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Chapter 1

Introduction

This introductory chapter provides the motivation for this Thesis in Section

1.1. Section 1.2 enumerates the objectives of the work. Section 1.3 highlights

the contributions achieved by this Thesis, including the relevant publications in

Section 1.3.1. Section 1.4 comments the structure of this dissertation. Finally,

Section 1.5 summarizes some notation used in the dissertation.

1.1 Motivation

Linked Multi-Component Robotic System (L-MCRS) are a collection of au-

tonomous mobile robots linked through a passive non-rigid physical element.

The linking element is usually a one dimensional object, such as a hose or a

cable. They can have industrial applications in many areas, from shipyards to

building sites, where hoses are the common mean to tranport �uids and en-

ergy. Figure 1.1 shows an example of a shipyard where the manipulation of

the hose that is being carried out can be modeled through this paradigm. In

this dissertation, our objective is the study of ways to develop control systems

for the robots attached to the hose in order to accomplish some speci�c task.

However, we have reviewed the accurate modeling of such systems using an

ad-hoc theoretical framework, the Generalized Dynamic Splines (GEDS). Such

accurate modeling provide an appropriate work-bench for the development of

control algorithms:

� its accuracy allows for validation of the ideas and results,

� it allows for the repetition of experiments, which is sometimes quite impor-

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Real shypyard, where the L-MCRS paradigm is applicable

tant for the veri�cationof the correctness of algorithm implementaittions

and to factor out some parameter e�ects, which can be marginalized in

the simulations but are di�cult to isolate in real life experimentation,

� it is faster than the real-life experiment,

� it avoids degradation of equipment. Degradation is an additional source

of noise in the experiments, that can be di�cult to identify.

We also recall some proof-of-concept physical realizations done in our re-

search group's environment with a collection of mobile robots autonomously

controlled performing the hose transportation along a linear trajectory, or along

a path.

The most basic question about these systems is wether the linking element

introduces some di�erential properties and behaviors that distinguish the L-

MCRS from a group of disconnected robots. To answer this question we have

produced the simplest L-MCRS model, where the linking element is modeled

as a compresible spring. We propose a cooperative distributed control system

for the mobile robots in the system assuming perfect knowledge of their posi-

tions, performing a simple path following task. The null hypothesis is that this

cooperative distributed control system will perform identically with a linking

element tying the otherwise autonomous robots. That is, the linking element

has no e�ect on the system's control. The system's simulated task is that of
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trasporting a hose-like object. The simulation results show that the linking el-

ement introduces speci�c dynamical e�ects, which the cooperative control can

not cope with, so the perturbations in one component's behavior are propagated

to the entire system.

The aim of this work is to develop autonomous learning processes to develop

the control systems, obtaining

� Adaptative controllers, able to adapt to changing conditions or to a new

setting without an accurate modeling of the system and the task to be

performed.

� With minimal supervision, that is, they need little speci�cation from the

human operator.

Reinforcement Learning methods to allow the agents learn by themselves how to

deal with the problem of developing a control system from little external infor-

mation opposite to classical control schemes. Reinforcement Learning paradigm

aims to develop algorithms that allow to train an agent to optimally achieve a

goal with minimal feedback information about the desired behavior, which is

not precisely speci�ed. Scalar rewards are returned to the agent as response

to its actions endorsing or opposing them. RL algorithms have been succes-

fully applied to robot control design. We select the famous Q-learning approach

because it is model free and o�ers the bigger �exibility, at the price of the

greatest computational (time and storage) demands. We have proposed a vari-

ation, TRQ-learning that speeds up the learning process by storing visited state

transitions and perceived rewards.

We have resticted our works to a speci�c case, the transportation of the

hose's tip to a desired position. The other end being attached to a source. The

formulation of the learning system needs the de�nition of several elements: the

con�guration space, the simulation model precision, the state variables embod-

ing the perception and prediction abilities of the system, the reward system of

values. We have performed such de�nition for the case of a single robot and two

robots moving the hose. Those are prototypical instances of the problem whose

solution opens the �eld for further scenarios.
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1.2 Objectives

The main objective of the Thesis is the application of Reinforcement Learning

approaches to the autonomous development of control architectures for Linked

Multi-Component Robotic Systems, in short for a hose manipulation system.

This rather ambitious objective has been downscaled to a manageable dimen-

sion, de�ning a speci�c instance of the problem over which an extensive com-

putational experimentation is a�ordable for the limited human resources of a

Thesis. Speci�c objectives of the Thesis are the following:

1. Show the speci�c in�uence of the linking element in the system dynam-

ics. This objective is a preliminar work to demonstrate the value of this

reasearch work. It has some inherent sub-objectives:

(a) Formulate a minimalist model that can show the intrinsic proper-

ties and in�uence of the linking element. The model minimalism

is intended to factor out any additional source of variations in the

system's behavior.

(b) Formulate a control architecture for the disconnected system, without

linking elements

(c) Show experimentally, through simulation of the minimal model, the

e�ect introduced by the linking element.

2. De�ne an approachable instance of the hose transportation problem that

can be dealt with extensively.

3. Obtain a formulation of the Reinforcement Learning problem for an speci-

�ci instance of the hose transportation problem. Includes the de�nition of

the system's state and other

4. De�ne an experimental workbench based on an accurate simulation of the

hose transportation for the realization of Reinforcement Learning experi-

ence episodes and validation. This workbench is based on previous works

of the research group members, requiring �ne tuning of the implementa-

tion and the selection of appropriate parameters.

5. Perform an extensive experimentation testing the feasibility of Reinforce-

ment Learning for the autonomous development of control architectures

of the hose transportation system.
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6. Propose alternative learning strategies, able to cope with the time com-

plexity of the learning process in an optimized way.

1.3 Contributions of the Thesis

According to the objectives set in the previous section, the achievements of the

Thesis reported in this dissertation, are summarized as follows:

1. A minimalistic hose transportation model has been proposed and imple-

mented for simulation.

2. The e�ect of the linking element has been experimentally demostrated us-

ing the above minimalistic model. The e�ect is according to the intuitions

guiding our research endeavors.

3. An accurate model of the hose dynamics has been �ne tuned for its used in

the Reinforcement Learning experimentation. An appropriate workbench

has been build for this purpose and made publicly available through the

research group's web site.

4. The speci�c instance de�ned is a hose-deployment task, where one end of

the hose is attached to a source (power/�uid) and the robots must bring

the tip of the hose to a speci�c position.

5. Alternative state and reward de�nitions have been identi�ed and formu-

lated as the basis for the Reinforcement Learning.

6. A sound methodological approach has been followed, where accuracy re-

sults are provided on the basis of test episodes performed independently

of the learning process. For intermediate results, the learning process is

stopped and the test is carried out on the basis of the present status of

the learned Q-tables.

7. Extensive experimentations have been carried out to validate the alterna-

tive approaches using the accurate simulation workbench. High success

measured by the number of test episodes reaching the goal state has been

obtained for speci�c combinations of state de�nition and reward system.

8. A variation of Q-learning, denoted TRQ-learning, has been formulated

and tested obtaining faster learning processes.
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1.4 Structure of the dissertation

Chapter 2 contains a detailed description of the target system, including a for-

mal model used for the accurate simulations done for the computational learn-

ing experiments. The description in this chapter is the physical basis for the
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remaining chapters of the dissertation, �xing also some of the objectives of the

work.

