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Abstract
A new family of high order one-step symplectic integration schemes for separable
Hamiltonian systemswithHamiltonians of the formT (p)+U (q) is presented.Thenew
integration methods are defined in terms of an explicitly defined generating function
(of the third kind). They are implicit in q (but explicit in p and the internal states),
and require the evaluation of the gradients of T (p) and U (q) and the actions of
their Hessians on vectors (the later being relatively cheap in the case of many-body
problems). A time-symmetric symplecticmethod is constructed that has order 10when
applied to Hamiltonian systems with quadratic kinetic energy T (p). It is shown by
numerical experiments that the new methods have the expected order of convergence.
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1 Introduction

An outstanding property of Hamiltonian systems is the symplecticity and time-
symmetry of the flow. The Hamiltonian system in the variables y = (p, q) given
in the form

ṗ = −Hq(p, q)
q̇ = Hp(p, q)

or equivalently ẏ = J−1∇H(y), (1.1)

where J =
(

0 In
−In 0

)
, p, q ∈ Rn . For the purpose of numerical study, it is natural

to look for those discretization systems which preserve as many as possible the char-
acteristic properties and inner symmetries of original continuous systems. Thus, for
the Hamiltonian system (1.1), it is natural to search for numerical methods that share
symplecticity and time-symmetry.

An important qualitative feature of symplectic integrators is highlighted by the
backward error analysis based on modified equations (see [11], Section IX.3 and [18],
Section 10.1). If a p order numerical integrator is symplectic when applied to the
Hamiltonian system (1.1), then the modified equation is also Hamiltonian [2,22]. The
modified Hamiltonian takes the form

Hh(y) = H(y)+ h pHp+1(y)+ O(h p+1), (1.2)

which implies, (under the assumption that the numerical solutions of (1.1) evolve on
compact domains), that the symplectic integrator preserves the error of the invariant
of Hamiltonian function globally bounded, which convergent to 0 with order p.

Herewe focus on symplectic one-step integration schemes that, given aHamiltonian
function H(y), determine a one-parameter family of symplectic maps Ψh : R2n →
R2n such that, for small enough h, Ψh(y(t)) ≈ y(t + h) for any solution y(t) of the
Hamiltonian system (1.1). For linearmulti-stepmethods, the underlying step-transition
operator is non-symplectic [23]. Generalizations of the concept of symplecticity for
linear multi-step methods are possible [12]. However, the higher dimensionallity of
the phase space of the discrete dynamical system typically produce espureus behavior
of the numerical solutions.

We are particularly interested in Hamiltonian systems where the kinetic energy is
quadratic, that is, with Hamiltonians of the form

H(p, q) = 1
2
p⊤M−1 p +U (q), (1.3)

whereM is an invertible symmetricmatrix. SuchHamiltonian systemshas awide range
of applications in the fields of celestial mechanics [5,20] and molecular dynamics
[3]. Hamiltonians of the form (1.3) fit into the more general format of separable
Hamiltonians

H(p, q) = T (p)+U (q). (1.4)
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It is well known [4,9,11,14] that there exist explicit symplectic integrators for Hamilto-
nian systems with Hamiltonian of the form (1.4).We present a new class of symplectic
integration schemes for Hamiltonian systems with Hamiltonian of the form (1.4), and
show that it is possible to construct time-symmetric high order symplectic methods for
systems with Hamiltonians of the form (1.3) that might outperform existing explicit
symplectic methods. While such integrations schemes are not fully explicit, they are
defined in terms of an explicitly defined generating function, and can be very efficiently
implemented.

A mature theory of generating function has been developed [6,7] (see also [11,18])
that allows one to conveniently construct symplectic integration schemes. Given the
matrices Aα, Bα,Cα, Dα ∈ R2n×2n ,

α =
(
Aα Bα

Cα Dα

)
, J4n =

(
0 I2n

−I2n 0

)
, J̃4n =

(
J2n 0
0 −J2n

)
, (1.5)

such that α⊤ J4nα = µ J̃4n , µ ̸= 0. Consider the formulation

AαΦ(z)+ Bαz = f (CαΦ(z)+ Dαz), (1.6)

where Φ, f are smooth maps from R2n to R2n , |Cα
∂Φ(z)

∂z + Dα| ̸= 0. Then, Φ is
symplectic map if and only if f is gradient map, that is, there exists a function S from
R2n to R such that f (w) = ∇S(w). This argument can be immediately derived from
the following expression

α

(
∂Φ(z)

∂z
I2n

)
=

(
∂ f (w)

∂w
I2n

)
∂w

∂z
. (1.7)

The t-flow Φt of a Hamiltonian system (1.1) is a family of symplectic near-identity
maps (for small enough |t |), which means Φt can be obtained in the formula (1.6) by
a generating function S(w, t). Here, S(w, t) is the solution of the Hamilton-Jacobi
equation

∂

∂t
S(w, t) = −µH(Aα∇S(w, t)+ Bαw), (1.8)

where (Aα Bα) is the first row of the blockwise partitioned matrix α−1.
In [16], a family of symplectic integrators for the general Hamiltonian system

(1.1) is introduced by considering the generating function (sometimes referred to as
Poincare’s generating function) corresponding to the choice of Aα = J2n , Bα = −J2n ,
Cα = Dα = 1

2 I2n . one step y )→ Ψh(y) of the symplectic integrator is defined as

Ψh(y) = y + J−1∇S
(
1
2
(y + Ψh(y)), h

)
, (1.9)
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with a generating function defined as

S(z, h) = h
s∑

i=1

αi H(z + hβi1 J−1∇H(z)). (1.10)

They determine values of the parameters αi and βi1 that give rise to a fourth order
method. In [13], 6th order methods are obtained by generalizing (1.10) as

S(z, h) = h
s∑

i=1

bi H(Yi )+
h2

2

s∑

i, j=1

βi j∇H(Yi )⊤ J−1∇H(Y j ), (1.11)

where for i = 1, ..., s,

Yi = z + h J−1
i−1∑

j=1

αi j∇H(Y j ). (1.12)

Constructing methods of higher order than 6 was found very difficult due to the lack
of appropriate simplifying assumptions for explicitly defined Poincare’s generating
functions (1.11).

We try to circumvent this problem by considering a different kind of generating
function (referred to as generating functions of third kind), corresponding to the choice

Aα = −Bα =
(

0 In
−In 0

)
,Cα =

(
0 0
0 In

)
, Dα =

(
In 0
0 0

)
. (1.13)

We thus consider one-step symplectic integrators (p, q) )→ (P, Q) = Ψh(p, q)
defined in terms of a generating function S(x, y, h) as follows

{
P = p − ∂S

∂Q (p, Q, h),

Q = q + ∂S
∂ p (p, Q, h).

