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Abstract

A general class of one-step methods for index 2 differential-algebraic systems
in Hessenberg form is studied. This family of methods, which we call partitioned
Runge-Kutta methods, includes all one-step methods of Runge-Kutta type proposed
in the literature for integrating such DAE systems, including the more recently pro-
posed classes of half-explicit methods. A new family of super-convergent partitioned
Runge-Kutta methods based on Gauss methods is presented. A detailed theoretical
study of partitioned Runge-Kutta methods that exactly satisfy the original algebraic
constraint of the DAE system is given. In particular, methods with different order of
convergence for the differential variables and the algebraic variables are also studied
using a graph theoretical approach.

Keywords: Differential-algebraic systems of index 2, half-explicit Runge-Kutta
methods, partitioned Runge-Kutta methods, order conditions, trees.

1 Introduction

We consider semi-explicit systems of differential-algebraic equations of index 2 given in
autonomous and Hessenberg form

y′ = f(y, z), 0 = g(y), (1)
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where f and g are assumed to be sufficiently differentiable and

gy(y)fz(y, z) is invertible (2)

in a neighborhood of the solution. The initial values (y0, z0) are required to be consistent,
i.e., satisfy the consistency equations

g(y0) = 0, (3)

gy(y0)f(y0, z0) = 0. (4)

Problems of the form (1) are frequently encountered in practice (multi-body systems, non-
linear control, etc). In the last years, much attention has been paid to the development
and analysis of numerical methods for the integration of such systems (see [5, 11]).

The system (1) can be integrated considering the system obtained from (1) differenti-
ating once the constraint, i.e., the index 1 DAE

y′ = f(y, z), 0 = gy(y)f(y, z). (5)

In that case, the application of some stabilization technic is recommended. Here, we are
concerned with one-step methods that directly integrate the problem (1), without making
use of the algebraic constraints of (5) (the so called hidden constraints). The first one-step
methods for integrating directly the system (1) studied in the literature are implicit Runge-
Kutta methods [6, 9] (see also [5, 11]). Half-explicit Runge-Kutta methods, proposed in [9]
and developed in [3, 2, 4] allows to solve more efficiently certain problems of the form (1)
arising in the simulation of multi-body systems in (index 2) descriptor form. Arnold [1] and
the present author [13] have independently considered new classes of half-explicit methods
to integrate directly (1) that seem to be more efficient than the older ones; moreover, unlike
those first half-explicit methods, accurate approximations of the algebraic variable z are
also provided by the new methods. A new family of one-step implicit methods for solving
(1) methods is presented in Subsection 6.2. These methods, which we call Gauss-Lobatto
methods, based on Gauss methods, are symmetric and a s-stage method provide, for the
differential variable y, 2sth order approximations that satisfy the algebraic constraint of
(1).

All the abovementioned methods belong to the general family of partitioned Runge-
Kutta methods we present in Section 2. For most one-step methods for integrating directly
the problem (1) considered in the literature, only the approximation yn of the differential
variable y is needed to advance each integration step of the method. We say that a one-step
method to solve (1) is, of type 1 if yn+1 does not depend on zn, and of type 2 otherwise. The
implicit Runge-Kutta methods based on Gauss and Radau quadrature formulas, as well as
the half-explicit Runge-Kutta methods proposed in [9] are of type 1. The Gauss-Lobatto
methods we present in Subsection 6.2 are also of this first type. Well known examples of
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type 2 methods are the implicit Runge-Kutta LobattoIIIA methods (whose convergence
properties for the application to the system (1) were studied in detail by [12]). The new
half-explicit methods proposed in [1] and [13] also belong to this second type.

The existence and influence of perturbations of partitioned Runge-Kutta methods is
studied in detail in Section 3. Section 4 is devoted to the convergence study of partitioned
Runge-Kutta methods that provides approximations that exactly satisfy the algebraic con-
straints of (1). Here, characterizations of the convergence of the methods in terms of the
Taylor expansions of the local errors, and in the case of methods of type 2, the expansion of
∂yn+1/∂zn are obtained. In Section 5, algebraic characterizations (in terms of the parame-
ters of the method) of the convergence conditions obtained in previous section are obtained.
The Taylor expansions of the local errors and ∂yn+1/∂zn are obtained in a systematic way
using trees (the same trees used in [9, 11] in the case of the local errors).

Section 6 is devoted to the construction of PRK methods which satisfy exactly the
constraints of (1). Here, a fundamental role will be played by certain generalizations of the
usual simplifying assumptions devised by Butcher [7] (see also [10]) for Runge-Kutta meth-
ods for ODEs, and extended for index 2 DAEs in [9]. Some basic simplifying assumptions,
which will be used in the rest of the present section, are presented in the first subsection.
Subsection 6.2 is devoted to a subclass of PRK methods obtained as an extension of col-
location methods for index 2 DAEs (see Definition VI.7.7 of [11]). In particular, the new
family of Gauss-Lobatto methods, a class of symmetric s-stage implicit methods of order 2s
(for the differential variables), are presented. Results based on simplifying assumptions to
construct high order implicit PRK methods of type 1 and type 2 are respectively obtained
in Subsection 6.3 and 6.4. In Subsection 6.5, the partitioned half-explicit Runge-Kutta
methods proposed in [13] are studied.

2 Partitioned Runge-Kutta methods

In [13] we propose a general class of methods to solve the system of DAEs (1), the parti-
tioned Runge-Kutta methods (PRK):

i = 1, . . . , s,

Yi = y0 + h
s∑

j=1

aijf(Yj, Zj),

Y i = y0 + h
s∑

j=1

āijf(Yj, Zj), g(Y i) = 0 (6)

y1 =
s∑

i=1

bif(Yi, Zi), z1 =
s∑

i=1

diZi.
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We denote as A and Ā the s × s matrices with entries aij and āij respectively, and b =
(b1, . . . , bs)

T , d = (d1, . . . , ds)
T

Of particular interest are PRK methods (6) such that

bi = āki (1 ≤ i ≤ s) for some k, (7)

so that y1 = Ȳk, and therefore the numerical solution y1 satisfies the algebraic constraints
of (1). Usually, if the coefficients of the methods are such that Ys = y1 = Ȳk, the best choice
for the algebraic component is z1 = Zs (or more generally, z1 = Zl if Yl = y1). Alternatively
z1 can be computed as the solution (locally unique provided that (2) is satisfied) of

gy(y1)f(y1, z1) = 0. (8)

The existence and uniqueness of the numerical solution given by (6) is not in all cases
guaranteed. We will consider two general subclasses of PRK methods for which the scheme
(6) has, for sufficiently small h, an unique solution:

• Type 1: PRK methods (6) such that Ā is invertible. For this class of methods, only
the numerical solution of the differential variables (the y component) is needed to
advance one step of the PRK method. It is clear that standard implicit Runge-Kutta
methods to solve systems of the form (1) with invertible Runge-Kutta matrix are
a particular case of partitioned Runge-Kutta methods (6) of this first type, where
A = Ā. Half-explicit Runge-Kutta methods studied in [9, 2, 3, 4] are also particular
cases of PRK methods (6) of type 1, with A corresponding to an explicit Runge-Kutta
method (i.e., is strictly lower triangular), and(

A
bT

)
=
(

0
Ā

)
. (9)

• Type 2: PRK methods (6) such that the first row of Ā is null, and Ã is invertible,
where Ã denotes the matrix obtained from Ā turning its (1,1) entry to 1. For these
methods, Z1 is not determined in (6), and is taken as Z1 = z0, so that, unlike the
methods of type 1, the numerical approximation y1 does depend on z0 as well as y0.
The implicit Runge-Kutta methods studied in [12], which includes the Lobatto IIIA
methods, fall within this class. The now half-explicit methods proposed in [1] and
[13] also belong to this second type of PRK methods. In both cases, A is a strictly
lower triangular matrix, and Ā is a lower triangular matrix, such that the sth row
of A and the (s − 1)th row of Ā are equal to the vector b. The methods considered
in [1], in addition to these conditions, are constructed in such a way that for every
i ≥ 2 the ith row of Ā coincides with the (i + 1)th row of A.
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It is interesting to note that, when the function g in (1) is linear, the application of
a partitioned Runge-Kutta method (6) of type 1 is equivalent to the application of the
underlying Runge-Kutta method (that is, the Runge-Kutta method with coefficients aij

and bi) to the index 1 system (5). This equivalence is also maintained in the case of the
application of a partitioned Runge-Kutta method of type 2 with consistent initial values if
the parameters bi and di in (6) are such that y1 = Yk and z1 = Zk for some k.

One may wonder whether PRK methods can be easily generalized for the application
to more general index 2 DAE systems of the form

y′ = f(y, z), 0 = g(y, z), gz singular and of constant rank (10)

in a neighborhood of the solution. In that case, certain algebraic variables can be eliminated
from the algebraic constraints (see [11], page 477) to transform the original system into
Hessenberg form (1) (with different f , g and z). It is known that, for implicit Runge-Kutta
methods (of the form (6) with Ā = A) of type 1 or 2, the method can be generalized in
a straightforward way for systems of the form (10) in such a way that its application is
equivalent to the application of the Runge-Kutta method to the transformed system (1).
This is possible due to the fact that Ȳi = Yi for each i. Unfortunately, this is not the case
in the general case of PRK methods. The theoretical analysis of a suitable generalization
of method (6) for systems of the form (10) would need special attention, and is not within
the scope of this work.

3 Existence and influence of perturbations

The existence and uniqueness for consistent initial values and influence of perturbation
for PRK methods of type 1 can be studied in a very similar way to the case of implicit
Runge-Kutta methods with invertible matrix A [9, 11]. In the case of methods of type
2, existence of the numerical solution for initial values that do not satisfy (4) must be
considered.