Chapter 3 contains a distributed approach to the consensus based control of

the system. The chapter contains a simpli�ed model of the system described in

Chapter 2, which is enough for the purposes of the chapter. The experimental

works show that a control system designed for the team of independent robots

can not cope with the e�ects introduced by the linking element, which introduces

perturbations that propagate through the system.

Chapter 4 provides a review of the Reinforcement Learning methods that

are applied to the autonomous learning of the control of the system based on

the experience obtained from the accurate simulation of the model described in

Chapter 2.

Chapter 5 gives the computational experiment results obtained on the pro-

totypical system with one and two robots moving the tip of the hose to a desired

position while the other end is attached to a source point.

Chapter 6 gives the conclusions of the Thesis and some ideas for future

research.

1.5 Notation

X set of all state variables

S set of all posible states of the state space, de�ned as the cartesian

product of the range of values of the state variables X, such that

S = SG ∪ SF ∪ SI

SG subset of states where the goal has been reached, such that SG ⊂ S

SF subset of states where a failure or a forbidden situation occurs, such

that SF ⊂ S

SI subset of inconclusive states, such that SI ⊂ S and SI = S−SG−SF

A set of all available actions

As set of all available actions in the state s

T state transition function, such that T : S×A→ S or T : S×A×S →
R

R reward function, such that R : S ×A→ R
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|S| number of elements of a set S

t discrete time step

s, st state, usually at time t, such that s ∈ S and st ∈ S

s′, st+1 state, usually at time t+ 1, such that s′ ∈ S and st+1 ∈ S

a, at action, usually at time t, such that a ∈ A and at ∈ A

r, rt, r (s) immediate reward, usually at time t, such that r ∈ R and s ∈ S

rg immediate reward of a goal state, such that rg ∈ R

rf immediate reward of a goal state, such that rf ∈ R

ri immediate reward of a goal state, such that ri ∈ R

pr position of the robot r in two-dimensional coordinates (x, y)

pg goal position in two-dimensional coordinates (x, y)

d (p1, p2) euclidean distance between the two-dimensional points p1 and p2

i binary value that is set if the line prpg intersects the hose, such that

i ∈ {0, 1}

c binary value that is set if the box with corners pr and pd intersects

the hose, such that c ∈ {0, 1}

p1, p2 positions in two-dimensional coordinates (x, y)

Vr vector of binary values, one for each feasible action, that is set if

there will be collision after performing the corresponding action

V ∗ (s) state value function, value of state s ∈ S an optimal policy, such

that V ∗ : S → R

V π (s) state value function, value of state s ∈ S under a policy π, such that

V π : S → R

V estimated of a state value function V ∗ (s) or V π (s), such that V :

S → R

Q∗ (s, a) state-action value function, value of taking a ∈ A in s ∈ S under an

optimal policy, such that Q∗ : S ×A→ R
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Qπ (s, a) state-action value function, value of taking a ∈ A in s ∈ S under a

policy π, such that Qπ : S ×A→ R

Q (s, a) estimates of a state-action value function Q∗ (s, a) or Qπ (s, a), such

that Q : S ×A→ R

π policy, such that π : S → A or π : S ×A→ R

π∗ optimal policy maximizing the state value function or the state-

action value function

πε (s, Q) ε-greedy policy returning the best action available in state s ∈ S

according to the current estimates Q of the optimal state-action

value function Q∗

α step-size parameter that determines how new and old information

are averaged, such that 0 < α ≤ 1

γ discount rate paremeter that determines the importance if future

rewards, such that 0 < γ ≤ 1

ε probability of choosing a random action in ε-greedy policy, such that

0 ≤ ε ≤ 1



Chapter 2

The hose transportation

problem

In this chapter we introduce the general problem attacked in the Thesis, a col-

lection of mobile robots moving a one-dimensional object, which corresponds

to a hose in many potential applications. Section 2.1 gives a general introduc-

tion. Section 2.2 provides description of some physical systems implemented

to provide proofs of concept of the intrinsic issues of hose transportation. Sec-

tion 2.3 provides the formal description of the model used in the more accurate

simulations.

2.1 Introduction

Multi-Component Robotic Systems (MCRS) [9] are currently the focus of great

scienti�c interest because they are expected to provide solutions to the growing

set of applications that require groups of autonomous robots able to dynamically

adapt to changing environments and act in a coordinated way to perform tasks

that could not be performed by a single robot, or performing them in a more

e�cient or economical way. Examples of such tasks are cooperative mapping

of an environment [?], establishing dynamic communication links, and driving

a hose to a goal [10, ?]. Among the desired properties of a MCRS control

algorithm, the most salient are:

� Resource scalability. Applications may require teams of robots of di�erent

sizes depending on task speci�c parameters. The addition of new robots

11
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must not degrade the operation of the whole system, implying that the

resources (memory and communication bandwidth) used by the control

algorithm must not grow exponentially.

� Automating system design. It is not desirable to rely the success of a

system on the expertise of the designer and it is preferable to develop tools

that can automatically tailor the system to new complex environments.

Automatic decomposition of complex tasks allows the de�nition of the

robot team coordination as workload distribution. .

� Heterogeneity. MCRS applications may include heterogeneous groups of

robots with di�erent capabilities, including both sensors and actuators.

Thus, control algorithms should be able to deal with heterogeneous in-

puts and outputs, and also minimize the impact of less performing robot

individuals on the whole system's performance.

� Decentralized control to obtain higher fault-tolerance than with central-

ized control. Decentralized control improves scalability because control

complexity grows linearly with the number of robots.

� Accurate control. Some mechanism is required to compensate for the

inherent delay introduced by the sensory-devices, control algorithm and

communications.

� Robustness to partial and noisy sensor data. In complex and noisy envi-

ronments it is a requirement that agents are able to carry on their tasks

even if they only have inaccurate and partial knowledge of the environ-

ment.

� Reasonable development time. Designing and �ne-tuning the control al-

gorithm should require an a�ordable amount of time.

Often, developing control algorithms for MCRS cannot be approached analyt-

ically. Sometimes there is not even a proper model for the system to be con-

trolled and, even when such a model is available, system complexity hind their

analytical resolution. As an alternative to traditional control theory, Arti�cial

Intelligence techniques have been explored to provide robotic systems with tools

that enable them to learn by interacting with the environment, which can be

either the real world or a simulated one.

It is possible to distinguish three basic categories of MCRS:
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� Distributed MCRS (D-MCRS), which are groups of uncoupled robots.

� Linked MCRS (L-MCRS) are de�ned as a collection of autonomous robots

linked by a non-rigid physical link.

� Modular MCRS (M-MCRS), which are rigidly linked modular robots.

Modeling the non-rigid links of L-MCRS is a non-trivial issue, but one which is

critical in order to be able to study those systems either analytically or via sim-

ulation. Some dynamic modeling techniques for non-rigid uni-dimensional ob-

jects are reviewed in [15, 10]: di�erential equations[32], rigid element chains[18],

spring mass systems[17], combining spline geometrical models and physical dy-

namical models[33], and spline models combined with the Cosserat rod theory

[40], also known as Geometrically Exact Dynamic Splines (GEDS). Throughout

this Thesis, we will use GEDS, as we believe it is the most adequate model for

uni-dimensional objects.

The study of L-MCRS is a novel research and no relevant information about

this subject can be found in the literature, besides our group own publications.