(1.14)

The actual definition of the generating functions S(x, y, h) of the family of one-step
symplectic integrators that we propose for Hamiltonian systems with Hamiltonian
of the form (1.4), is given in Sect. 2. Such generating functions are inspired (are a
generalization of), the generating functions of third kind corresponding to symplectic
partitioned Runge–Kutta methods. Indeed, one step (p, q) )→ (P, Q) = Ψh(p, q)
of a symplectic partitioned Runge–Kutta method for a separable system (1.4) can be
expressed [11,18] as (1.14) with S(x, y, h) given by

S(x, y, h) = h
s∑

i=1

(
biU (Qi )+ b̂i T (Pi )

)
+ h2

s∑

i, j=1

b̂ jα j iUq(Qi )
⊤Tp(Pj ), (1.15)
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where for i = 1, . . . , s,
⎧
⎪⎪⎨

⎪⎪⎩

Pi = x − h
s∑

j=1
αi jUq(Q j ),

Qi = y + h
s∑

j=1
α̂i j Tp(Pj ),

(1.16)

where the parameters bi , b̂i , αi j and α̂i j are such that bi α̂i j + b̂ jα j i = 0 for all i, j .
Compared to symplectic partitioned Runge–Kutta methods, which only require the

evaluation of the gradient of the Hamiltonian function, our new methods require in
addition the evaluation of the Hessian matrix times a vector. We stress that the later is
relatively cheap compared to the evaluation of the gradient in the case of many-body
problems.

Also, while there are explicit symplectic partitioned Runge–Kutta methods, our
methods are implicit in Q. (The generating function is explicitly defined.) Compared
to explicit symplectic methods with a given number s of stages, our methods have far
more available parameters that can be used to construct more efficient methods.

Compared to fully implicit Runge–Kutta methods, our methods are only implicit
in the approximation Q at the time-grid points (but not in the internal stages), which
admits very good starting guesses obtained by interpolating from the data of previous
steps.

The plan of the paper is as follows. The definition of the methods is given in
Sect. 2.1. An efficient formulation in terms of the gradients and Hessians of T (p) and
U (q) is given in Sect. 2.2. In Sect. 2.3, we formulate our integrators for non-necessarily
Hamiltonian autonomous ODEs of the form

ṗ = f (q), q̇ = g(p). (1.17)

The order conditions of the proposed integrators for systems of the form (1.17) is
characterized in terms of bi-coloured trees in Sect. 2.4. In Sect. 2.5, we characterize
the order conditions of time-symmetric methods obtained by composing Ψh with its
adjoint. In Sect. 3, we focus on the particular case of separable Hamiltonian systems
with Hamiltonian of the form (1.3), and present some simplifying assumptions which
effectively reduce the number of independent order conditions. We use our simplified
order conditions to construct a time-symmetric 10th order symplectic method by uti-
lizing a explicit defined generating function with s = 5. In Sect. 4, we show the order
of convergence and the numerical behavior of the proposed 10th order method in two
particular Hamiltonian problems. Finally, we summarize some concluding remarks in
Sect. 5.

2 The new family of symplectic methods

2.1 Definition of the family of symplectic integrators

Given a positive integer s and real numbers bi , b̂i (1 ≤ i ≤ s), αi j , α̂i j and βi j (1 ≤
i, j ≤ s), one step (p, q) )→ (P, Q) = Ψh(p, q) of the method is implicitly defined
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by (1.14), where the generating function S(x, y, h) is defined as

S(x, y, h) = h
s∑

i=1

(
biU (Qi )+ b̂i T (Pi )

)
+ h2

s∑

i, j=1

βi jUq(Qi )
⊤Tp(Pj ), (2.1)

where for i = 1, . . . , s,

⎧
⎪⎪⎨

⎪⎪⎩

Pi = x − h
s∑

j=1
αi jUq(Q j ),

Qi = y + h
s∑

j=1
α̂i j Tp(Pj ).

(2.2)

In practice, we will focus on the case where S(x, y, h) is given as an explicit function
of x, y and h. Such case can be achieved when the matrices (αi j ), (̂αi j ) in (2.2) are,
one strictly lower triangular, and the other one lower triangular.

2.2 Efficient formulation in terms of the gradients and Hessians of T(p) and U(q)

In order to implement the integration scheme (1.14) with the generating function
defined by (2.1) and (2.2), ∂S(x,y,h)

∂x and ∂S(x,y,h)
∂ y need to be computed. Let us denote,

for i = 1, . . . , s,

ki = hUq(Qi ), li = hTp(Pi ).

We thus obtain for the differentials of Pi , Qi , ki , li , i = 1, . . . , s,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂Pi
∂x

= I −
s∑

j=1

αi j
∂k j
∂x

,
∂ki
∂x

= h∇2
qU (Qi )

∂Qi

∂x
,

∂Qi

∂x
=

s∑

j=1

α̂i j
∂l j
∂x

,
∂li
∂x

= h∇2
pT (Pi )

∂Pi
∂x

.

(2.3)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂Pi
∂ y

= −
s∑

j=1

αi j
∂k j
∂ y

,
∂ki
∂ y

= h∇2
qU (Qi )

∂Qi

∂ y
,

∂Qi

∂ y
= I +

s∑

j=1

α̂i j
∂l j
∂ y

,
∂li
∂ y

= h∇2
pT (Pi )

∂Pi
∂ y

.

(2.4)
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Applying the technique of reverse differentiation as in [13], we have that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂S(x, y, h)
∂x

=
s∑

i=1

(
b̂i li + h∇2

pT (Pi )ui
)
,

∂S(x, y, h)
∂ y

=
s∑

i=1

(
bi ki + h∇2

qU (Qi )vi
)
,

(2.5)

where, for i = 1, . . . , s,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ui =
s∑

j=1

(
(β j i + b j α̂ j i )k j + α̂ j i h∇2

qU (Q j )v j
)
,

vi =
s∑

j=1

(
(βi j − b̂ jα j i )l j − α j i h∇2

pT (Pj )u j
)
.

(2.6)

2.3 Formulation for autonomous partitioned ODEs

Hamiltonian ODE systems (1.1) with Hamiltonian of the form (1.3) fit into the sepa-
rable ODE format (1.17) where f (q) = −Uq(q) and g(p) = Tp(p).

We thus have that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∂S(p, Q, h)
∂Q

= h
s∑

i=1

(
bi f (Qi )+ f ′(Qi )vi

)
,

∂S(p, Q, h)
∂ p

= h
s∑

i=1

(
b̂i g(Pi )+ g′(Pi )ui

)
,

(2.7)

where f (Qi ) = −Uq(Qi ), g(Pi ) = Tp(Pi ), f ′(Qi ) = −∇2
qU (Qi ), g′(Pi ) =

∇2
pT (Pi ).
Hence, one step of the method

(p, q) )→ (P, Q) = Ψh(p, q) (2.8)

can be expressed as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P = p + h
s∑

i=1

(
bi f (Qi )+ f ′(Qi )vi

)
,

Q = q + h
s∑

i=1

(
b̂i g(Pi )+ g′(Pi )ui

)
,

(2.9)
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where Pi , Qi , ui , vi (i = 1, . . . , s) are defined by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Pi = p + h
s∑

j=1

αi j f (Q j ),

Qi = Q + h
s∑

j=1

α̂i j g(Pj ),

(2.10)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ui = h
s∑

j=1

(
γ̂i j f (Q j ) − α̂ j i f ′(Q j )v j

)
,

vi = h
s∑

j=1

(
γi j g(Pj ) − α j i g′(Pj )u j

)
,

(2.11)

and γi j = βi j − b̂ jα j i , γ̂i j = −β j i − b j α̂ j i , i, j = 1, 2, . . . , s. Observe that Pi , Qi ,
ui , vi (i = 1, . . . , s) are explicitly defined when the matrices (αi j ), (̂αi j ) are lower
triangular and one of them strictly triangular.