Let us denote as Ã the s× s matrix whose entries ãij are given by

ã11 = 1, ãij = āij if (i, j) 6= (1, 1), (11)

and let wij be the entries of W = Ã−1. In the rest of the section, we will focus our
attention to PRK methods of type 2 (i.e. such that the first row of A is null, Z1 = z0 and
Ã is invertible). However, the results we obtain here can be adapted for PRK methods of
type 1, as they can be formally considered as methods of type 2. In fact, just adding an
additional stage Y0 = Y 0 = y0, Z0 = z0 to a s-stage PRK method of type 1, one equivalent
PRK method of type 2 with s+1 stages is obtained, whose extended Ā matrix is obtained
from the original one prepending one null row and one null column.
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Lemma 1 Let us consider the system (1) and (y0, z0) such that (3) is satisfied, and assume
that gy(y)fz(y, z) is invertible in a neighborhood of (y0, z0). Then, if ||gy(y0)f(y0, z0)|| is
sufficiently small, the PRK scheme (6) of type 2 has for h ≤ h0 a locally unique solution,
which smoothly depends on h and (y0, z0).

Note that in this lemma the numerical solution of (6) is only defined for (y0, z0) in the
manifold M = {(y, z) / g(y) = 0}. If we want to avoid working with functions defined in
manifolds, (19) can be extended (following a suggestion of Hairer) to a neighborhood of
the manifold replacing in (6) the equations g(Y i) = 0 by g(Y i) = g(y0). A more general
result that covers Lemma 1 as well as the extension above is proven below.

Our aim now is to study the influence of perturbations in partitioned Runge-Kutta
methods (6) of type 2. Given (ŷ0, ẑ0) such that g(ŷ0) = θ1, we consider the following
scheme

Ẑ1 = ẑ0,

i = 1, . . . , s,

Ŷi = ŷ0 + h
s∑

j=1

aij(f(Ŷj, Ẑj) + rj),

Ŷ i = ŷ0 + h
s∑

j=1

āij(f(Ŷj, Ẑj) + rj), g(Ŷ i) = θi (12)

ŷ1 =
s∑

i=1

bi(f(Ŷi, Ẑi) + ri),

ẑ1 =
s∑

i=1

diẐi.

Let us collect the perturbations in two vectors r = (r1, . . . , rs), θ = (θ1, . . . , θs). In general,
the existence and local uniqueness of the solution of (12) for ŷ0 and θ in h-independent
neighborhoods is not guaranteed. We formally avoid this defining

δi =
θi − θ1

h
=

g(Ŷ i)− g(ŷ0)

h
, δ = (δ2, . . . , δs) (13)

(by definition, δ1 = 0).
Proceeding in a similar way to the proof of Theorem 7.1 of [11] when studying the

existence of Runge-Kutta methods with invertible A matrix, the equations g(Ŷ i) = 0 in
(12) can be replaced by

δi =
1

h

∫ 1

0

d

dτ
g(ŷ0 + τ(Ŷ i − ŷ0))dτ =

∫ 1

0
gy(ŷ0 + τ(Ŷ i − ŷ0))

s∑
j=1

āij(f(Ŷj, Ẑj) + rj)dτ.
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Therefore, replacing Ŷ i by their explicit expressions, (12) can be expressed in the form

F (Û , h, ŷ0, ẑ0, r, δ) = 0, (14)

where Û = (Ŷ2, . . . , Ŷs, Ẑ2, . . . , Ẑs) and F is a smooth function.
We want to proof that, for (ŷ0, ẑ0) sufficiently close to consistent initial values (y0, z0)

and sufficiently small r, δ, (12) has for h ≤ h0 a locally unique solution: First, we see that
F (U0, 0, y0, z0, 0, 0) = 0, where U0 = (y0, . . . , y0, z0, . . . , z0). Second, the Jacobian of F
with respect to Û at (U0, 0, y0, z0, 0, 0) is

F
Û
(U0, 0, y0, z0, 0, 0) =

(
I 0

Â⊗ ∂/∂y(gyf)(y0, z0) Â⊗ (gyfz)(y0, z0)

)
,

where Â is the matrix obtained from Ā (or Ã) suppressing its first column and row.
This matrix is invertible provided that (2) is satisfied and the matrix Ã is invertible.
It follows from the implicit function theorem that there exists a locally unique solution
Û = (Ŷ2, . . . , Ŷs, Ẑ2, . . . , Ẑs) of (12) which smoothly depends on (h, ŷ0, ẑ0, r, δ). This im-
plies that there exist smooth functions φ and ϕ defined in a neighborhood of (y0, z0, 0, 0, 0)
such that the solution (ŷ1, ẑ1) of the perturbed scheme (12) satisfies

ŷ1 = ŷ0 + hφ(ŷ0, ẑ0, h, r, δ), ẑ1 = ϕ(ŷ0, ẑ0, h, r, δ). (15)

Since δi = (g(Ŷ i) − g(ŷ0))/h, unless the partial derivatives ϕδi
of ϕ with respect to δi

satisfy

ϕδi
(ŷ0, ẑ0, h, r, δ) = O(h), 2 ≤ i ≤ s,

s∑
i=2

ϕδi
(ŷ0, ẑ0, h, r, δ) = O(h), (16)

ẑ1 becomes unstable if θi (1 ≤ i ≤ s) remains about the same size as h → 0.
It is not difficult to see that the partial derivatives ∂Ẑ0

j /∂δi of Ẑj with respect to δi

evaluated at (ŷ0, ẑ0, h, r, δ) = (y0, z0, 0, 0, 0) (so that Û = U0 = (y0, . . . , y0, z0, . . . , z0))
satisfy

gy(y0)
s∑

k=1

āikfz(y0, z0)
∂Ẑ0

k

∂δj

=

{
1 if i = j,

0 else,

and therefore, ∂Ẑ0
j /∂δi = wji(gyfz)

−1(y0, z0), and

ϕδi
(y0, z0, 0, 0, 0) =

s∑
j=1

wji(gyfz)
−1(y0, z0).
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Thus, (16) implies that

s∑
j=1

djwji = 0, 2 ≤ i ≤ s,
s∑

i=2

s∑
j=1

djwji = 0,

which, by the invertibility of Ã, implies that d1 = · · · = ds = 0.
In order to study the influence of the error in the hidden constraint in more detail,

the partial derivatives φz and ϕz of φ(y, z, h, r, δ) and ϕ(y, z, h, r, δ) with respect to z must
be analyzed. We first consider the partial derivatives ∂U0/∂ẑ0 of Û with respect to ẑ0 at

(h, ŷ0, ẑ0, r, δ) = (0, y0, z0, 0, 0): Clearly, ∂Y 0
i /∂ẑ0 = ∂Y

0

i /∂ẑ0 = 0, and from that,

(gyfz)(y0, z0)
s∑

j=1

āij∂Z0
j /∂ẑ0 = 0, 2 ≤ i ≤ s,

which leads to

∂Z0
i

∂ẑ0

= wi1I. (17)

Then, it is straightforward to check that

φz(y0, z0, 0, 0, 0) =

(
s∑

i=1

biwi1

)
fz(y0, z0), ϕz(y0, z0, 0, 0, 0) = αI, where α =

s∑
i=1

diwi1,

If (7) is satisfied, which implies
∑

biwi1 = 0, then φz(y0, z0, 0, 0, 0) = 0, and from the
smoothness of φ and ϕ,

φz(ŷ0, ẑ0, h, r, δ) = O(h + ||∆y0||+ ||∆z0||+ ||r||+ ||δ||),
ϕz(ŷ0, ẑ0, h, r, δ) = αI + O(h + ||∆y0||+ ||∆z0||+ ||r||+ ||δ||),

where ∆yi = ŷi−yi and ∆zi = ẑi−zi. In [12] it can be observed (Theorem 4.4) that, in the
particular case of Ā = A, and under certain conditions on the parameters of the method,
the estimate for φz can be sharpened, obtaining

φz(y0, z0, h, 0, 0) = O(hk) (18)

for k > 1. In Subsection 5.4, we develop a procedure to obtain sufficient conditions on the
parameters of the methods for (18) to be satisfied for k > 1.

Summing up, we obtain the following result:

Lemma 2 Let us consider the system (1) and consistent initial values (y0, z0) such that
(2) is satisfied, and a PRK method (6) of type 2. Then, the perturbed scheme (12) has,
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for (ŷ0, ẑ0, h, r, δ) in a neighborhood U of (y0, z0, 0, 0, 0) (with δ defined by (13)), a locally
unique solution (ŷ1, ẑ1, Ŷ2, . . . , Ŷs, Ẑ2, . . . , Ẑs) which smoothly depends on (ŷ0, ẑ0, h, r, δ). In
particular, the perturbed numerical solution (ŷ1, ẑ1) can be expressed in the form (15), where
φ and ϕ are smooth functions defined in U . Furthermore, if k is such that (18) is fulfilled,
then

∆y1 = (I + O(h)) ∆y0 +
(
hk+1 + h||∆z0||

)
∆z0 + h||r||+ ||θ||,

∆z1 = (αI + O(h) + ||∆z0||) ∆z0 + ||∆y0||+ ||r||+ ||θ||
h

,

where ∆yi = ŷi − yi and ∆zi = ẑi − zi.

4 Convergence

In this section we will consider PRK methods satisfying (7), so that the numerical solution
exactly fulfills the algebraic constraints of (1).

According to Lemma 2, the numerical approximations yn to the solutions y(tn) of the
system (1) at tn = tn−1 +hn−1 obtained by means of a PRK method (6) of type 1 or 2 that
satisfy (7) can be rewritten as

yn+1 = yn + hnφ(yn, zn, hn), zn+1 = ϕ(yn, zn, hn), (19)

where we use the notation φ(y, z, h) := φ(y, z, h, 0, 0) and ϕ(y, z, h) := ϕ(y, z, h, 0, 0). This
is also true if the alternative way (8) is used to compute the numerical approximations for
the z-component.

For PRK methods of type 1, as φ and ϕ do not depend on zn, the error for the differential
component propagates in the same way as for one-step numerical integrators for ODEs,
and therefore, its convergence can be studied following the same procedure.

