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Rosenblatt's Perceptron (the 1960s)

F. Rosenblatt suggested the �rst model of a learning machine,

the Perceptron.

He described the model as a program for computers and

demonstrated with simple experiments that this model could

generalize.

The Perceptron was constructed for solving pattern

recognition problems.

Simplest case: construct a rule for separating data of two
di�erent classes using given examples.

http://www.ehu.es/ccwintco (Grupo Inteligencia Computacional Universidad del País Vasco)SVM UPV/EHU 4 / 75



Introduction Support Vector Machines (SVM) Appendix

Noviko�'s theorem (1962)

In 1962, Noviko� proved the �rst theorem about the

Perceptron, starting learning theory.

It somehow connected the cause of generalization ability with

the principle of minimizing the number of errors on the

training set.

Noviko� proved that Perceptron can separate training data,

and that if the data are separable, then after a �nite number

of corrections, the Perceptron separates any in�nite sequence

of data.
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Applied and Theoretical Analysis of Learning Processes

Many researchers thought that minimizing the error on the

training set was the only cause of generalization. Two

branches:

Applied analysis: to �nd methods for constructing the
coe�cients simultaneously for all neurons such that the
separating surface provides the minimal number of errors on
the training data.
Theoretical analysis: to �nd the inductive principle with the
highest level of generalization ability and to construct
algorithms that realize this inductive principle.
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Construction of the fundamentals of learning theory

1968: a philosophy of statistical learning theory was developed.

Essentials concepts of emerging theory, VC entropy and VC
dimension for indicator functions (pattern recognition
problem).
Law of large numbers.
Main non-asymptotic bounds for the rate of convergence.

1976-1981: previous results generalized to the set of real

functions.

1989: necessary and su�cient conditions for consistency of the

empirical risk minimization inductive principle and maximum

likelihood method.

1990: Theory of the Empirical Risk Minimization Principle.
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Neural Networks (1980s)

1986: several authors discover the Back Propagation method

for simultaneously constructing the vector coe�cients for all

neurons of the Perceptron.

Introduction of the neural network concept.

Researchers in AI became the main players in the

computational learning game.

Statistical analysis keeps apart from the attention of the AI

community, focused in constructing �simple algorithms� for the

problems where the theory is very complicated.
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Alternatives to NN (1990s)

Study of the Radial Basis Functions methods.

Structural Risk Minimization principle: SVM.

Minimum description length principle.

Small sample size theory.

Synthesis of optimal algorithms which posseses the highest

level of generalization ability for any number of observations.
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Support Vector Machines

Originated from the statistical learning theory developed by

Vapnik and Chervonenkis.

SVMs represent novel techniques introduced in the framework

of structural risk minimization (SRM) and in the theory of VC

bounds.

Instead of minimizing the absolute value of an error or an

squared error, SVMs perform SRM, minimizing VC dimension.

Vapnik showed that when the VC dimension of the model is

low, the expected probability of error is also low (good

generalization).

Remark: good performance on training data is a necessary but

insu�cient condition for a good model.
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Introduction

The VC dimension is a property of a set of approximating

functions of a learning machine that is used in all important

results of statistical learning theory.

Unfortunately its analytic estimations can be used only for the

simplest sets of functions.
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Two-class pattern recognition case
Indicator functions

An indicator function, iF(x,w), is a function that can assume

only two values, say, iF(x,w) ∈ {0,1} or iF(x,w) ∈ {−1,1}.
The VC dimension of a set of indicator functions iF(x,w) is
de�ned as the largest number h of points that can be

separated (shattered) in all possible ways.

For two-class pattern recognition, a set of l points can be

labeled in 2l possible ways.
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Two-class pattern recognition case
Possible ways in ℜ2

Figure: Three points in all possible 23 = 8 ways by an indicator function
iF(x,w) = sign(u) = sign(w1x1 +w2x2 +w0) represented by the oriented
straight line u = 0.
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Two-class pattern recognition case
Labelings that cannot be shattered in ℜ2

Figure: Left: two labelings of a three co-linear points that cannot be
shattered by iF(x,w) = sign(u). Right: iF(x,w) = sign(u) cannot shatter
the depicted two out of sixteen labelings of four points. A quadratic
indicator function (dashed line) can easily shatter both sets of points.
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Two-class pattern recognition case
VC Dimension

In an n-dimensional input space, the VC dimension of the

oriented hyperplane indicator function, iF(x,w) = sign(u), is
equal to h = n+1.

