2.32624 2.32625 2.37900 2.65873 2.65873 Alpha virt. eigenvalues -- 3.06513 3.06516 3.13278 3.13278 3.14685 Alpha virt. eigenvalues -- 3.29575 3.29575 3.42611 3.42615 3.56095 Alpha virt. eigenvalues -- 3.56095 3.63326 3.97163 4.77119 4.77119 Alpha virt. eigenvalues -- 4.82422 6.00558 6.00558 6.28150 6.28150 Alpha virt. eigenvalues -- 6.49189 6.49190 6.62018 6.62018 6.70127 Alpha virt. eigenvalues -- 6.89421 6.89421 7.05554 11.85230 14.45342 Condensed to atoms (all electrons): 1 2 1 C 5.273778 0.630776 2 O 0.630776 7.464670 Mulliken atomic charges: 1 1 C 0.095446 2 O -0.095446 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.095446 2 O -0.095446 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 40.1689 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0795 Tot= 0.0795 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.3185 YY= -10.3185 ZZ= -12.3633 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.6816 YY= 0.6816 ZZ= -1.3632 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.3263 XYY= 0.0000 XXY= 0.0000 XXZ= 1.2462 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.2462 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.6825 YYYY= -9.6825 ZZZZ= -37.8376 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.2275 XXZZ= -7.3434 YYZZ= -7.3434 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.247832390471D+01 E-N=-3.109676019986D+02 KE= 1.126826531664D+02 Symmetry A1 KE= 1.044450182445D+02 Symmetry A2 KE= 3.639659388691D-51 Symmetry B1 KE= 4.118817460942D+00 Symmetry B2 KE= 4.118817460942D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.13\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.3587937\RMSD=2.422e-09\Dipol e=0.,0.,0.0312973\Quadrupole=0.5067413,0.5067413,-1.0134826,0.,0.,0.\P G=C*V [C*(C1O1)]\\@ SUCCESS IS COUNTED SWEETEST BY THOSE WHO NE'ER SUCCEED. TO COMPREHEND NECTAR REQUIRES SOREST NEED. EMILY DICKINSON Job cpu time: 0 days 0 hours 0 minutes 4.8 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:26:20 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 26516. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.14 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.140000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.651429 2 8 0 0.000000 0.000000 0.488571 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 56.7183343 56.7183343 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 22.2811456248 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20676037. SCF Done: E(RB3LYP) = -113.358394181 A.U. after 8 cycles Convg = 0.2473D-08 -V/T = 2.0064 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.24384 -10.30280 -1.16739 -0.58493 -0.48112 Alpha occ. eigenvalues -- -0.48112 -0.38805 Alpha virt. eigenvalues -- -0.04564 -0.04564 0.02119 0.04522 0.05296 Alpha virt. eigenvalues -- 0.05296 0.12460 0.13767 0.13767 0.18962 Alpha virt. eigenvalues -- 0.20704 0.20705 0.29673 0.31443 0.31443 Alpha virt. eigenvalues -- 0.38180 0.38180 0.39777 0.53300 0.57265 Alpha virt. eigenvalues -- 0.57758 0.57758 0.66554 0.66554 0.81455 Alpha virt. eigenvalues -- 0.86289 0.86293 0.89337 0.89337 0.91795 Alpha virt. eigenvalues -- 0.91795 1.04680 1.04680 1.07773 1.11156 Alpha virt. eigenvalues -- 1.11159 1.17932 1.27436 1.27891 1.27891 Alpha virt. eigenvalues -- 1.89283 1.89283 1.89566 1.89566 2.01266 Alpha virt. eigenvalues -- 2.01266 2.04730 2.16315 2.26549 2.26549 Alpha virt. eigenvalues -- 2.32161 2.32162 2.37904 2.66716 2.66716 Alpha virt. eigenvalues -- 3.06321 3.06324 3.13193 3.13193 3.13577 Alpha virt. eigenvalues -- 3.29104 3.29104 3.41654 3.41659 3.55285 Alpha virt. eigenvalues -- 3.55285 3.62073 3.96578 4.74510 4.74510 Alpha virt. eigenvalues -- 4.79153 6.00552 6.00552 6.27596 6.27597 Alpha virt. eigenvalues -- 6.49093 6.49093 6.60210 6.60210 6.68025 Alpha virt. eigenvalues -- 6.89655 6.89655 7.04256 11.77996 14.21122 Condensed to atoms (all electrons): 1 2 1 C 5.275438 0.620405 2 O 0.620405 7.483751 Mulliken atomic charges: 1 1 C 0.104156 2 O -0.104156 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.104156 2 O -0.104156 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 40.4814 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0434 Tot= 0.0434 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.3418 YY= -10.3418 ZZ= -12.3632 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.6738 YY= 0.6738 ZZ= -1.3476 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.3250 XYY= 0.0000 XXY= 0.0000 XXZ= 1.2373 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.2373 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.7193 YYYY= -9.7193 ZZZZ= -38.2364 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.2398 XXZZ= -7.4078 YYZZ= -7.4078 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.228114562484D+01 E-N=-3.105429453285D+02 KE= 1.126326760506D+02 Symmetry A1 KE= 1.044091486902D+02 Symmetry A2 KE=-3.248857920751D-51 Symmetry B1 KE= 4.111763680244D+00 Symmetry B2 KE= 4.111763680244D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.14\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.3583942\RMSD=2.473e-09\Dipol e=0.,0.,0.0170764\Quadrupole=0.5009474,0.5009474,-1.0018948,0.,0.,0.\P G=C*V [C*(C1O1)]\\@ THE HURRIEDER I GO, THE BEHINDER I GET. Job cpu time: 0 days 0 hours 0 minutes 4.6 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:26:25 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 26605. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.15 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.150000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.657143 2 8 0 0.000000 0.000000 0.492857 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 55.7362172 55.7362172 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 22.0873965325 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20676037. SCF Done: E(RB3LYP) = -113.357586148 A.U. after 8 cycles Convg = 0.2532D-08 -V/T = 2.0069 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.24431 -10.30635 -1.16188 -0.58489 -0.47778 Alpha occ. eigenvalues -- -0.47778 -0.38895 Alpha virt. eigenvalues -- -0.04911 -0.04911 0.02118 0.04494 0.05275 Alpha virt. eigenvalues -- 0.05275 0.12442 0.13772 0.13772 0.18941 Alpha virt. eigenvalues -- 0.20697 0.20697 0.29590 0.31352 0.31352 Alpha virt. eigenvalues -- 0.38203 0.38203 0.39709 0.53237 0.56294 Alpha virt. eigenvalues -- 0.57747 0.57747 0.66502 0.66502 0.81287 Alpha virt. eigenvalues -- 0.86198 0.86202 0.89090 0.89090 0.91774 Alpha virt. eigenvalues -- 0.91774 1.04725 1.04725 1.07472 1.10991 Alpha virt. eigenvalues -- 1.10994 1.17686 1.27117 1.27632 1.27632 Alpha virt. eigenvalues -- 1.89263 1.89263 1.89400 1.89400 2.00978 Alpha virt. eigenvalues -- 2.00978 2.04208 2.15707 2.25540 2.25540 Alpha virt. eigenvalues -- 2.31696 2.31697 2.37971 2.67541 2.67541 Alpha virt. eigenvalues -- 3.06134 3.06137 3.12449 3.13110 3.13110 Alpha virt. eigenvalues -- 3.28641 3.28641 3.40722 3.40727 3.54510 Alpha virt. eigenvalues -- 3.54510 3.60840 3.95918 4.71886 4.71886 Alpha virt. eigenvalues -- 4.76068 6.00549 6.00549 6.27057 6.27057 Alpha virt. eigenvalues -- 6.49004 6.49004 6.58477 6.58477 6.66046 Alpha virt. eigenvalues -- 6.89835 6.89835 7.02988 11.70336 13.97796 Condensed to atoms (all electrons): 1 2 1 C 5.277201 0.610090 2 O 0.610090 7.502619 Mulliken atomic charges: 1 1 C 0.112709 2 O -0.112709 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.112709 2 O -0.112709 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 40.7954 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0071 Tot= 0.0071 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.3649 YY= -10.3649 ZZ= -12.3623 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.6658 YY= 0.6658 ZZ= -1.3316 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.3228 XYY= 0.0000 XXY= 0.0000 XXZ= 1.2283 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.2283 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.7563 YYYY= -9.7563 ZZZZ= -38.6373 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.2521 XXZZ= -7.4726 YYZZ= -7.4726 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.208739653245D+01 E-N=-3.101262197493D+02 KE= 1.125848188615D+02 Symmetry A1 KE= 1.043747286391D+02 Symmetry A2 KE=-4.765640769919D-51 Symmetry B1 KE= 4.105045111242D+00 Symmetry B2 KE= 4.105045111242D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.15\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.3575861\RMSD=2.532e-09\Dipol e=0.,0.,0.0028019\Quadrupole=0.4950028,0.4950028,-0.9900056,0.,0.,0.