Given (y0, z0) satisfying the consistency equations (3)-(4), the local error of the method
(19) is defined by

δy(y0, z0, h) = y(t0 + h)− y0 − hφ(y0, z0, h), (20)

δz(y0, z0, h) = z(t0 + h)− ϕ(y0, z0, h). (21)

where (y(t), z(t)) is the exact solution of (1) with initial values y(t0) = y0, z(t0) = z0.

Theorem 1 Let us consider the system (1), consistent initial values (y0, z0), and a PRK
method of type 1 given by (19). Denote h = max hi. If the local errors (20) and (21)
satisfy

δy(y, z, h) = O(hp+1), δz(y, z, h) = O(hm) (22)
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in a neighborhood of the solution, then, for nh ≤ Constant,

yn − y(tn) = O(hp), zn − z(tn) = O(hmin(p,m)).

A systematic way of obtaining necessary and sufficient conditions for (22) to be satisfied
is developed in Section 5.

The convergence of PRK methods of type 2 cannot be studied in the same way, as the
propagation of the error for the algebraic component has to be taken into account. The first
proof of optimal convergence results for methods of type 2 appearing in the literature is
due to Jay [12], where super-convergence results for certain implicit Runge-Kutta methods
(Ā = A) of type 2 are obtained. In [1, 13] the convergence of half-explicit PRK methods
of type 2 is studied.

The following result, generalization of Lemma 2.9 of [11], will be used in the proof of
next theorem:

Lemma 3 Let {un} and {vn} be two sequences of non-negative numbers such that

un+1 ≤ (1 + O(h))un + O(ε)vn + hM,

vn+1 ≤ O(1)un + (α + O(h)vn + hN,

with α, M, N ≥ 0, then, the following estimates hold for sufficiently small h, ε ≤ ch,
nh ≤ Const:

un ≤ C(u0 + εv0 + M + εN), and

vn ≤ C(u0 + (ε + (α∗)n)v0 + M + hN), if α∗ = |α + O(h)| < 1,

vn ≤ C(u0 + v0 + M + N), if |α| = 1.

Proof: It can be proven in a very similar way to Lemma 2.9 of [11], and it is based on
the decomposition

(
1 + O(h) O(ε)

O(1) α + O(h)

)
=
(

1 O(ε)
O(1) 1

)−1 ( 1 + O(h) 0
0 α + O(h)

)(
1 O(ε)

O(1) 1

)
.

2

Theorem 2 Let us consider the system (1), and the application of a PRK method given
by (19), with initial values (y0, z0) satisfying (3) and gy(y0)f(y0, z0) = O(hl). Let us denote
h = max hi. If |α| < 1, and (22) and (18) are satisfied in a neighborhood of the solution,
then, for nh ≤ Constant,

yn − y(tn) = O(hmin(p,m+k,2m,m+l,l+k+1,2l+1)), zn − z(tn) = O(hmin(p,m,l)). (23)
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Proof: The statement of this theorem can be proven comparing the numerical solution
(yn, zn) of (19) with the exact solution (y(tn), z(tn)) of (1) with initial values (y0, z

0
0), where

z0
0 is the solution of gy(y0)f(y0, z

0
0) = 0 which is closest to z0. Let us denote ∆yn = yn−y(tn)

and ∆zn = zn− z(tn). The hypothesis of the theorem together with Lemma 2 implies that(
∆yn+1

∆zn+1

)
=
(

I + O(h) O(hk+1 + h||∆zn||)
O(1) αI + O(h + ||∆zn||)

)(
∆yn

∆zn

)
−
(

δy(y(tn), z(tn), hn)
δz(y(tn), z(tn), hn)

)
.

First, assuming that the errors ||∆zn|| are sufficiently small so that α∗ = |α + O(h) +
max ||∆zn||| < 1, Lemma 3 can be applied with un = ||∆yn||, vn = ||∆zn||, ε = h, α
replaced by α∗, M = O(hp), and N = O(hm−1), which implies that ∆zn = O(hmin(p,m,l)).
Second, we again apply Lemma 3 with un = ||∆yn||, vn = ||∆zn||, ε = hmin(p,m,l,k)+1,
M = O(hp), and M = O(hm−1), which gives the estimate for ||∆yn||. 2

Remarks:

1. Lemma 2 guarantees that (18) is fulfilled at least for k = 1. In Subsection 5.4,
we develop a procedure to obtain in a systematic way sufficient conditions on the
coefficients of the methods for (18) to be satisfied for k > 1.

2. The application with consistent initial values of a PRK method such that |α| < 1 is
of order p for the differential variables if (22) and (18) are satisfied with m ≥ k, p−k.
Moreover, if m > p− k, the leading term of yn − y(tn) is not influenced by the local
error of the algebraic component.

3. The estimate for the global error of the z component can be sharpened for 0 < C1 ≤
nh ≤ C2, obtaining zn − z(tn) = O(hmin(p,m,l+k+1,2l+1)).

4. In the case of |α| = 1, using the similar arguments to those of the proof of the
Theorem, it can be proven that

yn − y(tn) = O(hmin(p,m+k,l+k+1,2m−1,2l+1,m+l)), zn − z(tn) = O(hmin(p,m−1,l)).

5. In the case of PRK methods of type 1, z1 can be computed as z1 = d0z0+
∑

diZi. The
global error of the z-component of the application of such a method can be derived
considering it as a PRK method of type 2, so that Theorem 2 can be applied with
k = ∞ and α = d0.

6. If the alternative way (8) of computing the approximation of the algebraic variables
is used, then Theorem 2 can still be applied with m = p + 1.
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5 Order conditions for PRK methods for index 2 DAE

systems

In order to verify the order of convergence of a PRK method (6) applied to index 2 systems
of the form (1), we need to study, according to Theorems 1 and 2, under which conditions
on the parameters of the method is fulfilled (22) for given r and m. In the case of PRK
methods of type 2, condition (18) must also be studied.

To verify (22) we need to compare the series expansion in powers of h of the exact
solution (y(t0 + 1), z(t0 + h)) and the numerical solution (y1, z1). In [14] we derive the
construction of these formal expansions, which turn out to be of the same form as the
series obtained by Hairer, Lubich, and Roche in [9] when studying the order condition of
implicit Runge-Kutta methods (i.e., PRK methods with Ā = A). As in [9], we will use
(rooted) trees to represent the independent terms (the elementary differentials) of these
series expansions.

In Subsection 5.1 we present a general formalism introduced in [14] to deal with series
expansions, which will be useful in the rest of this section. The definitions used to expand
(y(t0 + 1), z(t0 + h)) and (y1, z1) are given in Subsection 5.2. Subsection 5.3 is devoted
to the construction of a set of conditions on the parameters of the method (6) that is
equivalent to (22), while in Subsection 5.4, equivalent algebraic conditions are derived for
(18).

5.1 Formal series of elementary differentials and elementary op-
erators

Let us consider a numerable set T of mathematical objects such that each u ∈ T has
attached a non-negative integer ρ(u), the order of u. Assume that there is only an element
of T of order 0, and let us denote it by ∅.

Let us assume that each u ∈ T has associated a function, called elementary differential
F (u) : RN → RN , and that F (∅) is the identity function id.

For each c : T → R, we denote by S(c, h) the formal series

S(c, h) =
∑
u∈T

hρ(u)c(u) F (u). (24)

Definition 1 Given u1, . . . , um ∈ T −{∅}, we denote by X[u1, . . . , um] the linear operator
on functions of N variables defined as follows: Given a sufficiently smooth function k of
N variables, for each y ∈ RN ,

(X[u1, . . . , um]k)(y) =
k(m)(y) (F (u1)(y), . . . , F (um)(y))

µ1! · · ·µν !
, (25)
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where µ1, . . . , µν are the numbers of mutually equal objects in u1, . . . , um. Clearly, the
operator X[u1, . . . , um] is invariant to permutations of u1, . . . , um. We denote by X[∅] the
identity operator.

Definition 2 Given the set T , we denote by T̂ the set of unordered m-tuples [u1, . . . , um]
of elements of T ,

T̂ = {[∅]} ∪ {[u1, . . . , um] / u1, . . . , um 6= ∅}.

Definition 3 Given a : T̂ → R, we denote by Ŝ(a, h) the formal series of elementary
operators

Ŝ(a, h) =
∑

[u1,...,um]∈T̂

hρ(u1)+···+ρ(um)a([u1, . . . , um]) X[u1, . . . , um].

The proof of the following result, given in [14], can be easily obtained considering the
multivariate Taylor expansion of the function k:

Theorem 3 If c : T → R with c(∅) = 1, for each smooth function k of N variables

k ◦ S(c, h) = Ŝ(c′, h)k,

where c′([u1, . . . , um]) = c(u1) · · · c(um).

5.2 Trees and elementary differentials

Let us consider, given consistent initial values (y0, z0) (i.e. satisfying (3)-(4)), the appli-
cation of one step of the PRK method (6) to the system (1). In [14], the expansions of
the numerical solution (y1, z1) and the exact solution (y(t0 + h), z(t0 + h)), together with
the expansions of the intermediate values Yi, Zi, Ȳi, are studied. There, we systematically
derive the set T and the corresponding elementary differentials F (u) such that formally,
following the notation of the previous subsection(

y(t0 + h)
z(t0 + h)

)
= S(δ, h)(y0, z0),

(
y1

z1

)
= S(c, h)(y0, z0), (26)(

Yi

Zi

)
= S(ci, h)(y0, z0), Ȳi = S1(c̄i, h)(y0, z0), (27)

with suitable coefficients δ(u), c(u), ci(u), c̄i(u). Not surprisingly, these expansions happen
to be of the same form as the series obtained by Hairer, Lubich, and Roche [9] when
studying the local error of implicit Runge-Kutta methods for index 2 systems of the form
(1).
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As usual, we will denote by F (u) the elementary differential corresponding to the tree
u. Given a vector x = (yT , zT )T , we will use the notation x1 = y, x2 = z, and similarly,
given u ∈ T , a : T → R,

F (u) =
(

F (u)1

F (u)2

)
, S(a, h) =

(S(a, h)1

S(a, h)2

)
.