In a two-dimensional space of inputs, h = 3.

If the VC dimension is h, then there exists at least one set of h
points in input space that can be shattered. This does not

mean that every set of h points in input space can be

shattered by a given set of indicator functions.

In a two-dimensional set of inputs at least one set of three
points in input space can be shattered by iF(x,w) = sign(u).
In a two-dimensional set of inputs no set of four points can be
shattered by iF(x,w) = sign(u).
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Two-class pattern recognition case
VC Dimension and the space of features

In a n-dimensional input space, the VC dimension of the

oriented hyperplane indicator function, iF(x,w) = sign(u), is
equal to the number of unknown parameters that are elements

of the weight vector w = [w0w1 . . .wn].
It's a coincidence and the VC dimension does not necessarily

increases with the number of weights vector parameters.

Example: the indicator function iF(x,w) = sign(sin(wx)),
w,x ∈ℜ, has an in�nite VC dimension.
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VC Dimension of a Loss Function

The VC dimension of an speci�c loss function

L [y, fa(x,w)]

is equal to the VC dimension of the approximating function

fa(x,w) for both, classi�cation and regression tasks.
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VC Dimension for Linear Functions

The VC dimension of a set of linear functions as given by

fa(x,α) =
N

∑
i=1

αixi +α0

is equal to h = N +1, where N is the dimensionality of the

sample space.
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VC Dimension for Radial Basis Functions (RBFs)

For regression, the VC dimension of a set of RBFs as given by

fa(x,w) =
N

∑
i=1

wiϕi(x)+w0

is equal to h = N +1, where N is the number of hidden layer

neurons.
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VC Dimension for other functions

For nonlinear functions, calculate the VC dimension is a very

di�cult task, if possible at all.

Even, in the simple case of the sum of two basis functions,

each having a �nite VC dimension, the VC dimension of the

sum can be in�nite.
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Controlling the generalization ability of learning processes

Construct an inductive principle for minimizing the risk

functional using a small sample of training instances.

The sample size l is considered to be small if the ratio l/h is

small, say l/h < 20, where h is the VC dimension of functions

of a learning machine.
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Bounds for the generalization ability of LM

To construct small sample size methods, two bounds can be

used that hold with probability 1−η , 0≤ η ≤ 1:
With sets of totally bounded non-negative functions:

R(αl)≤ Remp (αl)+
Bε

2

(
1+

√
1+

4Remp (αl)
Bε

)
With sets of unbounded functions:

R(αl)≤
Remp (αl)(

1−a(p)τ
√

ε
)
+

, a(p) = p

√
1
2

(
p−1
p−2

)p−1

where

ε = 4
h
(
ln
(2l

h

)
+1
)
− ln(η/4)

l
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Generalization bound for binary classi�cation

For binary classi�cation, the bound above simpli�es to:

R(αl)≤ Remp (αl)+

√
h
(
log
(2l

h

)
+1
)
− log(η/4)

l

The left part of the inequality is the actual risk, the right part

is the risk bound.

The risk bound is composed of the sum of the emprical risk

and a VC con�dence.
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Empirical risk minimization principle

The ERM principle is intended for dealing with large sample

sizes.

When l/h is large, ε is small. Therefore, the VC con�dence is

small.

The actual risk is then close to the value of empirical risk.

A small value of the empirical risk guarantees a small value of

the expected risk.
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Small sample size

If l/h is small, a small Remp (αl) does not guarantee a small

value of the actual risk.

To minimize the actual risk, minimization have to be done

simultaneously over both terms: empirical risk and VC

con�dence.

