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Abstract

We establish an epimorphism ν of graded Hopf algebras from the Hopf algebra of
labelled rooted trees HR(X) to the shuffle Hopf algebra Sh(X), and we identify the
graded Hopf ideal I = ker ν, so that Sh(X) is isomorphic as a graded Hopf algebra
to the quotient Hopf algebra HR(X)/I. For each Hall set associated to the alphabet
D (X = K D, where K is the base ring), we assign a set of labelled rooted trees T̂ ∗

and a set of labelled forests F̂∗ (T̂ ∗ ⊂ F̂∗) such that ν(F̂∗) freely generates Sh(X)
as a K-module, and when the base ring is a Q-algebra, ν(T̂ ∗) freely generates Sh(X)
as a K-algebra. Moreover, we describe the coalgebra structure of Sh(X) in terms of
the basis ν(F̂∗). Finally, we show that the dual basis of ν(F̂∗) is the Poincaré-Witt-
Birkhoff basis of T (X) corresponding to a Hall basis of the free Lie algebra L(D). Our
results are closely related to available results [17] on Poincaré-Witt-Birkhoff basis of
the tensor algebra T (X) associated to Hall sets over D.

1 Introduction

Let K be a fixed commutative ring. Given a set D (an alphabet), consider L(D), the
free Lie algebra over D (with base ring K). The universal enveloping algebra of L(D) is
isomorphic to the free associative algebra K〈D〉, or equivalently, the tensor algebra T (X)
over the free K-module X := KD over the set D. Furthermore, if K has 0 characteristic,
L(D) is isomorphic to the Lie algebra of primitive elements of the bialgebra T (X). This
means in particular that the coproduct in T (X) can be used to identify the elements of
L(D) in T (X) [17].

An explicit description of the coalgebra structure of T (X) in terms of its standard
basis of words on the alphabet D involves the use of shuffles of words [17]. Basis of
T (X) other than the set of words on the alphabet D can be constructed by means of the
Poincaré-Birkhoff-Witt Theorem from arbitrary basis of L(D). Such alternative basis have
the advantage of allowing a very simple explicit description of the coalgebra structure of
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T (X) (and in particular, an obvious way of identifying the elements in L(D)), but on the
contrary, the explicit description of the algebra structure of T (X) becomes more involved.
If a (generalized) Hall basis of L(D) has been chosen, this can be done using some rewriting
rule (see [17] and references therein).

With the canonical grading of T (X) = K ⊕
⊕

n≥1X
⊗n, the tensor algebra T (X) has

a structure of graded connected cocommutative Hopf algebra. If D is finite, the graded
dual of T (X) has a graded connected (actually, strictly graded) commutative Hopf algebra
structure denoted by Sh(X) (here, we identify the linear dual X∗ with X). Working in the
shuffle algebra Sh(X) is particularly useful in applications that require dealing with Lie
series [17] and exponentials of Lie series (for instance, non-linear control theory [9], and
the theory of geometric numerical integrators for ordinary differential equations [10, 13]).
In this sense, a complete description of the Hopf algebra Sh(X) in terms of the dual basis
of a Poincaré-Birkhoff-Witt basis of T (X) corresponding to a given basis of L(D) seems
of interest. The algebra structure of Sh(X) admits a convenient explicit description in
such dual basis (Theorem 5.3 in [17]). The explicit description of the coalgebra structure
of Sh(X) in terms of a dual Poincaré-Birkhoff-Witt basis is however more involved. The
aim of the present work is to accomplish this task for an arbitrary generalized Hall basis
of L(D). The main tool will be another graded connected commutative Hopf algebra
associated to the set D, namely, the commutative Hopf algebra of rooted trees labelled by
D, that we denote as HR(X), X = KD.

The referred commutative Hopf algebra structure HR on the free K-module over the set
of (non-labelled) rooted trees was first described by Dür [5], who realized that Butcher’s
group [2] (developed in the context of numerical integration of ordinary differential equa-
tions) was actually an affine group scheme, and consequently has associated two dual Hopf
algebra structures, a commutative one and a cocommutative one. Actually, many combi-
natorics and recursive formulae related to HR were already present in Butcher’s seminal
work, in particular, recursion (5) (in the sense of Remark 4), which is equivalent to formula
(2) given in [4]. In [7], the cocommutative dual of HR is described together with several
other cocommutative Hopf algebras on families of trees including the family of rooted trees
labelled by a given set D. Independently, Kreimer [4] rediscovered the Hopf algebra HR in
the context of renormalization in quantum field theory. Brouder [3] seems to be the first
author to note the relationship of Kreimer’s work with Butcher’s theory.

Foissy [6] studies the commutative Hopf algebra HR(X) of labelled rooted trees as a
quotient of a non-commutative Hopf algebra on (labelled planar rooted) trees. In [6], it is
shown that under certain restrictions on the K-module X, there exists another K-module
Y such that the Hopf algebra HR(X) is isomorphic to a shuffle Hopf algebra Sh(Y ). As a
graded Hopf algebra, HR(X) with its canonical grading (X ⊂ HR(X)1) is isomorphic to
Sh(Y ) with a non-canonical grading (Y 6⊂ Sh(X)1).

In the present work, we show that the Hopf algebra Sh(X) is isomorphic to the quo-
tient Hopf algebra HR(X)/I for an explicitly given Hopf ideal I, This isomorphism is
compatible, for instance, with the canonical gradings of Sh(X) and HR(X). Based on this
isomorphism, we describe the Hopf algebra structure of Sh(X) in terms of a basis of its
underlying K-module structure associated to a Hall set of labelled rooted trees. This basis
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turns out to be the dual of the Poincaré-Witt-Birkhoff basis of T (X) corresponding to a
Hall basis of the free Lie algebra L(D). Subsets of labelled rooted trees associated to Hall
sets (Hall sets of labelled rooted trees) were first considered (for the case D = {1, 2, 3, . . .})
in [15] in a completely different context (actually, the results in [15] conveniently interpreted
in algebraic terms are related to the present work).

The plan of the paper is as follows. In Section 2, definitions and fundamental results
(together with some useful consequences) on the commutative Hopf algebra of labelled
rooted trees are collected. The shuffle Hopf algebra is considered in Section 3. Section 4
is devoted to explore and to take advantage of the relation between the shuffle Hopf al-
gebra Sh(X) and the Hopf algebra HR(X) of labelled rooted trees. In Subsection 4.1, an
epimorphism ν of graded Hopf algebras from HR to Sh(X) is constructed, and the graded
Hopf ideal I = ker ν is explicitly given, showing that Sh(X) is isomorphic as a graded
Hopf algebra to the quotient Hopf algebra HR/I. Hall sets of labelled rooted trees are
introduced in Subsection 4.2, and in Subsection 4.3, some known results about basis of the
shuffle algebra Sh(X) associated to Hall sets are stated with our notation. The main goal
of the remaining subsections of Section 4 is to describe the coalgebra structure of Sh(X)
in terms of basis associated to Hall sets, and in addition, proofs of the results stated in
Subsection 4.3 are also obtained. Subsection 4.4 is of technical nature. In Subsection 4.5,
it is shown that the image by ν : HR → Sh(X) of an arbitrary Hall set T̂ of labelled rooted
trees freely generates the shuffle algebra Sh(X) when the base ring K is a Q-algebra. For

arbitrary base rings K, a basis of Sh(X) is constructed as the image by ν of a set F̂∗ of

labelled forest that is in one-to-one correspondence with the set F̂ of forests of Hall rooted
trees in T̂ . The results in Subsection 4.5 allows the description of the coalgebra structure
of Sh(X) in terms of its basis ν(F̂∗). Section 4.6 focuses on proving that the basis ν(F̂∗)
of Sh(X) is dual to the Poincaré-Witt-Birkhoff basis of T (X) corresponding to a Hall basis
of the free Lie algebra L(D). Section 5 closes the paper with concluding remarks.

