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Abstract

We present an approach that allows performing computations related to the
Baker-Campbell-Haussdorff (BCH) formula and its generalizations in an arbitrary
Hall basis, using labeled rooted trees. In particular, we provide explicit formulas
(given in terms of the structure of certain labeled rooted trees) of the continuous
BCH formula. We develop a rewriting algorithm (based on labeled rooted trees) in
the dual Poincaré-Birkhoff-Witt (PBW) basis associated to an arbitrary Hall set,
that allows handling Lie series, exponentials of Lie series, and related series written
in the PBW basis. At the end of the paper we show that our approach is actu-
ally based on an explicit description of an epimorphism ν of Hopf algebras from the
commutative Hopf algebra of labeled rooted trees to the shuffle Hopf algebra and its
kernel ker ν.

1 Introduction, general setting, and examples

Consider a d-dimensional system of non-autonomous ODEs of the form

d

dτ
y = λ1(τ)f1(y) + λ2(τ)f2(y), (1)

with smooth maps f1, f2 : Rd → Rd, and integrable functions λ1, λ2 : R+ → R. Let E1

and E2 be the vector fields (or Lie operators) associated to f1 and f2 respectively, that is
Ea =

∑d

i=1 f
i
a

∂
∂yi , for a ∈ {1, 2}. The solutions y(τ) of (1) can be expanded as follows.

Given a smooth g : Rd → R,

g(y(τ)) = g(y(0)) +
∑

m≥1

∑

i1,...,im∈A

αi1···im Ei1 · · ·Eimg(y(0)), (2)
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where, for each word w = i1 · · · im ∈ A∗ over the alphabet A = {1, 2},

αi1···im(τ) =

∫ τ

0

∫ τm

0

· · ·

∫ τ2

0

λi1(τ1) · · ·λim(τm) dτ1 · · · dτm. (3)

Hereafter, A∗ denotes the set of words on the alphabet A (i.e., the free monoid over the set
A). Systems of ODEs of the form (1) arise in many applications, for instance, in non-linear
control [15], where it can be used to model systems with two controls λ1, λ2 (or also, with
λ1(τ) ≡ 1, systems with shift and one control λ2). Series of the form (2)–(3) are referred
to as Chen-Fliess series in this context. The series of linear differential operators on the
right-hand side of (2) can be written in the form

∑

w∈A∗

αw Ew, (4)

where A∗ denotes the set of words on the alphabet A = {1, 2}, including the empty word
e, the function αw is given for each w ∈ A∗ in (3), and

Ee = I, Ew = Ea1 · · ·Eam
, if w = a1 · · ·am ∈ A∗, (5)

I being the identity operator.
A well-know result due to Chen [6] implies that the series (4) can be formally rewritten

as the exponential of a series of vector fields obtained as nested commutators of E1 and
E2. One of the goals of the present work (Subsection 4.2) is to obtain explicit formulas for
such series of vector fields (the continuous Baker-Campbell-Hausdorff formula), expressed
in appropriate basis of the Lie algebra generated by the vector fields E1 and E2. A different
approach that explicitly expresses the continuous BCH formula can be found in [22]. How-
ever, compared to our formula, in [22], the continuous BCH formula is written in terms of
a spanning set of the free Lie algebra instead of a basis.

It is important to observe that expansions with very similar form with the same under-
lying combinatorics arise in many other applications. For instance, composition methods in
numerical analysis of ODEs [18, 17] (Example 3 below), stochastic differential equations [2]
(Example 2), or matrix differential equations on Lie groups [14] (Example 4).

We consider series of the form (4) where the coefficients αw are elements in a certain
commutative ring K with unit 1K, A is a set of indices referred to as the alphabet, and the
basic objects Ea, a ∈ A, are the generators of a (non-necessarily commutative) associative
algebra B over K. Obviously, all the elements of B can be written in the form (4), where
αw ∈ K for each w ∈ A∗ (αw being 6= 0 for a finite number of words w), and each Ew

(w ∈ A∗) is given by (5), I being the unity in B. If the algebra B is freely generated by
{Ea : a ∈ A}, then such representation is unique. It is straightforward to check that

(
∑

w∈A∗

αw Ew

)(
∑

w∈A∗

βw Ew

)
=

(
∑

w∈A∗

(αβ)w Ew

)
,
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where, for each word w = a1 · · ·am ∈ A∗,

(αβ)w = αwβe + αeβw +

m−1∑

j=1

αa1···aj
βaj+1···am

. (6)

In some applications, the alphabet A may be infinite, but then it typically makes sense
assigning a weight (a positive integer) to each letter, and, when needed, truncating the
series (4) according to the weight ||w|| of each word w ∈ A. Note that the set A∗ of words
on the alphabet A with a prescribed weight is finite provided that the subsets Ak ⊂ A of
letters with weight k (k ≥ 1) are finite.

Example 1 Let M be a smooth manifold. Consider K as the ring of piecewise continuous
functions R+ → R, and let Ea, a ∈ A (where A is a certain set of indices) be smooth
vector fields on M. Let B be the algebra over K of linear operators on C∞(M) (the vector
space of smooth functions on M) generated by the vector fields Ea, a ∈ A. Given λa ∈ K,
a ∈ A, the solution operator of the time-varying vector field E(τ) =

∑
a∈A λa(τ)Ea can be

expanded as a series of linear operators in B of the form (4), with

αa1···am
=
∫

am
· · ·
∫

a1
1K, a1, . . . , am ∈ A, (7)

where 1K is the unity function (the unity element in K), and each
∫

a
: K → K is defined as

{

∫

a

µ}(τ) =

∫ τ

0

µ(s)λa(s)ds, a ∈ A. (8)

Notice that such formulas can make sense even in the case of an infinite alphabet A. For
instance, consider a non-autonomous vector field E(τ) = E1 + τE2 + τ 2E3 + · · · , so that
A = {1, 2, 3, . . .}, and λa(τ) = τa−1 for each a ∈ A. Consider also αw ∈ K and Ew given for
each word w on the alphabet A by (7) and (5), respectively, and let ||w|| denote the weight
of the word w ∈ A obtained by weighting the letters of the alphabet A as ||a|| = a. Then,
if y(τ) is an integral curve of the vector field E(τ) and g is an arbitrary smooth function
on M, it holds that g(y(τ)) −

∑
||w||<nαw(τ)Ewg (y(0)) = O(τn) as τ → 0. Observe that

such a statement makes sense, as the number of words with smaller weight than n is finite.
2

Example 2 Consider a d-dimensional stochastic differential equation [2] rewritten in the
form

y(τ) = y(0) +

∫ τ

0

f0(y(τ))dτ +

m∑

i=1

∫ τ

0

fi(y(τ))dWi(τ), (9)

where Wi(τ) (i = 1, . . . , m) represent independent Wiener processes, and the stochastic
integrals in the summation on the right-hand side of (9) are interpreted in the Stratonovich
sense. In such a case, the formal expansions (2)-(7) hold for the alphabet A = {0, 1, . . . , m},
with {

∫
0
µ}(τ) =

∫ τ

0
µ(s)ds, and {

∫
i
µ}(τ) =

∫ τ

0
µ(s)dWi(s), for i ≥ 1. The same combina-

torics as in Example 1 arise here because the integration by parts formula also holds for
Stratonovich integrals [2]. 2
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Example 3 An important family of numerical integrators for ODEs, which is particularly
interesting when trying to conserve certain properties of the flow that are preserved under
composition, can be applied if the original vector field E is split as the sum of two (or
more) vector fields E = E1 +E2 such that the flow of E1 and E2 can be computed exactly
(or at least very accurately). Each method of that family of integrators is determined by
certain coefficients µ1, . . . , µ2s ∈ R that can be chosen [18, 17] in such a way that

exp(µ1E1) exp(µ2E2) · · · exp(µ2s−1E1) exp(µ2sE2) (10)

approximates exp(E1 +E2) in some sense (with the exponentials defined as a power series
expansion). It is obvious that both exp(E1 + E2) and (10) can be expanded as series of
the form (4)–(5) for the alphabet A = {1, 2}. A typical requirement of such splitting
integrators is that the expansions of exp(E1 + E2) and (10) coincide up to terms of a
prescribed degree. (Actually, the same formal approximations (10) of exp(E1 + E2) are
also used in many other applications, such as certain partial differential equations, where
E1, E2 are, instead of vector fields, operator in some space.) More generally, one is required
to expand formally expressions of the form

exp
(∑

a∈A

µ1,aEa

)
· · · exp

(∑

a∈A

µs,aEa

)
, (11)

where A is a certain set of indices, and µj,a ∈ R. Clearly, (11) can also be expanded in
the form (4)–(5) with K = R. It is interesting to note that the expansion of (11) can be
obtained as a particular case of Example 1, with K as the ring of piecewise continuous
functions R+ → R, and each λa ∈ K defined as λa(τ) = µj,a if j − 1 ≤ τ < j for j ≥ 1.
In such a case, the expansion of (11) corresponds to the series (4)–(5) where the functions
αw : R+ → R, given by (3)–(8), are evaluated at τ = s. 2

Example 4 Consider a matrix differential equation of the form Y ′ = E(τ)Y , Y (0) = Y0.
It is often of interest (for instance, when the solution evolves in a Lie group [14]) to
approximate the solution Y (τ) as the exponential exp Ω(τ) of an element Ω(τ) of the Lie
algebra of matrices generated by E(ciτ), i = 1, . . . , s, for appropriately chosen ci ∈ [0, 1].
If E(τ) depends smoothly on τ , so that E(τ) = E1 + τE2 + τ 2E3 + · · · , then Y (τ) and
exp Ω(τ) can be formally interpreted as series of the form (4)–(5) for the weighted alphabet
A = {1, 2, 3, . . .} with weights ||a|| = a for each a ∈ A (the weights of each word ||w|| here
account for the power of τ in each term in (4)). Of course, in this case, we have that
K = R, and B is the algebra of matrices generated by {Ea : a = 1, 2, 3, . . .}. 2

In the general case where the coefficients αw in the series (4) are not defined as iterated
integrals of the form (3), particularly interesting are expressions (4) that are actually series
of elements in the Lie algebra L(E1, E2) generated by {E1, E2} (which we will loosely
refer to as Lie series). If the basic elements Ea are vector fields, (4) being a Lie series
implies that it represents a formal vector field (in the sense of a series of vector fields
that does not necessarily converge). In general, it is often of interest in applications
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rewriting the series (4) in a Poincaré-Birkhoff-Witt (PBW) basis associated to a basis of
L(E1, E2), and performing, in such basis, operations such as sum, product, commutator,
formal exponential, and formal logarithm. (In particular, in such a PBW basis, checking
if (4) is a Lie series or the exponential of a Lie series is a trivial task). The main goal of
the present work is to give several results that allow performing such operations working
in the dual of a PBW basis.

In order to do that, we will make use of rooted trees labeled by the alphabet A, and
(although this will not be made clear until Section 7) of a commutative Hopf algebra
structure on labeled rooted trees [8, 7, 9]. But how do labeled rooted trees come into play
here? The origin of our approach is the observation [12] that the series expansion (4)–(3)
of the solution operator of (1) can be alternatively written as

I +
∑

u∈F

α(u)

σ(u)
X(u), (12)

where the summation is over the set F of forests of labeled rooted trees, σ(u) ∈ Z+

is a certain normalization factor (the symmetry number of the forest u to be defined in
Subsection 2.1 below), each X(u) is a linear differential operator (of order m if the forest u
has m labeled rooted trees) acting on smooth functions on Rd (to be defined in Section 6),
and each α(u) is a function on τ that is obtained from λa (a ∈ A) in terms of products
and iterated integrals, and can be obtained from the functions αw (3) in (4) by means of
Definition 6 in Section 3.1 below. The main results of the present work arose from the
study of the relation of α(u) in (12) with the coefficients αw in (4)–(3). Although series of
the form (12) do not make sense in the general case where Ea (a ∈ A) are not vector fields,
all of our results, except those in Section 6, hold for the general case where Ea, a ∈ A, are
the generators of an arbitrary non-commutative associative algebra B.

The plan of the paper is as follows. In Section 2, labeled rooted trees and forests,
and Hall sets of labeled rooted trees are introduced, as well as some definitions and a few
results on them to be used in the rest of the paper. Some fundamental results (Theorem 3,
Proposition 4, and Corollary 5) that relate a PBW basis of an arbitrary Hall set and
labeled rooted trees are presented in Section 3. Such results are used to obtain explicit
formulas to compute the coefficients in a PBW basis of the exponential of a Lie series
and the logarithm (Subsection 4.1). The result obtained for the logarithm (Theorem 9) in
particular provides explicit expressions for the coefficients of the continuous BCH formula
(Subsection 4.2), useful for instance, in the contexts of Examples 1–4. Section 5 is devoted
to the construction of rewriting algorithms (based on Algorithm 1), that together with
Corollary 5 allows computing the coefficients of the product of two series written in a
PBW basis. The results are applied in Subsection 5.3 to the computation of the Lie
bracket of Lie series. The theory developed to construct our rewriting algorithm allows
proving Theorem 3 (essentially Theorem 5.3 in [21]) in an alternative way (Subsection 5.4).
The values α(u) for labeled forests u determined from the coefficients of the series (4) in
Definition 6 (a key element in our approach) are interpreted in the context of series of
vector fields (Section 6), which shows a connection with some results in [12]. In Section 7
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we interpret the results in previous sections in the context of Hopf algebras, which we
believe provides an interesting insight. Finally, some concluding remarks are given in
Section 8.