As in [9] (see also [11], Definition VI.8.1), the elements of T are (rooted) trees with two
different types of vertices, vertices of type 1 (•), and vertices of type 2 (◦). As usual, we
write u = [u1, . . . , um]ν (ν = 1, 2) if the root of the tree u is of type ν and {u1, . . . , um} is
the collection of trees arising from removing the root of u. For each tree u, its order ρ(u)
is the number of vertices of type 1 minus the number of vertices of type 2. We will denote
by ∅ the empty tree, with ρ(∅) = 0, and • or alternatively [∅]1 the tree with a single vertex
of type 1.

Definition 4 Let us consider the set T = {∅} ∪ T1 ∪ T2 of such trees recursively defined
(as in [9, 11]) as follows:

1. • = [∅]1 ∈ T1,

2. [u1, . . . , um]1 ∈ T1 if u1, . . . , um ∈ T1 ∪ T2,

3. u = [u1, . . . , um]2 ∈ T2 if u1, . . . , um ∈ T1 and u 6= [[v]1]2 with v ∈ T2.

Definition 5 For each tree u of T , the elementary differential F (u) corresponding to u is
defined (following the notation of the previous subsection) as follows: F (∅) = id, F (u)2 = 0
if u ∈ T1, F (u)1 = 0 if u ∈ T2, and

F (u)1 = X[u1, . . . , um]f, if u = [u1, . . . , um]1 ∈ T1,

F (u)2 = (−gyfz)
−1X[u1, . . . , um]g, if u = [u1, . . . , um]2 ∈ T2.

5.3 Order conditions

Given a : T → R, we denote by a′ the mapping a′ : T → R such that a′(∅) = 0, and for
ν = 1, 2,

a′([u1, . . . , um]ν) = a′([u1, . . . , um]) = a(u1) · · · a(um).

According to Theorem 3 and Definition 4, it is clear from (1) and (6) that for every
tree u ∈ T1

δ(u) =
δ′(u)

ρ(u)
, c(u) =

s∑
i=1

bic
′
i(u), (28)

ci(u) =
s∑

j=1

aijc
′
j(u), c̄i(u) =

s∑
j=1

āijc
′
j(u), 1 ≤ i ≤ s.
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From (6) it is clear that for each u ∈ T2

c(u) =
s∑

i=1

dici(u).

As for the coefficients δ(u) and ci(u) for trees u ∈ T2, they can be obtained with the help
of the following lemma:

Lemma 4 Given a : T → R such that g (S(a, h)(y0, z0)) = 0 for consistent initial values
(y0, z0), then ∑

v∈T2

hρ(v)a([v]1)F (v)2 =
∑
v∈T2

hρ(v)a′(v)F (v)2.

Proof: Under the hypothesis of the lemma, Theorem 3 implies that

0 =
∑

[u1,...,um]∈T̂

hρ(u1)+···+ρ(um)a(u1) · · · a(um) (X[u1, . . . , um]g) (y0, z0).

As g does not depend on z, X[u1, . . . , um]g is identically null unless u1, . . . , um ∈ T1.
Moreover, X[∅]g = g and X[•]g = gyf , and therefore, they are null evaluated at consistent
initial values. Thus, under the hypothesis of the lemma,

0 =
∑

[u1,...,um]2∈T2

hρ(u1)+···+ρ(um)a(u1) · · · a(um) (X[u1, . . . , um]g) (y0, z0)

+
∑
v∈T2

hρ([v]1)a([v]1) (X[[v]1]g) (y0, z0).

As X[[v]1]g = (gyfz)F (v)2 and gyfz is invertible,∑
v∈T2

hρ(v)+1a([v]1) F (v)2(y0, z0) =

∑
[u1,...,um]2∈T2

hρ(u1)+···+ρ(um)a(u1) · · · a(um)
(
(−gyfz)

−1X[u1, . . . , um]g
)

(y0, z0),

which concludes the proof. 2

This lemma, together with (28), implies that for each u ∈ T2

δ(u) = (ρ(u) + 1)δ′(u),
s∑

j=1

āijcj(u) = c̄′i(u), 1 ≤ i ≤ s. (29)

In the case of methods of type 1 (i.e. with invertible matrix Ā = (āij)), this implies that

ci(u) =
s∑

j=1

wij c̄
′
j(u), (30)
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Table 1: Independent order conditions for RK and PRK methods

Order 1 2 3 4 5 6 7
RK 1 1 4 14 56 230 1014

PRK 1 1 5 19 84 381 1856

where the coefficients wij are the entries of Ā−1. For methods of type 2, as Z1 = z0, and
therefore c1(u) = 0 for every u ∈ T2, the second equation of (29) is also true with ā11

replaced by 1, so that (30) is satisfied taking the coefficients wij as the entries of Ã−1.
Equations (28), (29), and (30) allow us to obtain the coefficients δ(u), ci(u), c̄i(u), and

c(u) in a recursive way. Comparing the expansion S(δ, h) of the exact solution with that
of the numerical solution S(c, h), it becomes clear that (22) is fulfilled if the following two
conditions are satisfied:

• c(u) = δ(u) for all u ∈ T1 such that ρ(u) ≤ r, and

• c(u) = δ(u) for all u ∈ T2 such that ρ(u) ≤ m− 1.

Independent order conditions We will next see that not every tree of T gives rise to
an independent order condition for partitioned Runge-Kutta methods. A similar situation
arise in the particular case of implicit Runge-Kutta methods for index 2 DAEs (see [11],
exercise VI.8.2), but less redundancies in the order conditions occur in the case of general
PRK methods. In Table 1, the number of independent order conditions of order up to 7
for the y component of Runge-Kutta methods and partitioned Runge-Kutta methods are
compared. In fact, from (28), (29), and (30) it follows that

c̄i([u]1) = c′i(u), δ([u]1) = δ′(u), if u ∈ T2, (31)

ci([u]2) = c̄′i(u), δ([u]2) = δ′(u), if u ∈ T1. (32)

This implies that only a subset of T need to be considered to study the order conditions
of PRK. Next, we will define three subsets T1, T̄1, T2 of T . The trees of T1 ⊂ T1 will be
sufficient to study the order of consistency of the intermediate stages Yi, while the trees of
T̄1 ⊂ T1 ⊂ T1 will be sufficient for the order of consistency of the values Ȳi. The trees of
T2 ⊂ T2 will be related to the order of consistency of the intermediate stages Zi.

Definition 6 Let T̄1, T1, T2 ⊂ T , where T̄1 ⊂ T1, be defined recursively as follows:

1. • ∈ T̄1,

2. If u ∈ T1, then [u]1 ∈ T̄1,
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Table 2: Trees of order ≤ 3

Order 1 2 3

T̄1 s TTss
ee%%
s ss ZZ ��

s ee%%
s sds ZZ ��

ee%%
s sd ee%%

s sds ee
%%ss s

ll
,,ss TT��
s sd

T1 − T̄1
@@sJJ



s sd
ll s\\��

s s sd
ll s\\��

s AAss
d

T2

ee%%
s sd ll ,,

s s sd QQAA����
s s s sd QQ ��

s s AAss
d ll ,,

��s s
\\ss

d ZZ ��
s ee%%

s ssd

ll ,,
s \\ss

d QQ ��
s @@��

s JJ


s sdsd QQ ��

s @@��
JJ


s sd JJ



s sdsd ZZ ��
s ee

%%ss s
d QQ ��

s @@
��ssAA��
s sd

d

3. If u1, . . . , um ∈ T1 ∪ T2 and m > 1, then [u1, . . . , um]1 ∈ T̄1,

4. If u ∈ T2, then [u]1 ∈ T1 − T̄1,

5. If u1, . . . , um ∈ T̄1 and m > 1, then [u1, . . . , um]2 ∈ T2

In Table 2, the set of trees of T1 ∪ T2 up to order 3 are displayed. We are now in
conditions to give the main result of this section.

Theorem 4 Let us consider the application of one step of the PRK method (6) to the
system (1) with consistent initial values y(t0) = y0, z(t0) = z0. Then, for each i = 1, . . . , s

1. Ȳi − y(t0 + c̄ih) = O(hq+1) if ∀u ∈ T̄1 of order ≤ q, c̄i(u) = δ(u)c̄
ρ(u)
i ,

2. Yi − y(t0 + cih) = O(hq+1) if ∀u ∈ T1 of order ≤ q, ci(u) = δ(u)c
ρ(u)
i ,

3. Zi − z(t0 + cih) = O(hq+1) if ∀w ∈ T2 ∪ T1 of order ≤ q, ci(w) = δ(w)c
ρ(w)
i ,

4. y1 − y(t0 + h) = O(hr+1) if ∀u ∈ T1 of order ≤ r,

s∑
i=1

bic
′
i(u) = δ(u). (33)

5. z1 − z(t0 + h) = O(hm) if the following two conditions hold

(a)
∑s

i=1 dici(u) = δ(u) ∀u ∈ T2 with ρ(u) ≤ m− 1,
(b)

∑s
i=1 dic

′
i(u) = δ′(u) = ρ(u)δ(u) ∀u ∈ T1 with ρ(u) ≤ m.

(34)
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Table 3: Conditions for y1 − y(t0 + h) = O(h4) and z1 − z(t0 + h) = O(h3)

ρ(u) u Condition (33) Condition (34)
1 s ∑

bi = 1
∑

di = 1

2 TTss ∑
bici = 1/2

∑
dici = 1

3
ee%%
s ss ∑

bic
2
i = 1/3

∑
dic

2
i = 1

3 ee
%%ss s ∑

biaijcj = 1/6
∑

diaijcj = 1/2

3 ZZ ��
s ee%%

s sds ∑
biciwij c̄

2
j = 2/3

∑
diciwij c̄

2
j = 2

3 ZZ ��
ee%%
s sd ee%%

s sds ∑
bi(
∑

wij c̄
2
j)

2 = 4/3
∑

di(
∑

wij c̄
2
j)

2 = 4

3 ll
,,ss TT��
s sd ∑

biaijwij c̄
2
j = 1/3

∑
diaijwij c̄

2
j = 1

1 ee%%
s sd ∑

dkwk,ic̄
2
i = 2

2 ll ,,
s s sd ∑

dkwk,ic̄
3
i = 3

2 ll ,,
s \\ss

d ∑
dkwk,ic̄iāijcj = 3/2

Remarks:

1. Item 3. implies that, for Zi having consistency order r, the consistency order of Yi

has to be at least r. This is due to the fact that, according to (32), the coefficients
in the expansions of (26) and (27) for u ∈ T1 and [[u]1]2 coincide.