We are currently focused on the accurate modeling of these systems and develop-

ment of control algorithms. We have started dealing with control and modeling

of these systems in [15, 10] and [13]. The latter showed that even a simple spring

model of the physical-link in a cooperative control problem introduces highly

non-linear dynamics in the system, making it a hard task to derive the control

commands. The paradigm of L-MCRS is exempli�ed by the task of carrying

a hose from the origin point to a prede�ned destination using a collection of

autonomous robots attached to the hose. Because of the inherent complexity of

robot dynamics, further increased by the complex model of the hose, the system

is not solvable in an analytic fashion.

One of our �rst works is [?], where the problem is addressed under the point

of view of cooperative control [35], i.e., there the cooperation constraint, the

cooperation objective and the coordination function are speci�ed. Besides, we

discussed how to solve the problem with total information (i.e., a centralized

system) and with a decentralized system too. However, this is a speculative the-

oretical work without any implementation, so it does not include any concrete

results. In [?], still within the framework of cooperative control, a compu-

tational model for L-MCRS based on elastic traction forces is used providing

some results are obtained through simulations, for a task which consisted in the

tracking of a prede�ned path. Consensus-based methodologies to approach the
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Figure 2.1: Hose transportation. Visual representation of (a) the real system,
and (b) the model, arrows represent the forces exerted by the robots on the
hose.

distributed multi-vehicle cooperation problem are addressed too. Our last work

within the framework of cooperative control is [?], that extends the results of

[?] and explores the capabilities of heuristic control when the task of following

a prede�ned path is carried out. Heuristic control is also used in [15, 10], where

the cooperative control has not been used.

We have followed an approach based on Reinforcement Learning (RL) [38]

for the autonomous learning of optimal control policies. RL techniques have

been used successfully in several areas of robotics, as navigation [6], indoor

navigation [5], cooperative navigation task [27] and automatic path search [28].

2.1.1 Driving the hose tip

An speci�c hose transportation problem is illustrated in Figure 2.1: a set of

mobile robots attached to a hose is required to transport the tip of the hose to

some prede�ned goal position, the other end of the hose is attached to a �xed

position, a source of some �uid. The mobile robots' actions consist in their

motion, a�ecting the con�guration of the hose which is a passive linking element

introducing non-linear dynamical e�ects and additional physical constraints in

the system. The goal of the control algorithm is for robot in p1 to reach g, which

is the prede�ned goal position. Figure 2.1(b) illustrates the forces exerted by

the robots as arrows raising from the hose and pointing in the robot motion

directions. This is the problem that has been speci�cally dealt with in this

Thesis applying reinforcement learning to the autonomous design of the robot

controllers.
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2.2 Proof-of-concept physical instances

In order to perform proof-of-concept physical realizations our group has gone to

the very basic problems. The �rst one, reported in [10, 43], is a robotic system

controlled by a heuristic algorithm performing the transportation of the hose

in a straight line in an environment without obstacles from an initial arbitrary

con�guration of hose and robots. The second is the control of a similar robotic

team to follow the reference positions along a path, under proportional controls

unaware of the linking elements.

2.2.1 Following a line

Although the task is the simplest one that can be de�ned, it is still a non-trivial

task which poses several problems that may be pervasive in any attempt to

build more sophisticated system. Besides, going from the theoretical analysis

and simulations of previous section to the real life implementation means that

we have to deal with the embodiment problem: in a physical implementation

the real robots and other systems that are being used impose restrictions and

conditions that must be coped with in order to obtain a working system realizing

the proposed task. The hose transportation following a line may have rather

diverse solutions depending on the embodiment of the task, that is, the actual

robots employed and the actual physical features of the passive element. The

experimental system consists of three small SR1 robots carrying an electrical

cable of 1 cm. of diameter which plays the role of the linking element. Each

robot was attached to the cable by means of a bearing which allows the robot

to rotate freely under it.

2.2.1.1 Perception

The centralized control system's perception was based on a zenital camera whose

�eld of view is a 3 meters length �oor region covering the scene encompassing

the three robots and the hose. Image segmentation is based on computing a

Specular Free (SF) image [39]. For robot segmentation adn identi�cation, im-

age preprocessing consists in substracting the minimum color value from the

maximum color at each pixel independently. The RGB image is then trans-

formed to HSV space and its intensity channel is replaced with the computed

cromatic image C, so that white/gray pixels become black ones. This HSV im-

age is then transformed back to RGB space, where it can be easily segmented
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because the robots are painted of a saturated blue color. The hose is easily

segmented because it is a dark object over a light background. This global

peception produces a relative localization of the robots and the hose, but not

absolute coordinates in the world's system. All the control decisions are based

on qualitative characterizations of the hose and robot positions.

2.2.1.2 Control heuristic

The robotic platform has limited computing capabilities, therefore the algo-

rithms to decide the control commands are computed in a separate single com-

puter and then communicated to the robots. However, each action of the indi-

vidual robots is computed independently, without taking into account the state

of the other robots, as if they were computed by each of the independent agents.

Each robot's control will be determined only by the perception of the segment

of the hose that is immediately ahead of him and the information about the

orientation of the robot leader, and its own orientation. Trailing robots will try

to have the same orientation as the leader, which is remotely controlled. The

system's scalability allows the extension to any number of robots.

Each robot's speed is given by a control heuristic that takes into account the

state of the hose segment ahead of it. This state is a function of the curvature

of the hose segment. If two robots are too close, the hose segment between them

will fold and increase its curvature, with the risk of forming loops. The robot

at the rear of such a hose segment must reduce its speed. On the other hand,

if the two robots attached to the hose segment are separated enough the hose

segment will be very close to the straight line. The hose folding is proportional

to the ratio of the sides of the rectangle that encloses the hose segment in the

image shown in �gure 2.2.

2.2.1.3 Experiment realization

In �gure 2.3 an example1 of the realization of the hose transportation task

de�ned above is shown. A human operator is controlling the head robot, giving

it the starting order. In each frame, the robots are marked with their state

(advancing, stretching, shrinking) and the curvature of their respective hose

segment. Detected hose segments were marked in red in the original colored

1Some additional videos can be found at the research group web site:
http://www.ehu.es/ccwintco/index.php/DPI2006-15346-C03-03-Resultados-videos-

control-centralizado
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Figure 2.2: Hose state calculation. The proportion between the width and
length of the box will be the measure of the state of the hose segment.

video. The six frames are extracted from the video generated in the test and

shows how the system reacts to the di�erent states of the hose:

� Figure 2.3a: Starting position. The leader starts towing the hose, while

the 2nd and 3th robots wait for it to stretch enough to start moving.

� Figure 2.3b: The �rst segment's curvature falls below straight threshold.

The 2nd robot starts advancing at cruise speed. The 3th robot keeps

waiting .

� Figure 2.3c: The �rst segment is too stretched. The 2nd robot accelerates

to a fast speed regime to shrink it. The 3th robot keeps waiting.

� Figure 2.3d: The �rst segment's curvature is within cruising limits, the

2nd robot brakes itself to attain cruise speed. Second segment's curvature

also enters within cruising limits, therefore the 3th robot starts advancing

at cruise speed.

� Figure 2.3e: Second segment curvature raises again above straight thresh-

old, the 3th robot stops. The 2nd robot keeps advancing at cruise speed.

� Figure 2.3f: Second segment falls below stright limits , the 3th robot

accelerates to fast speed. The 2nd robot keeps advancing at cruise speed.

Unsucessful repetitions of the experiment show a variety of e�ects that hind the

system to accomplish its task. Sometimes the rear robot loses completely its

orientation because the cable rigidity can not be overcome by the wheel servos.