2 The commutative Hopf algebra of labelled rooted

trees
s:art

A forest is an isomorphism class of finite partially ordered sets F satisfying the following
condition.

x, y, z ∈ F, x 6= y, y < x, z < x =⇒ either y < z or z < y. (1) eq:forestcond

A rooted tree t is a forest with only one minimal element, called the root of t. Forests and
rooted trees can then be considered as finite directed graphs. Each forest can be uniquely
decomposed as a direct union of rooted trees, its connected components.

Given a set D, rooted trees and forests labelled by D can be defined as follows.
A partially ordered set labelled by D is a partially ordered set F together with a map

from F to D (the labelling of F ). An isomorphism of partially ordered sets labelled by D is
a bijection of the underlying sets that preserves the orderings and the labellings. A forest
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(resp. rooted tree) labelled by D is an isomorphism class of finite partially ordered sets
labelled by D satisfying condition (1) (resp. with only one minimal element and satisfying
condition (1)). The degree |u| of a forest u labelled by D is the cardinal of the underling
set of a representative partially ordered set (that is, the number of vertices in u). Given
a forest u labelled by D, the partial degree |u|d of u with respect to d ∈ D is the number
of vertices in u that are labelled by d. We denote as F(D) (resp. T (D)) the set of forests
(resp. rooted trees) labelled by D, or simply F (resp. T ) if no ambiguity arises.

The symmetry number σ(u) of a labelled forest u is the number of different bijections of
the underlying set of a labelled partially ordered set representing u that are isomorphisms
of labelled partially ordered sets.

It is already well known [6] that a commutative Hopf algebra structure can be given to
the free K-module over the set F of forests labelled by D. We denote this commutative
Hopf algebra structure as HR(X), where we denote X = KD, or simply as HR if no
ambiguity arises. The product in HR corresponds to the direct union of forests, and the
unity element is the empty (labelled) forest e. As a commutative algebra, HR is freely
generated by T .

The Hopf algebra structure HR is compatible with the Z-grading induced by the degree
|u| of labelled forests. Thus, for each n ≥ 0, the homogeneous component (HR)n is freely
generated as a K-module by the set Fn of labelled forests of degree n. In particular,
(HR)0 = Ke, and HR is a Z-graded connected Hopf algebra. Recall that the counit of any
Z-graded connected Hopf algebra is uniquely defined. In particular, the counit ε : HR → K

is determined by ε(e) = 1, and ε(u) = 0 for any non-empty forest u. The augmentation ideal
H+

R = ker ε is the free K-module over the set of non-empty forests F\{e}. Furthermore, as
any Z-graded connected bialgebra, the bialgebra HR admits a unique Z-graded connected
Hopf algebra structure. That is, the antipode S is uniquely determined from the Z-graded
algebra structure of HR and the definition of the coproduct ∆.

The coproduct ∆ (and the antipode S) of a forest labelled by D can be defined in terms
of cutting operations on the corresponding graphs [5]. In particular, ∆d = d ⊗ e + e ⊗ d
for each d ∈ D (that is, all the labelled rooted trees of degree 1 are primitive elements of
the Z-graded connected Hopf algebra HR).

Given d ∈ D, t1, . . . , tm ∈ T , u = t1 · · · tm ∈ F , we denote by Bd(u) the labelled rooted
tree of degree |t1| + · · · + |tm| + 1 obtained by grafting the roots of t1, . . . , tm to a new
root labelled by d. In particular, Bd(e) is the labelled rooted tree with only one vertex,
labelled by d. We hereafter identify Bd(e) with d. Given a labelled rooted tree t ∈ T
and a labelled forest u ∈ F , we denote by t ◦ u the labelled rooted tree of degree |u| + |t|
obtained by grafting the labelled rooted trees in u to the root of t. In particular, we have
that Bd(u) = d ◦ u for each d ∈ D, u ∈ F , and t ◦ e = t for each t ∈ T . The symmetry
number of forests can be recursively obtained as follows.

l:symmetry Lemma 1 For each d ∈ D, t1, · · · , tm ∈ T , ti 6= tj if i 6= j,

σ(e) = 1, σ(Bd(u)) = σ(u), σ(u) =

m∏

j=1

ij!σ(tj)
ij , if u =

m∏

j=1

t
ij
j .
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Let us denote as MR (resp. (MR)n) the free K-module over T (resp. over the set Tn

of labelled rooted trees of degree n), viewed as a K-submodule of HR (resp. (HR)n). An
isomorphism B : X⊗HR → MR of Z-graded K-modules can be defined asB(d⊗u) = Bd(u)
for each d ∈ D, u ∈ F .

The coproduct ∆ in HR can alternatively be defined (as an alternative to the definition
in terms of admissible cuts of labelled forests) as the unique algebra map ∆ : HR →
HR ⊗HR such that [4, 6],

∆Bd = Bd ⊗ e+ (id ⊗Bd)∆, d ∈ D, (2) eq:Delta

where id denotes the identity map in HR.
The commutative Hopf algebra of rooted trees over X = KD can be characterized by

the following universal property [4, 6].

t:DeltaA Theorem 1 Given a commutative algebra A over K and a K-module map L : X⊗A → A,
there exists a unique algebra homomorphism φ : HR → A such that

φB = L(idX ⊗ φ). (3) eq:commuting

If A has a Hopf algebra (alternatively, bialgebra) structure satisfying ImL ⊂ ker εA and

∆ALd = Ld ⊗ 1A + (idA ⊗ Ld)∆A, (4) eq:DeltaA

where Ld(a) = L(d⊗a), then φ is a Hopf algebra (alternatively, bialgebra) homomorphism.

r:phigraded Remark 1 Recall that HR(X) has a structure of Z-graded Hopf algebra with the (canon-
ical) Z-grading induced by the degree |u| of labelled forests, and that B : X⊗HR → HR is
an homomorphism of Z-graded K-modules. If in Theorem 1, A is a Z-graded algebra and
L is a homomorphism of Z-graded K-modules, then φ is an homomorphism of Z-graded
algebras. If in addition A has a Z-graded Hopf algebra (resp. bialgebra) structure, then
ImL ⊂ ker εA automatically holds, and φ is an homomorphism of Z-graded Hopf algebras
(resp. bialgebras). 2

r:artgradings Remark 2 The Hopf algebra HR(X) admits different Z-gradings. Actually, the Hopf
algebra structure of HR(X) is compatible with any Z-grading induced by an arbitrary
Z-grading of the free K-module X = KD (i.e. induced by an arbitrary weight function
D → Z). Furthermore, the Hopf algebra HR(X) admits a more general grading based on
the partial degrees |u|d for forests u ∈ F as follows. Consider the additive group G of maps
g : D → Z, and consider for each g ∈ G the set F g = {u ∈ F : |u|d = g(d)}. Then, the
free K-module HR is G-graded as HR =

⊕
g∈G+(HR)g, where G+ denotes the submonoid of

G of non-negative maps, and each (HR)g is the free K-module over F g. The homogeneous
components (HR)g are sometimes referred as finely homogeneous components of HR. The
Hopf algebra structure of HR(X) is compatible with this G-grading. As each T g is finite,
the finely homogeneous components are of finite rank.
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The statement in Remark 1 can be generalized as follows. If in Theorem 1, A is a graded
algebra (resp. Hopf algebra, bialgebra) and L is a homomorphism of graded K-modules,
then φ is an homomorphism of graded algebras (resp. Hopf algebras, bialgebras), where
the term graded refers to any of the Z-gradings or the G-grading above. Hereafter, we will
simply write ’graded, when meaning that it can be interpreted in the sense of any of the
gradings above. 2

r:rho Remark 3 The graded K-module MR can be endowed with a graded right HR-module
structure by extending the grafting operation t ◦ u (u ∈ F , t ∈ T ) to a graded K-module
map ◦ : MR ⊗ HR → MR. Furthermore, (2) implies that (MR, ◦, ρ) has a Hopf HR-
module structure with ρ : MR → HR ⊗MR given by ρ(t) = ∆(t) − t⊗ e for t ∈ MR. In
particular, we have that