2 Graph-theoretical tools

2.1 Rooted trees and forests labeled by A

Given an alphabet A, rooted trees and forests labeled by A can be defined as follows.
A partially ordered set labeled by A is a partially ordered set U together with a map

from U to A. The elements of U are called vertices, and |U | denotes the number of vertices
of U . An edge (x < y) of U is an ordered pair (x, y) ∈ U × U such that x < y and
there exists no z ∈ U with x < z < y. In that case, it is said that x is a parent of y,
and that y is a child of x. New labeled partially ordered sets can be obtained from U by
adding and/or removing some vertices and/or edges. In particular, given a labeled partially
ordered set U with vertices {x1, . . . , xn}, a different labeled partially ordered subset V ⊂ U
is determined by each subset {xi1 , . . . , xim} ⊂ {x1, . . . , xn}, with the partial ordering and
labelling inherited from U .

An isomorphism of two partially ordered sets labeled by A is a bijection of the under-
lying sets of vertices that preserves the partial order and the labelling. A forest labeled by
A is an isomorphism class of finite partially ordered sets U labeled by A satisfying

x, y, z ∈ U, y < x, z < x =⇒ either y < z or z < y or z = y. (13)

The roots of a labeled partially ordered set U representing a labeled forest u are its minimal
vertices. A rooted tree labeled by A is a forest represented by labeled partially ordered
sets with only one root.

The degree |u| of a forest u labeled by A represented by a labeled partially ordered set
U is the number |U | of vertices of U . Given a forest u labeled by A, the partial degree
|u|a of u with respect to a ∈ A is the number of vertices in U that are labeled by a. If
A is a weighted alphabet, where a positive integer weight ||a|| is associated to each letter
a ∈ A, so that a vertex labeled by a has weight ||a||, the weight of the forest u is defined as
the sum of the weights of its vertices. We denote as F (resp., T ) the set of forests (resp.,
rooted trees) labeled by A. The empty forest is also included in F , and we denote it as
e. We denote Fk = {u ∈ F : |u| = k} for each k ≥ 0 and Tk = {u ∈ T : |u| = k} for
k ≥ 1. When representing labeled rooted trees graphically, we will position the root at
the bottom of the diagram. A vertex labeled by the letter a ∈ A in a labeled rooted tree
can be represented as a small circle with the letter a inside. Alternatively, we can assign
a color to each letter in A, and then depict the vertex as a small circle in that color. In
particular, in our examples with the two-letter alphabet A = {1, 2}, we assign ’black’ to 1,
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and ’white’ to 2. The first sets Tk for that alphabet are

T1 = { , } , T2 =
{

, , ,
}
, (14)

T3 =
{

, , , , , , , , , , , , ,
}
.(15)

We will later work with the ring Z[T ] of polynomials with the labeled rooted trees as
commuting indeterminates, with Z-basis {ur1

1 · · ·urm
m , u1, . . . , um ∈ T }. Clearly, each such

expression ur1
1 · · ·urm

m can be identified with a unique forest u ∈ F , the forest obtained
as the direct union, from i = 1 to m of ri copies of the labeled rooted tree ui. We thus
simply write u = ur1

1 · · ·urm
m , and denote as uv the direct union of two forests u, v ∈ F

(if U and V are two labeled partially ordered sets representing u and v respectively, with
disjoint sets of vertices, then uv is the forest represented by the union of U and V ). We
will consider several additional operations on the set F of labeled forests. Given a ∈ A,
t1, . . . , tm ∈ T , u = t1 · · · tm ∈ F , we denote by [u]a the labeled rooted tree of degree
|t1|+ · · ·+ |tm|+ 1 obtained by grafting the roots of t1, . . . , tm to a new root labeled by a.
That is, it corresponds to adding a new vertex r labeled by a to a partially ordered forest
U representing u, and adding, for each ti, a new edge (r < ri) connecting the root ri of ti
with r. In particular, [e]a is the labeled rooted tree with only one vertex, labeled by a. We
will identify [e]a simply with a when its meaning is clear from the context. Given a labeled
rooted tree t ∈ T and a labeled forest u ∈ F , we denote by t ◦ u the labeled rooted tree
of degree |u| + |t| obtained by grafting the labeled rooted trees in u to the root of t (this
operation is often referred to in the context of numerical analysis of ordinary differential
equations as the Butcher product). For instance, (A = {1, 2}, 1 → •, 2 → ◦)

[
2

]
2

= , ◦
( )

= = ◦

In particular, t ◦ e = t and [e]a ◦ u = [u]a for a ∈ A, t ∈ T , u ∈ F . We also write
e ◦ e = e, e ◦ u = 0, for each u ∈ F\{e}. The grafting operation ◦ is not associative,
however,

(t ◦ u) ◦ v = t ◦ (uv) = (t ◦ v) ◦ u for each t ∈ T , u, v ∈ F . (16)

Given t, t1, . . . , tm ∈ T , u ∈ F , we will use the notation

t1 ◦ t2 ◦ · · · ◦ tm ◦ u := t1 ◦ (t2 ◦ · · · ◦ (tm ◦ u)), t◦k =

k︷ ︸︸ ︷
t ◦ · · · ◦ t,

that is, in the absence of parentheses, we interpret multiple grafting of rooted trees from
right to left (notice that, by virtue of (16), for multiple grafting from left to right we have
that (· · · ((t1 ◦ t2) ◦ t3) · · · ◦ tm) = t1 ◦ (t2 · · · tm)).

The symmetry number σ(u) of a labeled forest u is the number of different permutations
of the set of vertices of a labeled partially ordered set representing u that are isomorphisms
of labeled partially ordered sets. The symmetry number of forests can be recursively
obtained as follows.
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Lemma 1 For each a ∈ A, t1, . . . , tm ∈ T , ti 6= tj if i 6= j,

σ(e) = 1, σ([u]a) = σ(u), σ(u) =
m∏

j=1

ij !σ(tj)
ij , if u =

m∏

j=1

t
ij
j .

2.2 Hall sets of rooted trees

Definition 1 A set T̂ of rooted trees labeled by A together with a total order relation > is
a Hall set (of labeled rooted trees) over A, if the following conditions hold:

1. If a ∈ A, then [e]a ∈ T̂ .

2. Given a ∈ A and u ∈ F\{e}, where u = t◦r1
1 · · · t◦rm

m , t1, . . . , tm ∈ T̂ , r1, . . . , rm ≥ 1,
and t1 > · · · > tm,

[u]a ∈ T̂ if and only if tm > [t◦r1
1 · · · t◦rm−1

m−1 ]a ∈ T̂ . (17)

3. If t = [t◦r1
1 · · · t◦rm

m ]a ∈ T̂ , t1, . . . , tm ∈ T̂ , r1, . . . , rm ≥ 1, a ∈ A, then tj > t for each
j = 1, . . . , m.

In (17), it is understood that t◦r1
1 · · · t◦rm−1

m−1 = e if m = 1. Thus, given t ∈ T̂ , r ≥ 1, and

a ∈ A, the labeled rooted tree [t◦r]a belongs to T̂ if and only if t > [e]a.
For instance, the sets of labeled rooted trees

T̂1 = { , }, T̂2 = { }, T̂3 = { , },

T̂4 = { , , },

T̂5 = { , , , , , }. (18)

are the first homogeneous subsets T̂k = {t ∈ T̂ : |t| = k} of a Hall set of labeled rooted
trees over the alphabet A = {1, 2} (1 → •, 2 → ◦). A total order of the displayed rooted
trees that is compatible with the definition of Hall sets can be obtained by considering that
the elements of each T̂k (k = 1, 2, 3, 4, 5) are given in decreasing order in (18), and that
t > z if |t| < |z|.

Given a fixed Hall set T̂ of labeled rooted trees, we consider the set of forests F̂ =
{e} ∪ {t◦r1

1 · · · t◦rm
m : r1, . . . , rm ≥ 1, t1, . . . , tm ∈ T̂ , ti 6= tj if i 6= j}. When t ∈ T̂ , we

will say that t is a Hall rooted tree, and when u ∈ F̂ , that u is a Hall forest. Note that
the labeled rooted trees of the form t◦r with t ∈ T̂ and r > 1 are Hall forests but not Hall
rooted trees. We will also denote T̂k = {t ∈ T̂ : |t| = k} and F̂k−1 = {u ∈ T̂ : |u| = k−1}
for each k ≥ 1.

Lemma 1 and Definition 1 show that σ(u) = 1 for each u ∈ F̂ , that is, Hall rooted
trees and Hall forests have no symmetries (apart from the trivial identity permutation of
its vertices).
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Remark 1 There is a one-to-one correspondence between Hall sets of labeled rooted trees
over T̂ and a Hall set W of words [21] over A. Given a Hall set T̂ of labeled rooted

trees, consider the map Ω from T̂ to the set of words A∗ on the alphabet A defined as
follows. For each a ∈ A, Ω assigns the one-letter word a to the rooted tree [e]a, and given

t = [t◦r1
1 · · · t◦rm

m ]a ∈ T̂ such that a ∈ A, t1, . . . , tm ∈ T̂ , r1, . . . , rm ≥ 1, and t1 > · · · > tm,
Ω assigns the Hall word Ω(t) = Ω(tm)rm · · ·Ω(t1)

r1 a to the Hall rooted tree t. Here we use
the standard notation w1w2 for the concatenation of two words w1 and w2. Recall that this
defines an associative binary operation that (contrary to the product u1u2 of two forests
u1, u2 ∈ F) is not commutative.

It can be seen that such Ω is injective, and its image (together with the total order

induced from that of T̂ ) is a Hall set W of words over A (in the general sense of [21]).
The image by Ω of the sets Hk in (18) are the homogeneous subsets

W1 = {1, 2}, W2 = {12}, W3 = {112, 212}, (19)

W4 = {1112, 2212, 1122}, W5 = {11112, 22212, 12112, 22112, 12212, 11122},

of a particular Hall set W of words over the alphabet {1, 2}.
Hall sets of rooted trees labeled by A can be alternatively constructed from an arbitrary

Hall set W of words on the alphabet A as the range of an injective map τ : W → T
recursively defined as follows: For words of degree 1, τ(a) = [e]a. Given a word w ∈ W
of degree |w| > 1, consider a ∈ A and the (non-necessarily Hall) word v on the alphabet
A such that w = va. As any word on A, v can be written as a non-decreasing product of
Hall words [21], v = wr1

1 · · ·wrm
m , w1, . . . , wm ∈ W, w1 < · · · < wm, r1 . . . , rm ≥ 1. Then,

τ(w) is defined as τ(w) = [τ(w1) · · · τ(wm)]a.

2.3 Technical results on Hall rooted trees

Definition 2 The standard decomposition (t′, t′′) ∈ T̂ × T̂ of each t ∈ T̂ is defined as

follows. If |t| = 1, then t′ = t and t′′ = e. If t = [t◦r1
1 · · · t◦rm

m ]a, a ∈ A, t1, . . . , tm ∈ T̂ ,

t1 > · · · > tm, r1, . . . , rm ≥ 1, then t′′ = tm, t′ = [t◦r1
1 · · · t

◦rm−1

m−1 t
◦(rm−1)
m ]a. Similarly, the

standard decomposition (u′, u′′) ∈ F̂ × T̂ of a Hall forest u ∈ F̂\T̂ is given as follows. If

u = t◦r1
1 · · · t◦rm

m , t1 > · · · > tm, then u′ = t◦r1
1 · · · t◦rm−1

m−1 t
◦(rm−1)
m , u′′ = tm.

Definition 3 We define a map Γ : F̂\{e} → T as follows. Given u ∈ F̂ , where

u = t◦r1
1 · · · t◦rm

m , t1, . . . , tm ∈ T̂ , m, r1, . . . , rm ≥ 1, t1 > · · · > tm, then Γ(u) = t◦r1
1 ◦

(t◦r2
2 · · · t◦rm

m ).

Lemma 2 The map Γ in Definition 3 is injective, and its image is the set {[u]a ∈ T :

u ∈ F̂ , a ∈ A}. That is, given u ∈ F̂ and a ∈ A, there exist unique t1, . . . , tm ∈ T̂ and
r1, . . . , rm ≥ 1 such that t1 > · · · > tm and t◦r1

1 ◦ (t◦r2
2 · · · t◦rm

m ) = [u]a.
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Proof: Assume without loss of generality that u = z◦l11 · · · z◦lkk , where z1, . . . , zk ∈ T̂ ,
z1 > · · · > zk, l1, . . . , lk ≥ 1.