Actually, (2.9)–(2.11) defines one step (p, q) )→ (P, Q) = Ψh(p, q) of an inte-
grator for autonomous (non-necessarily Hamiltonian) separable partitioned ODEs of
the form (1.17).

It is worth mentioning that in the particular case where

bi α̂i j + b̂ jα j i = 0, βi j = b̂ jα j i , i, j = 1, . . . , s, (2.12)

the scheme (2.8)–(2.11) is just a symplectic partitioned Runge–Kutta scheme. Indeed,
(2.12) implies that γi j = γ̂i j = 0, for all i, j , hence ui = vi = 0, i = 1, . . . , s.

2.4 P-series expansions

In order to obtain order conditions of the method (2.8)–(2.11) applied to the system of
autonomous ODEs (1.17), we need to expand (P, Q) = Ψh(p, q) as a series in powers
of h and compare it with the series in powers of h of the exact h-flow of the system
(1.17). This can be achieved by using series indexed by bi-coloured rooted trees as in
[11] or in [17]. It is known that, because of the special structure of autonomous ODEs
(1.17), the terms in a P-series corresponding to bi-coloured rooted trees having two
adjacent vertices of the same colour vanish. Thus, only terms corresponding to the set
ST of bi-coloured rooted trees (with, say, black and white vertices) having no edge
joining two vertices with the same color need to be considered.

The formulas and statements that follow in the present subsection can be obtained
from the results given in [17].

Given a bi-coloured rooted tree τ ∈ ST , we denote by |τ | its number of vertices.
In what follows, the term bi-coloured rooted tree will refer to elements τ ∈ ST .

The series expansion in powers of h of the exact h-flow Φh and the expansion
of one step of the numerical method given by (2.8)–(2.11) are characterized by two
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coefficient maps
φ : ST → R, ψ : ST → R.

The numerical method is of order (at least) r if ψ(τ ) = φ(τ ) for each τ ∈ ST with
|τ | ≤ r .

We denote by • (resp. ◦) the bi-coloured rooted tree consisting of a black (resp.
white) root, with no additional vertices. Each bi-coloured rooted tree τ with |τ | ≥ 2
whose root is black (resp. white) can be represented as τ = [τ1 · · · τm]• (resp. τ =
[τ1 · · · τm]◦) where τ1, . . . , τm ∈ ST are the bi-coloured rooted trees obtained by
removing the root of τ .

The coefficient map φ : ST → R characterizing the h-flow Φh is given by φ(τ ) =
1/γ (τ ), where γ : ST → Z+ is recursively defined by γ (•) = γ (◦) = 1 and

γ (τ ) = |τ | γ (τ1) · · · γ (τm)

if τ = [τ1 · · · τm]• or τ = [τ1 · · · τm]◦.
As for the coefficient map ψ : ST → R characterizing one step of the numerical

method given by (2.8)–(2.11), it can be obtained, together with the coefficient maps
ηi , ζ i (i = 1, . . . , s) of (Pi , Qi ) and (ui , vi ) in (2.9)–(2.11) respectively, as follows:
– For bi-coloured rooted trees with one vertex,

ψ(•) =
s∑

i=1

bi , ψ(◦) =
s∑

i=1

b̂i ,

ηi (•) =
s∑

j=1

αi j , ηi (◦) = ψ(◦)+
s∑

j=1

α̂i j ,

ζ̄i (•) =
s∑

j=1

γ̂i j , ζ̄i (◦) =
s∑

j=1

γi j ,

(2.13)

– for each τ = [τ1 · · · τm]•,

ψ(τ ) =
s∑

i=1

bi ηi (τ1) · · · ηi (τm)

+
s∑

i=1

m∑

k=1

ηi (τ1) · · · ηi (τk−1)ζ̄i (τk)ηi (τk+1) · · · ηi (τm),

ηi (τ ) =
s∑

j=1

αi j η j (τ1) · · · η j (τm),

ζ̄i (τ ) =
s∑

j=1

γ̂i j η j (τ1) · · · η j (τm)

−
s∑

j=1

α̂ j i

m∑

k=1

η j (τ1) · · · η j (τk−1)ζ̄ j (τk)η j (τk+1) · · · η j (τm),

(2.14)
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Table 1 Bi-coloured rooted trees
representing free bi-coloured
trees with ≤ 5 vertices

τ

τ

γ (τ ) 1 2 3 4 20 10 5

– for each τ = [τ1 · · · τm]◦,

ψ(τ ) =
s∑

i=1

b̂i ηi (τ1) · · · ηi (τm)

+
s∑

i=1

m∑

k=1

ηi (τ1) · · · ηi (τk−1)ζ̄i (τk)ηi (τk+1) · · · ηi (τm),

ηi (τ ) =ψ(τ )+
s∑

j=1

α̂i j η j (τ1) · · · η j (τm),

ζ̄i (τ ) =
s∑

j=1

γi j η j (τ1) · · · η j (τm)

−
s∑

j=1

α j i

m∑

k=1

η j (τ1) · · · η j (τk−1)ζ̄ j (τk)η j (τk+1) · · · η j (τm).

(2.15)

In addition, the symplecticity of numerical methods acts as a simplifying assump-
tion on the order conditions. This is first noticed in [19] for the study of a class of
symplectic RK methods. As the class of methods we are considering is by construc-
tion symplectic, their corresponding coefficient map ψ : ST → R will satisfy the
symplecticity conditions [1,11], which induce an equivalence relation ∼ in ST .

Two bi-coloured rooted trees are equivalent if they only differ in the location of the
root, that is, if they have the same underlying free bi-coloured tree (obtained from the
bi-coloured rooted tree by forgetting the location of its root).

We will adopt the definition of canonical representatives of the equivalence classes
given in [17]. Let S̃T ⊂ ST be a set of canonical representatives of the equivalence
classes of bi-coloured trees. For example, in Table 1, there is only one free bi-coloured
tree for two vertices in S̃T . Hence, the numerical method Ψh is of order p if

ψ(τ ) = 1
γ (τ )

(2.16)

for all τ ∈ S̃T with |τ | ≤ p.
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2.5 Order conditions of time-symmetric methods obtained by composing9h with
its adjoint

The methods in such family of integration schemes are not time-symmetric, due to
the inherent asymmetry of the definition of one step of the method from its generating
functions of third time together with the explicit nature of the proposed generating
functions. We thus propose constructing time-symmetric methods by composing a
method of the form (2.8)–(2.11) with its adjoint.