ρ(t ◦ u) = ρ(t) ◦ ∆(u), u ∈ HR, t ∈ MR, (5) eq:Deltarec

where (u⊗ t) ◦ (v ⊗ w) = uv ⊗ t ◦ w for each u, v, w ∈ HR, t ∈ MR. 2

r:Butcher Remark 4 Equality (5) applied for t, u ∈ T gives, together with ρ(d) = e ⊗ d (d ∈ D)
and ∆(t) = t⊗ e+ ρ(t) for t ∈ T , a recursive definition of ρ (hence, the restriction of ∆ to
MR), which involves only labelled rooted trees. 2

3 The shuffle Hopf algebra Sh(X) over X
s:sh

3.1 The shuffle algebra over X

The shuffle algebra Sh(X) over X = KD is a commutative graded connected algebra
that can be constructed as follows. A commutative algebra structure is given to the K-
module K ⊕ X ⊕ X⊗2 ⊕ X⊗3 ⊕ · · · by defining the shuffle product tt of two words. We
follow the standard notation of denoting each element d1 ⊗ · · · ⊗ dm ∈ X⊗m (each word
of degree m) as d1 · · ·dm, and the concatenation of two words w1 = d1 · · · dm ∈ X⊗m,
w2 = dm+1 · · · dm+l ∈ X⊗l as w1w2 := d1 · · ·dm+l ∈ X⊗(m+l). The shuffle product tt of two
words is

(d1 · · · dm)tt(dm+1 · · · dm+l) =
∑

di1 · · · dim+l
(6) eq:shuffleproduct

where d1, . . . , dm+l ∈ D, and the summation goes over all permutations (i1, . . . , im+l) of
(1, . . . , m+ l) that preserve the partial orderings of (1, . . . , m) and (m+1, . . . , m+ l). The
unity element is the empty word, which we denote as ê. The degree |w| (resp. partial
degree |w|d, d ∈ D) of a word w = d1 · · · dm is m (resp. the number of letters in d1, . . . , dm

that coincide with d).
As Sh(X) is graded connected, it admits a unique augmentation ε̂ : Sh(X) → K, which

is determined by ε̂(ê) = 1 and ε̂(u) = 0 for arbitrary non-empty words u.
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r:Ggraded Remark 5 The term graded referred above can be interpreted, as in the rest of the present
work, in the sense given at the end of Remark 2. In particular, the algebra structure of
Sh(X) (and the Hopf algebra structure on it below) is compatible with the G-grading given
in Remark 2, and its finely homogeneous components (Sh(X))g (g ∈ G) are of finite rank.
2

The shuffle product satisfies the following identity, that can be used as an alterna-
tive recursive definition to (6). Given d1, . . . , dm ∈ D, let us denote Cd1

(ê) := d1 and
Cdm

(d1 · · ·dm−1) := d1 · · · dm−1dm. Then, each non-empty word can be uniquely written as
Cd(u) with d ∈ D and u ∈ Sh(X). It then holds that

Cd(u)ttCf(v) = Cd(uttCf(v)) + Cf(vttCd(u)), d, f ∈ D, u, v ∈ Sh(X). (7) eq:shuffleproduct2

Let us denote Sh(X)+ the augmentation ideal Sh(X)+ = ker ε̂ (that is, the free K-module
over the set of non-empty words). Then, C : X ⊗ Sh(X) → Sh(X)+ given by C(d⊗ u) =
Cd(u), d ∈ D, u ∈ Sh(X), is an isomorphism of graded K-modules.

3.2 The Hopf algebra structure of Sh(X)

The commutative graded connected algebra Sh(X) is endowed with a unique (commutative
graded connected) Hopf algebra structure by considering ε̂ as counit, and defining the

coproduct ∆̂ : Sh(X) → Sh(X) ⊗ Sh(X) as follows. For the empty word ∆̂ê = ê⊗ ê, and
for each non-empty word u = d1 · · · dm, d1, . . . , dm ∈ D,

∆u = ê⊗ u+

m−1∑

l=1

d1 · · · dl ⊗ dl+1 · · · dm + u⊗ ê. (8) eq:shufflecoproduct

Clearly, the coproduct ∆̂ satisfies the identity

∆̂Cd = Cd ⊗ ê+ (îd ⊗ Cd)∆̂, d ∈ D. (9) eq:shufflecoproduct2

Therefore, Theorem 1 can be applied with (A, L) = (Sh(X), C). In the remaining of the
paper, we denote by ν the corresponding graded Hopf algebra map HR → Sh(X).

Remark 6 The map ν : HR → Sh(X) can be explicitly be defined as follows. Given
u ∈ F\{e}, consider a labelled partially ordered set U representing the forest u, and let
x1, . . . , xn be the elements in U labelled as l(xi) = di ∈ D for each i = 1, . . . , n. Then

ν(u) =
∑

(i1,...,in)∈P(U)

di1 · · · din (10) eq:dalpha

where (i1, . . . , in) ∈ P(U) if xi1 > · · · > xin is a total order relation on {x1, . . . , xn} that
extends the partial order relation in U . 2
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r:ideal Remark 7 In particular,

ν(Bdm
· · ·Bd2

(d1)) = d1 · · ·dm, m ≥ 1, d1, . . . , dm ∈ D, (11) eq:nusurjective

which provides a bijection between the set of non-empty words and the set of labelled
rooted trees without ramifications. This shows that ν is surjective. Hence, the graded Hopf
algebra Sh(X) is isomorphic to the graded quotient Hopf algebra HR/(ker ν). Theorem 2
below explicitly provides ker ν. 2

3.3 A Sh(X)-module structure of Sh(X)

As C : X ⊗ Sh(X) → Sh(X)+ is an isomorphism of graded K-modules, the canonical right
Sh(X)-module structure of X⊗Sh(X) induces a right Sh(X)-module structure for Sh(X)+.
In particular, we have that Cd(w) = d •w for each d ∈ D, w ∈ Sh(X). Theorem 1 applied
for (A, L) := (Sh(X), C) implies that

ν(t ◦ u) = ν(t) • ν(u) for each u ∈ HR, t ∈ MR. (12) eq:nucirc

It is interesting to note that, by definition of the right Sh(X)-module structure of Sh(X)+,
(7) reads Cd(u)ttCf (v) = Cd(u) • Cf(v) + Cf(v) • Cd(u), that is,

uttv = u • v + v • u, for each u, v ∈ Sh(X)+. (13) eq:uvvu

Similar to Remark 3, consider ρ̂ : Sh(X)+ → Sh(X)⊗Sh(X)+ given by ρ̂(w) = ∆̂(w)−
w⊗ê for each w ∈ Sh(X)+. Then, (9) implies that (Sh(X)+, •, ρ̂) has a Hopf Sh(X)-module
structure, in particular,

ρ̂(v • u) = ρ̂(v) • ∆̂(u), u ∈ Sh(X), v ∈ Sh(X)+. (14) eq:deltauv

where (v1 ⊗ v2) • (w1 ⊗w2) = v1w1 ⊗ v2 •w2 for each v2 ∈ Sh(X)+ and w1, w2, v1 ∈ Sh(X).