The Structural Risk Minimization (SRM) principle, is intended

to minimize the risk functional with respect to both terms,

making the VC dimension a controlling variable.
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Structures

Let S be a set of functions Q(z,α), α ∈ Λ, which is provided

with an structure consisting of nested subsets of functions

Sk = {Q(z,α) ,α ∈ Λk} such that:

S1 ⊂ S2 ⊂ ·· · ⊂ Sn · · ·

Figure: An structure on the set of functions is determined by the
nested subsets of functions.
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Admissible structure

An structure is admissible if satis�es the following two

conditions:

1 The VC dimension hk of each set Sk of functions is �nite:

h1 ≤ h2 ≤ ·· · ≤ hn · · ·
2 Any element Sk of the structure contains either

a set of totally bounded functions:

0≤ Q(z,α)≤ Bk, α ∈ Λk

or a set of functions satisfying for some pair (p,τk) the

inequality:

sup
α∈Λk

(
∫

Qp (z,α)dF (z))
1
p∫

Q(z,α)dF (z)
≤ τk, p > 2
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SRM induction principle

For a given set of observations z1, . . . ,zl the SRM principle
chooses the functions Q

(
z,αk

l

)
minimizing the empirical risk in

the subset Sk for which the guaranteed risk is minimal.

The SRM principle de�nes a trade-o� between the quality of

the approximation of the given data and the complexity of the

approximation function.

As the subset index n increases, the minima of the empirical

risks decreases, however, the term responsible for the

con�dence interval increases.
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SRM principle illustration

Figure: The bound on the risk is the sum of the empirical risk and the
con�dence interval. The smallest bound of the risk is achieved on some
appropiate element of the structure.
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Binary classi�cation problem de�nition

Given a training data set (x1,y1) , . . . ,(xl,yl), x ∈ℜn,

y ∈ {+1,−1}.
It's assumed that the data are linearly separable.

The equation of a decision surface in the form of an

hyperplane that does the separation is

wTx+b = 0 (1)

where w is an adjustable weight vector and b is a bias.

Under this considerations the optimal separating function must

be found without knowing the underlying probability

distribution F (x,y).
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Optimal hyperplane

For a given weight vector w and bias b, the separation between

the hyperplane de�ned in (1) and the closest data point is

called the margin of separation and denoted by ρ .

The goal of SVM is to �nd among all the hyperplanes that

minimize the training error (empirical risk), the particular one

that maximizes the margin of separation. This hyperplane is

called the optimal hyperplane.

Figure: Two out of separating lines. Right: a good one with a large
margin. Left: a less aceptable one with an small margin.
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Problem de�nition

The issue at hand is to �nd the parameters wo and bo for the

optimal hyperplane given the training set (x1,y1) , . . . ,(xl,yl),
x ∈ℜn, y ∈ {+1,−1}.
The pair (wo,bo) must satisfy the constraints:{

wT
o xi +bo ≥ 1 f or yi = +1

wT
o xi +bo ≤−1 f or yi =−1

(2)

The particular data points
(

x(s)
i ,y(s)

i

)
for which one of the

constraints is satis�ed with the equality sign are called support

vectors.

http://www.ehu.es/ccwintco (Grupo Inteligencia Computacional Universidad del País Vasco)SVM UPV/EHU 35 / 75



Introduction Support Vector Machines (SVM) Appendix

Discriminant function, indicator function and decision
boundary

The discriminant function (3) gives an algebraic measure of

the distance from x to the hyperplane de�ned by (w,b).

g(x,w,b) = wTx+b (3)

The indicator function (4) represents a learning or support

vector machine's output.

iF (x,w,b) = sign(g(x,w,b)) (4)

Both, the discriminant function and the indicator function, lie

in an (n+1)-dimensional space.

The decision boundary is an intersection of g(x,w,b) and the

input space ℜn.
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Discriminant function, indicator function and decision
boundary

Figure: Discriminant function, indicator function and decision boundary
illustration
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The algebraic distance

We have seen that the discriminant function gives an algebraic

measure of the distance from x to the hyperplane de�ned by

(w,b).
x can be expressed as

x = xp + r
w
‖w‖

where xp is the normal projection of x onto the hyperplane,

and r is the desired algebraic distance.