Other common e�ect is that the cable bending impedes the middle robot to

advance. All these e�ects are produced by the interaction of the linking element

elastic and inertial forces with the dynamics of the three robot system.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Frames extracted from the video of an example realization of the
hose transportation task following a straight line.
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2.2.2 Following a path

The second proof-of-concept experiment consists in an independent realization

of the centralized perception and control system. Again the number of SR1

robots is three, but the linking element is an almost weightless cable that does

not have strong inertial or elastic forces. The linking element e�ect is some kind

of non-linear constraint that does not allow the robots to spread beyond some

spatial limits given by the size of the hose segments. However, such a simple

physical model still introduces strong e�ects. In fact, the aim of this experiment

is to show that a conventional centralized control unaware of the linking element

could have a hard time trying to comply with the task of moving the robots

along the prede�ned path.

2.2.2.1 Perception

The monitoring camera is positioned in a zenithal location covering the ex-

perimental �eld. A reference object, a chessboard pattern, is positioned in a

prede�ned position to obtain absolute world coodinates via a camera calibra-

tion based on the pattern. The robot telltales are blue paper triangles adhered

to the top of the robots. The blue color is saturated and easily segmented by

standard color segmentation routines provided by OpenCV. The triangles pro-

vide location and orientation information, because they point to the front of the

robot. The perceived coordinates of the triangle middle point are transferred to

the control module. No e�ort is made to segment the linking element, though

it is black and relatively easy to detect.

2.2.2.2 Control system

The control of each SR1 robot is a straightforward PID controller that tries to

move the robot according to a given reference position. The abstract reference

position moves along a path, while the robot following it can wander from the

reference path due to a multitude of e�ects, such as communication noise or

error, servos ine�ciency or wheel slippage. In fact, the unaccounted for linking

element will introduce some undesired e�ects. The robots have three speed

values: zero, half and full speed. They can also be switched o�, meaning that

the communication of control commands to the robot is cut o�.
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2.2.2.3 Experiment instances.

The displays in the �gures have two simultaneous screen-shots. Left is the

actual image camera, right is the virtual world showing the prede�ned path

(black line), the actual robot position (green dot with a line for orientation),

and the reference position that must be reached at this time by the robot (red

dot with orientation line).

The �rst experiment is the unlinked system of the three robots following

the prede�ned path. Figure 2.4 shows some snapshots of the system at the

beginning of the experiment, at the middle trajectory and the near the �nal

positions. It can be appreciated tha the robots follow easily and accurately the

desired positions as they move along the path.

The second experiment introduces the link between the robots. Its e�ect

is that trajectory wanderings of the leader robot are propagated to the other

robots, which toward the end are mispositioned. The tracking introduces ad-

ditional inertia on the robots as well as some kind of oscillations unseen in the

unlinked system. Figure 2.5 shows three snapshots of a typical run of this exper-

iment. It can be appreciated that the system becomes unstable at the middle of

the trajectory, which towards the end shows a poor positioning of the robots rel-

ative to the reference positions, with eccentric orientations. The hose has been

propagating positioning and orientation errors of the forward robots to the rear

robots, while at the same time introducing some kind of inertia on the forward

robots due to their link to the rear robot, impeding its course corrections.

The third experiment includes the e�ect of the tail robot, the third robot,

is dragging the other robots moving more slowly than them. The �rst e�ect

is that the robots are unable to follow their references. Moreover, the middle

robot is moved out of the path, taking a �shortcut�. Finally, the �rst robot is

also displaced from the desired trajectory as a consequence to its reaction to

the dragging of the rear robots. These e�ects can be appreciated in �gure 2.6.

The last experiment is illustrated in �gure 2.7. The last robot is switched

o� simulating a communication failure. The e�ect is catastrophic, the robots

lag from their references since the begining. They follow from far the desired

trajectory and never recover from the lag. However, there is some hint towards

robustness, because the last robot has been moving, albeit far from the correct

reference position. In an unlinked system, the last robot would have remained

stuck at the initial position.
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(a)

(b)

(c)

Figure 2.4: Unconstrained path following experiment. Snapshots at three time
instants: (a) begining, (b) middle trajectory, (c) trajectory end.
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(a)

(b)

(c)

Figure 2.5: Path following experiment with linked robots. Snapshots at three
time instants: (a) begining, (b) middle trajectory, (c) trajectory end.
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(a)

(b)

(c)

Figure 2.6: Path following experiment with linked robots, last robot dragging.
Snapshots at three time instants: (a) begining, (b) middle trajectory, (c) tra-
jectory end.
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(a)

(b)

(c)

Figure 2.7: Path following experiment with linked robots, last robot switched
o�. Snapshots at three time instants: (a) begining, (b) middle trajectory, (c)
trajectory end.
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2.3 Hose Model

We summarize here the hose physical model which is the base for the simulation

used to train and test the control system of the robot moving the hose [10, 15].

The combination of spline geometrical modeling and physical dynamical models

was introduced by [33]. They allow a continuous de�nition of uni-dimensional

objects. An inconvenient of the spline model is that, since it is exclusively

based on the spline control points, it is unsuitable for representing the hose

torsion. The work of [40] has improved the spline representation by combining

the spline-based modeling with the Cosserat rod theory [1, 36], allowing to

model the twisting of the hose. This approach, known as Geometrically Exact

Dynamic Splines (GEDS), represents the control points of the splines by the

three Cartesian coordinates plus a fourth coordinate representing the twisting

state of the hose.

2.3.1 Geometry of the hose

The Cosserat rod theory [?, ?] is usually used in modeling uni-dimensional

objects because it permits to model its physical behavior. In Cosserat rod

theory an uni-dimensional object is described by a curve r(u) and a coordinate

frame of director vectors [e1, e2, e3](u) attached to each point of the curve. The

parameter u goes from one end of the curve, for u = 0, to the other for u = L,

being L the length of the hose. The curve and the director vectors are joined

into a coordinate frame E(u) = [e1, e2, e3, r](u). A graphic representation of

the hose by the curve and the frame director vectors is shown in �gure 2.8.

  

u=0

u=L

E(u
j
)

E(u
k
)

Figure 2.8: Cosserat rod model of a hose.
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The GEDS describe the uni-dimensional object by a spline model taking

into account the Cosserat rod approach in order to model the twisting behavior

of the hose. A spline is a piecewise polynomial function. See �gure 2.9 for an

illustration. Splines de�ne a curve by means of a collection of Control Points,

which de�ne a function that allows to compute the whole curve.

Figure 2.9: Cubic spline.

The spline expression for a curve q(u) is a linear combination of control

points pi where the linear coe�cients are the polynomials Ni(u) which depend

on the parameter u de�ned in [0, 1). The spline equation is:

q(u) =
n∑

i=0
Ni(u)·pi, (2.1)

where Ni(u) is the polynomial associated to the control point pi, and q(u) is

the point of the curve at the parameter value u. It is possible to travel over

the curve by varying the value of parameter u, starting at one end for u = 0

and �nishing at the other end for u = 1. We use a B-spline model for the

hose, requiring a set of control points, a set of knots and a set of coe�cients,

one for each control point, ensuring that all curve segments are joined together

satisfying certain continuity conditions [3].

Given n+1 control points {p0, . . . ,pn} and a knot vector U = {u0, . . . , um},
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Figure 2.10: Hose section.

the B-spline curve of degree p de�ned by these control points and knot vector

U is:

q(u) =
n∑

i=0
Ni,p(u)·pi, (2.2)

where Ni,p(u) are B-spline basis functions of degree p (p = 3 in this work), built

using the Cox de Boor's algorithm.