Actually, (14) together with ρ̂d = ê ⊗ d for d ∈ D and ∆̂ = id ⊗ ê + ρ̂ can be used to

define r̂ho and ∆̂ recursively in terms of • : Sh(X)+ ⊗ Sh(X) → Sh(X)+.

r:zienbel Remark 8 The K-module Sh(X) has with • : Sh(X)+ ⊗ Sh(X) → Sh(X)+ a non-
associative algebra structure called Zienbel algebra [11, 12], which is actually the free
Zienbel algebra over the K-module X. In [12], an epimorphism of Dendriform algebras
from the free Dendriform algebra over X to the free Zienbel algebra over X is considered.
As free dendriform algebras can be described in terms of planar binary trees (with labelled
leaves) [12], such epimorphism can be used to work in the free Zienbel algebra over X in
terms of such trees. This has strong similarities with our approach exploiting the epimor-
phism ν : HR → Sh(X) for working in the shuffle algebra Sh(X) (or equivalently, in the
free Zienbel algebra over X) in terms of labelled rooted trees.

The Zienbel algebra structure of Sh(X) is also considered in the context of non-linear
control theory [18], which is sometimes referred as chronological algebra (see [8] and refer-
ences therein). 2
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3.4 The dual algebra Sh(X)∗

s:dual
Let us now consider the dual algebra Sh(X)∗ of the coalgebra structure of Sh(X). That
is, α ∈ Sh(X)∗ if α : Sh(X) → K is a K-module map, the unit in Sh(X)∗ is the counit ε̂ of
Sh(X), and for each α, β ∈ Sh(X)∗, the product αβ is defined by

〈αβ, w〉 = 〈α⊗ β, ∆̂w〉, w ∈ Sh(X). (15) eq:alphabeta

The subalgebra of Sh(X)∗ of elements α such that 〈α,w〉 6= 0 for a finite number of words
w is isomorphic to the tensor algebra T (X).

Let us denote as Der(Sh(X)) the Lie algebra of ε̂-derivations of Sh(X), namely,

Der(Sh(X)) = {α ∈ Sh(X)∗ : α(uv) = α(u)ε̂(v) + ε̂(u)α(v), for all u, v ∈ Sh(X)}. (16) eq:der

That is, given α ∈ Sh(X)∗, α ∈ Der(Sh(X)) if and only if

ker ε̂⊕ (Sh(X)+)tt2 = K ⊕ (Sh(X)+)tt2 ⊂ kerα. (17) eq:keralpha

Recall that Der(Sh(X)) is a Lie algebra over K under the bracket [α, β] = αβ − βα.

Remark 9 When K has 0 characteristic, the Lie algebra of primitive elements of T (X)
is the free Lie algebra L(D) over the set D. Then, the duality between T (X) and Sh(X)
implies that L(D) is isomorphic to the Lie subalgebra of Der(Sh(X)) of elements α such
that 〈α,w〉 6= 0 for a finite number of words w. 2

4 The shuffle algebra and Hall sets of rooted trees
s:shrt

4.1 The Hopf algebras HR(X) and Sh(X)
ss:artsh

According to Remark 7, the Hopf algebra Sh(X) is isomorphic to the quotient Hopf algebra
HR/I where I = ker ν. Next, the Hopf ideal I is explicitly determined.

l:xi Lemma 2 Consider the graded K-module map ξ : H+
R → MR given by

ξ(t1 · · · tm) =
m∑

i=1

ti ◦ (t1 · · · ti−1ti+1 · · · tm), t1, . . . , tm ∈ T , (18) eq:xi

and ξ(t) = t if t ∈ T . It holds that νξ = ν.

Proof: This can be proven by induction onm as follows. It trivially holds that νξ(t) = ν(t)
if m = 1. It is straightforward from the definition of ξ that

ξ(uv) = ξ(v) ◦ u+ ξ(u) ◦ v, u, v ∈ F\{e}. (19) eq:xirec

Application of induction hypothesis, (12) and (13) leads to the required result. 2
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t:kerphi Theorem 2 The graded ideal I generated by Im (id − ξ) is a graded Hopf ideal. Further-
more, the shuffle Hopf algebra Sh(X) is isomorphic as a graded Hopf algebra to the quotient
Hopf algebra HR/I.

Proof: Let us consider the canonical algebra map ϕ : HR → HR/I. By virtue of Lemma 2,
I ⊂ ker ν, and thus there exists a unique algebra map ν̄ : HR/I → Sh(X) such that
ν = ν̄ϕ. We will prove that ν̄ is bijective, so that it is an isomorphism of graded algebras.
The statement of Theorem 2 then follows from the fact that ν : HR → Sh(X) is an
homomorphism of graded Hopf algebras.

It then only remains to prove that ν̄ is bijective. The identity (11) shows that the

restriction of ν to the K-submodule M̂R of MR (freely) generated by the set

{Bd1
· · ·Bdm−1

(dm) : m ≥ 1, d1, . . . , dm ∈ D, }

of labelled rooted trees without ramifications is bijective. This implies that ν̄ is surjective,
and it is sufficient to show that the restriction of ϕ to M̂R is surjective. We thus need to
show that each u ∈ F\{e} is congruent modulo I to some t ∈ M̂R. This can be shown
by induction on the degree |u|. This is trivial if |t| = 1. For |u| > 1, let u be u = t1 · · · tm
with m ≥ 1, t1, . . . , tm ∈ T , and let us consider for each i = 1, . . . , m, di ∈ D, ui, vi ∈ F̂
such that u = tiui and ti = Bdi

(vi). Then we have that

u = (u− ξ(u)) +

m∑

i=1

Bdi
(uivi).

By induction hypothesis, each uivi (|uivi| = |u| − 1) is congruent modulo I to some

zi ∈ M̂R, so that u is congruent modulo I to
∑m

i=1Bdi
(zi) ∈ M̂R. 2

Remark 10 Let us denote Sm = {ξ(t1 · · · tm)− t1 · · · tm : t1, . . . , tm ∈ MR} for each m ≥
1. It is not difficult to check that I = ker ν (the ideal generated by Im (id−ξ) =

∑
m≥2 Sm)

is actually generated by the set S2 ∪ S3, or alternatively, by the set S2 ∪ (MR ◦ S2). 2

4.2 Hall sets of rooted trees
ss:Halltrees

Given a subset T̂ of the set T of rooted trees labelled by D, we consider the set of forests
u = t1 · · · tm, where t1, . . . , tm ∈ T̂ . We denote by F̂ the set of such forests, including the
empty forest e, and we denote as T̃ the subset of labelled rooted trees of the form Bd(u),

d ∈ D, u ∈ F̂ .
If T̂ has a total order relation, we give a total ordering to T̂ ∪ {e} by considering

e < t for each t ∈ T̂ . If u = t1 · · · tm ∈ F̂ , we define min(u) = min(t1, . . . , tm), max(u) =
max(t1, . . . , tm), min(e) = e, and max(e) = e.

Definition 1 A subset T̂ ⊂ T is consistent if the following condition holds. Given
t1, . . . , tm ∈ T , d ∈ D, if Bd(t1 · · · tm) ∈ T̂ , then d, t1, . . . , tm ∈ T̂ .
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d:standarddecomposition Definition 2 Given a totally ordered consistent subset T̂ of T , the corresponding set of
forests F̂ , and T̃ :=

⋃
d∈D Bd(F̂), the standard decomposition (t′, t′′) of each t ∈ T̃ is

defined as follows. If |t| = 1, then t′ = t and t′′ = e. If t = Bd(t1 · · · tm), d ∈ D,

t1, . . . , tm ∈ T̂ , t1 ≥ · · · ≥ tm, then t′′ = tm, t′ = Bd(t1 · · · tm−1).

d:Hall Definition 3 We say that a consistent set T̂ ⊂ T supplied with a total ordering < is a
Hall set of rooted trees labelled by D (or simply a Hall set of rooted trees, if D is clear from

the context), if D ⊂ T̂ and the following condition holds.

t, z ∈ T̂ , t < z ≤ t′′ =⇒ t ◦ z ∈ T̂ , t ◦ z < z, (20) eq:Hall

where (t′, t′′) is the standard decomposition of t ∈ T̃ .