\P G=C*V [C*(C1O1)]\\@ IT IS THE GODS' CUSTOM TO BRING LOW ALL THINGS OF SURPASSING GREATNESS. -- HERODOTUS IT IS THE LOFTY PINE THAT BY THE STORM IS OFTENER TOSSED; TOWERS FALL WITH HEAVIER CRASH WHICH HIGHER SOAR. -- HORACE THE BIGGER THEY COME, THE HARDER THEY FALL. -- BOB FITZSIMONS HEAVYWEIGHT CHAMPION, 1897-1899 Job cpu time: 0 days 0 hours 0 minutes 4.7 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:26:30 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 26694. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.16 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.160000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.662857 2 8 0 0.000000 0.000000 0.497143 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 54.7793901 54.7793901 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 21.8969879417 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20676037. SCF Done: E(RB3LYP) = -113.356397929 A.U. after 8 cycles Convg = 0.2600D-08 -V/T = 2.0073 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.24473 -10.30987 -1.15640 -0.58486 -0.47449 Alpha occ. eigenvalues -- -0.47449 -0.38981 Alpha virt. eigenvalues -- -0.05255 -0.05255 0.02117 0.04466 0.05255 Alpha virt. eigenvalues -- 0.05255 0.12425 0.13777 0.13777 0.18918 Alpha virt. eigenvalues -- 0.20690 0.20690 0.29500 0.31262 0.31262 Alpha virt. eigenvalues -- 0.38227 0.38227 0.39639 0.53140 0.55348 Alpha virt. eigenvalues -- 0.57735 0.57735 0.66451 0.66451 0.81145 Alpha virt. eigenvalues -- 0.86108 0.86111 0.88845 0.88845 0.91753 Alpha virt. eigenvalues -- 0.91753 1.04766 1.04766 1.07171 1.10825 Alpha virt. eigenvalues -- 1.10829 1.17373 1.26924 1.27385 1.27385 Alpha virt. eigenvalues -- 1.89238 1.89238 1.89246 1.89246 2.00679 Alpha virt. eigenvalues -- 2.00679 2.03674 2.15083 2.24560 2.24560 Alpha virt. eigenvalues -- 2.31227 2.31228 2.38101 2.68345 2.68345 Alpha virt. eigenvalues -- 3.05951 3.05955 3.11301 3.13028 3.13028 Alpha virt. eigenvalues -- 3.28187 3.28187 3.39814 3.39818 3.53768 Alpha virt. eigenvalues -- 3.53768 3.59628 3.95172 4.69253 4.69253 Alpha virt. eigenvalues -- 4.73177 6.00550 6.00550 6.26532 6.26532 Alpha virt. eigenvalues -- 6.48921 6.48921 6.56817 6.56817 6.64189 Alpha virt. eigenvalues -- 6.89963 6.89963 7.01741 11.62193 13.75459 Condensed to atoms (all electrons): 1 2 1 C 5.279059 0.599839 2 O 0.599839 7.521264 Mulliken atomic charges: 1 1 C 0.121102 2 O -0.121102 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.121102 2 O -0.121102 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 41.1109 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -0.0293 Tot= 0.0293 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.3878 YY= -10.3878 ZZ= -12.3606 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.6576 YY= 0.6576 ZZ= -1.3152 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.3195 XYY= 0.0000 XXY= 0.0000 XXZ= 1.2193 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.2193 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.7935 YYYY= -9.7935 ZZZZ= -39.0403 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.2645 XXZZ= -7.5379 YYZZ= -7.5379 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.189698794166D+01 E-N=-3.097172333859D+02 KE= 1.125390073689D+02 Symmetry A1 KE= 1.043417057284D+02 Symmetry A2 KE=-2.781053385879D-51 Symmetry B1 KE= 4.098650820212D+00 Symmetry B2 KE= 4.098650820212D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.16\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.3563979\RMSD=2.600e-09\Dipol e=0.,0.,-0.0115218\Quadrupole=0.4889069,0.4889069,-0.9778139,0.,0.,0.\ PG=C*V [C*(C1O1)]\\@ KEEP CLOSE TO NATURES HEART, YOURSELF; AND BREAK CLEAR AWAY, ONCE IN A WHILE, AND CLIMB A MOUNTAIN OR SPEND A WEEK IN THE WOODS. WASH YOUR SPIRIT CLEAN... -- JOHN MUIR Job cpu time: 0 days 0 hours 0 minutes 5.6 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:26:35 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 26783. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.17 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.170000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.668571 2 8 0 0.000000 0.000000 0.501429 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 53.8469920 53.8469920 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 21.7098341986 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20676037. SCF Done: E(RB3LYP) = -113.354856180 A.U. after 8 cycles Convg = 0.2671D-08 -V/T = 2.0076 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.24512 -10.31334 -1.15096 -0.58484 -0.47125 Alpha occ. eigenvalues -- -0.47125 -0.39065 Alpha virt. eigenvalues -- -0.05595 -0.05595 0.02116 0.04437 0.05237 Alpha virt. eigenvalues -- 0.05237 0.12409 0.13782 0.13782 0.18891 Alpha virt. eigenvalues -- 0.20682 0.20683 0.29404 0.31173 0.31173 Alpha virt. eigenvalues -- 0.38253 0.38253 0.39566 0.52944 0.54499 Alpha virt. eigenvalues -- 0.57722 0.57723 0.66400 0.66400 0.81026 Alpha virt. eigenvalues -- 0.86018 0.86020 0.88601 0.88601 0.91731 Alpha virt. eigenvalues -- 0.91731 1.04802 1.04802 1.06871 1.10660 Alpha virt. eigenvalues -- 1.10664 1.17000 1.26848 1.27152 1.27152 Alpha virt. eigenvalues -- 1.89082 1.89082 1.89230 1.89230 2.00370 Alpha virt. eigenvalues -- 2.00370 2.03124 2.14446 2.23610 2.23610 Alpha virt. eigenvalues -- 2.30756 2.30757 2.38293 2.69125 2.69125 Alpha virt. eigenvalues -- 3.05774 3.05777 3.10132 3.12948 3.12948 Alpha virt. eigenvalues -- 3.27741 3.27741 3.38928 3.38933 3.53059 Alpha virt. eigenvalues -- 3.53059 3.58439 3.94327 4.66614 4.66614 Alpha virt. eigenvalues -- 4.70491 6.00555 6.00555 6.26020 6.26021 Alpha virt. eigenvalues -- 6.48844 6.48844 6.55230 6.55230 6.62451 Alpha virt. eigenvalues -- 6.90040 6.90040 7.00512 11.53510 13.54202 Condensed to atoms (all electrons): 1 2 1 C 5.281003 0.589662 2 O 0.589662 7.539674 Mulliken atomic charges: 1 1 C 0.129335 2 O -0.129335 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.129335 2 O -0.129335 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 41.4280 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -0.0658 Tot= 0.0658 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.4104 YY= -10.4104 ZZ= -12.3580 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.6492 YY= 0.6492 ZZ= -1.2984 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.3154 XYY= 0.0000 XXY= 0.0000 XXZ= 1.2102 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.2102 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.8308 YYYY= -9.8308 ZZZZ= -39.4454 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.2769 XXZZ= -7.6037 YYZZ= -7.6037 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.170983419856D+01 E-N=-3.093157992386D+02 KE= 1.124951696284D+02 Symmetry A1 KE= 1.043100290541D+02 Symmetry A2 KE= 2.645077695571D-51 Symmetry B1 KE= 4.092570287181D+00 Symmetry B2 KE= 4.092570287181D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.17\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.3548562\RMSD=2.671e-09\Dipol e=0.,0.,-0.0258903\Quadrupole=0.4826594,0.4826594,-0.9653188,0.,0.,0.\ PG=C*V [C*(C1O1)]\\@ NOTHING RESEMBLES A NEW PHENOMENON AS MUCH AS A MISTAKE. -- ENRICO FERMI (?) Job cpu time: 0 days 0 hours 0 minutes 4.4 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:26:41 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 26873. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.18 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.180000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.674286 2 8 0 0.000000 0.000000 0.505714 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 52.9381983 52.9381983 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 21.5258525528 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20676037. SCF Done: E(RB3LYP) = -113.352986029 A.U. after 8 cycles Convg = 0.2738D-08 -V/T = 2.0080 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.24547 -10.31677 -1.14556 -0.58484 -0.46806 Alpha occ. eigenvalues -- -0.46806 -0.39146 Alpha virt. eigenvalues -- -0.05932 -0.05932 0.02114 0.04408 0.05221 Alpha virt. eigenvalues -- 0.05221 0.12393 0.13788 0.13788 0.18860 Alpha virt. eigenvalues -- 0.20675 0.20675 0.29301 0.31086 0.31086 Alpha virt. eigenvalues -- 0.38280 0.38280 0.39486 0.52488 0.53913 Alpha virt. eigenvalues -- 0.57709 0.57709 0.66350 0.66350 0.80929 Alpha virt. eigenvalues -- 0.85928 0.85931 0.88359 0.88359 0.91710 Alpha virt. eigenvalues -- 0.91710 1.04834 1.04834 1.06571 1.10495 Alpha virt. eigenvalues -- 1.10499 1.16574 1.26876 1.26931 1.26931 Alpha virt. eigenvalues -- 1.88929 1.88929 1.89216 1.89216 2.00051 Alpha virt. eigenvalues -- 2.00051 2.02560 2.13800 2.22690 2.22690 Alpha virt. eigenvalues -- 2.30283 2.30284 2.38543 2.69879 2.69879 Alpha virt. eigenvalues -- 3.05601 3.05604 3.08942 3.12868 3.12868 Alpha virt. eigenvalues -- 3.27306 3.27306 3.38066 3.38070 3.52383 Alpha virt. eigenvalues -- 3.52383 3.57275 3.93376 4.63973 4.63973 Alpha virt. eigenvalues -- 4.68017 6.00562 6.00562 6.25524 6.25524 Alpha virt. eigenvalues -- 6.48772 6.48773 6.53711 6.53711 6.60828 Alpha virt. eigenvalues -- 6.90068 6.90068 6.99296 11.44230 13.34108 Condensed to atoms (all electrons): 1 2 1 C 5.283024 0.579570 2 O 0.579570 7.557836 Mulliken atomic charges: 1 1 C 0.137406 2 O -0.137406 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.137406 2 O -0.137406 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 41.7466 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -0.1024 Tot= 0.1024 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.4329 YY= -10.4329 ZZ= -12.3546 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.6406 YY= 0.6406 ZZ= -1.2812 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.3104 XYY= 0.0000 XXY= 0.0000 XXZ= 1.2012 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.2012 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.8683 YYYY= -9.8683 ZZZZ= -39.8526 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.2894 XXZZ= -7.6701 YYZZ= -7.6701 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.152585255281D+01 E-N=-3.089217348162D+02 KE= 1.124532357134D+02 Symmetry A1 KE= 1.042796489647D+02 Symmetry A2 KE= 6.312150485652D-51 Symmetry B1 KE= 4.086793374335D+00 Symmetry B2 KE= 4.086793374335D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.18\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.352986\RMSD=2.738e-09\Dipole =0.,0.,-0.0402994\Quadrupole=0.4762601,0.4762601,-0.9525202,0.,0.,0.\P G=C*V [C*(C1O1)]\\@ KNOWING HOW CONTENTED, FREE, AND JOYFUL IS LIFE IN THE REALMS OF SCIENCE, ONE FERVENTLY WISHES THAT MANY WOULD ENTER HER PORTALS. -- DMITRI IVANOVICH MENDELEEV "FIRST PRINCIPLES OF CHEMISTRY", LONGMANS, GREEN, AND CO. LONDON, 1891 Job cpu time: 0 days 0 hours 0 minutes 6.2 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:26:46 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 26979. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.19 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.190000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.680000 2 8 0 0.000000 0.000000 0.510000 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 52.0522190 52.0522190 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 21.3449630356 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20676037. SCF Done: E(RB3LYP) = -113.350811169 A.U. after 8 cycles Convg = 0.2768D-08 -V/T = 2.0083 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.24578 -10.32015 -1.14021 -0.58485 -0.46492 Alpha occ. eigenvalues -- -0.46492 -0.39223 Alpha virt. eigenvalues -- -0.06264 -0.06264 0.02113 0.04377 0.05206 Alpha virt. eigenvalues -- 0.05206 0.12379 0.13793 0.13793 0.18825 Alpha virt. eigenvalues -- 0.20667 0.20668 0.29190 0.30999 0.30999 Alpha virt. eigenvalues -- 0.38307 0.38307 0.39400 0.51722 0.53649 Alpha virt. eigenvalues -- 0.57695 0.57695 0.66300 0.66300 0.80853 Alpha virt. eigenvalues -- 0.85839 0.85842 0.88119 0.88119 0.91688 Alpha virt. eigenvalues -- 0.91688 1.04859 1.04859 1.06272 1.10329 Alpha virt. eigenvalues -- 1.10334 1.16106 1.26725 1.26725 1.26992 Alpha virt. eigenvalues -- 1.88781 1.88781 1.89203 1.89203 1.99722 Alpha virt. eigenvalues -- 1.99722 2.01977 2.13148 2.21802 2.21802 Alpha virt. eigenvalues -- 2.29808 2.29809 2.38851 2.70602 2.70602 Alpha virt. eigenvalues -- 3.05433 3.05436 3.07731 3.12790 3.12790 Alpha virt. eigenvalues -- 3.26880 3.26880 3.37225 3.37230 3.51739 Alpha virt. eigenvalues -- 3.51739 3.56135 3.92313 4.61335 4.61335 Alpha virt. eigenvalues -- 4.65760 6.00573 6.00573 6.25041 6.25041 Alpha virt. eigenvalues -- 6.48706 6.48706 6.52260 6.52260 6.59315 Alpha virt. eigenvalues -- 6.90049 6.90049 6.98088 11.34306 13.15246 Condensed to atoms (all electrons): 1 2 1 C 5.285113 0.569576 2 O 0.569576 7.575735 Mulliken atomic charges: 1 1 C 0.145311 2 O -0.145311 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.145311 2 O -0.145311 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 42.0668 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -0.1391 Tot= 0.1391 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.4551 YY= -10.4551 ZZ= -12.3505 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.6318 YY= 0.6318 ZZ= -1.2636 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.3044 XYY= 0.0000 XXY= 0.0000 XXZ= 1.1922 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.1922 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.9059 YYYY= -9.9059 ZZZZ= -40.2618 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.3020 XXZZ= -7.7369 YYZZ= -7.7369 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.134496303556D+01 E-N=-3.085348618145D+02 KE= 1.124131374719D+02 Symmetry A1 KE= 1.042505168542D+02 Symmetry A2 KE= 3.218483813289D-51 Symmetry B1 KE= 4.081310308865D+00 Symmetry B2 KE= 4.081310308865D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.19\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.3508112\RMSD=2.768e-09\Dipol e=0.,0.,-0.0547449\Quadrupole=0.4697093,0.4697093,-0.9394185,0.,0.,0.\ PG=C*V [C*(C1O1)]\\@ YOU CAN LEAD A BOY TO COLLEGE.... BUT YOU CANNOT MAKE HIM THINK.... ELBERT HUBBARD Job cpu time: 0 days 0 hours 0 minutes 4.6 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:26:51 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 27069. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.2 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.200000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.685714 2 8 0 0.000000 0.000000 0.514286 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 51.1882967 51.1882967 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 21.1670883436 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20676037. SCF Done: E(RB3LYP) = -113.348353941 A.U. after 8 cycles Convg = 0.2741D-08 -V/T = 2.0087 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.24605 -10.32349 -1.13490 -0.58489 -0.46183 Alpha occ. eigenvalues -- -0.46183 -0.39298 Alpha virt. eigenvalues -- -0.06593 -0.06593 0.02111 0.04346 0.05193 Alpha virt. eigenvalues -- 0.05193 0.12364 0.13799 0.13799 0.18785 Alpha virt. eigenvalues -- 0.20659 0.20660 0.29072 0.30914 0.30914 Alpha virt. eigenvalues -- 0.38336 0.38336 0.39305 0.50818 0.53541 Alpha virt. eigenvalues -- 0.57680 0.57680 0.66251 0.66251 0.80794 Alpha virt. eigenvalues -- 0.85751 0.85753 0.87882 0.87882 0.91666 Alpha virt. eigenvalues -- 0.91666 1.04879 1.04879 1.05974 1.10164 Alpha virt. eigenvalues -- 1.10169 1.15607 1.26532 1.26532 1.27184 Alpha virt. eigenvalues -- 1.88638 1.88638 1.89192 1.89192 1.99383 Alpha virt. eigenvalues -- 1.99383 2.01377 2.12494 2.20945 2.20945 Alpha virt. eigenvalues -- 2.29332 2.29333 2.39212 2.71293 2.71293 Alpha virt. eigenvalues -- 3.05269 3.05273 3.06496 3.12713 3.12713 Alpha virt. eigenvalues -- 3.26465 3.26465 3.36406 3.36411 3.51127 Alpha virt. eigenvalues -- 3.51127 3.55020 3.91137 4.58702 4.58702 Alpha virt. eigenvalues -- 4.63719 6.00587 6.00587 6.24573 6.24573 Alpha virt. eigenvalues -- 6.48644 6.48645 6.50874 6.50874 6.57908 Alpha virt. eigenvalues -- 6.89983 6.89983 6.96885 11.23708 12.97665 Condensed to atoms (all electrons): 1 2 1 C 5.287262 0.559692 2 O 0.559692 7.593354 Mulliken atomic charges: 1 1 C 0.153046 2 O -0.153046 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.153046 2 O -0.153046 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 42.3885 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -0.1759 Tot= 0.1759 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.4772 YY= -10.4772 ZZ= -12.3455 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.6228 YY= 0.6228 ZZ= -1.2455 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.2975 XYY= 0.0000 XXY= 0.0000 XXZ= 1.1831 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.1831 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.9437 YYYY= -9.9437 ZZZZ= -40.6731 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.3146 XXZZ= -7.8043 YYZZ= -7.8043 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.116708834360D+01 E-N=-3.081550058881D+02 KE= 1.123748083630D+02 Symmetry A1 KE= 1.042225850143D+02 Symmetry A2 KE= 3.652965905740D-51 Symmetry B1 KE= 4.076111674342D+00 Symmetry B2 KE= 4.076111674342D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.2\\Ver sion=EM64L-G09RevB.01\State=1-SG\HF=-113.3483539\RMSD=2.741e-09\Dipole =0.,0.,-0.0692225\Quadrupole=0.4630074,0.4630074,-0.9260148,0.,0.,0.\P G=C*V [C*(C1O1)]\\@ THE ONLY TROUBLE WITH A SURE THING IS THE UNCERTAINTY. -- FROM A TEABAG (BELONGING TO W.H.?) Job cpu time: 0 days 0 hours 0 minutes 4.9 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:26:56 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 27159. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.22 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.220000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.697143 2 8 0 0.000000 0.000000 0.522857 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 49.5237485 49.5237485 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 20.8200868953 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20676037. SCF Done: E(RB3LYP) = -113.342675379 A.U. after 8 cycles Convg = 0.2908D-08 -V/T = 2.0093 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.24649 -10.33002 -1.12445 -0.58500 -0.45580 Alpha occ. eigenvalues -- -0.45580 -0.39437 Alpha virt. eigenvalues -- -0.07238 -0.07238 0.02107 0.04282 0.05169 Alpha virt. eigenvalues -- 0.05169 0.12338 0.13812 0.13812 0.18689 Alpha virt. eigenvalues -- 0.20644 0.20644 0.28809 0.30747 0.30747 Alpha virt. eigenvalues -- 0.38395 0.38395 0.39079 0.48951 0.53466 Alpha virt. eigenvalues -- 0.57649 0.57649 0.66156 0.66156 0.80728 Alpha virt. eigenvalues -- 0.85577 0.85578 0.87414 0.87414 0.91622 Alpha virt. eigenvalues -- 0.91622 1.04897 1.04897 1.05381 1.09833 Alpha virt. eigenvalues -- 1.09839 1.14548 1.26190 1.26190 1.27741 Alpha virt. eigenvalues -- 1.88363 1.88363 1.89175 1.89175 1.98678 Alpha virt. eigenvalues -- 1.98678 2.00115 2.11197 2.19325 2.19325 Alpha virt. eigenvalues -- 2.28378 2.28378 2.40085 2.72565 2.72565 Alpha virt. eigenvalues -- 3.03959 3.04956 3.04960 3.12562 3.12562 Alpha virt. eigenvalues -- 3.25672 3.25672 3.34831 3.34835 3.50000 Alpha virt. eigenvalues -- 3.50000 3.52863 3.88459 4.53472 4.53472 Alpha virt. eigenvalues -- 4.60273 6.00621 6.00621 6.23679 6.23679 Alpha virt. eigenvalues -- 6.48290 6.48290 6.48533 6.48535 6.55382 Alpha virt. eigenvalues -- 6.89720 6.89720 6.94483 11.00493 12.66388 Condensed to atoms (all electrons): 1 2 1 C 5.291696 0.540307 2 O 0.540307 7.627690 Mulliken atomic charges: 1 1 C 0.167997 2 O -0.167997 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.167997 2 O -0.167997 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 43.0366 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -0.2497 Tot= 0.2497 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.5207 YY= -10.5207 ZZ= -12.3331 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.6041 YY= 0.6041 ZZ= -1.2083 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.2809 XYY= 0.0000 XXY= 0.0000 XXZ= 1.1651 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.1651 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -10.0197 YYYY= -10.0197 ZZZZ= -41.5019 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.3399 XXZZ= -7.9406 YYZZ= -7.9406 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.082008689534D+01 E-N=-3.074156671098D+02 KE= 1.123031990977D+02 Symmetry A1 KE= 1.041701354532D+02 Symmetry A2 KE= 3.073945134981D-51 Symmetry B1 KE= 4.066531822274D+00 Symmetry B2 KE= 4.066531822274D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.22\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.3426754\RMSD=2.908e-09\Dipol e=0.,0.,-0.0982578\Quadrupole=0.4491539,0.4491539,-0.8983077,0.,0.,0.\ PG=C*V [C*(C1O1)]\\@ "TIGER, TIGER BURNING BRIGHT IN THE FOREST OF THE NIGHT. WHAT IMMORTAL HAND OR EYE CAN FRAME THY FEARFUL SYMMETRYE?" - WILLIAM BLAKE Job cpu time: 0 days 0 hours 0 minutes 4.9 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:27:02 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 27248. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.24 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.240000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.708571 2 8 0 0.000000 0.000000 0.531429 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 47.9390916 47.9390916 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 20.4842790422 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20676037. SCF Done: E(RB3LYP) = -113.336104510 A.U. after 8 cycles Convg = 0.5161D-08 -V/T = 2.0098 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.24679 -10.33636 -1.11421 -0.58519 -0.44995 Alpha occ. eigenvalues -- -0.44995 -0.39562 Alpha virt. eigenvalues -- -0.07866 -0.07866 0.02102 0.04214 0.05149 Alpha virt. eigenvalues -- 0.05149 0.12314 0.13826 0.13826 0.18565 Alpha virt. eigenvalues -- 0.20628 0.20628 0.28508 0.30584 0.30584 Alpha virt. eigenvalues -- 0.38457 0.38457 0.38781 0.47182 0.53456 Alpha virt. eigenvalues -- 0.57615 0.57615 0.66063 0.66063 0.80719 Alpha virt. eigenvalues -- 0.85406 0.85406 0.86956 0.86956 0.91577 Alpha virt. eigenvalues -- 0.91577 1.04794 1.04885 1.04885 1.09503 Alpha virt. eigenvalues -- 1.09510 1.13448 1.25905 1.25905 1.28467 Alpha virt. eigenvalues -- 1.88105 1.88105 1.89162 1.89162 1.97938 Alpha virt. eigenvalues -- 1.97938 1.98765 2.09935 2.17831 2.17831 Alpha virt. eigenvalues -- 2.27422 2.27422 2.41139 2.73675 2.73675 Alpha virt. eigenvalues -- 3.01331 3.04660 3.04664 3.12416 3.12416 Alpha virt. eigenvalues -- 3.24931 3.24931 3.33335 3.33338 3.48997 Alpha virt. eigenvalues -- 3.48997 3.50796 3.85396 4.48307 4.48307 Alpha virt. eigenvalues -- 4.57621 6.00665 6.00665 6.22840 6.22840 Alpha virt. eigenvalues -- 6.45944 6.45944 6.48438 6.48439 6.53203 Alpha virt. eigenvalues -- 6.89294 6.89294 6.92067 10.74895 12.40026 Condensed to atoms (all electrons): 1 2 1 C 5.296251 0.521515 2 O 0.521515 7.660719 Mulliken atomic charges: 1 1 C 0.182234 2 O -0.182234 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.182234 2 O -0.182234 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 43.6910 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -0.3237 Tot= 0.3237 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.5635 YY= -10.5635 ZZ= -12.3176 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.5847 YY= 0.5847 ZZ= -1.1694 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.2608 XYY= 0.0000 XXY= 0.0000 XXZ= 1.1471 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.1471 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -10.0963 YYYY= -10.0963 ZZZZ= -42.3389 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.3655 XXZZ= -8.0790 YYZZ= -8.0790 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.048427904219D+01 E-N=-3.067024007869D+02 KE= 1.122379069183D+02 Symmetry A1 KE= 1.041219355398D+02 Symmetry A2 KE= 4.071921753088D-51 Symmetry B1 KE= 4.057985689235D+00 Symmetry B2 KE= 4.057985689235D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.24\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.3361045\RMSD=5.161e-09\Dipol e=0.,0.,-0.1273724\Quadrupole=0.4347088,0.4347088,-0.8694176,0.,0.,0.