Ni,0 (u) =

{
1 ui ≤ u < ui+1

0 c.c.
,

Ni,p (u) =
u− ui

ui+p − ui
·Ni,p−1 (u) +

ui+p+1 − u
ui+p+1 − ui+1

·Ni+1,p−1 (u) .

Because the control points of the curve will vary in time, we rewrite equation

(2.2) in terms of the time parameter t:

q(u, t) =
n∑

i=0
Ni,p(u)·pi(t). (2.3)

This extended model receives the name of Dynamic splines, and it is the

model that we have used to model the hose. If we want to take into account

the hose internal dynamics, we need also to include the hose twisting at each

point given by the rotation of the transverse section around the axis normal to

its center point, in order to compute the hose potential energy induced forces.

In the GEDS approach, the hose model follows the Cosserat rod approach char-

acterizing it by the curve given by the transverse section centers c = (x, y, z),

and the orientation of each transverse section θ. This description is summarized

by the following notation: q = (c, θ) = (x, y, z, θ). In �gure 2.10, the relation

between the Cosserat rod director vectors and the twisting angle θ is shown,

where vector t represents the tangent to the curve at point c, and vectors n and

b determine the angle θ of the transverse section at point c.
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(a) Stretching force. (b) Twisting force. (c) Bending force.

Figure 2.11: Forces induced by the potential energy of the hose.

2.3.2 Hose dynamical model

From the Cosserat representation and applying the Lagrange equation (2.4) a

mathematical relation between the potential energy U , the Kinetic energy T
and the generalized external forces F is obtained.

d

dt

(
∂T
∂ṗi

)
= Fi −

∂U
∂pi

. (2.4)

The kinetic energy is the motion energy, while the potential energy is the

energy due to the hose con�guration. Let F = {F0,F1, . . . ,Fn} denote the

model of the external forces acting on the hose spline model control points.

Each Fi acts on control point pi. It is usually assumed that mass and stress

are homogeneously distributed among the n+ 1 degrees of freedom of the hose

spline control model.

2.3.3 Potential Energy

It is necessary to determine the forces that will be generated on the hose as a

consequence of its potential energy due to its physical con�guration.

In �gure 2.11 we can appreciate the forces and torques FU = (Fs,Ft,Fb)
T

that deform the hose because of its potential energy. The stretching force, Fs,

is the force along the normal to the hose transverse section and its application

results in its lengthening. The tension torque, Ft, makes the transverse section

to rotate around the center of the section. The bending torque, Fb, modi�es the
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orientation of the transverse section. The forces acting on the transverse section

plane are neglected, because of the Kirchho� assumption that the transverse

sections are rigid and that only the hose curvature may be distorted.

In mechanics and physics the Hooke's law provides an approximation for

linear-elastic materials. This law establishes that the extension of a spring is in

direct proportion to the load applied to it. Summarizing, the Hooke's law for a

spring-mass system establishes:

F = −kx, (2.5)

where x is the displacement of the spring due to the load applied to it, k is the

spring constant and F the restoring force experimented by the spring due to its

material properties. In general the Hooke's law is applied to elastic materials

because their behavior is similar to the spring as its molecules return to the

initial state of stable equilibrium, quickly regaining the object its original shape

after a force has been applied.

Let us denote the length of the hose as L, and the area of the transverse

section as A, then the hose length extension is linearly proportional to the

deformation resistance of the hose:

4L =
F

EA
L, (2.6)

where E is the modulus of elasticity, which is the mathematical description for

the hose resistance to be deformed when a force is applied to it.

Isolating the value of F in equation 2.6 we have:

F = EA
4L
L
. (2.7)

De�ning ε as the deformation of the hose relative to the transverse area,

ε = A4LL , we can rewrite 2.7 as:

F = Eε, (2.8)

which is a version of the Hooke's law for an elastic uni-dimensional object.

When a small deformation is considered for a relative big radius of the hose

length in comparison with the radius of the transverse section, it is said that

the hose is in a linear elasticity dynamic regime, and then the force equation

2.8 may be applied for each of the stretching, twisting and bending forces. The

matricial version for the stretching, twisting and bending forces is:
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FU = Hε =

 Es 0 0

0 Et 0

0 0 Eb

 · ε. (2.9)

The deformation vector, ε = (εs, εt, εb)
T , is composed of the stretching de-

formation εs, the twisting deformation εt and the bending deformation εb. The

Hooke matrix, H, is composed of the stretching rigidity Es, the twisting rigidity

Et and the bending rigidity Eb.

Maintaining the spring-mass system analogy, the potential energy U is de-

�ned as U = 1
2kx

2, that in the case of the hose is de�ned by the following

integration from u = 0 up to u = L:

U =
1

2

ˆ L

0

εTFUdu. (2.10)

Using the de�nition of FU from equation 2.9 in equation 2.10 we have:

U =
1

2

ˆ L

0

εTHεdu

Note that this model is appropriated for a hose that in rest con�guration is

sti�ed and not twisted or bended, but for a cable as a telephone cord or a spring

the rest con�guration of the hose is di�erent to zero, so ε should be replaced by

(ε− ε0), being ε0 the rest strain.
When the objects lie in fact in the 2D space we can obviate the moments.

Therefore, the potential energy U is de�ned by the following integration along

the hose, from u = 0 up to u = L:

U =
1

2

ˆ L

0

(ε− ε0)
TFUdu, (2.11)

where FU = (Fs,Ft,Fb)T are, respectively, the stretching force, and the tor-

sion and bending moments su�ered by the hose due to its con�guration, ε =

(εs, εt, εb)
T is the deformation vector.

2.3.4 Kinetic energy

The kinetic energy T is composed of the translation energy Tt and the rotation

energy Tr.
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T = Tt + Tr. (2.12)

The kinetic energy is given by:

Tt =
1

2
µA

ˆ L

0

q̇2du, (2.13)

Tr =
1

2
µ

ˆ L

0

ΩT IΩdu, (2.14)

where A is the area of the transversal section,Ω is the angular velocity, µ is the

linear density and I is the polar momentum of inertia.

A simpli�ed version of the kinetic energy expression is given by de�ning

the inertial matrix J , which is invariant over all the hose points because of the

assumption of constant hose diameter.

J =


µ 0 0 0

0 µ 0 0

0 0 µ 0

0 0 0 I

 .

The kinetic energy of the hose T is then de�ned by:

T =
1

2

ˆ L

0

dqT

dt
J
dq

dt
du. (2.15)

2.3.5 Dynamic model

The kinetic energy model takes into account the translational and rotational

motions of the hose, therefore, we can determine from it the acceleration of

every hose point, by deriving equation 2.15. The left hand term of equation 2.4

becomes:

d

dt

(
∂T

∂ṗi

)
=

1

2

ˆ L

0

d

dt

∂
(
q̇TJ q̇

)
∂ṗi

du. (2.16)

Next, we consider the derivative of the potential energy relative to a gener-

alized coordinate:

∂U

∂pi
=

1

2

ˆ L

0

∂εTHε

∂pi
du. (2.17)
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The aim of the physical modeling is to determine the accelerations of the

hose, in terms of its geometrical model, therefore the accelerations are obtained

in the GEDS model substituting q in the expression of equation 2.16 by the

right side of equation 2.3:

d

dt

∂T

∂ṗi
=

n∑
j=0

J
d²pj
dt²

ˆ L

0

(Ni(u)Nj(u))du (2.18)

De�ning:

Mij = J

ˆ L

0

(Ni(u)Nj(u))du

and

A =

[
d²pj
dt²

]
,

The Lagrange equation (equation 2.4) becomes:

d

dt

∂T

∂ṗi
=

n∑
j=0

Mi,jAj . (2.19)

Using equations 2.19 and 2.17 the Lagrange equation is written in a matrix

form:

MA = F + P, (2.20)

where P =
[
∂U
∂pi

]
.