r:Reutenauer Remark 11 Given a Hall set H of words over the alphabet D [17], a Hall set T̂ of rooted
trees labelled by D can be obtained as the image of a map r : H → T from the set of Hall
words H to the set of labelled rooted trees defined as follows. For d ∈ D ⊂ H , set r(d) = d.
For a Hall word w ∈ H of degree |w| > 1, let d ∈ D be the leftmost letter in w, so that
w = v⊗ d, where v is a (non-necessarily Hall) word. It is a standard result [17] that there
exists a unique non-increasing decomposition of v in Hall words, that is, v = wm⊗· · ·⊗w1,
where w1, . . . , wm ∈ H are Hall words satisfying that wm ≥ · · · ≥ w1. Then, we set
t = r(w) = Bd(r(w1) · · · r(wm)). Conversely, given a Hall rooted tree t = Bd(t1 · · · tm) ∈ T̂

of degree |t| > 1, where d ∈ D, t1, . . . , tm ∈ T̂ , t1 ≥ · · · ≥ tm, then the corresponding
Hall word is w = r−1(t) = dr−1(t1) · · · r

−1(tm). We thus have that r(w) = r(w′) ◦ r(w′′) if
w = w′w′′ is the standard factorization of the Hall word w ∈ H , and r−1(t) = r−1(t′′)r−1(t′)

if (t′, t′′) is the standard decomposition of the Hall rooted tree t ∈ T̂ . 2

4.3 Basis of Sh(X) associated to a Hall set over D
ss:reutenauer

Recall that each Hall set of words over D, or equivalently (see Remark 11), each Hall set
of rooted trees labelled by D has associated a basis of the free Lie algebra L(D), which
by virtue of the Poincaré-Witt-Birkhoff Theorem, provides a basis of the tensor algebra
T (X). We next consider such a basis, with T (X) viewed as a subalgebra of the dual algebra
Sh(X)∗ of the coalgebra structure of Sh(X).

d:E_u Definition 4 Consider a Hall set T̂ of rooted trees labelled by D, and the corresponding
set of Hall forests F̂ . We set Ee = ε̂, and for each d ∈ D, Ed ∈ Der(Sh(X)) is such that

〈Ed, w〉 = 0 for all words w = d1 · · ·dm except for w = d. For each t ∈ T̂ with |t| > 1, let
(t′, t′′) be its standard decomposition, then

Et = [Et′′ , Et′ ]. (21) eq:[F,F]

Furthermore, for arbitrary t1, . . . , tm ∈ T̂ such that t1 ≤ · · · ≤ tm,

Eu = Et1 · · ·Etm , for u = t1 · · · tm. (22) eq:FF

11



Theorem 5.3 in [17] (originally due to [19] and improved in [14]) can be interpreted (by
virtue of Remark 11 and the recursive definition of symmetry number σ(u) of labelled
forests given in Lemma 1) in terms of the (Hopf) algebra map ν : HR → Sh(X) as follows.

t:Reutenauer Theorem 3 For each u, v ∈ F̂ , it holds that

〈Eu, ν(v)〉 =

{
σ(u) if u = v

0 otherwise.
(23) eq:Reutenauer

This implies that, if the base ring K is a Q-algebra, {ν(u)/σ(u) : u ∈ F̂} is the dual basis

of the basis {Eu : u ∈ F̂} of T (X). In particular, it implies the following.

c:nu(u)basis Corollary 1 If the base ring K is a Q-algebra, then, as a graded algebra, Sh(X) is freely

generated by the set {ν(t) : t ∈ T̂ }, where ν : HR → Sh(X) is the unique graded Hopf
algebra morphism given by Theorem 1.

For arbitrary base rings K, a basis of Sh(X) associated to F̂ will be obtained if one can

find a map ψ : F̂ → Sh(X) such that ν(u) = σ(u)ψ(u) for each u ∈ F̂ .

d:psi Definition 5 For each u ∈ F , we consider a new labelled forest u∗ ∈ F as follows. If
d ∈ D, v ∈ F\{e}, k > 1, t = Bd(v), then

(tk)∗ = t∗ ◦ (tk−1)∗, t∗ = Bd(v
∗), e∗ = e, (24) eq:dpsi

and, if u = tk1

1 · · · tkm
m , where t1, . . . , tm ∈ T are distinct and k1, . . . , km ≥ 1, then

u∗ = (tk1

1 )∗ · · · (tkm

m )∗.

We denote as T̂ ∗ the set {t∗ : t ∈ T̂ }, and as F̂∗ the set {u∗ : u ∈ F̂}, and define the
K-module map ψ : HR → Sh(X) by setting ψ(u) = ν(u∗) for u ∈ F .

p:psi1 Proposition 1 For each u ∈ F , it holds that ν(u) = σ(u)ν(u∗).

Proof: Induction on |u|. This is trivial for |u| ≤ 1. If u = tk1

1 · · · tkm
m , where t1, . . . , tm ∈ T

are distinct and k1, . . . , km ≥ 1, m > 1, then, σ(u) = σ(tk1

1 ) · · ·σ(tkm
m ), and assuming

by induction hypothesis that ν(tki

i ) = σ(tki

i )ν((tki

i )∗), we arrive at ν(u) = σ(u)ν(u∗). If

u = tk, where t ∈ T̂ , k > 1, then σ(tk) = kσ(tk−1)σ(t), and induction hypothesis and
ν(tk) = ν(ξ(tk)) = ν(k t◦tk−1) = kν(t)•ν(tk−1) leads to σ(tk)ν((tk)∗) = k σ(tk−1)σ(t)ν(t∗)•

ν((tk−1)∗) = k ν(t) • ν(tk−1) = ν(ξ(tk)) = ν(tk). Finally, if u = t ∈ T̂ , with t = Bd(v),

d ∈ D, and v ∈ T̂ , then σ(t) = σ(v), and by induction hypothesis and the identity
Cdν = νBd we arrive at ν(t) = Cd(ν(v)) = σ(v)Cd(ν(v

∗)) = σ(t)ν(t∗). 2

Theorem 5.3 in [17] written in the form of Theorem 3 together with Proposition 1 can

be used to prove that {ν(u) : u ∈ F̂∗} is a basis of the shuffle algebra Sh(X) when the base
ring is Z, and then for arbitrary base rings K. Our aim now is to describe the coalgebra
structure of Sh(X) in this basis. In order to do that, we can use the fact that ν is a
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Hopf algebra homomorphism, and in particular, that ∆̂ν = (ν ⊗ ν)∆. We then need to

rewrite arbitrary ν(v), v ∈ F in the basis ν(F̂∗) which can be done recursively if the maps
Cd : Sh(X) → Sh(X)+ (or more generally, the Sh(X)-module map • : Sh(X)+ ⊗ Sh(X) →

Sh(X)+) are described in terms of the basis ν(F̂∗). The same need will arise if the recursions
(9) or (14) are applied to compute the coproduct in Sh(X). This task will be accomplished
in the remaining of the present work. In addition, alternative proofs of Theorem 3 and
Corollary 1 will be obtained from scratch, without assuming the results in [17].

4.4 Technical results on Hall rooted trees and forests
ss:tech

d:k(v,u) Definition 6 Given arbitrary u, v ∈ F and t ∈ T , we define r(t, u), k(u, v) ∈ Z as follows.
If the forests u and v have no common labelled rooted tree, then k(v, u) = 1, and if t ∈ T
is not a factor of the forest uv then k(vti, utj) = (i + j)!/(i!j!)k(v, u) for each i, j ≥ 1. If
t = Bd(v), then r(u, t) = k(u, v).