For a given integrator Ψh , its adjoint [11,18] integrator is defined as Ψ ∗
h = Ψ −1

−h .
That is, (p, q) )→ (P, Q) = Ψ ∗

h (p, q) is such that

(p, q) = Ψ−h(P, Q).

In the casewhere (P, Q) = Ψh(p, q) is defined as (2.9)–(2.11), (P∗, Q∗) = Ψ ∗
h (p, q)

is given as ⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P∗ = p + h
s∑

i=1

(
bi f (Qi )+ f ′(Qi )vi

)
,

Q∗ = q + h
s∑

i=1

(
b̂i g(Pi )+ g′(Pi )ui

)
,

(2.17)

where Pi , Qi , ui , vi (i = 1, 2, . . . , s) are defined by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Pi = P∗ − h
s∑

j=1

αi j f (Q j ),

Qi = q − h
s∑

j=1

α̂i j g(Pj ),

(2.18)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ui = −h
s∑

j=1

(
γ̂i j f (Q j ) − α̂ j i f ′(Q j )v j

)
,

vi = −h
s∑

j=1

(
γi j g(Pj ) − α j i g′(Pj )u j

)
.

(2.19)

We next give a characterization of the order of the time-symmetric method

(p, q) )→ (P, Q) = Ψ ∗
h/2 ◦ Ψh/2(p, q), (2.20)

together with the order of Ψh , in terms of the series expansion in powers of h of
Ψh ◦ Φ−h . Observe that, since in our case both Ψh and Φh admit a P-series expansion
indexed by bi-coloured rooted trees in ST , and the composition of P-series is again a
P-series [10], Ψh ◦ Φ−h can also be expanded as a P-series.
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Theorem 2.1 Let ψ̄ : ST → R be the coefficient map corresponding to the P-series
expansion of Ψh ◦ Φ−h, and let r be an even number and r ′ ≤ r . The symplectic
integrator Ψh is order at least r ′ if

ψ̄(τ ) = 0 (2.21)

for all τ ∈ S̃T with |τ | ≤ r ′. If in addition (2.21) holds for all τ ∈ S̃T with odd
|τ | < r , then the time-symmetric symplectic method (2.20) is of order at least r .

Proof The integrator Ψh is of order r ′ if Ψh = Φh + O(hr
′+1) which is equivalent to

Ψh ◦Φ−h = Iid+O(hr
′+1), where Iid is identitymap. Hence,Ψh is of order r ′ if (2.21)

holds for all τ ∈ ST with |τ | ≤ r ′. Since Ψh ◦ Φ−h is symplectic, then it is enough to
restrict to bi-coloured rooted trees in the set S̃T of canonical representatives.

The method (2.20) is of order r if Ψ ∗
h ◦ Ψh = Φ2h +O(hr+1) which is equivalent

(since Φ2h = Φh ◦ Φh and Φ−1
h = Φ−h) to

Ψh ◦ Φ−h − Ψ−h ◦ Φh = O(hr+1). (2.22)

The terms in the left-hand side of (2.22) corresponding to even powers of h identically
vanish. Similarly, the terms corresponding to odd powers of h in the series expansions
ofΨh ◦Φ−h and−Ψ−h ◦Φh coincide. Since ψ̄ : ST → R are the coefficient map cor-
responding to the P-series expansion of Ψh ◦ Φ−h , the time-symmetric method (2.20)
is of order at least r if ψ̄(τ ) = 0 for all τ ∈ ST with odd |τ | < r . Again, it is enough
to consider only bi-coloured rooted trees in the set S̃T of canonical representatives.
Indeed, by symplecticity of Ψh ◦ Φ−h , if τ, τ ′ ∈ ST are two equivalent bi-coloured
rooted trees with their roots located in adjacent vertices of their corresponding free bi-
coloured tree, then ψ̄(τ )+ ψ̄(τ ′) = ψ̄(τ1)ψ̄(τ2) where τ1 and τ2 are the bi-coloured
rooted trees obtained from that free bi-coloured tree by removing the edge connecting
the vertices where the roots of τ and τ ′ are located respectively. If |τ | = |τ ′| is odd,
then either |τ1| or |τ2| is odd as well. This allows us to prove by induction on r that,
if (2.21) holds for all τ ∈ S̃T with odd |τ | < r , then (2.21) holds for all τ ∈ ST with
odd |τ | < r . ⊓1

The required P-series coefficients ψ̄(τ ) of Ψh ◦ Φ−h can be obtained from the
P-series coefficient maps ψ,φ : ST → R by using the known formulas for the
composition of P-series [10,17]. Alternatively, they can be obtained similarly to the
coefficients ψ(τ ) in previous subsection as follows:
– For bi-coloured rooted trees with one vertex,

ψ̄(•) = −1+
s∑

i=1

bi , ψ̄(◦) = −1+
s∑

i=1

b̂i ,

η̄i (•) = −1+
s∑

j=1

αi j , η̄i (◦) = ψ̄(◦)+
s∑

j=1

α̂i j , (2.23)

¯̄ζ i (•) =
s∑

j=1

γ̂i j ,
¯̄ζ i (◦) =

s∑

j=1

γi j ,
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– for each τ = [τ1 · · · τm]•,

ψ̄(τ ) = (−1)|τ |

γ (τ )
+

s∑

i=1

bi η̄i (τ1) · · · η̄i (τm)

+
s∑

i=1

m∑

k=1

η̄i (τ1) · · · η̄i (τk−1)
¯̄ζ i (τk)η̄i (τk+1) · · · η̄i (τm),

η̄i (τ ) = (−1)|τ |

γ (τ )
+

s∑

j=1

αi j η̄ j (τ1) · · · η̄ j (τm),

¯̄ζ i (τ ) =
s∑

j=1

γ̂i j η̄ j (τ1) · · · η̄ j (τm)

−
s∑

j=1

α̂ j i

m∑

k=1

η̄ j (τ1) · · · η̄ j (τk−1)
¯̄ζ j (τk)η̄ j (τk+1) · · · η̄ j (τm),

(2.24)

– for each τ = [τ1 · · · τm]◦,

ψ̄(τ ) = (−1)|τ |

γ (τ )
+

s∑

i=1

b̂i η̄i (τ1) · · · η̄i (τm)

+
s∑

i=1

m∑

k=1

η̄i (τ1) · · · η̄i (τk−1)
¯̄ζ i (τk)η̄i (τk+1) · · · η̄i (τm),

η̄i (τ ) = ψ̄(τ )+
s∑

j=1

α̂i j η̄ j (τ1) · · · η̄ j (τm),

¯̄ζ i (τ ) =
s∑

j=1

γi j η̄ j (τ1) · · · η̄ j (τm)

−
s∑

j=1

α j i

m∑

k=1

η̄ j (τ1) · · · η̄ j (τk−1)
¯̄ζ j (τk)η̄ j (τk+1) · · · η̄ j (τm).

