	Int oc	roduction	MNNs 00000	The IHMP 0000000	Experimental Results	Concluding Remarks
--	-----------	-----------	---------------	---------------------	----------------------	--------------------

An Increasing Hybrid Morphological-Linear Perceptron with Evolutionary Learning and Phase Correction for Financial Time Series Forecasting

Ricardo de A. Araújo Peter Sussner

Information Technology Department, [gm]² Intelligent Systems, Brazil Department of Applied Mathematics, University of Campinas, Brazil

5th International Conference on Hybrid Artificial Intelligence Systems

Organization of this talk

- 2 Morphological Neural Networks
- 3 The Increasing Hybrid Morphological-Linear Perceptron
- Experimental Results
- 5 Concluding Remarks

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Organization of this talk

2 Morphological Neural Networks

3 The Increasing Hybrid Morphological-Linear Perceptron

- Experimental Results
- Concluding Remarks

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

Organization of this talk

2 Morphological Neural Networks

3 The Increasing Hybrid Morphological-Linear Perceptron

- Experimental Results
- 5 Concluding Remarks

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

Organization of this talk

2 Morphological Neural Networks

3 The Increasing Hybrid Morphological-Linear Perceptron

- Experimental Results
- 5 Concluding Remarks

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Organization of this talk

- 2 Morphological Neural Networks
- 3 The Increasing Hybrid Morphological-Linear Perceptron
- Experimental Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Morphological Neural Networks

We speak of a morphological neural network (MNN) if every neuron performs an elementary operation of mathematical morphology (MM).

MNNs are closely related to other lattice-based neurocomputing models.

This talk presents a hybrid morphological/linear neural network for financial time series prediction.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Observations on Financial Time Series

- Financial time series (FTS) exhibit a strong random walk linear component and a weaker nonlinear component;
- Experimental results indicate that FTS can be modelled as increasing functions (from the domain of time lags).

The Increasing Hybrid Morphological-Linear Perceptron (IHMP)

Based on these observations, we propose a hybrid model, called increasing hybrid morphological-linear perceptron (IHMP), consisting of a convex combination of

- a conventional perceptron (linear part);
- an increasing morphological perceptron (nonlinear part).

The learning process of the proposed IHMP includes an automatic phase correction step.

Introduction	
00	

Basic Concepts of Morfological Neural Networks

Context of this Talk

- Mathematical morphology (MM) is concerned with the processing and analysis of images using structuring elements;
- Complete lattices provide for the appropriate algebraic framework of MM;
- The elementary operations of mathematical morphology can be defined in this complete lattice framework;
- The neurons of a morfological neural network (MNN) perform elementary operations of mathematical morphology, possibly followed by an activation function.
- Applications of MNNs include classification, character recognition, automatic target recognition (in particular landmine detection), image reconstruction, image compression, and time serie prediction.

Some Pertinent Notions of Lattice Theory

A complete lattice is a partially ordered set \mathbb{L} such that every $Y \subseteq \mathbb{L}$ has an infimum, denoted by $\bigwedge Y$ and a supremum, denoted by $\bigvee Y$ in \mathbb{L} .

From now on, the symbols \mathbb{L} and \mathbb{M} denote complete lattices. \mathbb{L}^n is also a complete lattice with the partial order given by

$$(x_1,\ldots,x_n) \leq (y_1,\ldots,y_n) \Leftrightarrow x_i \leq y_i, i = 1,\ldots,n$$

Examples of complete lattices include $\mathbb{R}_{\pm\infty} = \mathbb{R} \cup \{+\infty, -\infty\},\ \mathbb{R}_{\pm\infty}^n = (\mathbb{R}_{\pm\infty})^n, [0, 1], \text{ and } [0, 1]^X.$

Introduction	MNNs	The IHMP	Experimental Results	Concluding Remarks
00	0000	0000000	0000	0