Since, by de�nition, g(xp) = 0, it follows that

g(x) = wTx+b = r‖w‖ or r =
g(x)
‖w‖
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The algebraic distance
Illustraton

Figure: Geometric iterpretation of algebraic distance of points to the
optimal hyperplane for a two-dimensional case.
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SVM's induction principle for the two separable class
problem

The algebraic distance from the support vector x(s) to the

optimal hyperplane is

r =
g
(
x(s))
‖wo‖

=

{
1
‖wo‖ i f iF

(
x(s),wo,bo

)
= +1

− 1
‖wo‖ i f iF

(
x(s),wo,bo

)
=−1

Let ρ denote the optimum value of the margin of separation

between the two classes that constitute the training set. It

follows that

ρ = 2r =
2
‖wo‖

(5)

Equation (5) states that maximizing the margin of separation

between classes is equivalent to minimizing the euclidean norm

of the weight vector.
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The primal problem

Given the training sample (x1,y1) , . . . ,(xl,yl), x ∈ℜn,

y ∈ {+1,−1}, �nd the optimum values of the weight vector w
and bias b such that they satisfy the constraints

yi
(
wTxi +b

)
≥ 1 f or i = 1, . . . , l

and the weight vector w minimizes the cost function

Φ(w) =
1
2

wTw

This constrained optimization problem is called the primal

problem and it's characterized as follows:

The cost function Φ(w) is a convex function of w.
The constraints are linear in w.
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Method of Lagrange multipliers

The primal problem can be solved using the method of

Lagrange multipliers. The Lagrange function is de�ned as

J (w,b,α) =
1
2

wTw−
l

∑
i=1

αi
[
yi
(
wTxi +b

)
−1
]

(6)

where the auxiliary non-negative variables αi are called

Lagrange multipliers.

The solution to the primal problem is determined by he saddle

point of the Lagrangian function J (w,b,α) which has to be

minimized with respect to w and b, and maximized respect to

α .
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Conditions of optimality

Di�erenciating (6) with respect to w and b and setting the

result equal to zero, the following two conditions of optimality

are gotten:

Condition 1 :
∂J (w,b,α)

∂w
= 0

Condition 2 :
∂J (w,b,α)

∂b
= 0

Application of condition 1 and condition 2 to the Lagrangian

function (6) yields:

w =
l

∑
i=1

αiyixi and
l

∑
i=1

αiyi = 0 (7)
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Considerations about the primal problem

The solution vector w is unique by virtue of the convexity of

the Lagrangian function but the Lagrange multipliers αi are

not.

At the saddle point, the product of each Lagrangian multiplier

with its corresponding constraints vanishes:

αi
[
yi
(
wTxi +b

)
−1
]
= 0 f or i = 1,2, . . . , l (8)

Therefore, only multipliers exactly meeting Eq. (8) can assume

non-zero values (Kuhn-Tucker conditions of optimization

theory).
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The dual problem

Equivalent to the primal problem, but here the optimal

solution is provided by the Lagrange multipliers.

Duality theorem:

If the primal problem has an optimal solution, the dual
problem has also an optimal solution, and both optimal values
are equal.
In order for wo to be an optimal primal solution and αo to be
an optimal dual solution, it's necessary and su�cient that wo
is feasible for the primal problem, and

Φ(wo) = J (wo,bo,αo) = min
w

J (w,bo,αo)

http://www.ehu.es/ccwintco (Grupo Inteligencia Computacional Universidad del País Vasco)SVM UPV/EHU 45 / 75



Introduction Support Vector Machines (SVM) Appendix

Dual problem postulate

Expanding Eq. (6), term by term, as follows:

J (w,b,α) =
1
2

wTw−
l

∑
i=1

αiyiwTxi−b
l

∑
i=1

αiyi +
l

∑
i=1

αi

and applying optimality conditions (7), J (w,b,α) can be

reformulated as:

Q(α) = J (w,b,α) =
l

∑
i=1

αi−
1
2

l

∑
i=1

l

∑
j=1

αiα jyiy jxT
i xj

subject to the constraints:

l

∑
i=1

αiyi = 0 and αi ≥ 0 f or i = 1,2, . . . , l
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Computing wo and bo

Having determined the optimum Lagrange multipliers, denoted

as αo,i, wo and bo are computed by:

wo =
l

∑
i=1

αo,iyixi

bo = 1−wT
o x(s) f or y(s) = +1
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Statistical properties

The VC dimension of a learning machine determines the way

in which a nested structure of approximating functions should

be used.