(2.25)

Bi-coloured rooted trees τ ∈ S̃T with odd |τ | ≤ 5 are displayed in Table 1. In
Tables 2 and 3, bi-coloured rooted trees τ ∈ S̃T with |τ | = 7 are displayed.

Table 2 Bi-coloured rooted
trees representing free
bi-coloured trees with 7 vertices τ

τ

γ (τ ) 252 126 63 84 42 42
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Table 3 Bi-coloured rooted
trees representing free
bi-coloured trees with 7 vertices

τ

τ

γ (τ ) 21 56 28 14 7

3 Methods for Hamiltonians with quadratic kinetic energy

We now consider the particular Hamiltonian systems where the kinetic energy is
quadratic, that is, with Hamiltonians of the form

H(p, q) = 1
2
p⊤M−1 p +U (q), (3.1)

where M is a invertible symmetric matrix.
In that case, the terms in the P-series expansion of Ψh , Φh , and Ψh ◦ Φ−h corre-

sponding to the bi-coloured rooted trees having a white vertex with more than two
edges vanish. So the order conditions corresponding to such trees need not be consid-
ered. Our goal is to construct a time-symmetric method that is of order 10 for systems
with Hamiltonians of the form (3.1). We next consider some simplifying assumptions
with the aim of further reducing the number of independent order conditions required
to attain order 10.

3.1 Simplifying assumptions

We will consider schemes (2.8)–(2.11) such that their corresponding P-series coeffi-
cient maps ηi , ζ̄i (i = 1, . . . , s) satisfy the following

ηi ( ) = 1
2
ηi ( )2 and ζ̄i ( ) = ηi ( )ζ̄i ( ). (3.2)

By assuming that the integrator (2.8)–(2.11) is at least of secondorder, so thatψ(◦) = 1
and ψ( ) = 1

2 , such simplifying assumptions read

1
2
+

s∑

j=1

α̂i j c j =
ĉ2i
2
,

s∑

j=1

(γi j c j − α j i d j ) = ĉi d̂i , (3.3)

for i = 1, . . . , s, where

ci =
s∑

j=1

αi j , ĉi = 1+
s∑

j=1

α̂i j , di =
s∑

j=1

γ̂i j , d̂i =
s∑

j=1

γi j . (3.4)
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Next proposition shows the effect of the simplifying assumptions (3.2) on the coef-
ficient maps ψ, ηi , ζ̄i (resp. ψ̄, η̄i ,

¯̄ζ i ) of the scheme given in (2.13)–(2.15) [resp.
(2.23)–(2.25)].

Proposition 3.1 If τ, τ ′ ∈ ST are such that τ ′ can be obtained from τ by replacing
a subtree whose root is joined (by and edge of τ ) to a given vertex of τ , by two
white vertices joined to the same vertex, then φ(τ ′) = 2φ(τ ). If (3.2) holds, then
ψ(τ ′) = 2ψ(τ ) and ψ̄(τ ′) = 2ψ̄(τ ) for i = 1, . . . , s, ηi (τ

′) = 2ηi (τ ), ζ̄i (τ
′) =

2ζ̄i (τ ), η̄i (τ ′) = 2η̄i (τ ), ¯̄ζ i (τ ′) = 2 ¯̄ζ i (τ ).

Proof The result for the P-series coefficients φ(τ ) = 1/γ (τ ) of the h-flow is standard.
The result for ψ, ηi , ζ̄i (resp. ψ̄, η̄i ,

¯̄ζ i ) follows trivially from (2.13)–(2.15) [resp.
(2.23)–(2.25)] in the case where the subtree that is transformed in two white
vertices is joined to the root of τ . The cases where that subtree is joined to a vertex
that is from a topological distance of k vertices from the root are proven by induction
on k. ⊓1

Proposition 3.1 clearly implies that, under the assumption that (3.2) holds, then the
order condition of any bi-coloured rooted tree that is equivalent (in the sense of having
the same underlying free bi-coloured rooted tree) to a bi-coloured rooted tree having
one or more subtrees of the form need not be considered.

3.2 Order conditions for a time-symmetric method of order 10

Our goal is to construct a time-symmetric symplectic scheme

(p, q) )→ (P, Q) = Ψ ∗
h/2 ◦ Ψh/2(p, q), (3.5)

(withΨh determined by (2.8)–(2.11)), that is of order 10 when applied to Hamiltonian
systems with Hamiltonian of the form (3.1). Recall that time-symmetry (in addition
to being a property of the flow of the system that is convenient to preserve by the
numerical integrator) helps to reduce the number of independent order conditions that
are required to attain a given order. In addition, we will require that Ψh itself is of
order 5.

The characterization of the order conditions given in Theorem 2.1 in terms of the
coefficients ψ̄(τ ) (and the auxiliary ones η̄i and ¯̄ζ i , i = 1, . . . , s) determined by
(2.23)–(2.25) is still valid, but now fewer bi-coloured rooted trees (of odd number of
vertices) need to be considered:

– Since we aim at applying our integrators to Hamiltonian systemswith Hamiltonian
of the form (3.1), the order conditions corresponding to bi-coloured rooted trees
having a white vertex with more than two edges need not be considered. For
example, in Table 1, the fourth tree in the second row is missing.

– In addition, the map (P, Q) = Ψh(p, q) given by (2.9)–(2.11) will be chosen so
that the simplifying assumptions (3.3)–(3.4) hold true, and thus Proposition 3.1
can be applied. This implies that the order conditions of bi-coloured rooted trees
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Table 4 Relevant bi-coloured
rooted trees with 9 vertices

k 1 2 3 4 5

τ9,k

γ (τ9,k ) 1296 5184 864 144 648

k 6 7 8 9

τ9,k

γ (τ9,k ) 108 324 54 9

(that are equivalent to some bi-coloured rooted trees) having one or more subtrees
of the form need not be considered.

For instance, an arbitrary time-symmetric method (3.5), with Ψh determined by
(2.8)–(2.11) not necessarily satisfying our simplifying assumptions (3.2), will be of
order 8 for arbitrary Hamiltonian systems with separable Hamiltonian, if (2.21) holds
for the 32 bi-coloured rooted trees τ ∈ S̃T with odd |τ | ≤ 7 (Tables 1, 2, 3). Under the
assumptions (3.2), only 11 trees need to be considered for systems with Hamiltonians
of the form (3.1). As for order 10, there are 94 bi-coloured free trees with 9 vertices, but
only 9 of them are additionally required for Hamiltonians of the form (3.1), provided
that the simplifying assumptions hold. Their canonical representatives are displayed
in Table 4.