2.3.6 Hose-robots model

The whole system model, composed by the robots and the hose-like linking

element, is built from the uni-dimensional element GEDS model by specifying

the positions ur of the robots along the hose. A con�guration h of the hose-

multi-robot system is de�ned as:

h = {p,U,Ur}, (2.21)

where

� p is the control point vector of the hose B-spline model,

� U is the collection of knots in the B-spline model,
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Figure 2.12: Uniform selection of the interpolating points.

� Ur ⊂ U is the collection of knots that correspond to robot attachments

to the hose.

The robot knot vector Ur = {uri} contains the values of the arclength parameter
u where the robots are attached to the hose. The spatial position of the i-th

robot ri is given by the expression:

q(uri) =
n∑

i=0
Ni(uri

)·pi = ri.

The information we have about the hose is a sequence τ of sampling points of

the hose center curve, containing the Cartesian position of every point (x, y, z)

and its torsion angle θ. Then, we construct the initial hose con�guration h0

by an interpolation method that generates the control points of the B-spline

cubic curve that interpolates this points.More precisely, we make an uniform

sampling of the hose center curve to obtain the sequence of points τ in order to

get an uniform B-spline interpolant. This distribution of the sampling points

optimizes the performance of the IFBA, avoiding the occurrence of spurious

peaks, protuberances and loops. The sampling is done taking into account the

number of knots we want to use, depending on the relation between precision

and computing time that we desire.

The uniform selection of the interpolating points τ is obtained by dividing

the hose length into n segments, being n+ 1 the number of control points, and

choosing for each division point the hose point closest to it. Figure 2.12 shows

the hose in black and the selected interpolating points in red, for a number of

control points n = 10.
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Equation 2.20 relates the acceleration at the control points with the internal

energy of the hose and the external forces applied to it. Among the external

forces F that act on the control points, we di�erentiate those resulting from the

ones applied by the robots Fp from other external forces Fe:

F = Fp + Fe. (2.22)

So, we rewrite equation 2.20 in order to determine the forces that the robot

must exert on the hose attachment points as a function of the desired accel-

erations on the control points, the external forces on the hose and the energy

con�guration:

Fp =MA− Fe −P. (2.23)

Since the hose dynamics are de�ned on the control points pi, a force f applied

on a particular point of the hose is decomposed into the forces fi resulting at

each spline control point pi. The partial derivative of a point q(u) in the curve

respect to the control point pi is:

dq(u)

dpi
= Ni(u). (2.24)

For a control point pi, the corresponding force fi is computed as:

fi = f
∂q

∂pi
= f ·Ni. (2.25)

De�ning the Jacobian matrix Jrq of the robot contact points with the hose

as a function of the control points, we have:

Jpr =


∂q(ur1 )

∂p0
· · · ∂q(url

)

∂p0

...
. . .

...
∂q(ur1

)

∂pn
· · · ∂q(url

)

∂pn

 =


N0(ur1) · · · N0(url)

...
. . .

...

Nn(ur1) · · · Nn(url)

 , (2.26)

where urj is the attachment point of the robot rj to the hose.

We use the Jacobian matrix Jpr, de�ned in equation 2.26, to obtain the

relation between the applied forces in the robot attaching points Fr and the

resulting forces on the control points Fp:

Fp = Jpr · Fr. (2.27)
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2.3.7 The control problem

Inversion of the previous control law gives us the desired accelerations on the

control points, so we can derive the desired forces Fp that must be resulting on

the control points from the robot actions. Therefore we have to determine the

forces Fr that the robots must apply on their contact points with the hose, by

inversion of equation 2.27. But in general, matrix Jpr is not invertible.

The control problem consists in:

1. Determining the desired positions of the hose control points, and

2. Deriving the necessary forces exerted by the robots in order to ensure that

the hose control points reach the desired positions.

Determining the desired positions depends on the accuracy of the hose analytical

model as well as on the accurate de�nition of the task required from the system,

provided in the form of a sequence of hose con�gurations, ideally given by the

spline parameters. This is often not possible, because determining the sequence

of hose con�gurations may be equivalent to sove a complex planning problem.

The derivation of the necessary robot actions (motions, forces) is hampered

by the uncertainty and noise inherent to robotic systems. Identi�cation of the

current system state (the hose con�guration, the position of the robots) has an

inherent degree of uncertainty, due to sensor noise, processing delays and signal

processing issues. Therefore, the decided action may be irrelevant or inadequate

to the current state. Moreover, the result of the robot actions may be di�erent

from the command de�nition due to the environment or to inner conditions of

the robot.

All these problems point to the need of autonomous adaptive control learning

systems applied to the solution of the control problem.
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Chapter 3

Hose transportation as a

cooperative Multi-Agent

Systems

In this chapter we show the e�ect of the linking element, the hose, in an indirect

way. We propose the framework of Cooperative Multi-Agent Systems (MAS)

to build a distributed control system for the robots which works �ne for a set

of disconnected robots. The experiments performed on the simulated system

show that when there is a hose lingking the robots, the control system is heavily

a�ected and the distributed control is no longer e�ective.

The chapter is organized as follows: Section 3.1 gives an introduction to the

chapter. Section 3.2, gives a formal problem statement, some basic de�nitions, a

dynamic model for the system and the de�nition of two performance measures,

so that the individual and overall system performance can be measured and

compared. Section 3.3 details how MAS consensus-based methodologies are

applied to build the control of this system. Section 3.4 shows some experiemental

results from the simulation of system settings that serve to make our point.

Finally, our conclusions are given in Section 3.5.

37



38CHAPTER 3. HOSE TRANSPORTATION AS A COOPERATIVEMULTI-AGENT SYSTEMS

3.1 Introduction

There are several reviews giving di�erent categorizations of multi-robot systems

[7, 4, 11, 8] focusing in di�erent aspects. The kind of systems we are dealing wiht

in dissertation are Linked Multi-Component Robots (L-MCRS) : autonomous

robot units linked through a non-rigid linking element. The linking element

can be elastic, �exible or inert. It introduces a highly non-linear component

in the system dynamics, because forces a�ecting the robots can be dumped,

ampli�ed or distorted through it. L-MCRS is a new paradigm in robotics, with

a very clear real life metaphor: the transportation of hoses, wires, cables and

other near unidimensional elements. Contrary to uncoupled multirobot systems

for which there are huge amounts of literature, including a methodology to

develop cooperative distributed control [35] systems, there is scarce relevant

previous literature on L-MCRS control [15, 10, 25, 29]. The transportation,

deployment and manipulation of a long1 almost uni-dimensional object is a

nice example of a task where a MAS may easily improve over a single robotic

agent. It needs the cooperative works of a team of robots. In some wildly

unstructured environments like shipyards or large civil engineering constructions

a typical required task is the transportation of �uid materials through cables,

pipes or hoses. The manipulation of these objects is a paradigmatic example of

a L-MCRS, where the carrier robot team will have to adapt to changes in the

dynamic environment, avoiding mobile obstacles and adapting its shape to the

changing path until it reaches its destination.