\ PG=C*V [C*(C1O1)]\\@ THOUGH I SPEAK WITH THE TONGUES OF MEN AND OF ANGELS, AND HAVE NOT LOVE, I AM BECOME AS SOUNDING BRASS, A TINKLING CYMBAL. AND THOUGH I HAVE THE GIFT OF PROPHECY, AND UNDERSTAND ALL MYSTERIES, AND ALL KNOWLEDGE. AND THOUGH I HAVE ALL FAITH, SO THAT I COULD REMOVE MOUNTAINS, AND HAVE NOT LOVE, I AM NOTHING. AND THOUGH I BESTOW ALL MY GOODS TO FEED THE POOR, AND THOUGH I GIVE MY BODY TO BE BURNED, AND HAVE NOT LOVE IT PROFITETH ME NOTHING. LOVE SUFFERETH LONG, AND IS KIND, LOVE ENVIETH NOT, LOVE VAUNTETH NOT ITSELF, IS NOT PUFFED UP, DOTH NOT BEHAVE ITSELF UNSEEMLY, SEEKETH NOT HER OWN, IS NOT EASILY PROVOKED, THINKETH NO EVIL, REJOICETH NOT IN INIQUITY, BUT REJOICETH IN THE TRUTH, BEARETH ALL THINGS, BELIEVETH ALL THINGS, HOPETH ALL THINGS, ENDURETH ALL THINGS. LOVE NEVER FAILETH, BUT WHETHER THERE BE PROPHECIES, THEY SHALL FAIL, WHETHER THERE BE TONGUES, THEY SHALL CEASE, WHETHER THERE BE KNOWLEDGE, IT SHALL VANISH AWAY. FOR WE KNOW IN PART, AND WE PROPHESY IN PART. BUT WHEN THAT WHICH IS PERFECT IS COME, THEN THAT WHICH IS IN PART SHALL BE DONE AWAY. WHEN I WAS A CHILD, I SPAKE AS A CHILD, I UNDERSTOOD AS A CHILD, I THOUGHT AS A CHILD. BUT WHEN I BECAME A MAN, I PUT AWAY CHILDISH THINGS. FOR NOW WE SEE THROUGH A GLASS, DARKLY, BUT THEN FACE TO FACE. NOW I KNOW IN PART. BUT THEN SHALL I KNOW EVEN AS ALSO I AM KNOWN. AND NOW ABIDETH FAITH, HOPE AND LOVE, THESE THREE. BUT THE GREATEST OF THESE IS LOVE. I CORINTHIANS 13 Job cpu time: 0 days 0 hours 0 minutes 5.6 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:27:07 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 27338. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.26 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.260000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.720000 2 8 0 0.000000 0.000000 0.540000 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 46.4292941 46.4292941 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 20.1591317558 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20676037. SCF Done: E(RB3LYP) = -113.328777883 A.U. after 9 cycles Convg = 0.2057D-08 -V/T = 2.0103 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.24697 -10.34249 -1.10420 -0.58546 -0.44428 Alpha occ. eigenvalues -- -0.44428 -0.39674 Alpha virt. eigenvalues -- -0.08476 -0.08476 0.02096 0.04142 0.05132 Alpha virt. eigenvalues -- 0.05132 0.12292 0.13839 0.13839 0.18405 Alpha virt. eigenvalues -- 0.20611 0.20612 0.28164 0.30425 0.30425 Alpha virt. eigenvalues -- 0.38379 0.38520 0.38520 0.45612 0.53477 Alpha virt. eigenvalues -- 0.57578 0.57578 0.65975 0.65975 0.80759 Alpha virt. eigenvalues -- 0.85238 0.85238 0.86509 0.86509 0.91532 Alpha virt. eigenvalues -- 0.91532 1.04211 1.04838 1.04838 1.09173 Alpha virt. eigenvalues -- 1.09180 1.12338 1.25680 1.25680 1.29306 Alpha virt. eigenvalues -- 1.87863 1.87863 1.89155 1.89155 1.97169 Alpha virt. eigenvalues -- 1.97169 1.97321 2.08732 2.16459 2.16459 Alpha virt. eigenvalues -- 2.26468 2.26468 2.42348 2.74604 2.74604 Alpha virt. eigenvalues -- 2.98615 3.04381 3.04385 3.12272 3.12272 Alpha virt. eigenvalues -- 3.24247 3.24247 3.31915 3.31917 3.48117 Alpha virt. eigenvalues -- 3.48117 3.48810 3.82045 4.43235 4.43235 Alpha virt. eigenvalues -- 4.55658 6.00717 6.00717 6.22055 6.22055 Alpha virt. eigenvalues -- 6.43820 6.43820 6.48356 6.48358 6.51321 Alpha virt. eigenvalues -- 6.88719 6.88719 6.89614 10.47634 12.17861 Condensed to atoms (all electrons): 1 2 1 C 5.300856 0.503409 2 O 0.503409 7.692326 Mulliken atomic charges: 1 1 C 0.195735 2 O -0.195735 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.195735 2 O -0.195735 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 44.3518 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -0.3979 Tot= 0.3979 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.6055 YY= -10.6055 ZZ= -12.2989 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.5645 YY= 0.5645 ZZ= -1.1290 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.2372 XYY= 0.0000 XXY= 0.0000 XXZ= 1.1293 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.1293 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -10.1735 YYYY= -10.1735 ZZZZ= -43.1840 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.3912 XXZZ= -8.2196 YYZZ= -8.2196 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.015913175581D+01 E-N=-3.060139521111D+02 KE= 1.121784577247D+02 Symmetry A1 KE= 1.040776360489D+02 Symmetry A2 KE=-1.441004967714D-52 Symmetry B1 KE= 4.050410837878D+00 Symmetry B2 KE= 4.050410837878D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.26\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.3287779\RMSD=2.057e-09\Dipol e=0.,0.,-0.1565341\Quadrupole=0.4196858,0.4196858,-0.8393717,0.,0.,0.\ PG=C*V [C*(C1O1)]\\@ SATCHEL PAIGE'S GUIDE TO LONGEVITY 1. AVOID FRIED MEATS, WHICH ANGRY UP THE BLOOD. 2. IF YOUR STOMACH DISPUTES YOU, LIE DOWN AND PACIFY IT WITH COOL THOUGHTS. 3. KEEP THE JUICES FLOWING BY JANGLING AROUND GENTLY AS YOU MOVE. 4. GO VERY LIGHT ON THE VICES, SUCH AS CARRYING ON IN SOCIETY. THE SOCIAL RUMBLE AIN'T RESTFUL. 5. AVOID RUNNING AT ALL TIMES. 6. DON'T LOOK BACK. SOMETHING MAY BE GAINING ON YOU. Job cpu time: 0 days 0 hours 0 minutes 5.0 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:27:12 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 27429. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.28 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.280000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.731429 2 8 0 0.000000 0.000000 0.548571 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 44.9897139 44.9897139 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 19.8441453221 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20676037. SCF Done: E(RB3LYP) = -113.320816210 A.U. after 10 cycles Convg = 0.9264D-09 -V/T = 2.0107 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.24703 -10.34842 -1.09444 -0.58581 -0.43879 Alpha occ. eigenvalues -- -0.43879 -0.39770 Alpha virt. eigenvalues -- -0.09067 -0.09067 0.02090 0.04066 0.05116 Alpha virt. eigenvalues -- 0.05116 0.12273 0.13853 0.13853 0.18200 Alpha virt. eigenvalues -- 0.20595 0.20595 0.27773 0.30270 0.30270 Alpha virt. eigenvalues -- 0.37839 0.38584 0.38584 0.44310 0.53522 Alpha virt. eigenvalues -- 0.57540 0.57540 0.65892 0.65892 0.80839 Alpha virt. eigenvalues -- 0.85072 0.85074 0.86073 0.86073 0.91487 Alpha virt. eigenvalues -- 0.91487 1.03634 1.04755 1.04755 1.08844 Alpha virt. eigenvalues -- 1.08851 1.11234 1.25515 1.25515 1.30218 Alpha virt. eigenvalues -- 1.87635 1.87635 1.89151 1.89151 1.95785 Alpha virt. eigenvalues -- 1.96376 1.96376 2.07603 2.15205 2.15205 Alpha virt. eigenvalues -- 2.25518 2.25518 2.43686 2.75337 2.75337 Alpha virt. eigenvalues -- 2.95820 3.04118 3.04122 3.12132 3.12132 Alpha virt. eigenvalues -- 3.23624 3.23624 3.30567 3.30568 3.46893 Alpha virt. eigenvalues -- 3.47357 3.47357 3.78521 4.38275 4.38275 Alpha virt. eigenvalues -- 4.54259 6.00775 6.00775 6.21321 6.21321 Alpha