The following result directly follows from Lemma 1 and Definition 6.

l:r(t,u) Lemma 3 Given arbitrary u, v ∈ F and t ∈ T ,

σ(t ◦ u) = r(u, t)σ(u)σ(t), σ(vu) = k(v, u)σ(v)σ(u).

d:chi Definition 7 We define the K-linear map χ : H+
R → MR such that, for each u ∈ F ,

χ(u) =
∑

tv=u

r(v, t) t ◦ v, (25) eq:chi

where the summation is over all pairs t ∈ T̂ , v ∈ F̂\{e} such that tv = u, and r(v, t) is
the positive integer given in Definition 6.

l:xiSigma Lemma 4 Consider the graded K-module maps ξ, χ : H+
R → MR, given by (18) and

Definition 7, and the graded K-module map Σ : H+
R → H+

R given by Σ(u) = σ(u)u for each
u ∈ F . Then it holds that χΣ = Σξ.

Proof: For each u ∈ H+
R, ξ(u) can be rewritten as

ξ(u) =
∑

tv=u

k(v, t) t ◦ v.

The required result then follows from the identity r(v, t)σ(vt) = k(v, t)σ(t ◦ v) given by
Lemma 3. 2

Hereafter, T̂ will denote a given Hall set of rooted trees labelled by D, and F̂ will be
the corresponding set of Hall forests. Let us denote ĤR = K[T̂ ]. As a graded connected

K-module, its augmentation ideal Ĥ+
R is free over the set F̂\{e} of non-empty Hall forests.

We also denote, T̃ :=
⋃

d∈D Bd(F̂), so that the graded K-module B(X⊗ĤR) is free over T̃ .

For each t ∈ T̃ of degree |t| > 1, we consider, the standard decomposition (t′, t′′) ∈ T̃ × T̂ .
A key property of Hall sets of rooted trees is the existence of a suitable bijection of the

set of non-empty Hall forests and the set T̃ , which provides and isomorphism of graded
K-modules of Ĥ+

R and B(X ⊗ ĤR).
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Definition 8 We define the K-linear map Γ : Ĥ+
R → B(X ⊗ ĤR) given as follows. Given

t ∈ T̂ , u ∈ F̂ , such that max(tu) = t, then we set Γ(tu) = t ◦ u (in particular, (t) = t).

l:Gamma Lemma 5 The map Γ is an isomorphism of graded K-modules that maps F̂\{e} onto

T̃ . Given t ∈ T̃ , let (t′, t′′) be its standard decomposition. For each t ∈ T̃ , it holds that

Γ−1(t) = t if t ∈ T̂ and Γ−1(t) = t′′Γ−1(t′) otherwise.

Proof: Let us now consider arbitrary z, s ∈ T̂ , v ∈ F̂ . Let t = z ◦ (sv) ∈ T̃ , and let (t′, t′′)
be the standard decomposition of t. We have that

min(sv) = s, z ≥ max(vs) ⇐⇒ t′ = z ◦ v, t′′ = s, and z = max(zv).

Or equivalently,

min(sv) = s, t = z ◦ (vs) = Γ(svz) ⇐⇒ t′ = z ◦ v = Γ(vz), t′′ = s. (26) eq:lGammalag

We will show by induction on |t| that, for each t ∈ T̃ , there exist unique z ∈ T̂ , u ∈ F̂

such that t = z ◦ u = Γ(uz). This trivially holds if t ∈ T̂ , and in particular if |t| = 1. If

t 6∈ T̂ , then we have by induction hypothesis that there exist unique z ∈ T̂ , v ∈ F̂ such
that t′ = z ◦ v = Γ(vz), and the required statement follows from (26). Furthermore, (26)

implies that, if t 6∈ T̂ , then Γ−1(t) = svz = t′′Γ−1(t′). 2

d:S_u Definition 9 For each u, v ∈ F̂\{e} such that

v = Γ−1(t ◦ w) 6= wt = u, for some w ∈ F̂\{e}, t ∈ T̂ , (27) eq:dS_u

we denote λ(u, v) = −r(w, t), where the positive integer r(w, t) is given in Definition 6.

We define, for each u ∈ F̂\{e}, the set Su ⊂ F̂ of Hall forests v such that (27) holds. We
also define Se as the empty set.

r:S_u Remark 12 The K-linear map Γ is by construction G-graded (in the sense of Remark 2).

Hence, given u, v ∈ F̂\{e}, if v ∈ Su, then |u|d = |v|d for each d ∈ D. 2

l:chi Lemma 6 For each u ∈ F̂\{e},

χ(u) = Γ(u) −
∑

v∈Su

λ(u, v)Γ(v),

Proof: The required result is now a direct consequence of Definitions 7 and 9 once it is
proven that r(u, t) = 1 if Γ(tu) = t ◦ u. It then only remains to prove that, given u ∈ F̂ ,

t ∈ T̂ , if t ≥ max(u) then r(u, t) = 1. In effect, let d ∈ D, v ∈ F̂ be such that t = Bd(v),
so that r(u, t) = k(u, v). We have that min(v) = t′′ > t ≥ max(u), which implies that the
forests u and v have no common labelled rooted tree, and thus 1 = k(u, v) = r(u, t). 2
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Remark 13 In particular, χ(tk) = Γ(tk) = t ◦ tk−1 for each t ∈ T̂ , as Stk is the empty set.
2

l:key Lemma 7 Given u, v ∈ F̂\{e} such that v ∈ Su, consider t = max(v), and tet (t′, t′′) be
the standard decomposition of t. It holds that max(u) ≥ t′′ and min(v) ≥ min(u).

Proof: Under the assumptions of Lemma 7, there exist unique s ∈ T̂ , w1, w2, w3 ∈ F̂ such
that

v = w3w2(s ◦ w1), u = w3w1(s ◦ w2), s ◦ w1 ≥ max(w2w3), w1w2 6= e, (28) eq:lkeylag

and w1 and w2 have no common factors. Let us first assume that w1 6= e and w2 6= e. The
inequality in (28) implies that t = max(v) = s ◦ w1 and min(w1) ≥ t′′ > t ≥ max(w2w3).
This, together with s ◦ w2 < min(w2) ≤ max(w2) implies that max(u) = max(w1) ≥
min(w1) ≥ t′′.

As for min(u) = min(w3w1(s ◦ w2)) we have that min(u) ≤ min(w3w1w2) =
min(w3w2) = min(v).

ORAIN, FROGATU BEHAR DA w1 6= e.
ETA ZER PASATZEN DA w2 = e DENEAN? 2

r:uvvu Remark 14 Lemma 7 implies that max(u) > max(v) ≥ min(v) ≥ min(u) provided that
v ∈ Su. In addition, it can be seen from its proof that under the assumptions of Lemma 7,
|max(u)| < |max(v)|, and |max(u)|d ≤ |max(v)|d, for each d ∈ D. 2

d:>> Definition 10 Given u, v ∈ F̂\{e}, a path of length m from u to v is a finite sequence

W = (w0, . . . , wm) such that m ≥ 0, w0, . . . , wm ∈ F̂\{e}, w0 = u, wm = v and wj+1 ∈ Swj
,

0 ≤ j ≤ m− 1. In such case, we write

λ(W ) =

m−1∏

j=0

λ(wj, wj+1).