The VC dimension of a set of separating hyperplanes in an

space of dimensionality m is equal to h = m+1.

In order to apply the method of structural risk minimization

there is a need to construct a set of separating hyperplanes of

varying VC dimension such that the empirical risk and the VC

dimension are both minimized at the same time.
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SRM for the optimal hyperplane problem (I)

Theorem

Let D denote the diameter of the smallest ball containing all the

input vectors x1, . . . ,xl . The set of optimal hyperplanes described

by the equation

wT
o x+bo = 0

has a VC dimension h bounded from above as

h≤min
{⌈

D2

ρ2

⌉
,m0

}
+1

where m0 is the dimensionality of the input space.

So, there must be exercized control over the VC dimension,

independently of the dimensionality m0 of the input space, by

properly choosing the margin of separation ρ .
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SRM for the optimal hyperplane problem (II)

Suppose there is a nested structure described in terms of the

separating hyperplanes as follows:

Sk =
{

wT x+h : ‖w‖2 ≤ ck

}
, k = 1,2, . . .

this can be reformulated as:

Sk =
{⌈

r2

ρ2

⌉
+1 : ρ

2 ≥ ak

}
, k = 1,2, . . .

where ck,ak are constants.

Using the optimal hyperplane the SRM requirements can be

satis�ed.
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Introduction

Given a training data set (x1,y1) , . . . ,(xl,yl), x ∈ℜn,

y ∈ {+1,−1}.
It's assumed that the data are NOT linearly separable.

Given such a set of training data, it is not possible to

construct a separating hyperplane without encountering

classi�cation errors.

The margin of separation between classes is said to be soft if a

data point (xi,yi) violates the following restriction:

yi
(
wTxi +b

)
≥ 1, i = 1,2, . . . , l (9)
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Soft margin of separation

Violation of (9) arises in one of two ways:
1 The data point falls inside the region of separation but on the

right side of the decision surface (correct classi�cation).
2 The data point falls on the wrong side of the decision surface

(misclassi�cation).

Figure: Left: violation case 1. Right: violation case 2.

http://www.ehu.es/ccwintco (Grupo Inteligencia Computacional Universidad del País Vasco)SVM UPV/EHU 53 / 75



Introduction Support Vector Machines (SVM) Appendix

Slack variables

To formally treat non-separable data, a new set of

non-negative scalar variables, {ξi}l
i=1, called slack variables,

are introduced into the de�nition of the separation hyperplane:

yi
(
wT xi +b

)
≥ 1−ξi, i = 1,2, . . . , l (10)

The slack variables measure the deviation of a data point from

the ideal condition of pattern separability:

For 0≤ ξi ≤ 1, the data point falls inside the region of
separation but on the right side of the decision surface.
For ξi > 1, it falls on the wrong side of the separation
hyperplane.
Support vectors are those data points that satisfy (10) even if
ξi > 0.
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Problem de�nition

The goal is to �nd a separating hyperplane for which the

missclasi�cation error, averaged on the training set, is

minimized.

This is done by minimizing the functional

Φ(ξ ) =
l

∑
i=1

I (ξi−1)

with respect to the weight vector w, subject to the constraints

on ‖w‖2 and (10). I (ξ ) is an indicator function de�ned by:

I (ξ ) =

{
0 i f ξ ≤ 0
1 i f ξ > 0

Non-convex optimization problem: NP-complete.
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Approximation

Mathematically tractable approximation:

Φ(ξ ) =
l

∑
i=1

ξi

Moreover, the functional is simpli�ed by formulating it to be

minimized with respect to the weight vector w:

Φ(w,ξ ) =
1
2

wTw+C
l

∑
i=1

ξi (11)

where C is a regularization parameter.