The assertion that the existence of a non-rigid linking element de�nes a new

kind of systems is very strong, needing some justi�cation in the form of instances

of problems or tasks. If we deal with the control of the entire system we would

like to show that the existence of the non-rigid linking element can be highly

disruptive of any control architecture designed to control the system without

taking the linking element into account. We need to de�ne a very precise task,

because the control architecture can be dependent on the intended task. The

line of reasoning of this chapter is the following:

1. We de�ne the task as the path that must followed by the robots of the

team. Such path independent of the number of robots and the existence

of the linking element

1The adjective �Long� used here is relative to the size of the individual robots. The object's
length must be some order of magnitude greater than the robot's size.
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2. We de�ne a control architecture suitable to deal with a team of indepen-

dent robots.

3. We de�ne a simpli�ed system model in order to allow for the observation

of the most elementary e�ects.

4. We simulate the system performing the task under the de�ned control

architecture.

5. We observe deviations from the reference behavior obtained when the

linking element is present.

We resort to system simulation because it is easiest to assess the e�ect of changes

in the system, and the e�ects can be attributed to the new elements. Besides,

simulation allows reproducibility of the results. Real life experiments, such as

the ones reported in Chapter 2 to provide proof-of-concept realizations, are

a�ect by noise in the sensing device, in the environment, the communication

channel, the speci�cs of the system embodiment (the hose characteristics, the

robots' speci�cations, the actual robot internal state), the initial con�guratoins,

and a long list of conditions that can a�ect the outcome of each experiment,

being irrelevant to the main hypothesis under test: the e�ect of the linking

element.

3.1.1 The task

The general structure and composition of this hose transportation robotic MAS

would be that of a group of robots attached to the hose at �xed or varying

points. The robots would search for space positions in order to force the hose

to adopt a certain shape that adapts to the environment, while trying to lead

the head of the hose to a goal destination where the corresponding �uid will

be used for some operation. In �gure 3.1 we give a rough illustration of this

problem. The pipe at the lower left corner represents the �uid source, the hose

is represented by the black thick line, and the small robots attached to it try

to move it so that its head (attached to a robot) reaches the goal represented

by the circle in the top right corner. The other objects in the scene represent

changing environment conditions that may force changes in the hose spatial

disposition. This general form can take multiple implementations depending on

several elements of its design:
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Figure 3.1: Hose transportation and deployment by three robots between start-
ing and goal positions along a path. The red dots represent the reference robot
positions on the path, the green dots represent the actual robot position. The
hose beween robots is not depicted.

� Robot-hose attachment: Robots could be �xed to a point of the hose, they

can move along it, or they can pull it through special gripping mechanisms.

� There can be a centralised control which determines the positions of each

of the robots or, in a true MAS approach, it can be decentralised, taking

each robot its own control decision.

� Robots can be homogeneous or heterogeneous, having di�erent con�gura-

tions and tasks (e.g., �pulling� robots, which tow the hose, and �cornering�

robots, which take �xed positions and give shape to the hose).

� Perception can be global, with some agent acquiring a global view of

the system, or local, with every robot acquiring information of its close

surrounding, which can be shared with the remaining robots or not.

� The task to be performed is that of transporting the hose while following

a prede�ned path.

3.1.2 Control architecture

Controlling individual wheeled mobile robots to follow a prede�ned path has

been approached in several ways: smoothed bang-bang controllers [23], PID

and adaptive controllers [19], fuzzy controllers [34, 24], tracking-error model-

based predictive controllers [22], or through dynamic feedback linearization [31].
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Some authors have work on the path following problem for independent and

disconected multi-robot systems keeping robot formations along the path [37]

using a cooperating Multi-Agent Systems (MAS) approach. MAS have been

proposed in several application domains as a way to ful�ll more e�ciently a

task by cooperation between several autonomous agents [12]. This paradigm

has a very direct application in robotics, as the physical limitations of the real-

life robots and the environments they are supposed to work into impose severe

restrictions to their capability to ful�ll some tasks, up to the extent that there

are complex tasks that can not be accomplished by a single robot and must be

performed necessarily by a multi-robot system [7].

We introduce a distributed control schema for the case of carrying the hose

along a pre-speci�ed path. In this chapter we follow the consensus-based ap-

proach presented in [35] as the cooperative control paradigm used to derive a

cooperative control scheme for the team of robots carrying the hose. Cooper-

ative control requires data exchange betusing some speci�c simulation results,

that the cooperative control approach of [35] does not cope with the non-linear

physical interactions (couplings) between the robot units induced by a simple

elastic linking element.

3.1.3 Simpli�ed model

In Chapter 2 we have introduced the hose transportation problem, giving a

detailed analytical dynamical model which allows the accurate simulation of

the system under various conditions. In this chapter we will use a simpli�cation

of the GEDS model, which is suitable for the experiments carried out. We

are asumming the simplest model: a compressible spring, one that produces

no e�ect when compressed and exerts some force on the pulling robots when

extended above a critical length. The hose-like linking element will not interfere

with the robots when its length is below this critical length.

3.2 Formal problem statement

We formalize the task of transporting a hose-like physical element by a group

of mobile robots. Each robot is attached to the hose, so that the hose segment

between each pair of robots is L meters long. If the hose is compressed or

folded there will be no dynamical e�ect on the robots, that is, they will not be

pushed or pulled by the hose to recover its linear shape. The hose is assumed



42CHAPTER 3. HOSE TRANSPORTATION AS A COOPERATIVEMULTI-AGENT SYSTEMS

to be elastic, that is, a hose segment can be stretched beyond its nominal size

of L meters, however there is a spring-like force acting on the robots trying to

receover this nominal length. We do not consider that the hose can be broken if

some plasticity limit is reached. We do not consider the situation when a robot

is blocked in its way by the hose itself.

3.2.1 De�nitions and restrictions

The virtual path to be followed by the robots is de�ned as a function of the

distance traveled along the path s:

H(s) = (hx(s), hy(s))

The following path tracking control framework is assumed: each physical

robot follows the reference position of a virtual robot that walks over the virtual

the desired path. The physical robot controller tries to minimize the error

between its position and that of the virtual robot. We know the i-th physical

robot's position in bi-dimensional space, denoted as Pi ≡ [P xi P
y
i ], and the

position of its corresponding virtual robot along the desired trajectory si. The

i-th virtual robot's position in bi-dimensional space is always given as a position

in the virtual path H(si).

We de�ne a function

ϕH(s, L) = min
s′>s

{∥∥∥ ~H(s)− ~H(s′)
∥∥∥ = L

}
,

providing the closest ahead position along the path s′ which is L meters distant

from H(s). This function gives the position of the next robot ahead in the hose

con�guration to a given one. We will need to know the desired positions of the

robots along the hose so that the rear robot is in a given position, in order to

de�ne the desired system con�guration both for the control system and for the

performance metrics. The following recursive function provides this information

for each robot unit along the hose:

ψH(s, L, i) =

s i = 0,

ψH(ϕH(s, L), L, i− 1) else.
(3.1)

The hose will be modelled by a series of line segments connecting the robots.

If these hose segments have to be of constant length L, then we are imposing
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the following restriction to the system: robots must be at constant distance

L in the plane. Not all paths can be traveled by pairs of vehicles keeping a

�xed distance between their positions in the plane. As a working hypothesis,

we assume that there is a solution for this problem for H(s) if ϕH(s, L) is a

continuous monotonically increasing function de�ned for every value of s. This

condition means that the path does not have foldings of radius lower than L.

Nevertheless, we allow hose segments to change their length along the simulation

introducing a corresponing error measure. This error measure may a non-zero

minimum value due to the path's topological properties.