We will first see that under the assumption that such t◦r1
1 , . . . , t◦rm

m exist, they are

unique. As t1 ∈ T̂ , we have that t1 = [s◦n1
1 · · · s◦ni

i ]a, where s1, . . . , si ∈ T̂ , n1, . . . , ni ≥ 1,

and s1 > · · · > si > t1 > t2 > · · · > tm, and thus (s◦n1
1 , . . . , s◦ni

i , t
◦(r1−1)
1 , t◦r2

2 , . . . , t◦rm
m ) =

(z◦l11 , . . . , z◦lkk ). Moreover, i is the largest integer such that [z◦l11 · · · z◦lii ]a ∈ T̂ (t1 = [e]a
if i = 0), as [s◦n1

1 · · · s◦ni

i t
◦(r1−1)
1 ]a 6∈ T̂ and [s◦n1

1 · · · s◦ni

i t◦r2
2 ]a 6∈ T̂ (due to the fact that

[s◦n1
1 · · · s◦ni

i ]a = t1 > t2).

In order to prove the existence, let i be the largest integer such that [z◦l11 · · · z◦lii ]a ∈ T̂
(z = [e]a if i = 0), and let t1 = [z◦l11 · · · z◦lii ]a. It is enough proving that t1 ≥ zi+1 (in

such a case, if t1 = zi+1, then (t◦r1
1 , . . . , t◦rm

m ) = (z
◦(li+1+1)
i+1 , z

◦li+2

i+2 , . . . , z◦lkk ), and otherwise,

(t◦r1
1 , . . . , t◦rm

m ) = (t1, z
◦li+1

i+1 , . . . , z◦lkk ), and it obviously holds that t1 > · · · > tm if z1 > . . . >
zk.). The inequality t1 ≥ zi+1 follows from the observation that, if t1 < zi+1, then, we have

(as z1 > · · · > zi+1 > t1), that = [z◦l11 · · · z
◦li+1

i+1 ]a ∈ T̂ , which is not possible by definition of
i. 2

Remark 2 Lemma 2 shows in particular that, for each n ≥ 1, there exists a bijection
between F̂n × A and F̂n+1. Furthermore, from its proof it is clear that such a bijection
preserves all the partial degrees. Comparing that with the trivial bijection between An×A
and the set An+1 that gives the word wa of degree |wa| = n + 1 for each (w, a) ∈ (An, A),

it follows that the number of Hall forests u ∈ F̂ with prescribed partial degrees |u|a = da,
a ∈ A, da ≥ 0, coincides with the number of words w ∈ A∗ with |w|a = da.

Remark 3 The bijection in Remark 2 is related to known results on Hall words and
the maps Ω and τ in Remark 1 as follows: Given a ∈ A and the Hall forest u =
z◦l11 · · · z◦lkk , where z1, . . . , zk ∈ T̂ , z1 > · · · > zk, l1, . . . , lk ≥ 1, consider the word
w = Ω(zk)

lk · · ·Ω(z1)
l1 a. Now, there exists [21] a unique decomposition of w as an increas-

ing product of Hall words w = wrm
m · · ·wr1

1 , with Hall words wm < · · · < w1, r1, . . . , rm ≥ 1.
Then it can be seen that [z◦l11 · · · z◦lkk ]a = t◦r1

1 ◦ (t◦r2
2 · · · t◦rm

m ), where ti = τ(wi), i = 1, . . . , m.

We define a partial order ≻ in the set F̂ of Hall forests, to be used in Section 5 below
as follows.

Definition 4 Given u, v ∈ F̂ with the same partial degrees, where u = t◦r1
1 · · · t◦rm

m , v =

z◦l11 · · · z◦lkk , t1, . . . , tm, z1, . . . , zk ∈ T̂ , m, l, r1, . . . , rm, l1, . . . , lk ≥ 1, t1 > · · · > tm and
z1 > · · · > zk, If t1 ≥ z′′1 > zk ≥ tm (where (z′1, z

′′
1) is the standard decomposition of z1),

then u ≻ v.

Remark 4 Notice that, if u ≻ v, u, v ∈ F̂ , then max(u) > max(v) ≥ min(v) ≥ min(u),

where we use the notation max(t◦r1
1 · · · t◦rm

m ) = t1 if t1, . . . , tm ∈ T̂ , t1 > · · · > tm,
r1, . . . , tm ≥ 1.

10



3 Poincaré-Birkhoff-Witt basis and labeled rooted trees

3.1 Expressing series in a PBW basis associated to a set of Hall

forests

Let B be a (non-necessarily commutative) associative algebra B generated by the elements
{Ea : a ∈ A}. We next define one element E(u) ∈ B for each Hall forest of labeled rooted
trees u ∈ F . If the algebra B is freely generated by {Ea : a ∈ A}, that is, if {Ew : w ∈ A∗}

is a basis of B, then {E(t) : t ∈ T̂ } is a (Hall) basis (ordered according to the total order

relation in T̂ ) of the Lie algebra g generated by {Ea : a ∈ A}, and {E(u) : u ∈ F̂} is the
PBW basis associated to that ordered basis of g.

Definition 5 Given a Hall set T̂ of rooted trees over A and the corresponding set F̂ of
Hall forests, we assign an element E(u) ∈ B for each u ∈ F̂ recursively as follows. For the

empty forest, E(e) = I, for each t ∈ T̂ with standard decomposition (t′, t′′) ∈ T̂ × T̂ ,

E(t) = [E(t′′), E(t′)] = E(t′′)E(t′) − E(t′)E(t′′), (20)

and given u ∈ F̂\T̂ with standard decomposition (u′, u′′) ∈ F̂ × T̂ ,

E(u) = E(u′′)E(u′). (21)

In the general case (where B may not be freely generated by {Ea : a ∈ B}), g is spanned

by {E(t) : t ∈ T̂ }, and B is spanned by {E(u) : u ∈ F̂}.
Theorem 3 below is an essential ingredient of the present work. We first need the

following definition.

Definition 6 Given a map that assigns αw ∈ K to each w ∈ A∗, we consider the map
α : F → K defined as follows. For the empty forest α(e) = αe. Given u ∈ F\{e}, consider
a labeled partially ordered set U representing the forest u, and let x1, . . . , xn be the vertices
of U labeled as l(xi) = ai ∈ A for each i = 1, . . . , n. For each total order relation >U on
the set of vertices of U , xi1 > · · · > xin, that extends the partial order relation in U , we
denote the word ai1 · · ·ain as w(>U). Then

α(u) =
∑

>U

αw(>U ), (22)

where the summation goes over each total order relation >U on the set of vertices of U that
extends its partial order relation.

Example 5 Consider the labeled forest u = over the alphabet A = {1, 2} (1 →
•, 2 → ◦). It is represented, for instance, by the labeled partially ordered set U =
{x1, x2, x3, x4, x5} with partial order x1 < x2, x1 < x3, and x4 < x5 and labeled as l(x2) =
l(x3) = l(x4) = 1, l(x1) = l(x5) = 2. In that case, each different total ordering xi1 > · · · >

11



xi5 of U that extends its partial order relation is characterized by the 5-tuple (i1, . . . , i5).
Such total orderings of U are obtained in this case for

(i1, . . . , i5) = (2, 3, 1, 5, 4), (2, 3, 5, 4, 1), (2, 3, 5, 1, 4), (2, 5, 4, 3, 1), (2, 5, 3, 4, 1), (2, 5, 3, 1, 4),

(3, 2, 1, 5, 4), (3, 2, 5, 1, 4), (3, 2, 5, 4, 1), (3, 5, 4, 2, 1), (3, 5, 2, 4, 1), (3, 5, 2, 1, 4),

(5, 4, 3, 2, 1), (5, 4, 2, 3, 1), (5, 3, 4, 2, 1), (5, 3, 2, 4, 1),

(5, 3, 2, 1, 4), (5, 2, 4, 3, 1), (5, 2, 3, 4, 1), (5, 2, 3, 1, 4).

2

Theorem 3 Given a map that assigns αw ∈ K to each word w ∈ A∗, it holds that

∑

w∈A∗

αw Ew =
∑

u∈ bF

α(u)E(u), (23)

where α : F → K is given in Definition 6 above.

The discussion on the proof of Theorem 3 is postponed to Subsection 5.4, where it is shown
that it is essentially equivalent to Theorem 5.3 in [21].

Remark 5 Theorem 3 implies that, given α : F → K obtained by Definition 6 for some
coefficients αw, w ∈ A∗, then such αw can be uniquelly written as a linear combination of
the values α(u), u ∈ F̂ . To see this, it is enough to consider Theorem 3 with B = K〈A〉
(the set of K-linear combinations of words on the alphabet A), so that {Ew : w ∈ A∗} is
linearly independent, and the fact that by definition, each E(u) is a linear combination of
{Ew : w ∈ A∗}. We will give a direct proof (without using Theorem 3) of this statement
in Section 5 (Corollary 19) when constructing an algorithm that allows, in particular,

effectively rewriting αw as a linear combination of the values α(u), u ∈ F̂ .

Remark 6 We have considered PBW basis of B (when B is freely generated by {Ea : a ∈

A}) consisting of increasing products of the ordered basis {E(t) : t ∈ T̂ } of the Lie algebra
generated by {Ea : a ∈ A}. PBW basis of B made of decreasing products can similarly
be considered. One can translate from one case to the other by considering the opposite
algebra of B (with product ∗ given by X ∗ Y = Y X for X, Y ∈ B). This simple trick gives

∑

w∈A∗

αwEw =
∑

u∈ bF

ᾱ(u)Ē(u),

where Ē(t) = (−1)|t|E(t), Ē(t◦r1
1 · · · t◦rm

m ) = Ē(t1)
r1 · · · Ē(tm)rm if t1 > · · · > tm, and

ᾱ : F → K is given by Definition 6 for ᾱa1···am
= αam···a1 , a1, . . . , am ∈ A.

12



3.2 The product of two series in a PBW basis associated to a set

of Hall forests

Definition 7 Given two arbitrary maps α, β : F → K, we define αβ : F → K as follows.
Given u ∈ F\{e}, let U be a labeled partially ordered set representing u, then

αβ(u) =
∑

(V,W )∈R(U)

α(V ) β(W ), (24)

where (V,W ) ∈ R(U) if V and W are labeled partially ordered subsets of U satisfying the
following two conditions: (i) The set of vertices of U is the disjoint union of the sets of
vertices of V and W ; and (ii) Given x, y ∈ U such that x > y, if x ∈W , then y ∈W .

Example 6 For instance, consider the labeled forest u = over the alphabet A =
{1, 2}. The labeled partially ordered set U with vertices x1, x2, x3, x4 partially ordered as
x1 < x3, x3 < x4, and labeled as l(x2) = l(x3) = 1, l(x1) = l(x4) = 2, represents u. Each
(V,W ) ∈ R(U) is determined by the set of vertices of V , and there are eight different
possibilities for V , that are {x1, x2, x3, x4}, {x1, x3, x4}, {x2, x3, x4}, {x3, x4}, {x2, x4},
{x4}, {x2}, ∅, and thus,

αβ( ) = α( )β(e) + α( )β( ) + α( )β( ) + α( )β( )

+α( )β( ) + α( )β( ) + α( )β( ) + α(e)β( ).

2

Proposition 4 Assume that αw, βw ∈ K for each w ∈ A∗, and let α, β : F → K be given
by Definition 6. The map αβ : F → K given by Definition 7 and that given by Definition 6
for the coefficients (αβ)w, w ∈ A∗ in (6) coincide.

Proof: Here we give a direct proof of combinatorial nature. An algebraic proof is given
in the discussion of Section 7 below (Corollary 28).

Consider a labeled partially ordered set U representing the forest u, and let x1, . . . , xn

be the vertices of U labeled as l(xi) = ai ∈ A for each i = 1, . . . , n. Then, αβ(u) given
by Definition 6 for the coefficients (αβ)w, w ∈ A∗, given in (6) is the sum, over each
j ∈ {0, . . . , n} and each total ordering xi1 > · · · > xin of U that extends its partial
order relation, of α(ai1 · · ·aij)β(aij+1

· · ·ain). Each pair of such total ordering of U and j,
determines different (V, U,>V , >W ) such that (V,W ) ∈ R(U) and >V (resp., >W ) is a total
ordering of the set of vertices of V (resp., W ) that extends its partial ordering, V (resp.,
W ) being the labeled partially ordered subset of U determined by the vertices {xi1,...,xij

}

(resp., {xij+1,...,xin
}) totally ordered as xi1 > · · · > xij (resp., xij+1

> · · · > xin). Now, (24)
follows from the observation that each (V, U,>V , >W ) such that (V,W ) ∈ R(U) and >V

(resp., >W ) is a total ordering of the set of vertices of V (resp., W ) that extends its partial
ordering can be obtained in this way from a pair (j, >U) where j ∈ {0, . . . , |U |} and >U is
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a total ordering of the set of vertices of U that is compatible with its partial order relation.
2

Theorem 3 and Proposition 4 imply the following:

Corollary 5 Assume that αw, βw ∈ K for each w ∈ A∗. Then it holds that
( ∑

w∈A∗

αw Ew

)( ∑

w∈A∗

βw Ew

)
=
∑

u∈ bF

αβ(u)E(u). (25)

Remark 7 A similar formula is obtained for ’PBW basis’ of decreasing products using
the notation and the trick in Remark 6, namely,

( ∑

w∈A∗

αw Ew

)( ∑

w∈A∗

βw Ew

)
=
∑

u∈ bF

β̄ᾱ(u) Ē(u).