virt. eigenvalues -- 6.41906 6.41906 6.48286 6.48288 6.49690 Alpha virt. eigenvalues -- 6.87102 6.88011 6.88011 10.19595 11.98981 Condensed to atoms (all electrons): 1 2 1 C 5.305449 0.486067 2 O 0.486067 7.722416 Mulliken atomic charges: 1 1 C 0.208484 2 O -0.208484 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.208484 2 O -0.208484 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 45.0189 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -0.4720 Tot= 0.4720 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.6467 YY= -10.6467 ZZ= -12.2773 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.5435 YY= 0.5435 ZZ= -1.0871 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.2102 XYY= 0.0000 XXY= 0.0000 XXZ= 1.1115 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.1115 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -10.2512 YYYY= -10.2512 ZZZZ= -44.0373 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.4171 XXZZ= -8.3624 YYZZ= -8.3624 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.984414532212D+01 E-N=-3.053491221214D+02 KE= 1.121244020639D+02 Symmetry A1 KE= 1.040369046712D+02 Symmetry A2 KE=-1.690254962116D-51 Symmetry B1 KE= 4.043748696328D+00 Symmetry B2 KE= 4.043748696328D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.28\\Ve rsion=EM64L-G09RevB.01\State=1-SG\HF=-113.3208162\RMSD=9.264e-10\Dipol e=0.,0.,-0.1857091\Quadrupole=0.4041024,0.4041024,-0.8082048,0.,0.,0.\ PG=C*V [C*(C1O1)]\\@ ERWIN WITH HIS PSI CAN DO CALCULATIONS QUITE A FEW. BUT ONE THING HAS NOT BEEN SEEN JUST WHAT DOES PSI REALLY MEAN. -- WALTER HUCKEL, TRANS. BY FELIX BLOCH Job cpu time: 0 days 0 hours 0 minutes 5.5 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:27:18 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 27519. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.3 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.300000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.742857 2 8 0 0.000000 0.000000 0.557143 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 43.6160635 43.6160635 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 19.5388507787 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20676037. SCF Done: E(RB3LYP) = -113.312326079 A.U. after 10 cycles Convg = 0.7844D-09 -V/T = 2.0110 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (PHI) (PHI) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.24698 -10.35415 -1.08494 -0.58624 -0.43347 Alpha occ. eigenvalues -- -0.43347 -0.39852 Alpha virt. eigenvalues -- -0.09641 -0.09641 0.02082 0.03985 0.05102 Alpha virt. eigenvalues -- 0.05102 0.12256 0.13867 0.13867 0.17938 Alpha virt. eigenvalues -- 0.20578 0.20578 0.27334 0.30118 0.30118 Alpha virt. eigenvalues -- 0.37156 0.38648 0.38648 0.43314 0.53587 Alpha virt. eigenvalues -- 0.57499 0.57499 0.65814 0.65814 0.80953 Alpha virt. eigenvalues -- 0.84911 0.84913 0.85647 0.85647 0.91441 Alpha virt. eigenvalues -- 0.91441 1.03062 1.04633 1.04633 1.08516 Alpha virt. eigenvalues -- 1.08523 1.10144 1.25408 1.25408 1.31176 Alpha virt. eigenvalues -- 1.87423 1.87423 1.89151 1.89151 1.94161 Alpha virt. eigenvalues -- 1.95565 1.95565 2.06555 2.14063 2.14063 Alpha virt. eigenvalues -- 2.24573 2.24573 2.45122 2.75860 2.75860 Alpha virt. eigenvalues -- 2.92961 3.03871 3.03874 3.11994 3.11994 Alpha virt. eigenvalues -- 3.23064 3.23064 3.29287 3.29287 3.45034 Alpha virt. eigenvalues -- 3.46715 3.46715 3.74939 4.33448 4.33448 Alpha virt. eigenvalues -- 4.53298 6.00840 6.00840 6.20635 6.20635 Alpha virt. eigenvalues -- 6.40188 6.40188 6.48228 6.48230 6.48269 Alpha virt. eigenvalues -- 6.84504 6.87183 6.87183 9.91567 11.82535 Condensed to atoms (all electrons): 1 2 1 C 5.309983 0.469549 2 O 0.469549 7.750919 Mulliken atomic charges: 1 1 C 0.220468 2 O -0.220468 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.220468 2 O -0.220468 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 45.6926 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -0.5461 Tot= 0.5461 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.6871 YY= -10.6871 ZZ= -12.2527 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.5218 YY= 0.5218 ZZ= -1.0437 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.1799 XYY= 0.0000 XXY= 0.0000 XXZ= 1.0940 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.0940 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -10.3294 YYYY= -10.3294 ZZZZ= -44.8989 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.4431 XXZZ= -8.5075 YYZZ= -8.5075 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.953885077871D+01 E-N=-3.047067748419D+02 KE= 1.120753188864D+02 Symmetry A1 KE= 1.039994281507D+02 Symmetry A2 KE= 2.079715906872D-51 Symmetry B1 KE= 4.037945367843D+00 Symmetry B2 KE= 4.037945367843D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.3\\Ver sion=EM64L-G09RevB.01\State=1-SG\HF=-113.3123261\RMSD=7.844e-10\Dipole =0.,0.,-0.2148665\Quadrupole=0.3879795,0.3879795,-0.775959,0.,0.,0.\PG =C*V [C*(C1O1)]\\@ ABALONE: AN EXPRESSION OF DISBELIEF. Job cpu time: 0 days 0 hours 0 minutes 5.4 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:27:24 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 27608. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.4 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.400000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.800000 2 8 0 0.000000 0.000000 0.600000 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 37.6077282 37.6077282 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 18.1432185802 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20676037. SCF Done: E(RB3LYP) = -113.264876667 A.U. after 9 cycles Convg = 0.5730D-08 -V/T = 2.0123 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.24534 -10.37971 -1.04154 -0.58963 -0.40926 Alpha occ. eigenvalues -- -0.40926 -0.40033 Alpha virt. eigenvalues -- -0.12238 -0.12238 0.02020 0.03477 0.05047 Alpha virt. eigenvalues -- 0.05047 0.12198 0.13936 0.13936 0.15330 Alpha virt. eigenvalues -- 0.20488 0.20489 0.24850 0.29404 0.29404 Alpha virt. eigenvalues -- 0.33426 0.38929 0.38929 0.41413 0.54182 Alpha virt. eigenvalues -- 0.57272 0.57273 0.65533 0.65533 0.81845 Alpha virt. eigenvalues -- 0.83686 0.83686 0.84158 0.84166 0.91210 Alpha virt. eigenvalues -- 0.91210 1.00272 1.03445 1.03445 1.05015 Alpha virt. eigenvalues -- 1.06887 1.06892 1.25627 1.25627 1.36074 Alpha virt. eigenvalues -- 1.85128 1.86557 1.86557 1.89194 1.89194 Alpha virt. eigenvalues -- 1.91495 1.91495 2.02408 2.09761 2.09761 Alpha virt. eigenvalues -- 2.19995 2.19996 2.52101 2.75235 2.75235 Alpha virt. eigenvalues -- 2.79283 3.02828 3.02829 3.11338 3.11338 Alpha virt. eigenvalues -- 3.21058 3.21058 3.23803 3.23811 3.36324 Alpha virt. eigenvalues -- 3.45064 3.45064 3.58913 4.11836 4.11836 Alpha virt. eigenvalues -- 4.51563 6.01217 6.01217 6.17825 6.17825 Alpha virt. eigenvalues -- 6.34120 6.34120 6.43259 6.48069 6.48070 Alpha virt. eigenvalues -- 6.69070 6.81727 6.81727 8.66334 11.19591 Condensed to atoms (all electrons): 1 2 1 C 5.330744 0.400120 2 O 0.400120 7.869015 Mulliken atomic charges: 1 1 C 0.269135 2 O -0.269135 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.269135 2 O -0.269135 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 49.1608 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -0.9133 Tot= 0.9133 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.8780 YY= -10.8780 ZZ= -12.0895 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.4038 YY= 0.4038 ZZ= -0.8076 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 5.9834 XYY= 0.0000 XXY= 0.0000 XXZ= 1.0099 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.0099 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -10.7249 YYYY= -10.7249 ZZZZ= -49.3360 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.5750 XXZZ= -9.2675 YYZZ= -9.2675 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.814321858023D+01 E-N=-3.017961964516D+02 KE= 1.118914299826D+02 Symmetry A1 KE= 1.038511641705D+02 Symmetry A2 KE=-2.321877224628D-51 Symmetry B1 KE= 4.020132906050D+00 Symmetry B2 KE= 4.020132906049D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.4\\Ver sion=EM64L-G09RevB.01\State=1-SG\HF=-113.2648767\RMSD=5.730e-09\Dipole =0.,0.,-0.3593245\Quadrupole=0.3002277,0.3002277,-0.6004554,0.,0.,0.