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Morphological Neural Networks

We speak of a morphological neural network (MNN) if every
neuron performs an elementary operation of mathematical
morphology (MM).

MNNs are closely related to other lattice-based
neurocomputing models.

This talk presents a hybrid morphological/linear neural network
for financial time series prediction.
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Observations on Financial Time Series

1 Financial time series (FTS) exhibit a strong random walk
linear component and a weaker nonlinear component;

2 Experimental results indicate that FTS can be modelled as
increasing functions (from the domain of time lags).

The Increasing Hybrid Morphological-Linear Perceptron (IHMP)

Based on these observations, we propose a hybrid model,
called increasing hybrid morphological-linear perceptron
(IHMP), consisting of a convex combination of

1 a conventional perceptron (linear part);
2 an increasing morphological perceptron (nonlinear part).

The learning process of the proposed IHMP includes an
automatic phase correction step.
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Basic Concepts of Morfological Neural Networks

Context of this Talk

Mathematical morphology (MM) is concerned with the
processing and analysis of images using structuring
elements;

Complete lattices provide for the appropriate algebraic
framework of MM;

The elementary operations of mathematical morphology
can be defined in this complete lattice framework;

The neurons of a morfological neural network (MNN)
perform elementary operations of mathematical
morphology, possibly followed by an activation function.

Applications of MNNs include classification, character
recognition, automatic target recognition (in particular
landmine detection), image reconstruction, image
compression, and time serie prediction.
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Some Pertinent Notions of Lattice Theory

A complete lattice is a partially ordered set L such that every
Y ⊆ L has an infimum, denoted by

∧

Y and a supremum,
denoted by

∨

Y in L.

From now on, the symbols L and M denote complete lattices.
L

n is also a complete lattice with the partial order given by

(x1, . . . , xn) ≤ (y1, . . . , yn) ⇔ xi ≤ yi , i = 1, . . . , n

Examples of complete lattices include R±∞ = R ∪ {+∞,−∞},
R

n
±∞ = (R±∞)n, [0, 1], and [0, 1]X.
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Some Basic Operators of MM on Complete Lattices

Erosion

An operator ε : L → M represents an (algebraic) erosion if

ε
(

∧

Y
)

=
∧

y∈Y

ε(y) , ∀Y ⊆ L .

Dilation

An operator δ : L → M represents a (algebraic) dilation if

δ
(

∨

Y
)

=
∨

y∈Y

δ(y) , ∀Y ⊆ L .
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Specific Examples of Erosion and Dilation

Max Product and Min Product

For A ∈ R
m×p and B ∈ R

p×n
±∞ , the max-product C = A ∨� B and

the min-product D = A ∧� B are defined by

cij =

p
∨

k=1

(aik + bkj), dij =

p
∧

k=1

(aik + bkj) .

For A ∈ R
n×m, the following operators εA, δA : Rn

±∞ → R
m
±∞

represent respectively an (algebraic) erosion and dilation.

εA(x) = AT ∧� x , δA(x) = AT ∨� x .

In the near future, we intend to prove that all erosions and
dilations R

n
±∞ → R

m
±∞ are of this form.
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Decomposition of Increasing Mappings

A mapping Ψ : L → M is called increasing if

x ≤ y ⇒ Ψ(x) ≤ Ψ(y) ∀ x , y ∈ L .

Banon and Barrera Decompositions (B & B)

Let Ψ : L → M be increasing. There exist erosions εi and
dilations δj for some index sets I and J such that

Ψ =
∨

i∈I

εi =
∧

j∈J

δj .

For increasing Ψ : Rn → R, our hypothesis and B & B suggest
that there exist vi ,wj ∈ R

n and finite I∗, J∗ such that

Ψ ≃
∨

i∈I∗
εvi and Ψ ≃

∧

j∈J∗

δwj .



Introduction MNNs The IHMP Experimental Results Concluding Remarks

The Proposed IHMP Models

Motivation

Experiments indicate that the FTS we considered are given by
increasing functions Ψ : Rn → R, where n represents the
number of antecedents or time lags.

Definition of our IHMP Models

Given input x ∈ R
n, the following IHMPs calculate

y = λα+ (1 − λ)β, λ ∈ [0, 1] ,

where α represents the increasing morphological module and

β = x · bT = x1b1 + x2b2 + . . .+ xnbn

represents the linear module.
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Erosion-Based and Dilation-Based IHMPs

Erosion-Based IHMP (E-IHMP)

α =
k
∨

i=1

vi where vi = εai (x) =
n
∧

j=1

(ai
j + xj) .

Dilation-Based IHMP (D-IHMP)

α =

k
∧

i=1

vi , where vi = δai (x) =
n
∨

j=1

(ai
j + xj) .

In both models ai = (ai
1, a

i
2, . . . , a

i
n)

T ∈ R
n.
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Architectures of IHMPs

Figure: Architecture of E-IHMP.