If one explicitly has the values α(u), β(u) (u ∈ F) given by Definition 6 (this is the
case, for instance, of series with iterated integrals considered in Subsection 4.2 below),
then Corollary 5 allows expressing the product of series of the form (4) in the PBW basis

{E(u) : u ∈ F̂} directly, instead of first obtaining the coefficients (αβ)w for each word

w ∈ A∗, and then computing the values αβ(u) (u ∈ F̂) given by Definition 7 in terms of
the coefficients (αβ)w. This will be exploited in Section 4, where, in particular, explicit
formulas for the BCH formula and the continuous BCH formula are obtained.

Otherwise, assume that we want to compute the product of series that are written as in
the right-hand side of (23). In such a case, one could always rewrite each αw (w ∈ A∗) as

a linear combination of the known values α(u), u ∈ F̂ (see Remark 5 above), then obtain

the coefficients (αβ)w by means of (6), and finally obtain the coefficients αβ(u) (u ∈ F̂)
in (25) by applying Definition 6. Instead of that, one can directly obtain the coefficients

αβ(u) (u ∈ F̂) from Definition 7. Unfortunately, given u ∈ F̂ and (V,W ) ∈ R(U) in
(24), the labeled partially ordered sets V and W may not represent Hall forests (V always
represents a product of Hall rooted trees, but this is not the case for W ). In order to
overcome this difficulty, we need some rewriting algorithm that allows expressing α(v) for

arbitrary v ∈ F as a linear combination of {α(u) : u ∈ F̂}. This will be accomplished in
Section 5 below.

4 Exponentials of Lie series and explicit continuous

BCH formulas

4.1 The exponential, the logarithm, and Lie series

In the present subsection we assume that K is a Q-algebra. Recall that the formal expo-
nential (defined as a power series) of a series (4) with αe = 0 is a new series of the form
(4) with αe = 1, and that its inverse is the formal logarithm, defined for series (4) with
αe = 1.
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Definition 8 Given a map α : F → K. If α(e) = 0, then the exponential is defined as
a new map expα determined as follows: For the empty forest, expα(e) = 1, and for each
u ∈ F\{e},

expα(u) =

|u|∑

k=1

1

k!
αk(u). (26)

If αe = 1, the logarithm logα of α is a new map defined as follows:

logα(e) = 0, logα(u) =

|u|∑

k=1

(−1)k+1

k
(α− ǫ)k(u), for each u ∈ F\{e}, (27)

where ǫ(e) = 1 and ǫ(u) = 0 for u ∈ F\{e}.

Here we use the notation αk referred to as the product given in Definition 7.

Remark 8 The fact that αk(u) = 0 if α(e) = 0 and |u| < k implies that, given α : F → K

such that α(e) = 0, then

expα = ǫ+
∑

k≥1

1

k!
αk, log(ǫ+ α) =

∑

k≥1

(−1)k+1

k
αk. (28)

The following is a consequence of (28) and Corollary 5.

Proposition 6 Given αw ∈ K for each w ∈ A∗, let α : F → K be given by Definition 6.
If αe = 0, then

exp
( ∑

w∈A∗

αw Ew

)
=
∑

u∈ bF

expα(u)E(u). (29)

If αe = 1, then

log
( ∑

w∈A∗

αw Ew

)
=
∑

u∈ bF

logα(u)E(u). (30)

In many applications, series of the form (4) that can be written as a series of elements of
the Lie algebra generated by {Ea : a ∈ A} have a special relevance. Such series can be
defined as follows.

Definition 9 We say that a Lie series is a series of the form

∑

t∈bT

α(t)E(t), (31)

where α(t) ∈ K for each t ∈ T̂ .

15



Notice that this definition of Lie series coincides with that given in [21] when Ea = a
(a ∈ A) and B is the K-algebra K〈A〉 of K-linear combinations of words on the alphabet
A with the concatenation product of words.

The next proposition is a standard result in the Hopf-algebraic context of Section 7.

Proposition 7 Given an arbitrary map α : F → K, there exists β : F → K such that
α = exp β and β(u) = 0 whenever u ∈ F\T , if and only if

α(e) = 1, and α(t1 · · · tm) = α(t1) · · ·α(tm) for t1, . . . , tm ∈ F . (32)

In particular, a series of the form (4) is the exponential of a Lie series if (32) holds for
the map α : F → K given by Definition 6.

Remark 9 Lemma 15 in Subsection 5.1 below implies in particular that, if α : F → K

is given by Definition 6, then α(tn) = n!α(t◦n) for each t ∈ T . This implies that, if (32)

holds, then for each t ∈ T̂ , exp(α(t)E(t)) = I +
∑

n≥1 α(t◦n)E(t)n, which shows that, in
that case, the series (23) can be rewritten as an infinite directed product of exponentials

of the form exp(α(t)E(t)), t ∈ T̂ .

We will give (under the assumptions of Proposition 7) explicit formulas for exp β(u)
and logα(u). First, we will fix some notation and give an auxiliary result.

Definition 10 The factorial u! of each forest u ∈ F is defined recursively as follows. For
the empty forest, e! = 1. Given a ∈ A, t1, . . . , tm ∈ F , v ∈ F , t = [v]a, u = t1 · · · tm,

t! = v!|t|, u! = t1! · · · tm!.

Definition 11 For each labeled partially ordered subset V ⊂ U with vertices {x1, . . . , xm}
(|V | = m ≤ |U |), we consider two new labeled forests: The forest v ∈ F represented by
V , and the forest CV (U) of labeled rooted trees obtained by removing from U all edges of
the form (y < xi), 1 ≤ i ≤ m, y ∈ U . Note that if r1, . . . , rl are the roots of U , then
CV (U) = CV \{r1,...,rl}(U). If V = ∅, then CV (U) = u.

Example 7 Consider the labeled forest u = over the alphabet A = {1, 2}. Let U
be the labeled partially ordered set considered in Example 6. For the labeled partially
ordered subset V ⊂ U determined by the vertices {x1, x2, x4}, we have that v = and
CV (U) = . 2

Definition 12 Given a labeled partially ordered set U representing a forest u ∈ F , K(U)
will denote the family of labeled partially ordered subsets of U that include all the roots of
U . For each n ≥ 1, Kn(U) = {V ∈ K(U) : |V | = n}. The number of different total
orderings of the set U that preserve the partial ordering in U will be denoted by p(U).
Given n ≥ 1, ωn(U) denotes the number of different ordered partitions (U1, . . . , Un) of the
set of vertices of U satisfying that

x ∈ Ui, y ∈ Uj , x < y =⇒ i < j. (33)
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Observe that, in the definition of ωn(U), (33) excludes partitions (U1, . . . , Un) satisfying
that x > y for some x, y ∈ Ui and some i. That is, for each i, the partially ordered subset
of U determined by the vertices in Ui represents a forest of the form •k (i.e., a forest with
k vertices and no edges).

The next lemma follows from repeated application of Definition 7.

Lemma 8 Consider a map α : F → K. Given n ≥ 1 and u ∈ F , let U be a labeled
partially ordered set representing it.

1. If α is such that α(v) = 0 whenever v ∈ F\T , then

αn(u) =
∑

V ∈Kn(U)

p(V )α′(CV (U)), (34)

where we use the notation α′(v) = α(t1) · · ·α(tm) for arbitrary forests v = t1 · · · tm,
(t1, . . . , tm ∈ T ).

2. If α is such that α(e) = 0 and α(t1 · · · tm) = α(t1) · · ·α(tm) for arbitrary t1, . . . , tm ∈
T , then

αn(u) =
∑

V ∈Kn(U)

ωn(V )α(CV (U)). (35)

Theorem 9 Let α : F → K be a map such that α(u) = 0 if u ∈ F\T . Given u ∈ F , let
U be a labeled partially ordered set representing it. Then

expα(u) =
∑

V ∈K(U)

1

v!
α′(CV (U)), (36)

where v denotes the labeled rooted tree represented by V , v! is given in Definition 10, and
α′(w) (w ∈ F) is interpreted as in Lemma 8.

Proof: By definition of expα (26) and Lemma 8 we have that

expα(u) =
∑

V ∈K(U)

p(V )

|V |!
α′(CV (U)). (37)

Consider now φ : F → K such that φ(u) = 1 if |u| = 1 and φ(u) = 0 otherwise. Then,
(37) applied for α = φ gives (as φ′(CV (U)) = 1 if V = U and φ′(CV (U)) = 0 otherwise)
that exp(φ) = θ, where θ(u) = p(u)/|u|!. We will prove that |u|! = u!p(u) for each u ∈ F ,
that is, θ(u) = 1/u!. By Proposition 7, θ(e) = 1 and θ(t1 · · · tm) = θ(t1) · · · θ(tm) for
t1, . . . , tm ∈ T , and thus, according to Definition 10, the required result will follow if we
prove that

|t| θ(t) = θ(u) whenever t = [u]a, u ∈ F , a ∈ A. (38)
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t

|t| 1 2 3 3 4 4 4 4

t! 1 2 6 3 24 12 8 4

ω(t) 1 −1
2

1
3

1
6

−1
4

−1
6

− 1
12

0

Table 1: Values of t! and ω(t) for rooted trees of degree |t| < 5.

Consider the map Dθ : F → K given by Dθ(u) = |u|θ(u). It is straightforward to check
that D can be considered as a derivation of maps β : F → K with respect to the product
given in Definition 7, and thus Dθ = D exp φ = (exp φ)φ = θφ. This, together with
θφ([u]a) = θ(u) for u ∈ F and a ∈ A (by Definition 7 and the particular form of the map
φ) finally leads to (38). 2

The next result follows from the definition of logα (27) and the second statement of
Lemma 8.

Theorem 10 Let α : F → K be a map satisfying (32). Given u ∈ F , let U be a labeled
partially ordered set representing it. Then

logα(u) =
∑

V ∈K(U)

ω(v)α(CV (U)), (39)

where v denotes the forest of labeled rooted trees represented by V , and

ω(v) =

|v|∑

n=1

(−1)n+1

n
ωn(v). (40)

Remark 10 Observe that, in the definition of u!, ωn(u), and ω(u), the labelling of its
vertices plays no role. Thus, u!, ωn(u), and ω(u) are color-blind. We thus can consider
that the values of u! and ω(u) are defined for rooted trees, and whenever we write u! (resp.,
ω(u)) for a labeled rooted tree u ∈ T , we refer to the value of ! (resp., ω) of the rooted
tree obtained from u by forgetting its labeling. Notice that, by Proposition 7, one only
needs to apply (36) and (39) for labeled rooted trees (as logα(u) = 0 if u ∈ F\T , and
expα(t1 · · · tm) = expα(t1) · · · expα(tm)). The values of u! and ω(u) for rooted trees of
degree |u| < 5 are displayed in Table 1.

Example 8 For each rooted tree t without ramifications (“tall rooted trees”), we have
that ω(t) = (−1)|t|+1/|t|. This follows from (40) and the fact that, for such rooted trees,
t! = |t|!, ω|t|(t) = 1, and ωn(t) = 0 if n 6= |t|.
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As an additional example, consider the rooted tree t = . Counting the number
of ordered partitions (U1, . . . , Un) of the set of vertices of a labeled partially ordered set T
representing t that satisfy condition (33), one gets that

ω1(t) = ω2(t) = 0, ω3(t) = 2, ω4(t) = 9, ω5(t) = 8, ω(t) =
2

3
−

9

4
+

8

5
=

1

60
.

2

Remark 11 Let δ : F → K be such that δ(e) = 1, δ(t1 · · · tm) = δ(t1) · · · δ(tm) for
t1, . . . , tm ∈ T , and given t ∈ T , δ(t) = 1 if |t| = 1 and δ(t) = 0 otherwise. Then, (39)
applied for α = δ gives (as δ(CV (U)) = 1 if V = U and δ(CV (U)) = 0 otherwise) that
ω = log δ (in particular, according to Proposition 7, ω(u) = 0 if u ∈ F\T ).

Thus, the values of ω(t) (t ∈ T ) can be obtained, as an alternative to (40), from
solving for ω(t) in expω = δ. Another alternative can be obtained from the expansion
z/(ez−1) = 1+

∑
k≥1Bk/k! z

k (Bk being the Bernoulli numbers, in particular, B1 = −1/2,

B2 = 1/6, and B2k+1 = 0 for k ≥ 1), which gives ω = δ +
∑

k≥1Bk/k!ω
kδ, leading to

ω([u]a) =
∑

k≥1

Bk

k!
ωk(u), u ∈ F\{e}, a ∈ A.

The first statement of Lemma 8 and the fact that |v|! = v! p(v) for v ∈ F (proof of
Theorem 9) then leads to

ω([u]a) =
∑

V ∈K(U)

B|v|

v!
ω′(CV (U)). (41)

where U is a labeled partially ordered set representing u ∈ F , and for each partially ordered
set V ∈ K(U), v is the forest that represents it, and ω′(t1 · · · tm) = ω(t1) · · ·ω(tm). Observe
that, since Bk = 0 for odd numbers k > 1, in (41) one only needs to consider V ∈ K(U)
with only one element (which is only possible if u is a rooted tree) and V ∈ K(U) with an
even number |V | of elements.