2. Usually, y1 = Ȳk for some k = 1, . . . , s, so that it satisfies the constraints of (1). In
that case, it is clear that trees u of T1 − T̄1 need not to be considered in 4.

3. If z1 = Zk, y1 = Yk for some k (i.e. dk = 1 and di = 0 for i 6= k), and assuming that
item 4 is satisfied with r > m, only trees of T2 need to be considered in 5.

The order conditions (33) and (34) for r = m = 3 are displayed in Table 3.

5.4 Additional order conditions for PRK methods of type 2

Given a PRK method (6) of type 2, in order to study its convergence properties applying
Theorem 2, in addition to (22), we need to check condition (18). Our aim in this subsection
is to develop a systematic procedure to verify (18) in terms of the parameters of the PRK
method of type 2.
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Figure 1: Elements of DT with same underlying tree of T

In order to do that, the Taylor expansion of ∂y1/∂z0 must be analyzed. We will show
that formally,

∂Xi

∂z0

=
∑

w∈DT
hρ(w)di(w)M(w)(y0, z0),

∂Y i

∂z0

=
∑

w∈DT 1

hρ(w)d̄i(w)M(w)1(y0, z0), (35)

∂y1

∂z0

=
∑

w∈DT 1

hρ(w)d(w)M(w)1(y0, z0),

where we denote

Xi =
(

Yi

Zi

)
, M(w) =

(
M(w)1

M(w)2

)
,

DT = DT 1 ∪ DT 2 is a certain set of mathematical objects related to the trees of T as
we describe below, the M(w) are matrix valued functions that only depend on w and
the system (1) to be integrated, ρ(w) is a non-negative integer (the order of w), and the
coefficients d(w),di(w), d̄i(w) only depend on w and the parameters of the method.

The elements of DT ν (ν = 1, 2) can be represented as trees of Tν where one of the
vertices of type 1 (•) has been highlighted. The order of such a w ∈ DT is the order of the
underlying tree of T . We consider that the empty tree gives rise to an element of DT 2 of
order 0. Figure 1 shows all the different elements of DT with a particular underlying tree
of T (the highlighted vertex of type 1 is represented by se).

In order to get a rigorous recursive definition of DT ,DT 1,DT 2 we decompose each
w ∈ DT of order ≥ 1 in a unique way as follows: We denote by (∅) the element of DT 2

whose underlying tree of T is ∅. If the highlighted vertex of w ∈ DT is the root of
the underlying tree v ∈ T , then w is decomposed as w = (v, (∅)). As for the rest of the
w ∈ DT , in analogous way to the trees of T , they can be represented as w = [v1, . . . , vm, w′]ν
(ν = 1, 2), where w′ is the subtree with the highlighted vertex of type 1. In that case, w
is decomposed as w = (v, w′), where v = [v1, . . . , vm]ν . Note that all possible v of such
decompositions belongs to T ∗ = T1 ∪ T ∗

2 , where

T ∗
2 = {[v1, . . . , vm]2 / v1, . . . , vm ∈ T1} ∪ {◦} = T2 ∪ {[[v]1]2 / v ∈ T2} ∪ {[•]2} ∪ {◦}.

19



QQ ��
s @@��

JJ


s sd JJ



s sedss =
(

TTss
, @@sJJ



s sd
, TTds

, s , ∅)

Figure 2: Element of DT represented as an m-tuple

In analogous way to • = [∅]1, we denote as ◦ or [∅]2 the tree with a single vertex of type 2.

Definition 7 Let DT 1,DT 2 the sets defined recursively as follows:

1. (∅) ∈ DT 2,

2. (v, w) ∈ DT 1 if v ∈ T1 and w ∈ DT 1 ∪ DT 2,

3. (v, w) ∈ DT 2 if v ∈ T2, w ∈ DT 1, and (v, w) 6= (◦, (•, w′)) with w′ ∈ DT 2.

Note that with this decomposition of the elements of DT = DT 1 ∪ DT 2, they can be
represented in a unique way as m-tuples (m ≥ 1) of the form (v1, . . . , vm−1, ∅), where
v1, . . . , vm−1 ∈ T ∗ and v1 · (v2 · · · (vm−2 · vm−1) · · ·) is a tree of T (its underlying tree), and
the highlighted vertex corresponds to the root of vm−1 (and therefore vm−1 must belong to
T1).

An example of decomposition of elements of DT is displayed in Figure 2.

Definition 8 For each v ∈ T ∗ ∪ {∅}, we define the matrix valued function F ∗(v) =
(F ∗(w)1T , F ∗(w)2T )T as follows: F ∗(∅)1 = 0, F ∗(∅)2 = I, F ∗(v)2 = 0 if v ∈ T1, F ∗(v)1 = 0
if v ∈ T ∗

2 , and

F ∗(v)1 = X[v1, . . . , vm]f ′, if u = [v1, . . . , vm]1 ∈ T1,

F ∗(v)2 = (−gyfz)
−1X[v1, . . . , vm]gy, if u = [v1, . . . , vm]2 ∈ T ∗

2 .

Definition 9 For each w ∈ DT , we define the matrix valued function M(w) such that
M(∅) = F ∗(∅), and

M(w)(y, z) = F ∗(v)(y, z)M(w′)(y, z), if w = (v, w′) ∈ DT 1,

M(w)(y, z) = F ∗(v)(y, z)M(w′)1(y, z), if w = (v, w′) ∈ DT 2.

Theorem 5 Let us consider the application of a step of a PRK method (6) of type 2 to
the system (1) with consistent initial values (y0, z0), and denote Xi = (Y T

i , ZT
i )T . Then,
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the partial derivatives with respect to z0 of Xi, Y i, and y1 formally satisfy (35), where the
coefficients di(w), d̄i(w),d(w) can be recursively obtained as follows: di(∅) = wi1, and

di(w) =
s∑

j=1

aijd
′
j(w), if w ∈ DT 1,

d̄i(w) =
s∑

j=1

āijd
′
j(w), if w ∈ DT 1,

di(w) =
s∑

j=1

wijd̄
′
j(w), if w ∈ DT 2,

d(w) =
s∑

j=1

bid
′
i(w), if w ∈ DT 1,

where for each w = (v, w′) ∈ DT

d′
i(w) = c′i(v)di(w

′), d′
i(w) = c̄′i(v)d̄i(w

′).

Proof: From (6) we obtain that

∂y1

∂z0

= h
s∑

i=1

biF
′(Xi)

∂Xi

∂z0

,

∂Yi

∂z0

= h
s∑

j=1

aijF
′(Xj)

∂Xj

∂z0

, (36)

∂Ȳi

∂z0

= h
s∑

j=1

āijF
′(Xj)

∂Xj

∂z0

, 0 = gy(Ȳi)
∂Ȳi

∂z0

.

We know from Lemma 2 that the partial derivatives with respect to z0 of y1, Ȳi, Yi, Zi

are locally unique, and are determined by (36). It is then sufficient to prove that (36)
formally holds replacing the partial derivatives according to (35).

Theorem 3 together with (27) implies that formally

hf ′(Xi) = h
∑

[u1,...,um]∈T̂

hρ(u1)+···+ρ(um) c′i([u1, . . . , um]) (X[u1, . . . , um]f ′)(y0, z0)

=
∑
u∈T1

hρ(u) c′i(u) F ∗(u)1(y0, z0),

gy(Ȳi) =
∑

[u1,...,um]∈T̂
ul∈T1

hρ(u1)+···+ρ(um) c̄′i([u1, . . . , um]) (X[u1, . . . , um]gy)(y0, z0)

= (−gyfz)(y0, z0)
∑

u∈T ∗
2

hρ(u)+1 c̄′i(u) F ∗(u)2y0, z0).
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These equalities, (35), (36), and the Definition 7 lead to

∂Yi

∂z0

=
∑
v∈T1

∑
w′∈DT

hρ(v)+ρ(w′)
s∑

j=1

aijc
′
j(v)dj(w

′) F ∗(v)1M(w′)(y0, z0)

=
∑

w∈DT 1

hρ(w)
s∑

j=1

aijd
′
j(w)M(w)1(y0, z0).

In a similar way, one can obtain

∂Ȳi

∂z0

=
∑

w∈DT 1

hρ(w)
s∑

j=1

āijd
′
j(w)M(w)1(y0, z0),

∂y1

∂z0

=
∑

w∈DT 1

hρ(w)
s∑

i=1

bid
′
i(w)M(w)1(y0, z0).

Thus, the first three equalities of (36) are satisfied. As for the last one, with similar argu-
ments, taking into account the invertibility of (gyfz)(y0, z0), the following can be obtained

0 = h
∑

v∈T ∗
2

∑
w′∈DT 1

hρ(v)+ρ(w′)c̄′i(v)d̄i(w
′) F ∗(v)2M(w′)1(y0, z0)

= h
∑

w∈DT 2

hρ(w)d̄′
i(w)M(w)2(y0, z0)

+ h
∑

w∈DT 2

hρ(w)c̄′i(◦)d̄i(•, w)F ∗(◦)2M(•, w)1(y0, z0).