Summing up, given a symplectic method (2.8)–(2.11) satisfying the simplifying
assumptions (3.2), our time-symmetric method (3.5) will be of order 10 while Ψh
being of order 5 if

ψ̄(τ ) = 0 (3.6)

holds for the 20 surviving bi-coloured rooted trees τ with 1, 2, 3, 4, 5, 7, and 9 vertices.
More precisely,

ψ̄( ) = −1+
s∑

i=1

bi ,

ψ̄( ) = −1+
s∑

i=1

b̂i ,

ψ̄( ) = 1
2
+

s∑

i=1

(
bi η̄i ( )+ ζ̄i ( )

)
,

ψ̄( ) = −1
3
+

s∑

i=1

(
bi η̄i ( )2 + 2η̄i ( )ζ̄i ( )

)
,

ψ̄( ) = 1
4
+

s∑

i=1

(
bi η̄i ( )3 + 3η̄i ( )2ζ̄i ( )

)
,
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ψ̄( ) = − 1
20

+
s∑

i=1

(
b̂i η̄i ( )2 + 2η̄i ( )ζ̄i ( ))

)
,

ψ̄( ) = −1
5
+

s∑

i=1

(
bi η̄i ( )4 + 4η̄i ( )3ζ̄i ( )

)
,

ψ̄( ) = − 1
252

+
s∑

i=1

(
bi η̄i ( )2 + 2η̄i ( )ζ̄i ( )

)
,

ψ̄( ) = − 1
63

+
s∑

i=1

(
b̂i η̄i ( )2 + 2η̄i ( )ζ̄i ( )

)
,

ψ̄( ) = − 1
42

+
s∑

i=1

(
bi η̄i ( )3η̄i ( )+ η̄i ( )3ζ̄i ( )

+3η̄i ( )2η̄i ( )ζ̄i ( )
)
,

ψ̄( ) = −1
7
+

s∑

i=1

(
bi η̄i ( )6 + 6η̄i ( )5ζ̄i ( )

)
,

ψ̄(τ9,1) = − 1
1296

+
s∑

i=1

(
bi η̄i ( )2 + 2η̄i ( )ζ̄i ( )

)
,

ψ̄(τ9,2) = − 1
5184

+
s∑

i=1

(
b̂i η̄i ( )2 + 2η̄i ( )ζ̄i ( )

)
,

ψ̄(τ9,3) = − 1
864

+
s∑

i=1

(
b̂i η̄i ( )η̄i ( )+ η̄i ( )ζ̄i ( )

+η̄i ( )ζ̄i ( )
)
,

ψ̄(τ9,4) = − 1
144

+
s∑

i=1

(
b̂i η̄i ( )2 + 2η̄i ( )ζ̄i ( )

)
,

ψ̄(τ9,5) = − 1
648

+
s∑

i=1

(
bi η̄i ( )η̄i ( )η̄i ( )+ η̄i ( )η̄i ( )ζ̄i ( )

+η̄i ( )η̄i ( )ζ̄i ( )+ η̄i ( )η̄i ( )ζ̄i ( )
)
,

ψ̄(τ9,6) = − 1
108

+
s∑

i=1

(
bi η̄i ( )4η̄i ( )+ η̄i ( )4ζ̄i ( )

+4η̄i ( )3η̄i ( )ζ̄i ( )
)
,

ψ̄(τ9,7) = − 1
324

+
s∑

i=1

(
bi η̄i ( )2η̄i ( )2 + 2η̄i ( )2η̄i ( )ζ̄i ( )

+2η̄i ( )η̄i ( )2ζ̄i ( )
)
,
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ψ̄(τ9,8) = − 1
54

+
s∑

i=1

(
bi η̄i ( )5η̄i ( )+ η̄i ( )5ζ̄i ( )

+5η̄i ( )4η̄i ( )ζ̄i ( )
)
,

ψ̄(τ9,9) = −1
9
+

s∑

i=1

(
bi η̄i ( )8 + 8η̄i ( )7ζ̄i ( )

)
,

where τ9,k are displayed in Table 4, and for each i = 1, . . . , s,

η̄i ( ) = −1+
s∑

j=1

αi j ,

η̄i ( ) = ψ̄( )+
s∑

j=1

α̂i j ,

η̄i ( ) = 1
2
+

s∑

j=1

αi j η̄ j ( ),

η̄i ( ) = ψ̄( )+
s∑

j=1

α̂i j η̄ j ( ),

η̄i ( ) = −1
3
+

s∑

j=1

αi j η̄ j ( )2,

η̄i ( ) = ψ̄( )+
s∑

j=1

α̂i j η̄ j ( ),

η̄i ( ) = 1
24

+
s∑

j=1

αi j η̄ j ( ),

η̄i ( ) = 1
4
+

s∑

j=1

αi j η̄ j ( )3,

ζ̄i ( ) =
s∑

j=1

γ̂i j ,

ζ̄i ( ) =
s∑

j=1

γi j ,

ζ̄i ( ) =
s∑

j=1

(
γ̂i j η̄ j ( ) − α̂ j i ζ̄ j ( )

)
,

ζ̄i ( ) =
s∑

j=1

(
γi j η̄ j ( ) − α j i ζ̄ j ( )

)
,

123



New high order symplectic integrators via generating functions…

ζ̄i ( ) =
s∑

j=1

(
γ̂i j η̄ j ( )2 − 2α̂ j i η̄ j ( )ζ̄ j ( )

)
,

ζ̄i ( ) =
s∑

j=1

(
γi j η̄ j ( ) − α j i ζ̄ j ( )

)
,

ζ̄i ( ) =
s∑

j=1

(
γ̂i j η̄ j ( ) − α̂ j i ζ̄ j ( )

)
,

ζ̄i ( ) =
s∑

j=1

(
γ̂i j η̄ j ( )3 − 3α̂ j i η̄ j ( )2ζ̄ j ( )

)
.

3.3 Construction of a time-symmetric 10th order method with underlying 5th
order method

With the aim to show that 10th order methods exist, we fix s = 5, choose two vectors
(c1, . . . , cs) and (ĉ1, . . . , ĉs),

Since we want the underlying scheme (2.8)–(2.11) to be implicit only on Q, we
require (̂αi j ) to be a strictly lower triangular matrix, and (αi j ) lower triangular. We
thus have 2(s2 + s) parameters ((bi ), (̂bi ), (αi j ), (̂αi j ), (βi j )) to be determined for a
method with s stages. As we aim at determining an underlying method (2.8)–(2.11)
satisfying the simplifying assumptions (3.3)–(3.4), which is of order 5, and such that
the time-symmetric composition (3.5) is of order 10.We thus have 20+2s constraints.