We define a partial order � in F̂\{e} as follows. Given u, v ∈ F̂\{e}, we write u � v
if there exists some path from u to v. In such case, we denote λ(u, v) =

∑
W λ(W )

where the summation is over all paths from u to v. For each u ∈ F̂\{e} we denote

Su = {v ∈ F̂\{e} : u � v}.

r:bS_u Remark 15 Lemma 7 implies that max(u) ≥ max(v)′′ > max(v) ≥ min(v) ≥ min(u)

provided that u � v. Hence, � is a well defined partial order on F̂\{e}. Moreover,
according to Remark 12, if u � v, then |u|d = |v|d for each d ∈ D. As the subsets of forests

with same partial degrees are finite, the connected components of F̂\{e} with respect to
the partial order � are finite (actually, with the partial order �, the connected components

represent finite oriented graphs). In particular, Su is finite for each u ∈ F̂\{e}. 2
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l:chiinv Lemma 8 The restriction χ̂ : Ĥ+
R → B(X⊗ĤR) to the map χ given in Definition 7 is an

isomorphism of graded K-modules. For each u ∈ F̂ ,

χ̂−1(Γ(u)) = u+
∑

v∈Su

λ(u, v)v. (29) eq:chiinv

Proof: We first observe that, according to Remark 15, the summation in the right-hand
side of (29) is finite. Let us consider the K-linear map χ̂− : B(X ⊗ ĤR) → Ĥ+

R such that

χ−(Γ(u)) is for each u ∈ F̂ the the right-hand side of (29). We first show that χ− is a right
inverse of χ. Application of Lemma 6 gives

χ(χ−(u)) = Γ(u) +
∑

v∈Su

λ(u, v)Γ(v)

−
∑

v∈Su

λ(u, v)Γ(v) −
∑

v∈Su

λ(u, v)
∑

w∈Sv

λ(v, w)Γ(w),

which by definition of Su and λ(u, v) coincides with Γ(u). One similarly obtains that χ−

is the left inverse of χ. 2

Next result is a straightforward consequence of Lemma 8 and Lemma 4.

l:xiinv Lemma 9 If the base ring K is a Q-algebra, then the restriction ξ̂ : Ĥ+
R → B(ĤR ⊗X) to

the map ξ given in (18) is an isomorphism of graded K-modules.

4.5 Some results on basis for Sh(X) associated to Hall sets
ss:Hallbasis

p:psi2 Proposition 2 Consider the graded K-module isomorphism ψ : ĤR → Sh(X) in Defini-
tion 5. For each u, v ∈ F , t ∈ T it holds that

ψ(u)ψ(v) = k(u, v)ψ(uv), ψ(t) • ψ(u) = r(u, t)ψ(t ◦ u), (30) eq:psiuv

ψ(χ(u)) = ψ(u) for each u ∈ F̂ . (31) eq:nusigmapsi

Proof: Equality (30) can be proven by induction in a similar way to Proposition 1. Also,
it follows directly from Proposition 1 and Lemma 3 when the base ring is K = Z.

Given t ∈ T̂ , k ≥ 1, as r(tk−1, t) = 1, second equality in (30) implies that ψ((t◦tk−1)) =

ψ(t) • ψ(tk−1). If in addition, v ∈ F̂ , such that k(v, t) = 1, then

ψ(t) • ψ(vtk−1) = ψ(t) • (ψ(v)ψ(tk−1)) = ψ(v) • (ψ(t) • ψ(tk−1)) = ψ(tk) • ψ(v). (32) eq:lagppsi2

Then, equality (31) trivially holds if u = tk, as χ(tk) = t◦(tk−1). Otherwise, u = tki

1 · · · tkm
m ∈

F\{e}, where k1, . . . , km ≥ 1 and t1, . . . , tm ∈ T are distinct, so that u can be factored, for
each i = 1, . . . , m, as u = uit

ki

i , where k(ui, t
ki

i ) = 1. By Definition 7 and equalities (30)
and (32), we have that

ψ(χ(u)) =
m∑

i=1

ψ(ti) • ψ(uit
ki−1
i ) =

m∑

i=1

ψ(tki

i ) • ψ(ui),
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and thus, ψ(χ(u)) = ψ(tki

i ) • ψ(ui) + ψ(χ(ui)) • ψ(tki

i ). The required result then follows
(recall (13)), by induction on m. 2

Definition 5, Lemma 8, and Proposition 2 imply the following.

l:psi Lemma 10 Given d ∈ D, w ∈ F̂ , consider u = Γ−1(Bd(w)), then it holds that

Cd(ψ(w)) = ψ(χ̂−1Bd(w)) (33) eq:C(psi(w))1

= ψ(u) +
∑

v∈Su

λ(u, v)ψ(v). (34) eq:C(psi(w))2

Remark 16 In particular, if Bd(w) = t ∈ T̂ , then Cd(ψ(w)) = t. More generally, if

Bd(w) = t ◦ tk−1, where t ∈ T̂ and k ≥ 1, then Cd(ψ(w)) = ψ(tk). 2

t:psi Theorem 4 As a graded K-module, Sh(X) is freely generated by the set

ν(F̂∗) = ψ(F̂) = {ψ(u) : u ∈ F̂}.

Proof: We first observe that (11) also holds with ν replaced by ψ, so that ψ is surjective.

We next prove that ψ(F̂) generates Sh(X) by showing that it generates the image Imψ.
That is, each ψ(u), u ∈ F\{e}, can be rewritten as a K-linear combination of terms of

the form ψ(v), v ∈ F̂\{e}. And this can be proven by induction on the degree |u| from
Definition 5, first equality in (30), and Lemma 10.

It follows from Definition 5 that ψ is an homomorphism of G-graded K-modules, and as
ψ(F̂) generates Sh(X), we have that, for each g ∈ G, the restriction ψg : (ĤR)g → (Sh(X))g

of ψ to each finely homogeneous component of ĤR = K F̂ is an epimorphism of K-modules.
As (ĤR)g and (Sh(X))g are, for each g ∈ G, finitely generated free K-modules, it is then
enough to prove that their basis have the same number of elements. Finally, we consider
B−1Γ : ĤR⊗X → Ĥ+

R and C : Sh(X)⊗X → Sh(X)+, which are both of them isomorphisms

of G-graded K-modules. This implies that (ĤR)g and (Sh(X))g have the same rank for
each g ∈ G. 2

Remark 17 The algebra structure of Sh(X) described in terms of its basis ν(F̂∗) = ψ(F̂)
is given by first equality in (30), while the coalgebra structure of Sh(X) can determined
from (9), by applying Lemma 10 to describe each Cd : Sh(X) → Sh(X)+ in terms of the

basis ψ(F̂). Alternatively, a description of the coalgebra structure of Sh(X) in the basis

ψ(F̂) can be derived from the coalgebra structure of HR by applying Lemma 10 to rewrite
each ν(u), u ∈ F in such basis. 2

Hereafter, we denote as K0 the prime ring of K, that is, either K0 = Z or K0 = Z/(k),
k ≥ 1.

l:ucircv2 Lemma 11 Given u, v ∈ F̂ , ψ(v) • ψ(u) is a K0-linear combination of ψ(uv) and terms

of the form ψ(w), where w ∈ F̂\{e}, uv � w.
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Proof: We first observe that, given w ∈ F̂\{e}, t ∈ T̂ such that v = wt, then Γ−1(t ◦
(uw)) is a K0-linear combination of uv and Hall forests w ∈ Suv. Then, (29) implies that
χ̂−1Γ−1(t ◦ (uw)) is a K0-linear combination of ψ(uv) and terms of the form ψ(w̄), where

w̄ ∈ F̂\{e}, uv � w̄. Second equality in (31), Definition 7, and (30) finally implies that
ψ(v)•ψ(u) = ψ(χ(v))•ψ(u) is a K0-linear combination of terms of the form χ̂−1Γ−1(t◦(uw))

with w ∈ F̂\{e}, t ∈ T̂ , and v = wt. 2

Now, Corollary 1 is a consequence of Theorem 4, Proposition 1, and the fact that ν
is an algebra map. We thus have that, when K is a Q-algebra, ν(F̂) is a basis of the
underlying K-module of Sh(X). Next result, which is of interest when using such a basis,
follows from the identities Cdν = νBd (d ∈ D) and (12), Lemma 2, and Lemma 9.

p:C(nu(w)) Proposition 3 Under the conditions of Corollary 1,

Cd(ν(u)) = ν(ξ̂−1Bd(u)), ν(v) • ν(u) = ν(ξ̂−1(ξ̂(v) ◦ u)), (35) eq:C(nu(w))

for each d ∈ D and u, v ∈ F̂ ,

4.6 The dual basis of ψ(F̂)
ss:dualbasis

We next prove Theorem 3 in an alternative way to the proof of Theorem 5.3 in [17]. In [17],

the bialgebra structure of T (X) described in terms of the basis {Eu : u ∈ F̂} is used to
prove Theorem 5.3, while our prove directly works with the bialgebra structure of Sh(X)

described in the basis ν(F̂∗) = ψ(F̂).

l:hdelta2 Lemma 12 For each t ∈ T̂ such that |t| > 1, ∆̂ψ(t) − ψ(t)⊗ ê− ê⊗ ψ(t) − ψ(t′′)⊗ ψ(t′)
is a K0-linear combination of terms of the form

1. ψ(v) ⊗ ψ(w) with v, w ∈ F̂\{e}, v 6∈ T̂ ,

2. ψ(s) ⊗ ψ(w), where s ∈ T̂ , w ∈ F̂\{e}, w 6∈ T̂ , s > max(t′′w),

3. ψ(s) ⊗ ψ(z), where s, z ∈ T̂ , s > max(t′′z′′).