Example 9 For rooted trees of the form t = [ k], k ≥ 1, (“bushy trees”), we have that
u = k and K(U) = {U}, and hence

ω([ k]) = Bk.

As an additional example of the application of (41), consider, as in Example 8, the rooted

tree t = , so that u = . Then,

ω(t) =
B2

2!
ω′( ) +

B4

( )!
ω′( 4) = B2 ω( ) +

B4

3
=

1

36
+

−1

90
=

1

60
.

2
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Remark 12 In the literature of numerical analysis for ODEs [3, 16, 17], the factorial t!
of a rooted tree t is referred to as the density of t, and is denoted as γ(t), while ω(t)
(t ∈ T ) can be interpreted as the coefficient of the B-series corresponding to the modified
equations of the explicit Euler method. The explicit formula (39) in Theorem 10 has been
independently obtained in the context of numerical analysis of ODEs in [4], and additional
formulas for ω(t), t ∈ T are given.

Example 10 Consider for each a ∈ A, the map φa : F → K determined as follows.
Given u ∈ F , φa(u) = 1 if u = [e]a and φa(u) = 0 otherwise. It then trivially holds that
Ea =

∑
u∈ bF φa(u)E(u), and thus the BCH formula reads,

exp(E2) exp(E1) = exp




∑

t∈bT

logα(t)E(t)



 ,

where A = {1, 2}, and α = (expφ2)(exp φ1). Recall that we represent as black vertices
those labeled by 1, and those labeled by 2 as white vertices, The coefficients logα(t) can
be read from the structure of the labeled rooted tree t by application of Theorem 10 for
the map α explicitly given as follows. Given u ∈ T , let U be a labeled partially ordered set
representing u. Let V (resp., W ) be the labeled partially ordered subset of U determined by
the white vertices of U (resp., black vertices). Then, V and W will represent two forests v
and w, respectively. If (V,W ) ∈ R(U) (as given in Definition 7), then α(u) = 1/(v!w!), and
α(u) = 0 otherwise. This is a direct consequence of the fact that θa = expφa is such that,
given u ∈ F , θa(u) = 1/u! if all the vertices of u are labeled by a, and θa(t) = 0 otherwise.
The latter statement can be proven in a very similar way to θ(t) := exp φ(t) = 1/t! in
the proof of Theorem 9. Observe that α(t) = 0 if t has some black vertex whose parent
is white, so that is this case, one only needs to consider in (39) labeled partially ordered
subsets of V including (in addition to all the roots of U) all the black vertices with white
parents. For instance, for the Hall set of rooted trees in (18), we have that

exp(E2) exp(E1) = exp
(
β( )E1 + β( )E2 + β( )[E1, E2]

+β( )[E1, [E1, E2]] + β( )[E2, [E1, E2]] + · · ·
)

(here, “· · ·” stands for terms of degree higher than three), where β = logα, and, in
particular,

β( ) = α( ) = 1,

β( ) = α( ) = 1,

β( ) = ω( )α( )α( ) = −
1

2
,

β( ) = ω( )α( )α( ) + ω( )α( )2α( ) = −
1

2

1

2
+

1

3
=

1

12
,

β( ) = ω( )α( )α( ) + ω( )α( )α( )2 = −
1

2

1

2
+

1

6
= −

1

12
.

2
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4.2 Iterated integrals and the continuous BCH formula

The proof of the next result will be postponed to Section 5 below.

Proposition 11 Consider the particular case of (4)–(5) where each αw is an iterated
integral of the form (7), where K is an arbitrary commutative ring, 1K is the unity in K,
and

∫
a

: K → K, a ∈ A, are Z-linear endomorphisms satisfying

(
∫

a
µ)(
∫

b
λ) =

∫
a
(µ
∫

b
λ) +

∫
b
(λ
∫

a
µ) (42)

for each a, b ∈ A and arbitrary µ, λ ∈ K (the “integration by parts” property). The map
α : F → K given by Definition 6 for αw in (7) satisfies

α(e) = 1, α(t1 · · · tm) = α(t1) · · ·α(tm), α([t1 · · · tm]a) =

∫

a

α(t1) · · ·α(tm) (43)

whenever t1, . . . , tm ∈ T , a ∈ A. Such α : F → K is uniquely determined by (43).

The assumptions of Proposition 11 hold, for instance in Examples 1–4.

Remark 13 By virtue of Proposition 7, the second equality in (43) implies that (4)–(7) can
be written as the exponential of a Lie series. According to Remark 9, (44) can alternatively
be expressed as an infinite directed product of exponentials of the form exp(α(t)E(t)),

t ∈ T̂ , each coefficient α(t) being a generalized iterated integral that reflects the structure
of the labeled rooted tree t (see [15] for this result in the context of non-linear control
theory).

We finally have that, under the assumptions of Proposition 11,

∑

w∈A∗

αw Ew = exp
(∑

t∈bT

β(t)E(t)
)
, (44)

where β = logα is explicitly given for α : F → K in (43) by means of Theorem 10. That is,
we have obtained an explicit expression of the so-called continuous BCH formula. Recall
that, compared to the results in [22], our formula is written in a basis (an arbitrary Hall
basis) of the free Lie algebra, while in [22], a spanning set of the free Lie algebra is used
to express the formula (and thus requires the use of some rewriting algorithm in order to
express it in a basis).

Example 11 Under the assumptions of Proposition 11, the application of Theorems 3
and 10 gives, for instance, for the Hall set of rooted trees in (18), that

∑

w∈A∗

αw Ew = exp
(
β( )E1 + β( )E2 + β( )[E1, E2]

+β( )[E1, [E1, E2]] + β( )[E2, [E1, E2]] + · · ·
)
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where β = logα. Using the notation αa =
∫

a
1K for a ∈ A = {1, 2}, we have, in particular,

β( ) = α( ) = α1,

β( ) = α( ) = α2,

β( ) = ω( )α( ) + ω( )α( )α( ) =
∫
2
α1 −

1
2
α1α2,

β( ) = ω( )α( ) + ω( )(α( )α( ) + α( )α( )) + ω( )α( )2α( )

=
∫
2

∫
1
α1 −

1
2
(α2

∫
1
α1 + α1

∫
2
α1) + 1

3
α2

1α2,

β( ) = ω( )α( ) + ω( )(α( )α( ) + α( )α( )) + ω( )α( )α( )2

=
∫
2
α1α2 −

1
2
(α1

∫
2
α2 + α2

∫
2
α1) + 1

6
α1α

2
2.

2

5 Rewriting labeled rooted trees as linear combina-

tions of Hall forests

5.1 A congruence on linear combinations of forests

Here we assume that the characteristic of the ring K is 0 (if the characteristic of K is k 6= 0,
one should replace Z by Z/(k) in what follows).

Consider the ring Z[T ] of polynomials with integer coefficients in the commuting in-
determinates u ∈ T , where the products of labeled rooted trees (i.e. the monomials in
Z[T ]) are identified with forests u ∈ F . The unity element is the empty forest, and the
elements in Z[T ] are Z-linear combinations of forests u ∈ F . We extend by bilinearity the
grafting operation t ◦ u for Z-linear combinations of labeled rooted trees t and Z-linear
combinations of labeled forests u. We also extend arbitrary maps α : F → K by linearity
to Z[T ].

Definition 13 Given u, v ∈ Z[T ], we say that u and v are congruent, and write u ≡ v,
if for every map α̂ : A∗ → K that assigns α̂(w) = αw to each word w, it holds that
α(u) = α(v) for the map α : F → K given by Definition 6.

Proposition 12 Given m ≥ 2, t1, . . . , tm ∈ T ,

t1 · · · tm ≡
m∑

i=1

ti ◦
∏

j 6=i

tj . (45)

Proof: Given a labeled partially ordered set U representing a forest u = t1 · · · tm, t1, . . . , tm
with roots r1, . . . , rm. Consider for each i = 1, . . . , m the labeled partially ordered set Zi ob-
tained from U by adding the edges ri < rj for each j ∈ {1, . . . , m}\{i} (thus, Zi represent-
ing the labeled rooted tree zi = ti ◦

∏
j 6=i tj). Then, it is straightforward to check that each

total order <U of the set of vertices of U that extends the partial order in U extends the par-
tial order of one and only one of the Zi, which shows that α(t1 · · · tm) = α(z1)+ · · ·+α(zm)
for arbitrary α : F → K given by Definition 6 for some αw ∈ K, w ∈ A∗. 2
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Proof of Proposition 11 Given a labeled partially ordered set T representing a labeled
rooted tree t = [u]a, u ∈ F , with vertices {x1, . . . , xn} and root xn labeled as l(xn) = a, then
the labeled partially ordered set U ⊂ T determined by the set of vertices {x1, . . . , xn−1}
(i.e., obtaining from T by removing the root xn) represents the forest u. Now, for each
total ordering >U of {x1, . . . , xn−1} that extends the partial order in U , there is clearly
a unique total ordering >T of {x1, . . . , xn} that extends both the partial order in T and
the total ordering >U , and in that case, w(>T ) = w(>U)a. This defines a one-to-one
correspondence between the total order >T and >U , and thus

α([u]a) =
∑

>T

αw(>T ) =
∑

>U

αw(>U )a =

∫

a

∑

>U

αw(>U ) =

∫

a

α(u). (46)

The “integration by parts” property (42) can be generalized (by applying induction on m)
as

m∏

i=1

∫

ai

µi =
m∑

i=1

∫

ai

(
µi

∏

j 6=i

∫

aj

µj

)
, ai ∈ A, µi ∈ K, i = 1, . . . , m. (47)

The second equality in (43) can by proven by induction on the degree of u = t1 · · · tm (and
Proposition 12) as follows. Let ti = [vi]ai

, where ai ∈ A and vi ∈ F for each i = 1, . . . , m,
then, by virtue of Proposition 12 and (46), we have that

α(u) =

m∑

j=1

α([vi

∏

j 6=i

tj ]ai
) =

m∑

j=1

∫

ai

α(vi

∏

j 6=i

tj),

and by induction hypothesis and applying (46) again, we obtain that

α(u) =
m∑

j=1

∫

ai

α(vi)
∏

j 6=i

α(tj) =
m∑

j=1

∫

ai

α(vi)
∏

j 6=i

∫

aj

α(vj),

and (47) with µi = α(vi) finally leads to α(u) = α(t1) . . . α(tm).
Induction on the degree of forests shows that (43) uniquely determines the map α :

F → K. 2

Consider the Z-module Z〈A〉 of Z-linear combinations of words, and let us denote the
shuffle product of w1, w2 ∈ Z〈A〉 [21] as w1⊔⊔w2.

Proposition 13 Consider the Z-linear map ν : Z[T ] → Z〈A〉 given as follows. For each
u ∈ F ,

ν(u) =
∑

>U

w(>U) (48)

where we adopt the same notation as in Definition 6. Then it holds that

ν([u]a) = ν(u)a, ν(uv) = ν(u)⊔⊔ν(v), for each u, v ∈ F , a ∈ A. (49)
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Proof: Consider K = Z〈A〉, and
∫

a
w = wa for each w ∈ A∗, a ∈ A. The recursive

definition of the shuffle product [21] then just reads (42). Proposition 11 applied in this
case gives the required result. 2

Remark 14 It obviously holds that a map α : F → K is given by Definition 6 for some
coefficients {αw : w ∈ A∗} if and only if

α(u) = α̂(ν(u)), for each u ∈ F , (50)

where α̂ : Z〈A〉 → K is the Z-linear map given by α̂(w) = αw for each w ∈ A∗. We thus
have that u ≡ v if and only if u− v ∈ ker ν (i.e., u and v are congruent modulo ker ν).

According to Remark 14, Proposition 13 implies the following:

Proposition 14 Given u, v ∈ Z[T ], a ∈ A, if u ≡ v, then [u]a ≡ [v]a. Furthermore, if
ū ≡ v̄ for ū, v̄ ∈ F , then uū ≡ vv̄. Moreover, if under such conditions t1, . . . , tm ∈ T , then
t1 ◦ · · · ◦ tm ◦ u ≡ t1 ◦ · · · ◦ tm ◦ v.

The following result follows from Proposition 12 and from third statement of Proposi-
tion 14.

Lemma 15 For arbitrary t ∈ T , n ≥ 1, it holds that tn ≡ n!t◦n.

Corollary 16 For arbitrary t ∈ T , i, j ≥ 1, it holds that t◦it◦j ≡ (i+j)!
i!j!

t◦(i+j).

Remark 15 Repeated application of Corollary 16 shows that the product of arbitrary
Hall forests is congruent to a Hall forest multiplied by a positive integer. In particular,
this implies that, given t ∈ T̂ , u ∈ F̂ , and n ≥ 1, there exist λ ∈ Z and w ∈ F̂ such that
t◦n ◦ u ≡ λ [w]a. More precisely, w is such that vt◦(n−1)u ≡ λw, where t = [v]a, v ∈ F̂ ,
a ∈ A.