Hence, for s = 4, we have 4 more parameters than equations. However we have
not been able to find any solution of that system of polynomial equations. We thus
fix s = 5, and proceed as follows. We choose at random an strictly lower triangular
matrix (̂αi j ) and a lower triangularmatrix (αi j ) such that the first equality in (3.3) (with
ci and ĉi given in (3.4)) holds. Then, the 20 order conditions and the s simplifying
assumptions in the right-hand equality in (3.3) are linear in the parameters of the
method that are not determined so far, that is, the entries of the s × s matrix (βi j ) and
the two vectors (b1, . . . , bs) and (b̂1, . . . , b̂s). Actually, we have an underdetermined
system of 25 linear equations with s2 + 2s unknowns. We compute (by means of
Penrose’s pseudo-inverse) the solution that minimizes the entries of (bi ), (̂bi ), (βi j )
in the least squares sense. We repeatedly apply that process until a solution with
reasonably small values of the parameters is obtained. We finally use that solution as
a starting guess of a local minimization algorithm to minimize in the least squares
sense the entries of (bi ), (̂bi ), (αi j ), (̂αi j ), (βi j ) subject to our 20+ 2s constraints. A
solution obtained this way is shown next. (The entries of (bi ), (̂bi ), (βi j ) are given as
rational approximations that are accurate to 30 decimal digits.)

b =
( 79528452594427
386833405960979 ,

179619393320206
717409375724581 ,

309681925308569
1457507220827293 ,

184104799644601
1265839638241819 ,

243774183543697
1309734794251835

)
,

b̂ =
( 134982025613281
856310414670211 ,

109103259075824
465584013540749 ,

98570501656192
544519467509031 ,

233403115094213
946365272264325 ,

203587841462900
1128676441563873

)
,
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α =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

789
1114 0 0 0 0

− 88
729

157343
198288 0 0 0

4
241

9
148 − 126827

918451 0 0
11
252 − 35

271
142
353 − 569861659

5375877948 0

− 2
317

4
295 − 9

257
101
837

1075768155334
13538012904855

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

α̂ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

− 325
557 0 0 0 0

− 115901117
129086325

46777472
129086325 0 0 0

− 105
404 − 90472501705

195368240717 − 96250749591
781472962868 0 0

− 65
1083 − 17

368 − 1142528784789967
12733222902177600

2052082132758907
12733222902177600 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

β =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

10846865048720
154621659615453

200092830817094
1041215810642403 − 9075135198727

955800339152999 − 112731853571272
1711667121556705 − 22282103883473

875662058306578
497761452818450
2124356303065639 − 547570929196952

3565057102686285 − 10824793235937
1712088519188863

110265031898277
868975611673961 − 4329638758393

463468420400887
19753390670156
1045118056635089

91519141738531
646606242893693

238213366737873
2045376887929309 − 208672069835317

711918285271484
22318397231703
726005457849671

39146818853558
993278772571567 − 32117007460523

681170618194107 − 19248244465552
639378376498825

159678125697655
1207908196468101 − 76915371229387

611530411975323

− 8060156497242
445547130616549 − 396145793969596

3774913235893365
72235313246467
898704158675425 − 54898005606614

2162876624381563 − 18534289090223
491074839296518

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

4 The numerical experiments

In this section, we check (for a two-body problem, and for an 9-body problem repre-
senting to the solar system) that the time-symmetric symplectic method presented in
Sect. 3.3 actually exhibits over 10th order behaviour.

In the case of Hamiltonians of the form H(p, q) = 1
2 p

⊤ p +U (q), we obtain the
following simple form of symplectic integrator (p, q) )→ (P, Q) = Ψh(p, q)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P = p + h
s∑

i=1

(
bi f (Qi )+ vi

)
,

Q = q + hp + h2
s∑

i=1

(
d̂i f (Qi ) − ĉivi

)
,

Qi = Q + hĉi p + h2
s∑

j=1
ai j f (Q j ),

vi = f ′(Qi )
[
h cri p + h2

s∑
j=1

(
ηi j f (Q j )+ a jiv j

)]
,

where d̂i = ∑s
j=1(γ̂ j i + b̂ jα j i ), ĉi = ∑s

j=1 α̂i j , cri = ∑s
j=1 γi j , ηi j =∑s

k=1(γikαk j − αki γ̂k j ), ai j =
∑s

k=1 α̂ikαk j , and (ai j ) is a strictly lower triangular
matrix.

Observe that Qi , vi (i = 1, . . . , s) and P are explicitly defined as functions of h,
p, q, and Q, so that Q is implicitly defined with an equation of the form

Q = q + hp + h2G(p, q, Q, h). (4.1)
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Equation (4.1) can be solved for small enough step-sizes h by simple fixed-point
iteration. Similarly, the adjointΨ ∗

h ofΨh is implicit only on P , which can be computed
by fixed point iteration for small enough step-sizes h.

We compare our method (that we denote as Ψ 10) with the 10th order Gauss–
Runge–Kutta method Ψ grk (the 5-stage implicit Runge–Kutta with Gauss-Legendre
collocation nodes) and a 10th order explicit symplectic integrator Ψ ss (obtained from
Stormer–Verlet as basic integrator by applying the very efficient composition scheme
of 35 stages constructed by Sofroniou and Spaletta [21]).

In our current implementation of the 10th order integrator Ψ 10
h = Ψ ∗

h/2 ◦ Ψh/2, in
the computation ofΨh/2 (resp.Ψ ∗

h/2), we apply fixed point iteration for Q (resp. for P)
with starting value obtained as the truncated Taylor expansion of degree 6 for the exact
solution. As for the implicit Runge–Kutta methodΨ grk , we apply fixed point iteration
adapted for separable problems with starting values computed by extrapolation from
the previous step (see [11]).

4.1 The two-body problem

The gravitational two-body problem, can be recast, after eliminating the center of
masses and the linear momentum, as a Hamiltonian systemwith Hamiltonian function

H(p1, p2, q1, q2) =
1
2
(p21 + p22) − 1

√
q11 + q22

, (4.2)

i.e. ⎧
⎨

⎩
ṗi = − qi

(q21 + q22 )
3/2

,

q̇i = pi , i = 1, 2.
(4.3)

The exact solution of the Kepler problem (4.3) with initial conditions

q1(0) = r0, q2(0) = 0, p1(0) = 0, p2(0) = v0 (4.4)

describes an elliptic orbit with semi-major axis a = 1/(2/r0 − v20), and eccentricity
e = 1 − r0/a provided that a > 0. The exact solution is

q1(t) =
cos(E(t)) − e

1 − e
r0, q2(t) =

1 − e
ω

sin(E(t)) v0

(with p1(t) = q ′
1(t) and p2(t) = q ′

2(t)) where E(t) is the solution of the Kepler
equation

E(t) − e sin(E(t)) = a−3/2 t . (4.5)

Clearly, it is a periodic solution with period T = 2π a3/2.
We have integrated the considered initial value problem (4.3)–(4.4) with r0 = 4

and v0 = √
13/40 (in which case one has a = 40/7, e = 3/10) over a time interval
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Fig. 1 Maximum energy variation errH (h) versus step-size h = T /n in double logarithmic scale

t ∈ [0, T ], with T = 2π a3/2 (i.e., over one period) by applying Ψ 10, Ψ ss and Ψ grk

with different step-sizes h = T /n. We denote the maximum energy variation

errH (T /n) = max
k=1,...,n

∣∣∣∣
H(pk, qk) − H(p0, q0)

H(p0, q0)

∣∣∣∣. (4.6)

The maximum variation in energy along the trajectory versus the step-size in double
logarithmic scale is displayed in Fig. 1. We also consider the maximum global error
in positions (position error, for short)

errq(T /n) = max
k=1,...,n

||qn − q(T )||2. (4.7)

The position error versus the step size h = T /n in double logarithmic scale is displayed
in Fig. 2. A 10th order behavior can be observed (both in Figs. 1 and 2) for the three
integrators.