Minimizing the �rst term of (11) is related to minimizing the

VC dimension on the SVM. The second term on (11) is an

upper bound on the number of test errors.
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Optimization problem

The optimization problem for non-separable patterns includes

the optimization problem for linearly separable patterns as an

special case where:

ξi = 0,∀i
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Primal problem

Given the training sample (x1,y1) , . . . ,(xl,yl), �nd the

optimum values of the weight vector w and bias b such that

they satisfy the constraint

yi
(
wTxi +b

)
≥ 1−ξi f or i = 1,2, . . . , l

ξi ≥ 0 ∀i

and such that the weight vector w and the slack variables ξi

minimize the cost functional

Φ(w,ξ ) =
1
2

wTw+C
l

∑
i=1

ξi

where C is an user-speci�c positive parameter.
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Dual problem

Given the training sample (x1,y1) , . . . ,(xl,yl), �nd the

Lagrange multipliers {αi}l
i=1 that maximize the objective

function

Q(α) =
l

∑
i=1

αi−
1
2

l

∑
i=1

l

∑
j=1

αiα jyiy jxT
i xj

subject to the constraints:

l

∑
i=1

αiyi = 0 and 0≤ αi ≤C f or i = 1,2, . . . , l

where C is an user-speci�c positive parameter.
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Computing wo

The optimum solution for the weight vector is given by

wo =
Ns

∑
i=1

αo,iyixi

where Ns is the number of support vectors.
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Computing bo

The Kunn-Tucker conditions are now de�ned by:

αi
[
yi
(
wT xi +b

)
−1+ξi

]
= 0 i = 1,2, . . . , l (12)

µiξi = 0 i = 1,2, . . . , l (13)

where the µi are Lagrange multipliers that have been

introduced to enforce the non-negativity of the slack variable

ξi.

At the saddle point the derivative of the Lagrangian function

for the primal problem with respect to the slack variable ξi is

zero, which yields:

αi + µi = C (14)
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Computing bo

Combining (13) and (14) yields:

ξi = 0 i f αi < C

The optimum bias bo can be determined by taking any data

point (xi,yi) in the training set for which 0 < αo,i < C and

therefore ξi = 0, and using the data point in (12).

From a numerical perspective is better to take the mean value

of bo resulting from all such data points in the training sample.
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SVM's idea

1 Non-linear mapping of an input vector into a high-dimensional

feature space that is hidden from both, the input and the

output.

2 Construction of an optimal hyperplane for separating the

features discovered.

Operation 1 is performed in accordance with Cover's theorem

on the separability of patterns: a multidimensional space may

be transformed into a new feature space where the patterns

are linearly separable with high probability, providing that the

transformation is non-linear and that the dimensionality of the

feature space is high enough.

However, it's only that by using an optimal separating

hyperplane, the VC dimension is minimized and generalization

is achieved.
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Non-linear transformation

Let x denote a vector drawn from the input space, assumed to

be of dimension m0.

Let
{

ϕ j (x)
}m1

j=1 denote a set of non-linear transformations

from the input space to the feature space with dimension m1.

Given such a set of non-linear transformations, an hyperplane

acting as a decision surface can be de�ned as:

m1

∑
j=1

w jϕ j (x)+b = 0 (15)
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Decision surface

De�ne the vector

ϕ (x) = [ϕ0 (x) ,ϕ1 (x) , . . . ,ϕm1 (x)]T

where, by de�nition, ϕ0 (x) = 1, for all x.

ϕ (x) represents the “image” induced in the feature space due to
the input vector x.

In terms of this image the decision surface (15) can be defined in
a more compact form:

wT
ϕ (x) = 0
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Lagrange conditions

Adapting Lagrange conditions (7) to the present situation

involving a feature space where �linear� separability of patterns

can be seen, it follows:

w =
l

∑
i=1

αiyiϕ (xi) (16)

Substituting (16) in (15) yields:

l

∑
i=1

αiyiϕ
T (xi)ϕ (x) = 0
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The inner-product kernel

The term ϕT (xi)ϕ (x) represents thee inner product of two
vectors induced in the feature space by the input vector x and the
input pattern xi pertaining to the ith sample.