5.2 A rewriting algorithm

We will give an algorithm that allows rewriting each u ∈ F as u ≡ v, where v ∈ Z F̂ (i.e.,
v is a Z-linear combination of Hall forests), in a finite number of recursion steps. The main
tool is an algorithm (Algorithm 1 below) that rewrites any labeled rooted tree of the form

[u]a where a ∈ A and u ∈ F̂ as [u]a ≡ v, where v ∈ ZF̂ .

Algorithm 1 Given t = [u]a ∈ T , where u ∈ F̂ and a ∈ A,

1. Find (following the constructive proof of Lemma 2) the Hall forest v ∈ F̂ such that

Γ(v) = [u]a, that is, find v = t◦r1
1 · · · t◦rm

m such that t1, . . . , tm ∈ T̂ , m, r1, . . . , rm ≥ 1,
t1 > · · · > tm, and Γ(v) := t◦r1

1 ◦ (t◦r2
2 · · · t◦rm

m ) = [u]a.
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2. If m = 1, then t = t◦r1
1 ∈ F̂ , and the algorithm stops. Otherwise, set

t ≡ t◦r1
1 · · · t◦rm

m −
m∑

i=2

t◦ri

i ◦ (t◦r1
1 · · · t

◦ri−1

i−1 t
◦ri+1

i+1 · · · t◦rm

m ), (51)

rewrite, following Lemma 17 below, each term in the summation of the right-hand
side of (51) in the form λiΓ(vi), λi ∈ Z, vi ∈ F̂ , and recursively go to the second step
in Algorithm 1 (with v replaced by vi) for each i = 2, . . . , m.

Lemma 17 Consider v = t◦r1
1 · · · t◦rm

m ∈ F̂ , where m > 1, t1, . . . , tm ∈ T̂ , r1, . . . , rm ≥

1, t1 > · · · > tm. Given i ∈ {2, . . . , m}, there exist λi ≥ 1, vi ∈ F̂ , such that t◦ri

i ◦
(t◦r1

1 · · · t
◦ri−1

i−1 t
◦ri+1

i+1 · · · t◦rm
m ) ≡ λi Γ(vi) and v ≻ vi.

Proof: Given i ∈ {2, . . . , m}, according to Remark 15, there exist λi ≥ 1, ai ∈ A, and

wi ∈ F̂ such that t◦ri

i ◦ (t◦r1
1 · · · t

◦ri−1

i−1 t
◦ri+1

i+1 · · · t◦rm
m ) ≡ λi [wi]ai

. Consider vi = Γ−1([wi]ai
) ∈

F̂ , that is, the unique vi = z◦l11 ◦ (z◦l22 · · · z◦lkk ) with l1, . . . , lk ≥ 1, z1, . . . , zk ∈ T̂ , and
z1 > · · · > zk such that [wi]ai

= z◦l11 ◦ (z◦l22 · · · z◦lkk ).

1. If k = l1 = 1, that is, v = z1 ∈ T̂ , then z′′1 = min(tm−1, t
′′
m) provided that i = m and

rm = 1, and z′′1 = tm, otherwise, and hence t1 ≥ z′′1 ≥ tm, that is, v ≻ z1 = vi.

2. Otherwise, from the proof of Lemma 2 it is clear that zk = tm (and lk = rm) if j 6= m
of rm > 1. If j = m and rm = 1, then zk = min(t′′m, tm−1) ≥ tm. It then remains to

prove that z′′1 ≤ t1. We will show that z1 = [t◦r1 v]ai
, where r ≥ 1 and v ∈ F̂ , which

implies that z′′1 ≤ t1.

By definition of Hall rooted trees applied for ti ∈ T̂ , there exist a ∈ A, n1, . . . , np ≥ 1,

and s1, . . . , sp ∈ T̂ such that s1 > · · · > sp > ti = [s◦n1
1 · · · s

◦np
p ]ai

.

If sp > t1 (resp., sp = t1), then it implies, together with ti = [s◦n1
1 · · · s

◦np
p ]ai

< t1,

that [s◦n1
1 · · · s

◦np
p t◦r1

1 ]ai
∈ T̂ (resp., [s◦n1

1 · · · s
◦np−1

p−1 t
◦(sp+r1)
1 ]ai

∈ T̂ ), and the proof
of Lemma 2 shows that z1 is of the form z1 = [s◦n1

1 · · · s
◦np
p t◦r1

1 u]ai
(resp., z1 =

[s◦n1
1 · · · s

◦np−1

p−1 t
◦(sp+r1)
1 u]ai

), where u ∈ F̂ .

Otherwise, if sp < t1, let j be the smallest integer such that sj < t1. If z1 is not

of the form z1 = [t◦r1 v]ai
, v ∈ F̂ , then the proof of Lemma 2 shows that z1 =

[s◦n1
1 · · · s

◦nj−1

j−1 ]ai
> z2 = t1. But, the fact that [s◦n1

1 · · · s
◦nj

j ]ai
∈ T̂ together with sj <

t1 implies that z1 = [s◦n1
1 · · · s

◦nj−1

j−1 ]ai
< sj < t1 = z2, which leads to a contradiction.

2

Proposition 18 Algorithm 1 when applied to an arbitrary labeled rooted tree of the form
t = [u]a , u ∈ F̂ , a ∈ A, rewrites t as t ≡ v, where v ∈ ZF̂ , in a finite number of recursion

steps. Moreover, such v is a Z-linear combination of Hall forests vi ∈ F̂ with the same
partial degrees as t and satisfying that Γ−1(t) � vi.
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Proof: According to Proposition 12, if Algorithm 1 stops when applied for a labeled
rooted tree of the form t = [u]a, u ∈ F̂ , a ∈ A, then it succeeds in rewriting it as

t ≡ v ∈ ZF̂ . To see that the algorithm stops after a finite number of recursion steps, first
notice that the set {z ∈ T : |z|a = |t|a for each a ∈ A} of labeled rooted trees with the
same partial degrees as an arbitrary t ∈ T is always finite. And, finally, observe that each
of the labeled rooted trees Γ(vi) in Algorithm 1 has the same partial degrees as t, and is,
according to Lemma 17, such that Γ−1(t) ≻ vi, where the partial order on Hall forests ≻
is given in Definition 4. 2

Corollary 19 Under the assumptions of Theorem 3, for each word w ∈ An, there exists
v ∈ ZF̂ of homogeneous degree n such that αw = α(v).

Proof: According to Remark 14, one only needs to show that w = ν(v) for some v ∈ ZF̂ .
This follows applying induction on the degree |w| from Propositions 18 and 14. It is trivial
for w = a ∈ A, and given w ∈ A, by induction hypothesis and Proposition 14 we have that
wa = ν(v)a = ν([v]a) and the required result follows by applying Algorithm 1 to each [vi]a,

where v =
∑
λivi, vi ∈ F̂ . 2

Remark 16 The proof of Corollary 19 gives a recursive algorithm to rewrite each word
w as w = ν(v) where v ∈ ZF̂ . This together with (48) allows rewriting an arbitrary forest

u ∈ F as u ≡ v, v ∈ ZF̂ . However, this can be done more efficiently, directly using
Algorithm 1 and the results in Proposition 14. Application of the second statement in
Proposition 14 allows rewriting any forest u = t1 · · · tm provided that each t1, . . . , tm ∈ T
has been previously rewritten. For labeled rooted trees t ∈ T , one can either use recursion
and the first two statements in Proposition 14, or directly use the third statement in
Proposition 14 combined with Algorithm 1 to reduce in step-by-step manner each subtree
of t of the form [u]a, u ∈ F̂ (i.e., such that t = t1 ◦ · · · ◦ tm ◦ [u]a).

Remark 17 In [20], a different definition of Hall sets of labeled rooted trees is given. Such

a set of labeled rooted trees can be obtained from a Hall set T̂ (as given in Definition 1)

as T̂ ∗ = {t∗ ∈ T : t ∈ T̂ }, where for each Hall forest u = t◦r1
1 · · · t◦rm

m ∈ F̂ and for the

Hall rooted tree t = [u]a ∈ T̂ , u∗ and t∗ are given recursively as u∗ = (t∗1)
r1 · · · (t∗m)rm and

t∗ = [u∗]a (with e∗ = e). It follows from Lemma 15 that u∗ = σ(u∗)u. Hence, Corollary 19

also holds with ZF̂ replaced by Q[T̂ ∗]. An equivalent version of Algorithm 1 can be

easily obtained with F̂∗ instead of F̂ , which is slightly simpler in some sense (instead of
Corollary 16 we just need the trivial titj = ti+j), but it has the drawback of requiring the
use of rational numbers.

5.3 Application to computations in the Lie algebra of Lie series

Proposition 20 Under the assumptions of Proposition 4, if α(u) = 0 for u ∈ F\T , then
(∑

t∈bT

α(t)E(t)
)(∑

u∈ bF

β(u)E(u)
)

=
∑

u∈ bF

αβ(u)E(u), (52)
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where given u ∈ F and a labeled partially ordered set U representing u,

αβ(u) =
∑

(Z,V )∈Rτ (U)

α(Z) β(V ), (53)

where Rτ (U) is the set of pairs (Z, V ) ∈ R(U) such that the labeled partially ordered set Z

represents a Hall rooted tree z ∈ T̂ .

Proof: Corollary 5 implies that (52)–(53) hold with Rτ (U) the set of pairs (Z, V ) ∈ R(U)

such that the labeled partially ordered set Z represents a labeled rooted tree z ∈ T̂ . With
such a definition of Rτ (U), there is one pair (Z, V ) ∈ Rτ (U) per edge (x < y) of U , where
Z and V are the two connected components of the labeled partially ordered set obtained
from U by removing the edge (x < y). The definition of Hall rooted trees shows that such

Z can only represent labeled rooted trees of the form z◦r where z ∈ T̂ and r ≥ 1. But, by
assumption, α(z◦r) = 0 if r > 1. 2

The following result gives formulas to compute the Lie bracket of two Lie series (as
given in Definition 9).

Corollary 21 Under the assumptions of Proposition 4, if α(u) = β(u) = 0 for u ∈ F\T

(i.e., α(u) = β(u) = 0 for u ∈ F̂\T̂ ), then
[∑

t∈bT

α(t)E(t),
∑

t∈bT

β(t)E(t)
]

=
∑

t∈bT

[α, β](t)E(t), (54)

where given t ∈ T and a labeled partially ordered set T representing t,

[α, β](t) =
∑

(Z,S)∈Rτ (T )

(
α(Z) β(S) − β(Z)α(S)

)
. (55)

When computing the Lie bracket (54) of two Lie series, one only needs to compute [α, β](t)

for t ∈ T̂ , but S in the summation of (55) does not necessarily represent a labeled rooted

tree in T̂ , and thus one will need to apply some rewriting algorithm (based, for instance,
on Algorithm 1) unless the values of α(s), β(s) for arbitrary s ∈ T are previously known.

Example 12 For instance, for the Hall set of rooted trees in (18), we have that [α, β]( ) =

[α, β]( ) = 0, [α, β]( ) = α( )β( )−β( )α( ), [α, β]( ) = α( )β( )−β( )α( ), and

[α, β]( ) = α( )β( ) − β( )α( ) (recall that , ∈ F̂\T̂ , and thus α(u) = β(u) = 0
for u = , ). 2

Remark 18 Formulas (54)–(55) can be used to do computations in an arbitrary Lie al-
gebra g as follows. Let the Lie algebra g be generated by the set {Ea : a ∈ A} ⊂ g

(A is a set of indices). Consider a Hall set T̂ of rooted trees labeled by A. Recursively

define E(t) ∈ g, t ∈ T̂ , by (20). Then any element of g can be represented by a Lie series
(31) (with a finite number of non-vanishing coefficients α(t)), and the Lie bracket of two
arbitrary elements of g can be computed using (54)–(55). This is a direct consequence of
previous results applied with B being the enveloping universal algebra of the Lie algebra
g.
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5.4 The proof of Theorem 3

In order to prove Theorem 3 it is clearly sufficient to show that the result holds in the
case K = Z〈A〉 (with the shuffle product) and αw = w for each w ∈ A∗. According to
Proposition 13, Remark 6, and Lemma 15, Theorem 5.3 in [21] is equivalent to the required
result.

For completeness, we next outline an alternative proof that uses the results in the
preceding two subsections.

Proposition 22 Under the assumptions of Proposition 20, for each u ∈ F̂ it holds that
αβ(u) − α(u′′)β(u′) is a Z-linear combination of terms of the form α(z)β(v), such that

z ∈ T̂ , v ∈ F̂ , and z > v′′.