Taking into account that for w ∈ DT 2

d̄′
i(•, w) =

s∑
j=1

āij c̄
′
j(•)dj(w) =

s∑
j=1

āijd̄j(w),

c̄′i(◦) = c̄′i([∅]) = 1, F ∗(◦)2M(•, w)1 = −M(w)2, ∂Z1/∂z0 = I, and the definition of the
coefficients wij, the last equality of (36) can be obtained. 2

Now, the main result of this subsection follows:

Theorem 6 Let us consider a PRK method (6) of type 2 given in the form (19). Condition
(18) is satisfied if

d(w) = 0 for each w ∈ DT 1 of order ≤ k. (37)

The only element of order 1 of DT 1 is (•, ∅), so that (18) is satisfied for k = 1 if

0 = d(•, ∅) =
s∑

i=1

bic
′
i(•)d(∅) =

s∑
i=1

biwi1. (38)
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This equality is automatically fulfilled if the PRK method is such that (7) is satisfied, so
that in that case (18) is satisfied at least for k = 1, as we already proven in Section 3.

It is interesting to note that not all of the elements of DT give rise to independent
conditions of the form (37): The conditions corresponding to elements of DT of the form
(u1, . . . , um, •, ∅) where the root of um is of type 2 (for instance, that of Figure 2) are
also automatically fulfilled (even if (7) is not satisfied). Moreover, redundancies similar to
those appearing for the order conditions studied in the previous subsection appear due to
(31)-(32).

Now, it is a straightforward matter to get algebraic conditions on the parameter of
the method (6) that guarantee (18) for k = 2. The only trees of T1 of order 2 are [•]1
and [[•, •]2]1, and therefore, there are four elements of order 2 in DT 1: ([•]1, ∅), (•, •, ∅),
([[•, •]2]1, ∅), and (•, [•]2, •, ∅). The coefficient of the last one is identically null, and from
the rest, we get

s∑
i=1

biciwi1 = 0,
s∑

i,j=1

biaijwj1 = 0,
s∑

i,j=1

biwij c̄
2
jwi1 = 0. (39)

Hence, if in addition to (7) (or at least (38)) the PRK method (6) satisfies condition (39),
then (18) is fulfilled for k = 2.

6 Construction of PRK methods. Simplifying assump-

tions

Here, we will focus our attention to the construction of PRK methods which satisfy (7).

6.1 Basic simplifying assumptions

Let us consider the following simplifying assumptions:

C(q) :
s∑

j=1

aijc
l−1
j =

cl
i

l
, 1 ≤ i ≤ s, 1 ≤ l ≤ q,

C̄(q̄) :
s∑

j=1

āijc
l−1
j =

c̄l
i

l
, 1 ≤ i ≤ s, 1 ≤ l ≤ q̄.

For PRK methods of type 1 and type 2, condition C̄(q̄) is equivalent to

IC̄(q̄) :
s∑

j=1

wij c̄
l
j = lcl−1

i , 1 ≤ i ≤ s, 1 ≤ l ≤ q̄,
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where the coefficients wij are the entries of Ā−1 for methods of type 1, and the entries of
Ã−1 for methods of type 2.

Using Theorem 4 it is not difficult to prove the following result:

Lemma 5 Given a PRK method of type 1 or 2, if C(q) and C̄(q̄) are fulfilled, then,

Yi − y(t0 + cih) = O(hmin(q,q̄)+1), Zi − z(t0 + cih) = O(hq∗),

Y i − y(t0 + c̄ih) = O(hq∗+1)

for i = 1, . . . , s, where q∗ = min(q+1, q̄). This implies that the order conditions correspond-
ing to trees with some subtree u satisfying one of the following conditions are redundant:

1. u ∈ T2 and ρ(u) < q∗,

2. u ∈ T1 and ρ(u) ≤ min(q, q̄),

3. u ∈ T̄1, it is attached to a vertex of type 2, and ρ(u) ≤ q∗.

6.2 Partitioned collocation methods

An interesting subclass of implicit PRK methods can be obtained generalizing the RK
methods for index 2 DAEs constructed as collocation methods (Definition VI.7.7 of [11]).

Definition 10 Let {c1, . . . , cs} and {c̄1, . . . , c̄s} be two sets of s distinct real numbers, and
denote by u(t), v(t) the polynomials of degree s which satisfy

u(t0) = y0, v(t0) = z0,

u′(t0 + cih) = f(u(t0 + cih), v(t0 + cih)), 1 ≤ i ≤ s, (40)

0 = g(u(t0 + c̄ih)), 1 ≤ i ≤ s.

The numerical solution at t = t0 + h given by the corresponding partitioned collocation
method is

y1 = u(t0 + h), z1 = v(t0 + h).

It is not difficult to see that this numerical solution is equivalent to a s-stage PRK
method (6) that satisfies C(s) and C̄(s̄). It is natural to consider partitioned collocation
methods with c̄s = 1, so that g(y1) = 0 (i.e., the equivalent PRK method satisfies (7)). If
c̄i 6= 0 for all i, it is a PRK method of type 1, and of type 2 otherwise. Well known par-
ticular cases of these partitioned collocation methods are the (non partitioned) collocation
methods, where c̄i = ci, for instance, the Radau IIA (type 1), and Lobatto IIIA (type 2)
[11, 12].

Next, we present a result that will allow the construction of an interesting family of
partitioned collocation methods that does not fall within the family of (non partitioned)
Runge-Kutta methods:
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Theorem 7 If c̄s = 1 and c̄i 6= 0 for all i, then, the local error for the y-component of the
partitioned collocation method (40) satisfies

y1 − y(t0 + h) = O(hmin(p,p̄)+1), (41)

where p is the order of the quadrature formula corresponding to the s nodes c1, . . . , cs

(and weights bi = āsi), and p̄ is the order of the quadrature formula of the s + 1 nodes
c̄0 = 0, c̄1, . . . , c̄s = 1.

Furthermore,

u(t)− y(t) = O(hs+1), v(t)− z(t) = O(hs), t0 ≤ t ≤ t0 + h. (42)

Proof: This result can be proven slightly modifying the proofs of Theorem VI.7.8 and
VI.7.9 of [11]:

First, following the proof of Theorem VI.7.8, (42) and the boundedness of the derivatives
of (u(t), v(t)) are proven using Lemma 5 and the fact that C(s) and C̄(s) are satisfied.
Second, as in the proof of Theorem VI.7.9, δ(t) and θ(t) are defined by

u′(t) = f(u(t), v(t)) + δ(t),

0 = g(u(t)) + θ(t),

and an identity of the form

u(t0 + h)− y(t0 + h) =
∫ t0+h

t0
S1(t0 + h, t)δ(t)dt−

∫ t0+h

t0

∂

∂t
S1(t0 + h, t)θ(t)dt,

can be proven.
By definition of δ(t) and θ(t), δ(t0 + cih) = 0 for i = 1, . . . , s and θ(t0 + c̄ih) = 0 for

i = 0, 1, . . . , s. Thus, (41) can be obtained applying the quadrature formula corresponding
to the nodes c1, . . . , cs to approximate the integral involving δ(t), and using the quadrature
formula with nodes c̄0 = 0, c̄1, . . . , c̄s to integrate the integral involving θ(t). 2

Gauss-Lobatto methods Given the number of stages s, let us consider the 2sth or-
der Gaussian quadrature nodes c1 < · · · < cs, that is, the zeros of the shifted Legendre
polynomial of degree s

Ps(x) =
ds

dxs
(xs(x− 1)s) ,

and the 2sth Lobatto quadrature nodes 0 = c̄0 < c̄1 < . . . < c̄s = 1, i.e. the zeros of the
polynomial of degree s + 1∫ x

0
Ps(τ)dτ =

ds−1

dxs−1
(xs(x− 1)s) .
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Table 4: 2-stage Gauss-Lobatto PRK method

3−
√

3
6

1
4

1
4
−

√
3

6

3+
√

3
6

1
4

+
√

3
6

1
4

1
2

1
2

1
2

1
4

1
4

1 1
2

1
2

According to Theorem 7 and 1, the corresponding PRK method (of type 1) has order of
convergence 2s for the y component.

Furthermore, the following orthogonality condition is satisfied (1 ≤ i ≤ s)

0 =
∫ c̄i

0
Ps(x)dx =

∫ c̄i

0
(x− c1) · · · (x− cs)dx,

which implies that C̄(s + 1) is satisfied, and therefore, Y i − y(t0 + c̄ih) = O(hs+2) and
Zi − z(t0 + cih) = O(hs+1). This makes possible to obtain, using internal stages of the
previous step, dense output of global order O(hs+2) for y(t) (respectively O(hs+1) for z(t)),
interpolating for the internal stages Y i (resp. Zi) of the current step (including y0 = Y 0)
and one additional internal stage Y s−1 (Zs) of the previous step.

As the underlying Runge-Kutta methods are collocation methods based of the Gaussian
quadratures (the Kuntzmann-Butcher methods), one can expect that their good stability
properties are inherited (at least when g is linear) by these new PRK methods. Moreover,
it is easy to check from (40) and the symmetry of the Gauss and Lobatto quadrature
formulas that these partitioned collocation methods are symmetric.

In particular, it is not difficult to see that the Gauss-Lobatto PRK method of one stage
is a natural generalization to index 2 DAEs (1) of the implicit midpoint method for ODEs,
that is

y1 = y0 + hf
(

y0 + y1

2
,
z0 + z1

2

)
, g(y1) = 0.