4.2 The numerical experiment 2

We now consider a simple point mass model of the Solar System: a main massive
body (the Sun) and the eight planets orbiting the Sun following almost Keplerian
trajectories, which is a Hamiltonian system with Hamiltonian

H(p, q) = 1
2

8∑

i=0

1
mi

p⊤
i pi − G

8∑

i=1

i−1∑

j=0

mim j

||qi − q j ||
, (4.8)

where p and q are the supervectors composed by the vectors pi , qi ∈ R3, i =
0, 1, . . . , 8.
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Fig. 2 Position errors errq (h) versus step-size h = T /n in double logarithmic scale
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Fig. 3 Maximum energy variation errH (h) versus the step-size h = T /n in double logarithmic scale

The distances are in astronomical units (1[A.U.]=149 597870[km]), times in earth
days. The initial conditions and mass parameters (see “Appendix A” Table 5) have
been taken from INPOP10 [8] (http://www.imcce.fr/inpop/).

Wehave integrated the initial value problemover a time interval [0, T ]withT = 104

with different step-sizes h = T /n. We denote the maximum energy variation by

errH (T /n) = max
k=1,...,n

∣∣∣∣
H(pk, qk) − H(p0, q0)

H(p0, q0)

∣∣∣∣. (4.9)

Maximum variation in energy along the trajectory versus the step-size in double log-
arithmic scale is displayed in Fig. 3. The efficiency diagram of maximum variation
in energy along the trajectory versus CPU time is displayed in Fig. 4, the maximum
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Fig. 4 Maximum energy variation errH (h) versus cpu time, the maximum energy variation in logarithmic
scale

energy variation in logarithmic scale. We observe in Fig. 4 that our integrator Ψ 10

is clearly more efficient than Ψ grk . On the other hand, the efficiency of our current
implementation of Ψ 10 is similar to that of the integrator Ψ ss (slightly better for high
precision). However, the implementation of the explicit integratorΨ ss essentially can-
not be improved, while there is still room for improvement in the implementation of
Ψ 10. Actually, we believe that the current implementation of our implicit integrator
can be considerably improved, by computing cheap good initial guesses based on the
results of the previous step (as it is already done in our implementation ofΨ grk), and by
solving the implicit equations required at each step by a Newton-like iteration (instead
of by fixed point iteration) that uses some good (and relatively cheap) approximation
of the inverse of the required Jacobian matrix in terms of Hessian matrix (by using
similar techniques to those proposed in [15], adapted to the mono-implicit structure
of our integrators).

5 Concluding remarks

We have presented a new class of one-step symplectic integration schemes for Hamil-
tonian systems with Hamiltonians of the form H(p, q) = T (p) + U (q). Our new
integration methods are constructed in terms of an explicitly defined generating func-
tion (of the third kind), which automatically determines a symplecticmap. Such family
of methods are closely related to the methods introduced in [13,16]. The order condi-
tions of such methods are studied in terms of bi-coloured trees, and some simplifying
assumptions are proposed that reduces the number of independent conditions.

In particular, a family of time-symmetric 10th order symplectic integrationmethods
is constructed for the special separable Hamiltonian systems with Hamiltonians of the
form H(p, q) = 1

2 p
⊤M−1 p +U (q).
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Compared to explicit symplectic partitioned Runge–Kutta methods, which only
require the evaluation of the gradient of the Hamiltonian function, our new methods
require in addition the evaluation of the Hessian matrix times a vector. For many-body
problems, one evaluation of the gradient of the potential together with the action of
its Hessian on vectors is typically cheaper than two evaluations of the gradient [15].

It must be stressed that, while we have obtained a 10th order method with s = 5
stages that locally minimize the size of the method parameters in the least squares
sense, a more extensive exploration of the space of parameters should be made, opti-
mizing the methods in a multi-objective sense (taking into account, in addition to the
size of the coefficients, for instance, the size of the residuals of the leading local error
coefficients). We plan to do this n the near future, together with an optimized care-
ful implementation (along the lines mentioned at the end of previous section) of the
application of our integrators to many-body problems.
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Appendix A

Table 5 The initial values of the sun and the eight planets in the Solar System in the rectangular coordinates
(x, y, x)

Celestial body G*mass Initial position Initial velocity

Sun 0.2959122083684144D-03 −0.7136455863204587D-02 0.5378460509916422D-05

−0.2647034369379783D-02 −0.6758188010324566D-05

−0.9229892505496660D-03 −0.3032853127487478D-05

Mercury 0.4912547451450812D-10 −0.1372300604044608D+00 0.2137177410373583D-01

−0.4032407549582179D+00 −0.4933057845768988D-02

−0.2014122961813283D+00 −0.4850465824782499D-02

Venus 0.7243452486162703D-09 −0.7254387523043796D+00 0.8034959695360596D-03

−0.4892128064383859D-01 −0.1849859566689047D-01

0.2371764876743381D-01 −0.8372768202283038D-02

Earth 0.8997011603631609D-09 −0.1842952397799571D+00 −0.1719773059711599D-01

0.8847598247153874D+00 −0.2909600200841075D-02

0.3838137291658033D+00 −0.1261542481279748D-02

Mars 0.9549535105779258D-10 0.1383579466034955D+01 0.6768779851778725D-03

−0.1245817406488680D-02 0.1380727932292873D-01

−0.3788315570928926D-01 0.6314867592550115D-02
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Table 5 continued

Celestial body G*mass Initial position Initial velocity

Jupiter 0.2825345842083778D-06 0.3994040727569959D+01 −0.4562935030967951D-02

0.2733931551497335D+01 0.5874704016500655D-02

0.1074589534370346D+01 0.2629270097583528D-02

Saturn 0.8459715185680659D-07 0.6399272407330191D+01 −0.4286973415229299D-02

0.6172010777712233D+01 0.3521586379637339D-02

0.2273847748703642D+01 0.1638898666195764D-02

Uranus 0.1292024916781969D-07 0.1442472013917530D+02 0.2683482937370634D-02

−0.1250891021661682D+02 0.2455247222284456D-02

−0.5682605953506514D+01 0.1037377699162441D-02

Neptune 0.1524358900784276D-07 0.1680491152960319D+02 0.2584652661920899D-02

−0.2298275092881995D+02 0.1661666325918560D-02

−0.9825343431971598D+01 0.6157837652766749D-03
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