Lets introduce the inner-product kernel denoted by K (x,xi)
and defined by:

K (x,xi) = K (xi,x) = ϕ
T (x)ϕ (xi), f or i = 1,2, . . . , l

The inner-product kernel can be used to construct the optimal

hyperplane in the feature space without having to consider the

feature space itself in explicit form (Kernel trick):

l

∑
i=1

αiyiK (x,xi) = 0
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Mercer's condition

Theorem

For a mapping ϕ and an symmetric expansion, de�ned in the closed

interval a≤ x,x′ ≤ b as

K
(
x,x′

)
=

∞

∑
i=1

λiϕi (x)ϕi
(
x′
)
, λi < 0

to be valid and for it to converge absolutely and uniformly, it is

necessary and su�cient that the condition∫ a

b

∫ a

b
K
(
x,x′

)
ψ (x)ψ

(
x′
)

dxdx′ ≥ 0

holds for any ψ (·) such that∫ a

b
ψ

2 (x)dx < ∞
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Mercer's theorem observations

The functions ϕi (x) are called eigenfunctions of the expansion

and the scalars λi are called eigenvalues.

the fact that all of the eigenvalues are positive means that the

kernel K (x,x′) is positive de�nite.

In theory, the dimensionality of the festure space can be

in�nitely large.

Mercer's theorem only tells whether or not a candidate kernell

is actually an inner-product kernel in some space and therefore

admissible for its use in SVM.

But it says nothing about how to construct the functions

ϕi (x).
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Inner-product kernels examples

Polynomial learning machine:

K (x,xi) =
(
xTxi +1

)p

where p is given a priori.

Radial-basis function network:

K (x,xi) = exp
(
− 1

2σ2 ‖x−xi‖2
)

where σ is given a priori.

Two-layer perceptrons:

K (x,xi) = tanh
(
β0xTxi +β1

)
where Mercer's conditions are satis�ed only for some values of

β0 and β1.
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Optimum design of a SVM

Giving the training sample {(xi,yi)}l
i=1 �nd the Lagrange

multipliers {αi}l
i=1 that maximize the objective function:

Q(α) =
l

∑
i=1

αi−
1
2

l

∑
i=1

l

∑
j=1

αiα jyiy jK
(
xi,xj

)
subject to the constraints:

l

∑
i=1

αiyi = 0 and 0≤ αi ≤C f or i = 1,2, . . . , l
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Computing wo and bo

Having found the optimum values of Lagrange multipliers,

denoted by αo,i, the corresponding optimum value of the linear

weight vector is given by:

wo =
l

∑
i=1

αo,iyiϕ (xi)

where ϕ (xi) is the image induced in the feature space due to xi
and the �rst component of wo represent the optimum bias bo.
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For Further Reading

The Nature of Statistical Learning Theory. Vladimir N. Vapnik.

ISBN: 0-387-98780-0. 1995.

Statistical Learning Theory. Vladimir N. Vapnik. ISBN:

0-471-03003-1. 1998.

A tutorial on Support Vector Machines for Pattern

Recognition. Christopher J. C. Burges. Data Mining and

Knowledge Discovery, Vol.2, pp: 121-167. 1998.

Neural Networks: A Comprenhesive Foundation, 2nd Edition.

Simon Haykin. ISBN: 81-7808-300-0. 1999.

Learning and Soft Computing: Support Vector Machines,

Neural Netowrks and Fuzzy Logic Models. Vojislav Kecman.

ISBN: 0-262-11255-8. 2001.
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Questions?

Thank you very much for your attention.

Contact:

Miguel Angel Veganzones
Grupo Inteligencia Computacional
Universidad del País Vasco - UPV/EHU (Spain)
E-mail: miguelangel.veganzones@ehu.es
Web page: http://www.ehu.es/computationalintelligence
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