Proof: Given a labeled partially ordered set T representing a labeled rooted tree t ∈ T ,
each pair (Z, S) ∈ R(T ) such that Z and S represent two labeled rooted trees z and s,
is associated to a unique decomposition of T of the form T = Tm ◦ · · · ◦ T1 ◦ T0 (m ≥ 1,
and each Ti representing a labeled rooted tree ti ∈ T ) with Z = T0 and S = Tm ◦ · · · ◦ T1,
which is a one-to-one correspondence. Equivalently, there is a one-to-one correspondence
between such decompositions of T and the edges (x < y) of T (where x and y are the roots
of T1 and T0, respectively). Thus, each edge of T is associated to a decomposition of t of
the form

t = tm ◦ · · · ◦ t0, (56)

In general, different edges of T can give the same decomposition (56). However, if σ(t) = 1,

and in particular, if t ∈ T̂ , then there is a one-to-one correspondence between the pairs
(Z, S) ∈ R(T ) such that Z and S represent two labeled rooted trees and the different
decompositions (56) of t. That correspondence associates each decomposition (56) to a
pair pair (Z, S) ∈ R(T ) such that Z and S represent the labeled rooted trees t0 and

tm ◦ · · · ◦ t1 respectively. By definition of Hall rooted trees, if t ∈ T̂ , then t0 is of the form
t0 = z◦r, r ≥ 1, z ∈ T̂ . Exactly the same argument holds with t ∈ T̂ replaced by t◦n,
where t ∈ T̂ and n ≥ 1. Thus, according to Proposition 20, given t ∈ T̂ , n ≥ 1, αβ(t◦n) is
the sum, over all decompositions

t◦n = tm ◦ · · · ◦ t1 ◦ z
◦r,

with r ≥ 1, z ∈ T̂ , t1, . . . , tm ∈ T , of α(z)β(tm ◦ · · · ◦ t1 ◦ z
◦(r−1)). There is a unique such

decomposition of t◦n such that m = 1 and (t1 ◦ z
◦(r−1), z) is the standard decomposition of

t◦n. It is not difficult to check (using the properties of Hall rooted trees) that the remaining
decompositions are such that t◦n = tm ◦ · · · ◦ t1 ◦ z

◦(r−1) is of the form

(z◦rm

m ◦ um) ◦ · · · ◦ (z◦r1
1 ◦ u1), where z > max(z1 · · · zmu1 · · ·um) (57)

r1, . . . , rm ≥ 1, z1, . . . , zm ∈ T̂ , and u1, . . . , um ∈ F̂ . Here, we have used the notation
adopted in Remark 4 for the maximum Hall rooted tree max(u) of a product u of Hall
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forests. If m > 1, the third statement in Proposition 14, Proposition 18, Lemma 17, and
Remark 4 show that (57) is congruent to a linear combination of labeled rooted trees of
the form (57) with m replaced by m − 1. If m = 1, Proposition 18 and Lemma 17 show

that (57) is congruent to a linear combination of Hall forests v ∈ F̂ such that z1u1 ≻ v,
and, in particular, z > v′′ (as z > max(z1u1)). We have thus proven the statement of

Proposition 22 when u = t◦n, t ∈ T̂ , and n ≥ 1. The required result for general Hall
forests u ∈ F̂ follows from the next statement. Given a labeled partially ordered set U
representing a forest u = t1 · · · tm ∈ F , t1, . . . , tk ∈ T , if T1, . . . , Tm (resp., U1, . . . , Um) are
labeled partially ordered subsets of U such that Ti represents the labeled rooted tree ti
(resp., Ui represents the labeled forest t1 · · · ti−1ti+1 · · · tm), then (Z, V ) ∈ R(U) is and only
if either Z = Ti and V = Ui, or V is the direct union of Ui and S, where (Z, S) ∈ R(Ti). 2

Proof of Theorem 3: According to Corollary 19, for each u ∈ F̂ , there exist α
(u)
w ∈ K,

w ∈ A∗, such that the map α(u) : F → K given by Definition 6 is such that, for each
v ∈ F̂ , α(u)(v) = 1 if v = u and α(u)(v) = 0 otherwise. Corollary 19 implies that (23) and
(25) hold with some E(u) ∈ B (certain K-linear combination of Ew for words w of degree

|u|). It then remains to show that such E(u) (u ∈ F̂) satisfy (20)–(21), which is clearly
equivalent to

α(t) = α(t′′)α(t′) − α(t′)α(t′′), α(u) = α(u′′)α(u′) where t ∈ T̂ , u ∈ F̂ , (58)

and (t′, t′′) ∈ T̂ × T̂ and (u′, u′′) ∈ F̂ × T̂ are the standard decompositions of t and u,
respectively. Finally, (58) is implied by the following. According to Proposition 22, given

u, v ∈ F̂ and t ∈ T̂ , if α(u′′)α(u′)(v) − α(u′′)(v′′)α(u′)(v′) 6= 0, then u′′ > (u′)′′ (which is
false by definition of standard decomposition), and, similarly, α(t′)α(t′′)(v) 6= 0 implies that
t′ > (t′′)′′ (which is again false). 2

6 Interpretation in terms of vector fields

The map α : F → K in Definition 6, which has a central role in the present work, lacks,
in the context of Sections 3–5, a direct interpretation of the coefficients α(u) for general
u ∈ F .

Assume that {Ea : a ∈ A} are smooth vector fields (viewed as linear differential
operators) over a d-dimensional smooth manifold M. Let B be the vector space over R

of linear differential operators acting on smooth functions on M spanned by the identity
operator I and the set {Ea1 · · ·Eam

: m ≥ 1, a1, . . . , am ∈ A}. Here the expression
Ea1 · · ·Eam

represents a composition of operators (so that the action of Ea1 · · ·Eam
on a

smooth function g ∈ C∞(M) is recursively given by Ea1 · · ·Eam
g := Ea1 · · ·Eam−1(Eam

g)).
Thus B is generated as an algebra by the vector fields {Ea : a ∈ A}). Obviously, all the
results shown in the preceding sections are valid in this case with K = R. In the present
section, we will consider K = R.
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Theorems 24 and 25 below give to the map α : F → K associated in Definition 6
to each series of the form (4), a more concrete meaning. The product of arbitrary maps
from F to K, that we have so far applied only to maps associated to a series of the form∑

w∈A∗ αwEw, can now be interpreted with Theorem 24 for general maps α : F → K.
The results in the present section are closely related to the results in [12] and references

therein.
In local coordinates (x1, . . . , xd), defined in an open set U ⊂ M, the smooth vector

fields Ea can be written as

Ea =

d∑

i=1

f i
a Di for each a ∈ A, (59)

with suitable smooth functions f i
a : U ⊂ M → K and Di = ∂/∂xi, i = 1, . . . , d. In what

follows, C∞(U) denotes the set of smooth functions on U ⊂ M.

Definition 14 A linear differential operator X(u) acting on C∞(U) is assigned to each
forest u ∈ F of rooted trees labeled by A as follows. For the empty forest, X(e) = I, and

X(t1 · · · tm) =

d∑

i1,...,im=1

F (t1)
i1 · · ·F (tm)im Di1 · · ·Dim , if t1, . . . , tm ∈ T , (60)

where, for each t ∈ T and each i ∈ {1, . . . , m}, F (t)i is a smooth function on U ⊂ M
given by

F (t)i = X(u)f i
a if t = [u]a, u ∈ F , a ∈ A. (61)

Theorem 24 below, which gives a rule to perform the product of series of linear differ-
ential operators of the form

∑

u∈F

α(u)

σ(u)
X(u), (62)

can be proven in an indirect way using some results available in the literature (see Re-
mark 23 in Section 7 below). We give for completeness a direct proof. We first need the
following result, due to Grossman and Larson [12, Proposition 2].

Lemma 23 Given two labeled partially ordered sets V and W representing, respectively,
the labeled forests v, w ∈ F and having disjoint sets of vertices, it holds that

X(v)X(u) =
∑

W

X(W )

where the summation goes over all labeled partially ordered sets W representing labeled
forests such that (V, U) ∈ R(W ), and X(W ) = X(w) if W represents w ∈ F .
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Proof: We first observe that, given a forest u ∈ Fn (n ≥ 1) represented by a labeled
partially ordered set U with vertices 1, . . . , n labeled by a1, . . . , am ∈ A, respectively, and
roots {1, . . . , k} (k ≤ n), for each g ∈ C∞(U),

X(u)g =
d∑

i1,...,in=1

(
n∏

j=1

Diχ(j,1)
· · ·Diχ(j,nj )

f ij
aj

)
Di1 · · ·Dikg, (63)

where for each j ∈ {1, . . . , n}, {χ(j, 1), . . . , χ(j, nj)} is the set of children of the vertex j
in U . Notice that X(u)g is a summation of products of terms having one factor per vertex
of U plus one more for a partial derivative of g. This shows that, given v = t1 . . . , tm,
t1, . . . , tm ∈ T , and u ∈ F , X(v)X(u)g can be expanded as a sum of (|u| + 1)m terms
obtained from (63) by letting each

∑d

l=1 F (tr)
lDl (r = 1, . . . , m) act on either the factor

in (63) corresponding to one vertex of U or on Di1 · · ·Dikg. But each of such terms is of
the form X(W )g, with one term per labeled partially ordered set W satisfying that the
set of vertices of W is (following the notation in the statement of Lemma 23) the union of
the sets of vertices of U and V , and the set of edges of W is obtained as the union of the
edges of U and V and possibly some edges of the form (x < r), x ∈ U , r ∈ roots(V ), with
at most one such edge per root of V . Or, equivalently, X(v)X(u)g is the sum of X(W )g
over all labeled partially ordered sets W satisfying that (V, U) ∈ R(W ). 2

Theorem 24 Given two arbitrary maps α, β : F → K, it formally holds that

(
∑

u∈F

α(u)

σ(u)
X(u)

)(
∑

u∈F

β(u)

σ(u)
X(u)

)
=
∑

u∈F

αβ(u)

σ(u)
X(u), (64)

where αβ : F → K is given in Definition 7.

Proof: It is clearly sufficient to prove the statement for α and β defined, for arbitrary
u, v ∈ F , as follows. Given w ∈ F , α(w) = σ(v) if w = v and α(w) = 0 otherwise, and
β(w) = σ(u) if w = u and β(w) = 0 otherwise. In that case, the left-hand side of (64) is
X(v)X(u). By Lemma 23, we have that

X(v)X(u) =
∑

w∈F

γ(u)

σ(w)
X(w),

where γ(w) = k(w, v, u) σ(w) for each w ∈ F , where k(w, v, u) is a non-negative integer
determined as follows. Given V, U (with disjoint sets of vertices) representing v, u, respec-
tively, k(w, v, u) is the number of different labeled partially ordered sets W representing w
such that (V, U) ∈ R(W ). We thus need to prove that αβ = γ for these particular α and β
associated to v and u, respectively. By Definition 7 we have that γ(w) = l(w, v, u) σ(v)σ(u),
where given a labeled partially ordered set W representing w, l(w, v, u) is the number of dif-
ferent pairs (V,W ) ∈ R(W ) that represents, respectively, v and u. It thus remains to show
that k(w, v, u)σ(w) = l(w, v, u)σ(v)σ(u), which follows from the following observation.

31



If (V, U) ∈ R(W ) for some labeled partially ordered sets V, U,W representing, respec-
tively, v, u, w, then k(w, v, u) = σ(v)σ(u)/σ(W,V, U) and l(w, v, u) = σ(w)/σ(W,V, U),
and k(w, v, u) = l(w, v, u) = 0 otherwise, where σ(W,V, U) denotes the number of differ-
ent pairs of permutations of the vertices of V and U , respectively, which determine an
isomorphism of the labeled partially ordered set W . 2

Theorem 25 Given a map that assigns αw ∈ K to each word w ∈ A∗. Let α : F → K be
given by Definition 6, then

∑

w∈A∗

αw Ew =
∑

u∈F

α(u)

σ(u)
X(u). (65)

Proof: It is clearly sufficient to prove the statement with αw = α
(a1···am)
w given for ar-

bitrarily fixed a1, . . . , am ∈ A as follows: α
(a1···am)
w = 1 if w = a1 · · ·am and α

(a1···am)
w = 0

otherwise. We will prove by induction on m that

∑

w∈A∗

α(a1···am)
w Ew =

∑

u∈F

α(a1···am)(u)

σ(u)
X(u) (66)

holds for α(a1···am) : F → K given by Definition 6.
For m = 1, the map α(a1) : F → K given by Definition 6 is trivially such that, for u ∈ F ,

α(a1)(u) = 1 if u = [e]a1 and α(a1)(u) = 0 otherwise. But, by definition, Ea = X([e]a), which
leads to (66) for m = 1.

For m > 1, by induction hypothesis and Theorem 24, we have that (66) holds for
α(a1···am) : F → K given by Definition 7 as the product of α = α(a1···am−1) and β = α(am).
On the other hand, it is trivially checked that α

(a1···am)
w = (αβ)w in (6) for α = α

(a1···am−1)
w

and βw = α(am). The required result then follows from Corollary 5. 2

Remark 19 It is straightforward to check that Lemma 23 and Theorems 24 and 25
still hold (with exactly the same proofs) in the general situation where K is an arbitrary
commutative ring with unit, C∞(U) is replaced by an arbitrary commutative K-algebra R,
and for each a ∈ A and each i = 1, . . . , d, f i

a ∈ R, and Ea and Di are K-linear derivations
of R such that D1, . . . , Dd commute with each other, and (59) holds.

Remark 20 Theorem 25 gives, in particular, an explicit description of the map φ in [12,
Proposition 3].