More examples of these Gauss-Lobatto methods are given in Tables 4 and 5. For each
method, two Butcher tableaux are displayed,

c A
b

, and
c̄ Ā

.
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Table 5: 3-stage Gauss-Lobatto PRK method

5−
√

15
10

5
36

2
9
−

√
15

15
5
36
−

√
15

30

1
2

5
36

+
√

15
24

2
9

5
36
−

√
15

24

5−
√

15
10

5
36

+
√

15
30

2
9

+
√

15
15

5
36

5
18

4
9

5
18

5−
√

5
10

25−
√

5+6
√

15
180

10−4
√

5
45

25−
√

5−6
√

15
180

5+
√

5
10

25+
√

5+6
√

15
180

10+4
√

5
45

25+
√

5−6
√

15
180

1 5
18

4
9

5
18

6.3 Implicit PRK methods of type 1

In principle, there can exist interesting implicit PRK methods that are not partitioned
collocation methods. The following result, which generalizes Theorem 5.9 of [9] can be
used to construct implicit PRK methods of high order:

Theorem 8 Given a PRK method (6) of type 1 such that (7) is satisfied, if there exist
b̄1, . . . , b̄s such that, in addition to C(q) and C̄(q̄), the following simplifying assumptions
are fulfilled:

B(p) :
s∑

i=1

bic
l−1
i =

1

l
, l = 1, . . . , p;

B̄(p̄) :
s∑

i=1

b̄ic̄
l−1
i =

1

l
, l = 1, . . . , p̄;

D(r) :
s∑

j=1

bjc
l−1
j aji = bi(1− cl

i), i = 1, . . . , s, l = 1, . . . , r;

D̄(r̄) :
s∑

j=1

b̄j c̄
l−1
j āji = bi(1− cl

i), i = 1, . . . , s, l = 1, . . . , r̄;

then, the local error for the y-component of the PRK method satisfies y1 − y(t0 + h) =
O(hR+1), where

R = min(p, p̄, 2q + 2, 2q̄, r + q + 1, r + q̄ + 1, r̄ + q + 2, r̄ + q̄ + 1). (43)

Remarks:

1. In the particular case of Runge-Kutta methods, as c̄ = c, b̄ = b, and Ā = A, we
have that p̄ = p, r̄ = r, q̄ = q, and therefore R = min(p, 2q, r + q + 1), as stated in
Theorem 5.9 of [9].
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2. Multiplying both sides of the equality of D̄(r̄) by wik and extending the sum over
i = 1 . . . , s, the following equivalent condition is obtained:

ID̄(r̄) :
s∑

i=1

bi(1− cl
i)wij = b̄j c̄

l−1
j , i = j, . . . , s, l = 1, . . . , r̄.

3. Note that condition ID̄(1) uniquely determine the b̄i coefficients in terms of the
parameters of the method.

Proof of Theorem 8: We already saw in Lemma 5 how C(q) and C̄(q̄) simplify the
order conditions. To describe the effect of the rest of the simplifying assumptions, we will
use the Butcher notation: given v, w1, . . . , wk ∈ T , ν = 1, 2, r ≥ 1

[vl, w1, . . . , wk]ν = [
l︷ ︸︸ ︷

v, . . . , v, w1, . . . , wk]ν .

It is not difficult to see that

• B(p) implies that the order conditions for the trees • and the ’bushy’ trees [•l−1]1
(1 ≤ l ≤ p) are satisfied.

• The condition B̄(p̄) correspond, provided that D̄(1) is satisfied, to the order condi-
tions of the trees [•, [•l−1]2]1 (1 ≤ l ≤ p).

• Condition D(r) makes redundant the order conditions for trees of T1 of the form
[•l−1, [u1, . . . , um]1]1, for l = 1, . . . , r.

• D̄(r̄) (which is equivalent to ID̄(r̄)) implies that the order conditions for trees of T1

of the form [•l, [u1, . . . , um]2]1 (2 ≤ l ≤ r̄) and [•, [•l−1, [u1, . . . , um]1]2]1 (1 ≤ l ≤ r̄)
are redundant.

Taking into account this and Lemma 5, it can be seen that the trees of T̄1 with minimal
order whose order conditions are not assured to be satisfied by the hypothesis of the
theorem are: [•p]1, [•, [•p̄]2]1, [u, v]1 with ρ(u), ρ(v) = q∗ = min(q + 1, q̄), [•r̄+1, [•q∗+1]2]1,
[•, [•r̄, [•q̄]1]2]1, and [•r, u] with u ∈ T1 such that ρ(u) = min(q, q̄) + 1. This leads to the
statement of the theorem. 2

The following result, similar to Lemma IV.5.4 of [11], is useful, together with the
referred lemma and Theorem 8, in the construction of different implicit PRK methods of
high order.

Lemma 6 Given a PRK method (6),

1. C̄(q̄), D̄(r̄), B(q̄ + r̄) ⇒ B̄(q̄ + r̄).
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2. If c̄1, . . . , c̄s are distinct and non null, then

C̄(s), B(s + r̄), B̄(s + r̄) ⇒ D̄(r̄).

3. If c̄1, . . . , c̄s are distinct and non null, and bi 6= 0 for all i, then

D̄(s), B(s + q̄), B̄(s + p̄) ⇒ C̄(q̄).

Using the results of this subsection, an alternative proof of the super-convergence of
Gauss-Lobatto partitioned PRK methods can be done in the following way: The coefficients
aij, āij, bi, and b̄i can be determined from C(s), C̄(s), B(s), and B̄(s+1). The orthogonality
properties related to the Gauss and Lobatto nodes ci and c̄i imply that B(2s) and B̄(2s)
(and C̄(s + 1)) are fulfilled. Then, Lemma IV.5.4 of [11] implies that D(s) is satisfied,
while Lemma 6 implies D̄(s). Finally, Theorem 8 implies that y1 − y(t0 + h) = O(h2s+1).

6.4 Implicit PRK methods of type 2

The most interesting implicit PRK methods of type 2 seem to be the non-partitioned PRK
methods known as Lobatto IIIA, studied in detail in [12]. We will extend the ideas of the
previous subsections to obtain with a different approach a generalization of the results of
[12]. Moreover, the techniques developed here will be very useful in next subsection.

Let us consider a PRK method (6) of type 2. According to Theorem 2, in order to
guarantee order of convergence p for the y component, in addition to (22) with m ≥ p/2,
(18) must be satisfied with k = p−m.

We assume that the coefficients b̄i are defined by D̄(1). Here, we will consider PRK
methods of type 2 that satisfy∑

bi(1− ci)wi1 = b̄1 = 0. (44)

This implies that ID̄(r̄) and D̄(r̄) are equivalent, as āij can be replaced by ãij in D̄(r̄).
Note that (44) is equivalent, taking into account that

∑
biwij = 0, to the condition (37)

for w = ([•]1, ∅), that is

s∑
i=1

biciwi1 = 0.

Under these conditions, an analog of Theorem 8 for PRK methods of type 2 can be
similarly proven:

Theorem 9 Given a PRK method (6) of type 2 such that (7) is satisfied, if there exist
b̄1 = 0, b̄2, . . . , b̄s such that, the C(q), C̄(q̄), D(r), D̄(r̄), B(p), and B̄(p̄) are fulfilled, then,
the local error for the y-component of the PRK method satisfies y1 − y(t0 + h) = O(hR+1),
where R is given by (43).
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Typically, as in the case of Lobatto IIIA methods, cs = 1, and the numerical approxi-
mation for the z component is taken as z1 = Zs. Thus, under the conditions of the previous
theorem, (22) is fulfilled with p = R, m = q̄. But what can be said about condition (18)?
Fortunately, the simplifying assumptions work for the conditions (37) of Subsection 5.4 in
a similar way that for the order conditions of Subsection 5.3.

In particular, C(q) and C̄(q̄) imply that conditions (37) corresponding to m-tuples
w = (u1, . . . , um, ∅) ∈ DT ∗

1 with some ul with some subtree u satisfying one of the
three conditions of Lemma 5 are redundant. D(r) implies that m-tuples of the form
(u1, . . . , um, ∅) ∈ T ∗

1 with u1 = [•l]1, l < r, and u2 ∈ T1 need not to be considered. As
for D̄(r̄), it implies that condition (37) for w = ([•l]1, ∅) is satisfied if l ≤ r̄, and that
conditions for m-tuples of the form w = (u1, . . . , um, ∅) ∈ DT ∗

1 with u1 = [•l1 ]1, u2 = [•l2 ]2
and l1 + l2 − 1 < r̄ become redundant.

The following result can be proven using similar arguments to those of the proof of
Theorem 8:

Lemma 7 Under the hypothesis of Theorem 9, condition (18) is fulfilled with

k = min(q + 1, q̄, r + 1, r̄ + 1).

Finally, Theorem 2, Theorem 9 and Lemma 7 imply the main result of this subsection:

Theorem 10 Under the assumptions of Theorem 9, and with cs = 1, z1 = Zs, and |α| ≤ 1,
then, the global error of the application of the PRK method (6) with consistent initial values,
for the y-component is O(hR), where R is given by (43) if |α| < 1 and

R = min(p, p̄, 2q + 1, 2q̄ − 1, r + q + 1, r + q̄ + 1, r̄ + q + 2, r̄ + q̄ + 1) if |α| = 1.

As for the global error for the z-component, it is of order min(p, p̄, q + 1, q̄) if |α| < 1, and
order min(p, p̄, q, q̄ − 1) if |α| = 1.

Note that in the particular case of a non-partitioned Runge-Kutta method of type 2,
where p̄ = p, q̄ = q, r̄ = r, the main result of [12] is recovered.

6.5 Partitioned half-explicit Runge-Kutta methods

Half-explicit methods are for DAE systems, the counterpart of explicit methods for ODEs:
They are efficient, robust, and easy to implement.

A PRK method (6) to solve the system is said half-explicit if the matrix A is strictly
lower triangular and Ā is lower triangular.

Half-explicit Runge-Kutta methods [9, 2, 3, 4] are particular cases of such half-explicit
PRK methods (6), where (9) is satisfied, and āii 6= 0 for i = 1, . . . , s, so that Ā−1 is
invertible, and therefore they are PRK methods of type 1.
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In [13] we propose a family of half-explicit PRK methods of type 2 that satisfy bi =
ās−1,i = asi, di = 0 for i = 1, . . . , s− 1, and bs = ass = 0, ds = 1, so that y1 = Ys = Ȳs and
z1 = Zs. In order that the method be of type 2, it is assumed that āii 6= 0 for i ≥ 2. As in
[13] we will refer to this methods simply as partitioned half-explicit Runge-Kutta (PHERK)
methods. Thus, a step (y0, z0) → (y1, z1) of a s-stage PHERK method is defined by

Y1 = y0, Z1 = z0,

i = 2, . . . , s,

Yi = y0 + h
i−1∑
j=1

aijf(Yj, Zj), (45)

Y i = y0 + h
i∑

j=1

āijf(Yj, Zj), g(Y i) = 0,

y1 = Ȳs−1, z1 = Zs,

where asi = ās−1,i for all i (ass = 0) and āii 6= 0 for i ≥ 2.
Thus, the numerical approximation y1 ≈ y(t0 + h) satisfies the algebraic constraint

of (1). The choice Ys = Ȳs−1 = y1 and z1 = Zs simplifies the order conditions for the
algebraic component, and in addition, assures the equivalence, in the case of linear g,
with the application of the underlying (s − 1)-stage explicit Runge-Kutta method (with
bi = asi = ās−1,i) to index 1 formulation (5).