Some Basic Operators of MM on Complete Lattices

Erosion

An operator $\varepsilon : \mathbb{L} \to \mathbb{M}$ represents an (algebraic) erosion if

$$\varepsilon\left(\bigwedge \mathsf{Y}\right) = \bigwedge_{\mathsf{y}\in\mathsf{Y}} \varepsilon(\mathsf{y})\,, \quad \forall\,\mathsf{Y}\subseteq\mathbb{L}\,.$$

Dilation

An operator $\delta : \mathbb{L} \to \mathbb{M}$ represents a (algebraic) dilation if

$$\delta\left(\bigvee \mathsf{Y}\right) = \bigvee_{\mathsf{y}\in\mathsf{Y}} \delta(\mathsf{y}), \quad \forall \mathsf{Y}\subseteq\mathbb{L}.$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

Introduction	MNNs	The IHMP	Experimental Results	Concluding Remarks
00	00000	0000000	0000	0

Specific Examples of Erosion and Dilation

Max Product and Min Product

For $A \in \mathbb{R}^{m \times p}$ and $B \in \mathbb{R}_{\pm \infty}^{p \times n}$, the max-product $C = A \boxtimes B$ and the min-product $D = A \boxtimes B$ are defined by

$$c_{ij} = \bigvee_{k=1}^{p} (a_{ik} + b_{kj}), \quad d_{ij} = \bigwedge_{k=1}^{p} (a_{ik} + b_{kj}).$$

For $A \in \mathbb{R}^{n \times m}$, the following operators $\varepsilon_A, \delta_A : \mathbb{R}^n_{\pm \infty} \to \mathbb{R}^m_{\pm \infty}$ represent respectively an (algebraic) erosion and dilation.

$$\varepsilon_{\mathcal{A}}(\mathbf{x}) = \mathcal{A}^{\mathcal{T}} \boxtimes \mathbf{x}, \ \delta_{\mathcal{A}}(\mathbf{x}) = \mathcal{A}^{\mathcal{T}} \boxtimes \mathbf{x}.$$

In the near future, we intend to prove that all erosions and dilations $\mathbb{R}^n_{\pm\infty} \to \mathbb{R}^m_{\pm\infty}$ are of this form.

 Introduction
 MNNs
 The IHMP
 Experimental Results

 oo
 oooooo
 oooooo
 ooooo

Concluding Remarks

Decomposition of Increasing Mappings

A mapping $\Psi : \mathbb{L} \to \mathbb{M}$ is called increasing if

$$\mathbf{x} \leq \mathbf{y} \Rightarrow \Psi(\mathbf{x}) \leq \Psi(\mathbf{y}) \,\, \forall \, \mathbf{x}, \, \mathbf{y} \in \mathbb{L}$$
.

Banon and Barrera Decompositions (B & B)

Let $\Psi : \mathbb{L} \to \mathbb{M}$ be increasing. There exist erosions ε^i and dilations δ^j for some index sets *I* and *J* such that

$$\Psi = \bigvee_{i \in I} \varepsilon^i = \bigwedge_{j \in J} \delta^j \,.$$

For increasing $\Psi : \mathbb{R}^n \to \mathbb{R}$, our hypothesis and B & B suggest that there exist $\mathbf{v}^i, \mathbf{w}^j \in \mathbb{R}^n$ and finite l^*, J^* such that

$$\Psi \simeq \bigvee_{i \in I^*} arepsilon_{\mathbf{v}^i} \quad ext{and} \quad \Psi \simeq \bigwedge_{j \in J^*} \delta_{\mathbf{w}^j} \,.$$

Introduction MNNs The IHMP Experimental Results Concluding Remarks

The Proposed IHMP Models

Motivation

Experiments indicate that the FTS we considered are given by increasing functions $\Psi : \mathbb{R}^n \to \mathbb{R}$, where *n* represents the number of antecedents or time lags.

Definition of our IHMP Models

Given input $\mathbf{x} \in \mathbb{R}^n$, the following IHMPs calculate

$$\mathbf{y} = \lambda \alpha + (\mathbf{1} - \lambda)\beta, \qquad \lambda \in [\mathbf{0}, \mathbf{1}],$$

where α represents the increasing morphological module and

$$\beta = \mathbf{x} \cdot \mathbf{b}^T = x_1 b_1 + x_2 b_2 + \ldots + x_n b_n$$

represents the linear module.