Proof: We will prove by induction on |t| the required result for a slightly wider class of

labelled rooted trees. Namely, for t ∈ T̃ such that t′ ∈ T̂ and t′ ≤ t′′ (note that, if t′ < t′′,

then t ∈ T̂ ). Any such labelled rooted tree of degree greater than one can be decomposed

as t ◦ zk where k ≥ 1, z, t ∈ T̂ , and

t ≤ z < t′′, z′′ > min(z′z), t′′ > min(t′t). (36) eq:tzlag

Clearly, (t ◦ zk)′′ = z and (t ◦ zk)′ = t ◦ zk−1. Let us denote, for each t ∈ T̂ , R(t) :=

∆̂(t) − ψ(t) ⊗ ê− ê⊗ ψ(t) − ψ(t′′) ⊗ ψ(t′).
If k = 1, and |t| = |z| = 1, then (14) with u = ψ(z), v = ψ(t) implies that R(t) = 0.
If k = 1 and |z|+ |t| > 2, then application of (14) with u = ψ(z), v = ψ(t),the induction

hypothesis and the inequalities (36), imply that R(t◦z) is a K0-linear combination of terms
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either of the form 1. in statement of Lemma 12, or of the form ψ(s) ⊗ ψ(t) • ψ(w) or

ψ(s) ⊗ ψ(w) • ψ(z) with s ∈ T̂ , w ∈ F̂\{e}, and s > max(zw). The required result now
follows from Lemma 11 and Remark 12.

If k ≥ 2, then as ψ(zk) = ψ(z ◦ zk−1), (z ◦ zk−1)′′ = z, and ψ(z ◦ zk−1)′′ = ψ(z ◦ zk−2) =

ψ(zk−1), induction hypothesis implies that ∆̂ψ(zk)−ψ(zk)⊗ ê− ê⊗ψ(zk)−ψ(z)⊗ψ(zk−1)
is a K0-linear combination of terms either of the form 1. in statement of Lemma 12, or
of the form ψ(s) ⊗ ψ(w) where s ∈ T̂ , w ∈ F̂\{e}, s > max(zw) (and w′′ < s if w ∈ T̂ ).
Then, application of (14) with u = ψ(zk) and v = ψ(t), and the inequalities (36), imply
that R(t ◦ zk) is a K0-linear combination of terms either of the form 1. in statement of

Lemma 12, or of the form ψ(s)⊗ψ(t)•ψ(w) or ψ(s)⊗ψ(w)•ψ(zk) with s ∈ T̂ , w ∈ F̂\{e},
and s > max(zw). The required result finally follows, as in the case k = 1, from Lemma 11
and Remark 12. 2

l:hdelta3 Lemma 13 Given u ∈ F̂\{e}, if u 6∈ T̂ , then

∆̂ψ(u) − ψ(u) ⊗ ê− ê⊗ ψ(u) −
∑

zv=u

ψ(z) ⊗ ψ(v)

(where the summation is over all z ∈ T̂ , v ∈ F̂ such that zv = u) is a K0-linear combination

of terms of the form w1 ⊗w2 with w1, w2 ∈ F̂\{e}, such that, if w1 = s ∈ T̂ then w2 6∈ T̂ ,
s > min(w2) and s > min(u).

Proof: We have proven a stronger statement for the case where u = zk, z ∈ T̂ , k > 1,
in the proof of Lemma 12, and the general result follows, for u = zk1

1 · · · zkm
m , with zi ∈ T̂

distinct, from ψ(zk1

1 · · · zkm
m ) = ψ(zk1

1 ) · · ·ψ(zkm
m ) and the fact that ∆̂ is an algebra map. 2

Lemma 12 and Lemma 13 imply the following theorem, that states that the basis
ν(F̂∗) = ψ(F̂) of the underlying K-module of Sh(X) is the dual basis of the Poincaré-

Witt-Birkhoff basis of T (X) corresponding to the Hall basis {Et : t ∈ T̂ } of L(D).

t:main Theorem 5 Let us assume that T̂ is a Hall set of rooted trees labelled by D, and F̂ is the
corresponding set of Hall forests. Then, for each u, w ∈ F̂ , it holds that

〈Eu, ψ(w)〉 =

{
1 if u = w
0 otherwise.

(37) eq:main

Proof: Induction on |u|. It trivially holds when |u| = 1. If u 6∈ T̂ , then, let z ∈ T̂ ,

v ∈ F̂\{e} such that u = zv, z ≤ min(v). Now, for each w ∈ F̂ , if

0 6= 〈Eu, ψ(w)〉 = 〈Ez ⊗ Ev, ∆̂ψ(w)〉

then, induction hypothesis, together with Lemma 12 if v ∈ T̂ , and with Lemma 13 if
v 6∈ T̂ , implies the required result.

If u = z ∈ T̂ , then, for each w ∈ F̂\T̂ , induction hypothesis and Lemma 13 implies
that

〈Ez, ψ(w)〉 = 〈Ez′′ ⊗Ez′ − Ez′ ⊗ Ez′′, ∆̂ψ(w)〉 = 0,
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and given w = t ∈ T̂ , as (z′)′′ ≥ z′′ > z′, we arrive at the required result by induction
hypothesis and Lemma 12. 2

Remark 18 Theorem 5, together with Proposition 1 obviously implies Theorem 3. 2

5 Concluding remarks
s:remarks

We have established an epimorphism ν of graded Hopf algebras from HR(X) to Sh(X)
and we have identified the graded Hopf ideal I = ker ν, so that Sh(X) is isomorphic as a
graded Hopf algebra to the quotient Hopf algebra HR(X)/I. For each Hall set associated

to the alphabet D, we have assigned a set of labelled rooted trees T̂ ∗ and a set of labelled
forests F̂∗ (T̂ ∗ ⊂ F̂∗) such that ν(F̂∗) freely generates Sh(X) as a K-module, and when

the base ring is a Q-algebra, ν(T̂ ∗) freely generates Sh(X) as an algebra. Moreover, we

have described the coalgebra structure in terms of the basis ν(F̂∗). Finally, we have shown

that the dual basis of ν(F̂∗) is the Poincaré-Witt-Birkhoff basis of T (X) corresponding
to a Hall basis of the free Lie algebra L(D), a result that, using a different approach, is
esentially available in [17]. We believe that our approach of working directly on the shuffle
algebra Sh(X) by taking advantage of the isomorphism between HR(X)/I and Sh(X)
complements previous results stated in terms of the tensor algebra T (X). Our approach
has also conections with some results from [12] (see Remark [12]).

In [16], we present some applications and practical extensions of our results. In partic-
ular, we present practical rewriting algorithms that can be useful when one wants to work
in the Hopf algebra Sh(X) in terms of the basis ν(F̂∗) associated to an arbitrary Hall set
over D. Applications to Lie series, exponential of Lie series, and the CBH formula and
some generalizations are also presented in [16].
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