Figure: Architecture of D-IHMP.
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Evolutionary Training Algorithm for IHMP Models

If aT = ((a1)T , (a2)T , . . . , (ak )T ) then the weight vector w of
both the E-IHMP and the D-IHMP is given by

wT = (λ, aT ,bT ) .

Let d(m) and y(m) be respectively the desired output and the
actual output for the m-th training pattern, where m = 1, . . . ,M.
Define the following fitness function f (w):

f (w) =
1

1 +
∑M

m=1 e2(m)
where e(m) = d(m)− y(m) .
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Initialization and Stopping Criteria

Initialization

Random initialization of a and b within the range [−1, 1];

Random initialization of λ within the range [0, 1];

Choice of k varies for each prediction problem.

Stopping Criteria

Maximum generation number gen = 10000;

Training error Pt ≤ 10−6;

Increase of the validation error or generalization loss of the
fitness function > 5%.
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Modified Genetic Algorithm (MGA)

Use roulette wheel approach to obtain p1 and p2 and generate

C1 =
p1 + p2

2
,

C2 = w(p1 ∨ p2) + (1 − w)pmax ,

C3 = w(p1 ∧ p2) + (1 − w)pmin ,

C4 =
w(p1 + p2) + (1 − w)(pmax + pmin)

2
,

where w ∈ [0, 1] (here 0.9) and pmax , pmin have max., min.
gene values. If Cbest is the son with the highest fitness value
then

MCj = Cbest + Bj∆Mj , j = 1, 2, 3 ,

where pmin ≤ Cbest +∆Mj ≤ pmax and Bj are certain binary
vectors. Some MCj are incorporated into population.
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Automatic Phase Correction

Figure: Phase fix procedure.
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Experimental Results

Tests were performed using the

Dow Jones Industrial Average (DJIA) index;

Standard & Poor 500 (S&P500) index.

The data were normalized in the range [0, 1] and divided into

training set (50% of the data);

validation set (25%);

test set (25%).

We compared our IHMP models with

ARIMA;

multi-layer perceptron (MLP);

modular morphological neural network (MMNN);

morphological-rank-linear perceptron (MRL).
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Performance Measures

mean square error (MSE);

mean absolute percentage error (MAPE);

U of THEIL Statistics (THEIL);

average relative variance (ARV);

prediction of change in direction (POCID).

In addition, we employed the following evaluation function (EF):

EF =
POCID

1 + MSE + MAPE + THEIL + ARV
.
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Results for the DJIA Test Set

daily records 01/01/1998 − 08/26/2003 (1420 points);

input vectors comprise lags 2, 3, . . . , 11;

# of basic morphological operations in IHMPs: k = 8.

Metrics ARIMA MMNN MLP MRL D-IHMP E-IHMP
MSE 5.8033e-4 8.3236e-4 8.3000e-2 8.2148e-4 1.6044e-4 1.7619e-4

MAPE 8.3200e-2 9.6700e-2 9.3788e-2 9.6578e-2 5.7717e-2 6.0262e-2
THEIL 1.2649 0.9945 0.9885 0.9916 0.4965 0.5094
ARV 3.9200e-2 3.4423e-2 3.4204e-2 3.3981e-2 6.5683e-3 7.2129e-3

POCID 46.10 50.85 46.59 46.82 100.00 100.00
EF 19.3058 23.9130 21.1822 22.0539 64.0637 63.4095
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Results for the S&P500 Test Set

monthly records 01/1970 − 08/2003 (369 points);

input vectors comprise lags 2, 3, . . . , 6;

# of basic morphological operations in IHMPs: k = 10.

Metrics ARIMA MMNN MLP MRL D-IHMP E-IHMP
MSE 2.1447e-5 9.7451e-5 9.6000e-3 1.0982e-4 3.8909e-5 2.9857e-5

MAPE 1.2400e-2 9.2000e-2 1.0103e-2 1.0214e-2 7.2277e-3 6.2731e-3
THEIL 1.4090 0.9498 0.9179 1.0397 0.6184 0.5388
ARV 0.1374 7.4749e-3 7.2875e-3 8.4926e-2 2.9930e-3 2.2967e-3

POCID 47.22 81.31 50.98 52.18 100.00 100.00
EF 18.4538 39.6756 26.2123 24.4409 61.4002 64.6245
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Concluding Remarks

We introduced the increasing hybrid morphological-linear
perceptron (IHMP) with evolutionary learning.

An automatic phase correction step is geared at
eliminating time phase distortions.

We conducted experiments using DJIA and S&P500.

The IHMP outperformed competitive neural and statistical
models in terms of 5 well-known performance measures
and an evaluation function.

The IHMP was able to cope with time phase distortions.

The IHMP succeeds in modeling a combination of linear
and nonlinear components by combining a linear module
with a morphological or lattice-based module.

Phase correction in IHMP adjusts the nonlinear component
that enters the final prediction.
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