\P G=C*V [C*(C1O1)]\\@ SCIENCE IS A VERY HUMAN FORM OF KNOWLEDGE. WE ARE ALWAYS AT THE BRINK OF THE KNOWN, WE ALWAYS FEEL FORWARD FOR WHAT IS HOPED. EVERY JUDGEMENT IN SCIENCE STANDS ON THE EDGE OF ERROR, AND IS PERSONAL. SCIENCE IS A TRIBUTE TO WHAT WE CAN KNOW ALTHOUGH WE ARE FALLIBLE. -- J. BRONOWSKI Job cpu time: 0 days 0 hours 0 minutes 5.7 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:27:29 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 27714. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.5 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.500000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.857143 2 8 0 0.000000 0.000000 0.642857 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 32.7605099 32.7605099 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 16.9336706749 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20676037. EnCoef did 6 forward-backward iterations SCF Done: E(RB3LYP) = -113.214393167 A.U. after 11 cycles Convg = 0.2819D-08 -V/T = 2.0128 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (SG) (PI) (PI) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.24213 -10.40049 -1.00528 -0.59477 -0.39851 Alpha occ. eigenvalues -- -0.38872 -0.38872 Alpha virt. eigenvalues -- -0.14419 -0.14419 0.01778 0.02684 0.04999 Alpha virt. eigenvalues -- 0.04999 0.10844 0.12185 0.13990 0.13990 Alpha virt. eigenvalues -- 0.20394 0.20394 0.23412 0.28756 0.28756 Alpha virt. eigenvalues -- 0.31383 0.39073 0.39073 0.41103 0.55185 Alpha virt. eigenvalues -- 0.57015 0.57016 0.65476 0.65476 0.81977 Alpha virt. eigenvalues -- 0.81977 0.82896 0.83506 0.83517 0.90976 Alpha virt. eigenvalues -- 0.90976 0.97635 1.00609 1.01499 1.01499 Alpha virt. eigenvalues -- 1.05284 1.05284 1.26558 1.26558 1.40252 Alpha virt. eigenvalues -- 1.75676 1.85967 1.85967 1.87986 1.87986 Alpha virt. eigenvalues -- 1.89276 1.89276 1.99419 2.07106 2.07106 Alpha virt. eigenvalues -- 2.15762 2.15765 2.49467 2.70099 2.70099 Alpha virt. eigenvalues -- 2.76538 3.02013 3.02019 3.10717 3.10717 Alpha virt. eigenvalues -- 3.19636 3.19647 3.19656 3.19656 3.28561 Alpha virt. eigenvalues -- 3.44882 3.44882 3.48153 3.95396 3.95396 Alpha virt. eigenvalues -- 4.49909 6.01634 6.01634 6.15744 6.15744 Alpha virt. eigenvalues -- 6.31300 6.31300 6.39191 6.46122 6.48081 Alpha virt. eigenvalues -- 6.48083 6.75149 6.75149 7.77797 10.72384 Condensed to atoms (all electrons): 1 2 1 C 5.347630 0.351083 2 O 0.351083 7.950204 Mulliken atomic charges: 1 1 C 0.301287 2 O -0.301287 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.301287 2 O -0.301287 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 52.8041 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -1.2683 Tot= 1.2683 Quadrupole moment (field-independent basis, Debye-Ang): XX= -11.0494 YY= -11.0494 ZZ= -11.8714 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.2740 YY= 0.2740 ZZ= -0.5480 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 5.7254 XYY= 0.0000 XXY= 0.0000 XXZ= 0.9348 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.9348 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -11.1201 YYYY= -11.1201 ZZZZ= -54.0072 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.7067 XXZZ= -10.0873 YYZZ= -10.0873 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.693367067488D+01 E-N=-2.993068545789D+02 KE= 1.117824083492D+02 Symmetry A1 KE= 1.037476904224D+02 Symmetry A2 KE= 1.238466576408D-51 Symmetry B1 KE= 4.017358963436D+00 Symmetry B2 KE= 4.017358963436D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.5\\Ver sion=EM64L-G09RevB.01\State=1-SG\HF=-113.2143932\RMSD=2.819e-09\Dipole =0.,0.,-0.4989821\Quadrupole=0.2037207,0.2037207,-0.4074415,0.,0.,0.\P G=C*V [C*(C1O1)]\\@ HOW IS IT THAT THE SKY FEEDS THE STARS? -- LUCRETIUS Job cpu time: 0 days 0 hours 0 minutes 4.6 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:27:35 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 27804. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.6 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.600000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.914286 2 8 0 0.000000 0.000000 0.685714 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 28.7934169 28.7934169 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 15.8753162577 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (PHI) (PHI) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20676037. SCF Done: E(RB3LYP) = -113.165102886 A.U. after 11 cycles Convg = 0.1018D-08 -V/T = 2.0129 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (SG) (PI) (PI) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (PI) (PI) (DLTA) (DLTA) (SG) (PHI) (PHI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (PHI) (PHI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (PI) (PI) (SG) (PHI) (PHI) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.23818 -10.41713 -0.97599 -0.60097 -0.39373 Alpha occ. eigenvalues -- -0.37146 -0.37146 Alpha virt. eigenvalues -- -0.16236 -0.16236 0.00044 0.02178 0.04948 Alpha virt. eigenvalues -- 0.04948 0.07217 0.12184 0.14024 0.14024 Alpha virt. eigenvalues -- 0.20295 0.20295 0.22989 0.28161 0.28161 Alpha virt. eigenvalues -- 0.30262 0.39031 0.39031 0.41080 0.56515 Alpha virt. eigenvalues -- 0.56742 0.56743 0.65639 0.65639 0.80491 Alpha virt. eigenvalues -- 0.80491 0.82952 0.82963 0.83464 0.90742 Alpha virt. eigenvalues -- 0.90742 0.95182 0.97482 0.99188 0.99188 Alpha virt. eigenvalues -- 1.03699 1.03705 1.27385 1.27385 1.42557 Alpha virt. eigenvalues -- 1.67370 1.85500 1.85500 1.85587 1.85587 Alpha virt. eigenvalues -- 1.89366 1.89367 1.96814 2.05370 2.05370 Alpha virt. eigenvalues -- 2.11947 2.11950 2.37734 2.62488 2.62488 Alpha virt. eigenvalues -- 2.84737 3.01291 3.01308 3.10112 3.10112 Alpha virt. eigenvalues -- 3.16584 3.16586 3.18244 3.18244 3.23085 Alpha virt. eigenvalues -- 3.41144 3.43751 3.43751 3.84874 3.84874 Alpha virt. eigenvalues -- 4.45587 6.02045 6.02045 6.06151 6.14041 Alpha virt. eigenvalues -- 6.14041 6.30546 6.30546 6.40041 6.48213 Alpha virt. eigenvalues -- 6.48216 6.68581 6.68581 7.27162 10.35602 Condensed to atoms (all electrons): 1 2 1 C 5.361269 0.317344 2 O 0.317344 8.004044 Mulliken atomic charges: 1 1 C 0.321388 2 O -0.321388 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.321388 2 O -0.321388 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 56.6351 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -1.6038 Tot= 1.6038 Quadrupole moment (field-independent basis, Debye-Ang): XX= -11.2004 YY= -11.2004 ZZ= -11.6170 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.1389 YY= 0.1389 ZZ= -0.2778 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 5.4256 XYY= 0.0000 XXY= 0.0000 XXZ= 0.8715 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.8715 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -11.5023 YYYY= -11.5023 ZZZZ= -58.9448 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.8341 XXZZ= -10.9684 YYZZ= -10.9684 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.587531625770D+01 E-N=-2.971507204027D+02 KE= 1.117208446231D+02 Symmetry A1 KE= 1.036694997195D+02 Symmetry A2 KE= 7.756921754687D-53 Symmetry B1 KE= 4.025672451778D+00 Symmetry B2 KE= 4.025672451778D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.6\\Ver sion=EM64L-G09RevB.01\State=1-SG\HF=-113.1651029\RMSD=1.018e-09\Dipole =0.,0.,-0.6309949\Quadrupole=0.1032541,0.1032541,-0.2065083,0.,0.,0.