Introduction	MNNs	The IHMP	Experimental Results	Concluding Remarks
00	00000	000000	0000	0

Erosion-Based and Dilation-Based IHMPs

Erosion-Based IHMP (E-IHMP)

$$\alpha = \bigvee_{i=1}^{k} v_i$$
 where $v_i = \varepsilon_{\mathbf{a}^i}(\mathbf{x}) = \bigwedge_{j=1}^{n} (a_j^i + x_j)$.

Dilation-Based IHMP (D-IHMP)

$$\alpha = \bigwedge_{i=1}^{k} v_i$$
, where $v_i = \delta_{\mathbf{a}^i}(\mathbf{x}) = \bigvee_{j=1}^{n} (a_j^i + x_j)$.

In both models $\mathbf{a}^i = (a_1^i, a_2^i, \dots, a_n^i)^T \in \mathbb{R}^n$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲ 團 - 釣ぬ⊙

Introduction	MNNs	The IHMP	Experimental Results	Concluding Remarks
00	00000	000000	0000	0

Architectures of IHMPs

Figure: Architecture of E-IHMP.

Figure: Architecture of D-IHMP.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Introduction	MNNs	The IHMP	Experimental Results	Concluding Remai
00	00000	0000000	0000	0

Evolutionary Training Algorithm for IHMP Models

If $\mathbf{a}^T = ((\mathbf{a}^1)^T, (\mathbf{a}^2)^T, \dots, (\mathbf{a}^k)^T)$ then the weight vector \mathbf{w} of both the E-IHMP and the D-IHMP is given by

 $\mathbf{w}^{T} = (\lambda, \mathbf{a}^{T}, \mathbf{b}^{T}).$

Let d(m) and y(m) be respectively the desired output and the actual output for the *m*-th training pattern, where m = 1, ..., M. Define the following fitness function $f(\mathbf{w})$:

$$f(\mathbf{w}) = \frac{1}{1 + \sum_{m=1}^{M} e^2(m)}$$
 where $e(m) = d(m) - y(m)$.

(日) (日) (日) (日) (日) (日) (日)

Introduction	MNNs	The IHMP	Experimental Results
00	00000	0000000	0000

Concluding Remarks

Initialization and Stopping Criteria

Initialization

- Random initialization of a and b within the range [-1, 1];
- Random initialization of λ within the range [0, 1];
- Choice of k varies for each prediction problem.

Stopping Criteria

- Maximum generation number gen = 10000;
- Training error $Pt \leq 10^{-6}$;
- Increase of the validation error or generalization loss of the fitness function > 5%.

Introduction	MNNs	The IHMP	Experimental Results	Concluding Remarks
00	00000	0000000	0000	0

Modified Genetic Algorithm (MGA)

Use *roulette wheel* approach to obtain \mathbf{p}^1 and \mathbf{p}^2 and generate

$$\begin{array}{lll} \mathbf{C}^{1} & = & \frac{\mathbf{p}^{1} + \mathbf{p}^{2}}{2} \,, \\ \mathbf{C}^{2} & = & w(\mathbf{p}^{1} \lor \mathbf{p}^{2}) + (1 - w)\mathbf{p}^{max} \,, \\ \mathbf{C}^{3} & = & w(\mathbf{p}^{1} \land \mathbf{p}^{2}) + (1 - w)\mathbf{p}^{min} \,, \\ \mathbf{C}^{4} & = & \frac{w(\mathbf{p}^{1} + \mathbf{p}^{2}) + (1 - w)(\mathbf{p}^{max} + \mathbf{p}^{min})}{2} \,. \end{array}$$

where $w \in [0, 1]$ (here 0.9) and \mathbf{p}^{max} , \mathbf{p}^{min} have max., min. gene values. If \mathbf{C}^{best} is the son with the highest fitness value then

$$\mathbf{M}\mathbf{C}^{j} = \mathbf{C}^{best} + \mathbf{B}^{j} \Delta \mathbf{M}^{j}, \ j = 1, 2, 3,$$

where $\mathbf{p}^{min} \leq \mathbf{C}^{best} + \Delta \mathbf{M}^j \leq \mathbf{p}_{max}$ and \mathbf{B}^j are certain binary vectors. Some \mathbf{MC}^j are incorporated into population.