Although the PHERK method (45) is formally an s-stage partitioned Runge-Kutta
method (6) of type 2, its effective number of stages is s − 1 (the same as its underlying
explicit Runge-Kutta method), as s−1 equations have to be solved and s−1 new f(Yi, Zi)
are computed at each step (f(Y1, Z1) = f(y0, z0) is already computed at the previous step).

Arnold [1] considered and developed, independently and approximately at the same
time of [13], a new class of half-explicit methods to solve (1) that are very related to
PHERK methods. In fact, these methods are precisely the interesting particular case of
partitioned half-explicit Runge-Kutta methods (45) such that

āij = ai+1,j, 2 ≤ i ≤ s, 1 ≤ j ≤ s,

so that Y i = Yi+1 for 2 ≤ i ≤ s− 1.

Methods of order up to 4 According to Theorem 2, a PHERK method (45) is of
order 3 for both y and z if |α| = |ws1| < 1 and (22) are satisfied for p = m = 3, that is,
the algebraic conditions of Table 3 are fulfilled. As the PHERK methods satisfy (7), (18)
holds at least for k = 1, and therefore, if only convergence of order 2 is required for the
algebraic variables, according to Theorem 2, the last two conditions of Table 3 need not to
be satisfied.
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Note that the first four equations in Table 3 only depend on A and b, and are the
conditions for the corresponding explicit Runge-Kutta method to be of order 3 for ODEs.
As for the rest of the conditions, according to Lemma 5, they are greatly simplified if C̄(2)
is assumed, so that only the 9th condition remains. Thus, we have the following result:

Theorem 11 Let us consider a s-stage PHERK method (45) such that the underlying
(s− 1)-stage explicit Runge-Kutta method is of order 3 for ODEs. If its coefficients satisfy
C̄(2), and |ws1| < 1, then (22) holds with p = 3 and m = 1. If in addition

s∑
i=1

wsic̄
3
i = 3,

then (22) is fulfilled with m = 2.

It is then straightforward to see that, given a 3-stage explicit Runge-Kutta method
of order 3 for ODEs, a 4-stage PHERK method of order 3 (for both y and z) can be
constructed for each ws1 ∈ (−1, 1) and c̄2, c̄4 (if 0, c̄2, 1, c̄4 are distinct).

It is well known that the construction of explicit Runge-Kutta methods of order higher
than 3 is best accomplished if the standard simplifying assumption D(1) is made. Let
us now consider s-stage PHERK methods such that C̄(2) and D(1) are satisfied, and the
underlying explicit method is of order 4: From Lemma 5 and the proof of Theorem 8 one
obtains that, with assumptions D(1) and C̄(2), the independent conditions of the form
(33) and (34) for a PHERK method (45) to be of order 4 for both the differential and
algebraic components are only those corresponding to explicit Runge-Kutta method of
order 4, and the order conditions of the trees u, v1, v2, v3, v4 of Figure 3. However, if the
order of convergence 4 is only required for the y-components, the conditions for the trees
v2, v3, v4 need not to be satisfied. If in addition the simplifying assumption C̄(3) is made,
according to Lemma 5, the order conditions corresponding to the trees u, v1, v4 of Figure 3
become redundant. Thus, we have the following result:
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Figure 3: Additional conditions for order 4

Theorem 12 Given a s-stage PHERK method (45) such that D(1) is satisfied and the
underlying explicit Runge-Kutta method is of order 4 for ODEs, if C̄(3) is satisfied, then
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Table 6: PHERK method of order 4

ci aij

0

1
3

1
3

2
3
−1

3
1

1 1 −1 1

1 1
8

3
8

3
8

1
8

c̄i āij

0

1
2

1
8

3
8

7
8

161
1024

147
512

441
1024

1 1
8

3
8

3
8

1
8

9
10

693
5000

1701
5000

243
625

81
1250

− 81
2500

(22) holds with p = 4 and m = 2. If in addition, condition

∑
i

wsic̄
4
i = 4,

∑
i,j,l

wsic̄iāijajlcl =
2

3
(46)

holds, then (22) is fulfilled with p = 4 and m = 3.

Using this result, in 45, we have presented a 5-stage PHERK method (4 effective stages)
of order 4 (for both y and z) based on the classical 3/8-rule, determining the remaining
parameters so that C̄(3) and (46) hold, and choosing the free parameters (ws1 6= 0 and c̄3)
in such a way that the local error coefficients and |ws1| are reasonably small. Its coefficients
are displayed in Table 6.

Methods of order 5 and 6 The construction of higher order explicit Runge-Kutta
methods for ODEs usually relies on the simplifying assumption B(1) and

C∗(q) : b2 = 0,
i∑

j=1

aijc
l−1
j =

cl
i

l
, 3 ≤ i ≤ s, 1 ≤ l ≤ q.

Given a s-stage PHERK method satisfying D(1), C∗(2), and C̄(3), taking into account
Lemma 5 and the proof of Theorem 8, it can be seen that the only trees of T2 of order ≤ 3
that are not simplified with these assumptions are the trees v2 and v3 of Figure 3. As for
the trees of T̄1 of order ≤ 5 with some vertex of type 2, only u2 = [•, v2]1, and u3 = [•, v3]1,
need to be considered.

When constructing PHERK methods of higher order, it seems interesting to consider
methods satisfying (18) for k ≤ 2, so that the influence of the error for the z components
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on the global error for the y-components is reduced, and high order can be achieved for
the differential variables with more modest order of convergence for the algebraic vari-
ables. We are now interested in PHERK methods such that (18) is satisfied for k = 2,
that is, (39) is fulfilled. Assumption D(1) and C̄(2) have the effect of making redundant
respectively the second and third equations of (39). Let us now consider the real numbers
b̄1, b̄2, . . . , b̄s−2, b̄s−1 defined by D̄(1) (Subsection 6.3). As we have already shown in Sub-
section 6.4, the second equation of (18) is then equivalent to (44), so that (18) holds for
k = 2 if (44) is fulfilled.

Assumption D̄(1) and (44) make the order condition for the tree u2 = [•, v2]1 equivalent
to the equality of B̄(5) corresponding to l = 5, while the condition of the tree u3 =
[•, v3]1 becomes equivalent to the equation (47) below. Summing up, the following result
is obtained:

Theorem 13 Let us consider a s-stage PHERK method (45) such that the underlying
(s-1)-stage explicit Runge-Kutta method satisfies D(1) and C∗(2) and it is of order 5 for
ODEs. If C̄(3), D̄(1), and B̄(5) are fulfilled for real numbers b̄1, b̄2, . . . , b̄s−2, b̄s−1, b1 = 0,
and

s−1∑
i=2

b̄ic̄iāi2 = 0, (47)

holds, then (22) and (18) are satisfied with p = 5, m = 3, k = 2, so that, if |ws1| < 1, the
method is of order 5 for the differential variables and of order 3 for the algebraic variables.
If in addition (46) is satisfied, the method is of order 4 for the algebraic variables, and the
local error for the z-component does not affect the leading term of the global error for the
y-component.

Taking into account C∗(2), C̄(3) and the definition of the coefficients wij, it is straight-
forward to check that (46) is equivalent to the following condition: There exist f1 =
0, f2, . . . , fs−1, fs = 0 and g1 = 0, g2, . . . , gs−1, gs = 0 such that

s∑
j=1

āij(fj + c3
j) = c̄4

i ,
s∑

j=1

āijgj = c̄iāi2, 2 ≤ i ≤ s. (48)

It is not difficult to see that some of the sufficient conditions of Theorem 13 for a PHERK
method to be of order 5 for the differential component are redundant. In particular, the
three conditions corresponding to B̄(4) need not to be considered. Alternatively, if 0, c̄3, c̄4

are distinct, the equations of D̄(1) corresponding to i = 1, 3, 4 are implied by the rest of
the conditions of the theorem.

In [13], we construct, given a 6-stage explicit Runge-Kutta method of order 5 for ODEs
that satisfies D(1) and C∗(2), a 6-parametric family of 7-stage PHERK methods (with
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Figure 4: Remaining trees for order 6

6 effective stages) of order 5 for the differential component and order 4 for the algebraic
component (satisfying (18) for k = 2). These methods are provided with 4th order error
embedded method and dense output. A particular PHERK method whose underlying
explicit Runge-Kutta method is the well known method DOPRI5 constructed by Dormand
and Prince [8] (see also Section II.5 of [10]) is proposed in [13], and numerical experiments
are reported.

As for the conditions for a PHERK method to be of order 6 for the differential variables,
if in addition to the conditions of Theorem 13 the underlying explicit Runge-Kutta method
is of order 6 for ODEs, and C∗(3), B̄(6), and (48) are satisfied, then, the only independent
order conditions of the form (33) needed for the PHERK method (45) to satisfy (22) and
(18) with p = 6, m = 4, k = 2. are those corresponding to the trees of Figure 4. It is not
difficult to see that these conditions are equivalent to the following equations:

s−1∑
i=2

b̄ic̄iāi2 = 0,
s−1∑
i=2

b̄ic̄
2
i āi2 = 0,

∑
i,j

b̄ic̄iāijfj = 0,
∑
i,j

b̄ic̄iāijaj2 = 0,

∑
i,j

biciaijfj = 0,
∑
i,j

bic
2
i fi = 0,

∑
i,j

biciaijgj = 0,
∑
i,j

bic
2
i gi = 0.
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