\P G=C*V [C*(C1O1)]\\@ COLLEGE PROFESSOR: SOMEONE WHO TALKS IN OTHER PEOPLE'S SLEEP. Job cpu time: 0 days 0 hours 0 minutes 4.3 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:27:41 2013. Initial command: /usr/local//g09l/l1.exe /gscratch/pobmabej/GAUSS_62577.arina/Gau-24873.inp -scrdir=/gscratch/pobmabej/GAUSS_62577.arina/ Entering Link 1 = /usr/local//g09l/l1.exe PID= 27894. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 19-Mar-2013 ****************************************** %LindaWorkers=cn82,cn84 SetLPE: input flags="" SetLPE: new flags=" -nodelist 'cn82 cn84'" Will use up to 2 processors via Linda. %nprocshared=8 Will use up to 8 processors via shared memory. %mem=7520mb %Chk=co --------------------------------------------------------- #b3lyp/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput --------------------------------------------------------- 1/38=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,8=11,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,6=8,7=200,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------- Zn12S12 K testing with B3LYP/SBKJ(d) and 6-311+G* ------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. O 0. 0. 1.7 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.700000 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.971429 2 8 0 0.000000 0.000000 0.728571 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 25.5055873 25.5055873 Standard basis: Aug-CC-pVTZ (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 7 1.00 0.000000000000 0.8236000000D+04 0.5419783203D-03 0.1235000000D+04 0.4192873817D-02 0.2808000000D+03 0.2152216205D-01 0.7927000000D+02 0.8353432195D-01 0.2559000000D+02 0.2395828457D+00 0.8997000000D+01 0.4428528419D+00 0.3319000000D+01 0.3517995618D+00 S 6 1.00 0.000000000000 0.2808000000D+03 -0.5949224937D-04 0.7927000000D+02 -0.1148158310D-02 0.2559000000D+02 -0.1001913745D-01 0.8997000000D+01 -0.6121949230D-01 0.3319000000D+01 -0.1732698541D+00 0.3643000000D+00 0.1072915192D+01 S 1 1.00 0.000000000000 0.9059000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1285000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.4402000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.1871000000D+02 0.3942638716D-01 0.4133000000D+01 0.2440889849D+00 0.1200000000D+01 0.8154920089D+00 P 1 1.00 0.000000000000 0.3827000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.1209000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.3569000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.1097000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.3180000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.1000000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.7610000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.2680000000D+00 0.1000000000D+01 **** 2 0 S 7 1.00 0.000000000000 0.1533000000D+05 0.5198089434D-03 0.2299000000D+04 0.4020256215D-02 0.5224000000D+03 0.2071282673D-01 0.1473000000D+03 0.8101055358D-01 0.4755000000D+02 0.2359629851D+00 0.1676000000D+02 0.4426534455D+00 0.6207000000D+01 0.3570644227D+00 S 6 1.00 0.000000000000 0.5224000000D+03 -0.4421150084D-04 0.1473000000D+03 -0.1225910413D-02 0.4755000000D+02 -0.1055177248D-01 0.1676000000D+02 -0.6744526326D-01 0.6207000000D+01 -0.1711986073D+00 0.6882000000D+00 0.1073298561D+01 S 1 1.00 0.000000000000 0.1752000000D+01 0.1000000000D+01 S 1 1.00 0.000000000000 0.2384000000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.7376000000D-01 0.1000000000D+01 P 3 1.00 0.000000000000 0.3446000000D+02 0.4116348957D-01 0.7749000000D+01 0.2577628359D+00 0.2280000000D+01 0.8024192744D+00 P 1 1.00 0.000000000000 0.7156000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.5974000000D-01 0.1000000000D+01 D 1 1.00 0.000000000000 0.2314000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.6450000000D+00 0.1000000000D+01 D 1 1.00 0.000000000000 0.2140000000D+00 0.1000000000D+01 F 1 1.00 0.000000000000 0.1428000000D+01 0.1000000000D+01 F 1 1.00 0.000000000000 0.5000000000D+00 0.1000000000D+01 **** There are 38 symmetry adapted basis functions of A1 symmetry. There are 10 symmetry adapted basis functions of A2 symmetry. There are 22 symmetry adapted basis functions of B1 symmetry. There are 22 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 92 basis functions, 144 primitive gaussians, 110 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 14.9414741249 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 92 RedAO= T NBF= 38 10 22 22 NBsUse= 92 1.00D-06 NBFU= 38 10 22 22 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.57D-02 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=3 IRadAn= 0 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 200 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=20676037. SCF Done: E(RB3LYP) = -113.118942339 A.U. after 11 cycles Convg = 0.7499D-08 -V/T = 2.0128 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (SG) (PI) (PI) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (DLTA) (DLTA) (SG) (PHI) (PHI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (PHI) (PHI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (PI) (PI) (SG) (SG) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.23406 -10.43031 -0.95297 -0.60749 -0.38688 Alpha occ. eigenvalues -- -0.35707 -0.35707 Alpha virt. eigenvalues -- -0.17749 -0.17749 -0.03337 0.02051 0.04893 Alpha virt. eigenvalues -- 0.04893 0.05587 0.12192 0.14035 0.14035 Alpha virt. eigenvalues -- 0.20192 0.20193 0.22952 0.27610 0.27610 Alpha virt. eigenvalues -- 0.29495 0.38818 0.38818 0.41146 0.56462 Alpha virt. eigenvalues -- 0.56463 0.58041 0.65947 0.65947 0.79210 Alpha virt. eigenvalues -- 0.79210 0.82489 0.82496 0.82716 0.90511 Alpha virt. eigenvalues -- 0.90511 0.92585 0.96774 0.96811 0.96811 Alpha virt. eigenvalues -- 1.02138 1.02146 1.27581 1.27581 1.41046 Alpha virt. eigenvalues -- 1.62606 1.84118 1.84118 1.85364 1.85364 Alpha virt. eigenvalues -- 1.89441 1.89442 1.94009 2.04095 2.04095 Alpha virt. eigenvalues -- 2.08554 2.08556 2.27359 2.54069 2.54069 Alpha virt. eigenvalues -- 2.90739 3.00548 3.00578 3.09519 3.09519 Alpha virt. eigenvalues -- 3.14480 3.14500 3.16886 3.16886 3.23267 Alpha virt. eigenvalues -- 3.36039 3.40056 3.40056 3.79818 3.79818 Alpha virt. eigenvalues -- 4.37691 5.63365 6.02428 6.02428 6.12515 Alpha virt. eigenvalues -- 6.12516 6.30669 6.30669 6.39740 6.48412 Alpha virt. eigenvalues -- 6.48415 6.62860 6.62860 7.01686 10.07383 Condensed to atoms (all electrons): 1 2 1 C 5.372671 0.293658 2 O 0.293658 8.040013 Mulliken atomic charges: 1 1 C 0.333671 2 O -0.333671 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.333671 2 O -0.333671 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 60.6665 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -1.9152 Tot= 1.9152 Quadrupole moment (field-independent basis, Debye-Ang): XX= -11.3307 YY= -11.3307 ZZ= -11.3443 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0046 YY= 0.0046 ZZ= -0.0091 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 5.1032 XYY= 0.0000 XXY= 0.0000 XXZ= 0.8213 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.8213 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -11.8590 YYYY= -11.8590 ZZZZ= -64.1841 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.9529 XXZZ= -11.9117 YYZZ= -11.9117 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.494147412489D+01 E-N=-2.952619854841D+02 KE= 1.116891564702D+02 Symmetry A1 KE= 1.036050852061D+02 Symmetry A2 KE= 2.844632593257D-52 Symmetry B1 KE= 4.042035632067D+00 Symmetry B2 KE= 4.042035632067D+00 1\1\GINC-CN82\SP\RB3LYP\Aug-CC-pVTZ\C1O1\POBMABEJ\19-Mar-2013\0\\#b3ly p/aug-cc-pVTZ SCF(maxCyc=200,conver=8) 5D 7F gfinput\\Zn12S12 K testin g with B3LYP/SBKJ(d) and 6-311+G*\\0,1\C,0,0.,0.,0.\O,0,0.,0.,1.7\\Ver sion=EM64L-G09RevB.01\State=1-SG\HF=-113.1189423\RMSD=7.499e-09\Dipole =0.,0.,-0.7535047\Quadrupole=0.0033834,0.0033834,-0.0067669,0.,0.,0.\P G=C*V [C*(C1O1)]\\@ Sacred cows make the best hamburger. -- Mark Twain Job cpu time: 0 days 0 hours 0 minutes 5.4 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 19 11:27:46 2013.