Introduction	MNNs	The IHMP	Experimental Results	Concluding Remarks
00	00000	000000	0000	0

Automatic Phase Correction

Figure: Phase fix procedure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

00	00000	0000000	0000	0
Introduction	MNNs	The IHMP	Experimental Results	Concluding Remarks

Experimental Results

Tests were performed using the

- Dow Jones Industrial Average (DJIA) index;
- Standard & Poor 500 (S&P500) index.

The data were normalized in the range [0, 1] and divided into

- training set (50% of the data);
- validation set (25%);
- test set (25%).

We compared our IHMP models with

- ARIMA;
- multi-layer perceptron (MLP);
- modular morphological neural network (MMNN);
- morphological-rank-linear perceptron (MRL).

Introduction 00	MNNs 00000	The IHMP	Experimental Results	Concluding Remarks

Performance Measures

- mean square error (MSE);
- mean absolute percentage error (MAPE);
- U of THEIL Statistics (THEIL);
- average relative variance (ARV);
- prediction of change in direction (POCID).

In addition, we employed the following evaluation function (EF):

$$EF = \frac{POCID}{1 + MSE + MAPE + THEIL + ARV}.$$

- daily records 01/01/1998 08/26/2003 (1420 points);
- input vectors comprise lags 2, 3, ..., 11;
- # of basic morphological operations in IHMPs: k = 8.

Metrics	ARIMA	MMNN	MLP	MRL	D-IHMP	E-IHMP
MSE	5.8033e-4	8.3236e-4	8.3000e-2	8.2148e-4	1.6044e-4	1.7619e-4
MAPE	8.3200e-2	9.6700e-2	9.3788e-2	9.6578e-2	5.7717e-2	6.0262e-2
THEIL	1.2649	0.9945	0.9885	0.9916	0.4965	0.5094
ARV	3.9200e-2	3.4423e-2	3.4204e-2	3.3981e-2	6.5683e-3	7.2129e-3
POCID	46.10	50.85	46.59	46.82	100.00	100.00
EF	19.3058	23.9130	21.1822	22.0539	64.0637	63.4095

Results for the S&P500 Test Set

- monthly records 01/1970 08/2003 (369 points);
- input vectors comprise lags 2, 3, ..., 6;
- # of basic morphological operations in IHMPs: k = 10.

Metrics	ARIMA	MMNN	MLP	MRL	D-IHMP	E-IHMP
MSE	2.1447e-5	9.7451e-5	9.6000e-3	1.0982e-4	3.8909e-5	2.9857e-5
MAPE	1.2400e-2	9.2000e-2	1.0103e-2	1.0214e-2	7.2277e-3	6.2731e-3
THEIL	1.4090	0.9498	0.9179	1.0397	0.6184	0.5388
ARV	0.1374	7.4749e-3	7.2875e-3	8.4926e-2	2.9930e-3	2.2967e-3
POCID	47.22	81.31	50.98	52.18	100.00	100.00
EF	18.4538	39.6756	26.2123	24.4409	61.4002	64.6245

Introduction	MNNs	The IHMP	Experimental Results	Concluding Remarks
00	00000	000000	0000	•

Concluding Remarks

- We introduced the increasing hybrid morphological-linear perceptron (IHMP) with evolutionary learning.
- An automatic phase correction step is geared at eliminating time phase distortions.
- We conducted experiments using DJIA and S&P500.
- The IHMP outperformed competitive neural and statistical models in terms of 5 well-known performance measures and an evaluation function.
- The IHMP was able to cope with time phase distortions.
- The IHMP succeeds in modeling a combination of linear and nonlinear components by combining a linear module with a morphological or lattice-based module.
- Phase correction in IHMP adjusts the nonlinear component that enters the final prediction.