Remark 21 Theorem 30 in Section 7 below implies that, if α : F → K is such that
α(e) = 1 and

α(t1 · · · tm) = α(t1) · · ·α(tm) =

m∑

i=1

α(ti ◦
∏

j 6=i

tj) (67)
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for each m ≥ 1, t1, . . . , tm ∈ T , then the series of differential operators (62) is the expo-
nential of a series of vector fields in the Lie algebra generated by the basic vector fields
{Ea : a ∈ A}, more precisely,

∑

u∈F

α(u)

σ(u)
X(u) = exp




∑

t∈bT

logα(t)E(t)



 .

Remark 22 Series of differential operators of the form (62) (typically with the presence
of a factor of the form h|u| in each term, associated to the time-discretization parameter h,
which can be incorporated in the definition of the functions f i

a) are particularly useful in the
theoretical study of large classes of numerical integrators for ODEs [19, 20, 5]. In the case of
a map α : F → K satisfying (32), the series (62) is equivalent to the more standard so-called
B-series associated to a numerical integrator [16, 3, 17], or its generalizations to labeled
(coloured) rooted trees [16, 17, 1, 20]. More precisely, S(α)g (g ∈ C∞(U)) is formally
equivalent to the composition of g with a B-series with coefficients α(t), t ∈ T [19, 5]).
Theorem 24 in the particular case of α and β satisfying (32) is equivalent to the composition
of two B-series (generalized to labeled rooted trees) with coefficients β(t) and α(t) (t ∈ F),
respectively. The formal vector field whose 1-flow interpolates the numerical solution given
by a one-step method expanded with such a B-series (the modified equation in formal
backward error analysis) is just the series

∑
t∈T logα(t)/σ(t)X(t). See [5] for a recent

work where series of the form (62) are exploited, and, in particular, maps α : F → K

satisfying (67) are interpreted in the context of preservation of first integrals of numerical
integrators for ODEs.

7 Hopf-algebraic interpretation

We refer to [23] for the basic theory of Hopf algebras. Consider the commutative K-
algebra structure given by the shuffle product to K〈A〉, with the empty word as the unity
of the shuffle product. In order to distinguish it from the empty labeled forest e, we will
hereafter denote the empty word as ê. It is well known that the shuffle algebra K〈A〉 has

a commutative Hopf algebra structure with co-product ∆̂ : K〈A〉 → K〈A〉 ⊗ K〈A〉 given
for each word w = a1 · · ·am (a1, . . . , am ∈ A) as

∆̂w = w ⊗ ê+ ê⊗ w +

m−1∑

j=1

a1 · · ·aj ⊗ aj+1 · · ·am. (68)

The co-unit ǫ̂ : K〈A〉 → K is given by ǫ̂(ê) = 1 and ǫ̂(w) = 0 for w ∈ A∗. The interpretation
of that co-product in our context is as follows. Each element α̂ in the (algebraic) linear dual
K〈A〉∗ of K〈A〉 gives rise to a series of the form (4) with αw = 〈α̂, w〉 for each w ∈ K〈A〉,

and the product of two such series associated to α̂, β̂ ∈ K〈A〉∗ is the series associated to

α̂β̂ ∈ K〈A〉∗ given as

〈α̂β̂, w〉 = 〈α̂⊗ β̂, ∆̂w〉, w ∈ K〈A〉. (69)
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(If, for each w ∈ A∗, 〈α̂, w〉 = αw and 〈β̂, w〉 = βw, then 〈α̂β̂, w〉 = (αβ)w given in (6)).
Consider the graded commutative K-algebra K[T ] (graded by the degree of forests,

or, more generally, by the weight of forests if A is a weighted alphabet), where the unity
element is represented by the empty forest, and each monomial t1 · · · tm with t1, . . . , tm ∈ T
is associated to a forest u ∈ F . It is well known [7, 9] that the graded commutative K-
algebra K[T ] can be given a commutative Hopf algebra structure over K compatible to
the grading given to K[T ]. Such a graded commutative Hopf algebra structure is uniquely
determined by the co-product ∆ : K[T ] → K[T ] ⊗ K[T ] which is defined for each u ∈ F
as follows. Given a labeled partially ordered set U representing u,

∆(u) =
∑

(V,W )∈R(U)

v ⊗ w, (70)

where R(U) is given in Definition 7, and for each pair (V,W ) ∈ R(U) of labeled partially
ordered sets, the labeled forests v and w are represented by V and W , respectively. The
co-unit ǫ : K[T ] → K is given by ǫ(e) = 1 and ǫ(u) = 0 for u ∈ F\{e}. From now on, we
will refer to such a commutative Hopf algebra simply as K[T ].

Clearly, each α ∈ K[T ]∗ is determined by its values 〈α, u〉 = α(u) for u ∈ F , and the
product in Definition 7 exactly corresponds to the product in the K-algebra structure of
K[T ]∗ dual to the coalgebra (K[T ],∆, ǫ), that is,

〈αβ, u〉 = 〈α⊗ β,∆u〉, u ∈ K[T ]. (71)

The maps α : F → K such that α(u) = 0 if u ∈ F\T (resp., such that (32) holds)
correspond to α ∈ K[T ]∗ in the Lie algebra P (K[T ]◦) of primitive elements (resp., in the
group G(K[T ]◦) of group-like elements) of the dual Hopf algebra K[T ]◦ (in the sense of
Sweedler [23]) of the commutative Hopf algebra on K[T ]. Proposition 7 corresponds to the
standard result that (if the base ring K is a Q-algebra) the exponential defines a bijection
exp : P (K[T ]◦) → G(K[T ]◦) whose inverse is the logarithm.

Remark 23 The cocommutative Hopf algebra HGL on labeled rooted trees of Grossman
and Larson [11] is a Hopf subalgebra of the Hopf algebra K[T ]◦. Actually, HGL and K[T ]
are graded dual (graded by the degree of forests if A is finite, and with other more general
grading in the general case) to each other [10, 13]. That duality together with the results
in [12] gives an alternative proof of Theorem 24 (actually, the proof we give in Section 6 is
essentially a proof of the duality between the coalgebra structure of K[T ] and the algebra
structure of HGL).

It is straightforward to check that the following holds for the co-product (70) in K[T ].
Given u ∈ F , a ∈ A, then

∆[u]a = [u]a ⊗ e+ (id ⊗ [id]a)∆u. (72)

This, together with the fact that ∆ is an algebra map, can be used to recursively compute
the coproduct for all forests. Equivalently, (72) can be written as follows. Given t ∈ T ,
u, v, w ∈ F , we define (u⊗ t) ◦ (v ⊗ w) := (uv) ⊗ (t ◦ w), and then

∆(t) = t⊗ e+ ∆̄(t), ∆̄([e]a) = e⊗ [e]a, ∆̄(t ◦ u) = ∆̄(t) ◦ ∆(u)
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for each t ∈ T , u ∈ F , a ∈ A,
The graded commutative Hopf algebra K[T ] of rooted trees labeled by A can be char-

acterized by the following universal property [7, 9].

Theorem 26 Given a commutative algebra C over K and a family of K-module maps
La : C → C, a ∈ A, there exists a unique K-algebra homomorphism ψ : K[T ] → C such
that ψ([u]a) = La(u) for each u ∈ K[T ], a ∈ A.

If C has a Hopf algebra structure (with unity element 1C and coalgebra structure (C,∆C, ǫC))
satisfying ∪a∈AImLa ⊂ ker ǫC and

∆CLd(c) = Ld(c) ⊗ 1C + (idC ⊗ Ld)(∆C(c)) (73)

for each c ∈ C, a ∈ A, then ψ is a Hopf algebra homomorphism.

Corollary 27 The K-linear map ν : K[T ] → K〈A〉 defined for each forest u ∈ F as in
(48), is a Hopf algebra homomorphism over K.

Proof: Consider C as the shuffle algebra K〈A〉 and La(w) = wa for each w ∈ A∗. We
know from Proposition 13 that ν is a K-algebra map, and that ν([u]a) = La(u) for each
u ∈ K[T ], a ∈ A. Whence, ψ = ν. Furthermore, consider the commutative Hopf algebra
structure on C = K〈A〉 given by the co-product (68), it is straightforward to check that the
assumptions on the second statement of Theorem 26 hold, and thus ν is an homomorphism
of Hopf algebras over K. 2

The next result (equivalent to Proposition 4) is a direct consequence of Corollary 27.

Corollary 28 Given α̂, β̂ ∈ K〈A〉∗, it holds that

〈α̂β̂, ν(u)〉 = 〈αβ, u〉, u ∈ K[T ], (74)

where α, β ∈ K[T ]∗ are given by α(u) = α̂(ν(u)) and β(u) = β̂(ν(u)) for each u ∈ K[T ].

Since any word w ∈ A is the image by ν : K[T ] → K of a labeled rooted tree without
ramifications, we have that ν is an epimorphism of Hopf algebras. Thus, the shuffle Hopf
algebra K〈A〉 is isomorphic to the quotient Hopf algebra K[T ]/(ker ν).

Lemma 29 The Hopf ideal ker ν coincides with the ideal I of the commutative algebra
K[T ] generated by the set

{
m∏

i=1

ti −
m∑

i=1

ti ◦
∏

j 6=i

tj : m > 1, t1, . . . , tm ∈ T

}
. (75)
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Proof: The set (75) can also be written as {ξ(v)−v : u ∈ F}, where ξ(v) for forests v ∈ F
is recursively defined as follows: If t ∈ T and v ∈ F , then ξ(t) = t and ξ(vt) = t◦v+ξ(v)◦t.
We first show that, if u ∈ I and t ∈ T , then t ◦ u ∈ I. It is clearly sufficient to show that
this is true for u of the form u = ξ(v) − v, v ∈ F , which is obtained from the following.
Given t ∈ T and v ∈ F ,

t ◦ (v − ξ(v)) = t ◦ v + ξ(v) ◦ t− (t ◦ ξ(v) + ξ(v) ◦ t− tξ(v)) − tξ(v)

= (ξ(tv) − tv) + (ξ(ξ(v)t) − ξ(v)t) − (ξ(v) − v)t ∈ I.

Then it is easy to show by induction that any u ∈ F is congruent modulo I to a Z-linear
combination of rooted trees of the form a1 ◦ · · · ◦ am, a1, . . . , am ∈ A (labeled rooted trees
without ramifications). Clearly, I ⊂ ker ν and thus the K-module K〈A〉 is isomorphic to
some K-submodule of K[T ]/I. Since the set of labeled rooted trees without ramifications
can be identified with the set of words on the alphabet A, we have by a dimensional
argument that K[T ]/I is isomorphic to the K-module K〈A〉, and thus, I = ker ν. 2

Now the results obtained so far lead to the following:

Theorem 30 The shuffle Hopf algebra K〈A〉 is isomorphic to the quotient Hopf algebra

K[T ]/I, where the Hopf ideal I is given in Lemma 29. The cosets {u+ I : u ∈ F̂} form
a basis of the free K-module K[T ]/I, and as a K-algebra, K[T ]/I is freely generated by

{t + I : t ∈ T̂ } provided that K is a Q-algebra. The dual basis of {u + I : u ∈ F̂} is a
PBW basis associated to a Hall basis of the free Lie algebra over the alphabet A.

Notice that (72) together with Algorithm 1 gives a recursive way to describe the co-product

in K[T ]/I in terms of the basis {u+I : u ∈ F̂}, as an alternative to using (70) with a full
rewriting algorithm as in Remark 16. According to the last statement in Theorem 30, such
a description of the co-product in K[T ]/I provides a direct way of computing the product

of series written in the PBW basis {E(u) : u ∈ F̂}.

Remark 24 It can be seen that the kernel I = ker ν is the smallest ideal I of K[T ]
satisfying that {t ◦ z + z ◦ t− tz : t, z ∈ T } ⊂ I and t ◦ u ∈ I whenever u ∈ I and t ∈ T .
Moreover, it is not difficult to show that I is the ideal of the algebra K[T ] generated by
the set

{t ◦ z + z ◦ t− tz : t, z ∈ T } ∪ {s ◦ t ◦ z + s ◦ z ◦ t− s ◦ (tz) : t, z, s ∈ T },

or, alternatively, by the set

{t ◦ z + z ◦ t− tz : t, z ∈ T } ∪ {s ◦ (tz) + z ◦ (ts) + t ◦ (sz) − tzs : t, z, s ∈ T }.

8 Concluding remarks

We have presented a new approach to dealing with Lie series, exponentials of Lie series,
and related series in a PBW basis associated to an arbitrary Hall set that uses labeled
rooted trees.
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Some of the results we present are equivalent to (or can be derived from) known re-
sults, for instance, Theorem 3. The main original results of our work are Proposition 4
(equivalently, Corollary 27), Theorems 9 and 10, and as a by-product, the continuous BCH
formula written in terms of Hall rooted trees, the rewriting Algorithm 1 and related results,
Corollary 21, Theorems 24 and 25, and the explicit description of the epimorphism ν of
Hopf algebras from the commutative Hopf algebra of labeled rooted trees and the shuffle
Hopf algebra and its kernel.
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