3.2.2 Simpli�ed Dynamic model

The GEDS model described in Chapter 2, which has been used also in [10],

includes three di�erent kind of forces induced by the potential energy of a hose:

� stretching/compression forces resulting from the pulling/pushing along the

hose main axis that produce some increase or decrease of the hose length,

� twisting forces as a result of rotations of the hose around the hose main

axis, and

� bending forces, appearing as the hose opposses rotation of a section around

any axis orthogonal to the main hose axis.

We have simpli�ed the model retaining only the stretching forces arising when

the hose length is increased due to the robot separation, assuming that other

hose-related forces can be neglected. The traction force Ti between i-th and

(i+1)-th robots are modeled as a clamped spring neglecting compression forces

and taking into account only elastic forces. Therefore, no force is applied if the

euclidean distance between two robots is less than L:

T xi = Ks ∗max(0, ‖Pi −Pi+1‖ − L) ∗ cos(βi),

T yi = Ks ∗max(0, ‖Pi −Pi+1‖ − L) ∗ sin(βi), (3.2)

where Ks is the spring constant and βi is the angle formed between the line

connecting the i-th and (i+ 1)-th robots and the x axis.

The following kinetic equations have been used:
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V̇i =
Fi
m
,

Ṗi = Vi,

where m is the mass of the robots, Vi ≡
(
V xi , V

y
j

)
represents the i-th vehi-

cle's velocity vector and Fi ≡ (F xi , F
y
i ) represents the force vector applied by

the i-th vehicle. Including the spring model describing the stretching forces (eq.

3.2) into our dynamic model, we obtain:

V̇i =
Fi −Ti−1 + Ti

m
. (3.3)

3.2.3 System performance measures

We need to de�ne system performance measures so that we can provide quanti-

tative comparisons of the system behavior under di�erent conditions, i.e. with

and without the hose dynamics. Two functions have been used to measure

individual error:

� Mean error in the square euclidean distance between robots edisi , that is,

how much their relative distances di�er from the stated nominal distance

L:

edisi =
1

t

ˆ t

0

(‖Pi −Pi+1‖ − L)2 .

� Mean error euclidean distance between robots and their desired position

eposi :

eposi =
1

t

ˆ t

0

(‖Pi −H(si)‖)2 .

Using these two functions, the global system error has been measured as the

sum of the mean square deviations:

edis =

n−2∑
i=0

edisi ,

and

epos =

n−1∑
i=0

erefi .
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The edis gives a measure of the streess that the hose is su�ering because of

the deviations of the robots from their reference positions. Only the extension

beyond the nominal length has some dynamic e�ect in the simpli�ed model,

however, compression is also an issue, and a performance measure for the control

strategies. The epos gives a measure of the control error which is independent

of the existenco of a hose, it can be applied to linked and non-linked systems.

3.3 Cooperative control

In this section we formulate the decentralized distributed control system that

will compute the decision of the control commands on each individual robot.

This control strategy is optimal for systems of non-linked robots. In[35] two ba-

sic consensus-based methodologies are described to approach distributed multi-

vehicle cooperation problems: with and without an optimization objective. In

the �rst case, an objective is desired to be optimally achieved while in the sec-

ond, only cooperation among the individuals is desired. We follow the �rst

approach, applying it to the virtual robots, which are controlled in a cooper-

ative way. The essence of the methodology can be summarized in four steps

[35]:

� (a) de�nition of the cooperation in terms of an objective function and a

constraint function,

� (b) de�nition of the coordination variables and coordination functions[42],

� (c) design of a centralized cooperation scheme and

� (d) speci�cation of a consensus-based distributed cooperation scheme.

The are two ways to represent the system state [35]:

1. Group-level reference state: The individual decisions are derived from the

values of a set of global state variables

2. Individual vehicle states: Each individual acts according to its own state

and its knowledge of the the states of its neighbors.

In this chapter, we follow a group-level reference. We use as the reference for

the entire system the desired position of the last robot, denoted ξ. It is the base-

position of the robot team formation. Using the previously de�ned function of
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equation (3.1), the desired virtual position along the hose for each robot in the

formation is expressed as ψH(ξ, L, i), where i is the index of a robot in the team

formation (counting from zero).

3.3.1 Cooperation Constraint and Objectives

First of all, the cooperation constraint must be identi�ed. This is a function

that provides the formal description of the conditions under which cooperation is

considered successful. This function is de�ned to be zero when ideal cooperation

is achieved. Sometimes a tolerance value ε is de�ned, so when the cooperation

constraint function reaches a value under ε the system has achieved a level of

ε-cooperation.

From the problem de�nition of the hose transportation problem, a �xed L

distance is to be kept between the positions of every pair of consecutive robots.

This is the major constraint relating the behavior of the robots, so this has been

chosen as the cooperation constraint objective function. It is formalized as:

Jcon =

n−2∑
i=0

| ‖H(si)−H(si+1)‖ − L|.

Notice that the constraint is not de�ned on the positions along the path or on

the physical robots actual positions, but on the virtual spatial positions that

the robots must follow.

The cooperation objective function captures all the auxiliary objectives as

a positive de�nite function. We are intested in preserving the robot formation

carrying the hose, therefore it is de�ned as follows:

Jobj =

ˆ ∞
t

(si (τ)− ψH(ξ (τ) , L, i))
2dτ.

The e�ect of minimizing this function is that each virtual robot's controller tries

to minimize the distance for its own reference from �where it is� (si) to �where

it should be� (ψH(ξ, L, i)) according to the team formation base position ξ.

3.3.2 Coordination Variables and Functions

The coordination variable provides the minimum amount of information required

to e�ectively de�ne the cooperation among the team of robots. Cooperation

implies the computation of the decisions by each of the individual members

of the system in order to reach the goal. In the modeled hose transportation
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system, all control actions for all the virtual robot can be derived from the

base-position of the formation ξ, therefore ξ is the coordination variable. The

following dynamics for ξ are assumed:

ξ̇ = v,

where v represents the desired velocity of the system transporting the hose along

the path. In other words, the motion of the reference position corresponds to

the motion of the entire system. Moreover, the knowledge of the coordination

variable value determines the knowledge of the status of the entire system.

Because the knowledge of the coordination variable allows to compute every-

thing, we can express the cooperation constraint as a function of the cooperation

variable. Given that, by de�nition, ‖H (ψH(ξ, L, i)−H (ψH(ξ, L, i+1)‖ = L, a

new cooperation constraint can be de�ned as a function of the coordination

variable:

Jcon =

n−2∑
i=0

‖H(si)−H(ψH(ξ, L, i))‖

+ ‖H(si+1)−H(ψH(ξ, L, i+1))‖ .

If we want to derive local control policies for each robot, we need to decom-

pose the global cooperation objective function into a combination of the local

constraint functions that can be computed independently by each agent on the

basis of its knowledge of the coordination variable. The cooperation objective is,

therefore, expressed as a convex function of individual local objective functions:

Jobj =

n−1∑
i=0

Jcf,i,

where

Jcf,i =

ˆ ∞
t

(si (τ)− ψH(ξ (τ) , L, i))
2 dτ. (3.4)

Therefore, the local control decisions will be computed in order to optimize

(minimize) the corresponding local objective function, according to the local

knowledge of the coordination variable value.
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3.3.3 Centralized Cooperation Control Scheme

A control scheme is derived as the minimization of the cooperation objective

function subject to the cooperation constraint. The assumption of a central

agent which possesses complete and uncertain knowledge about the system's

state allows to specify the minimization problem. The central agent knows

the exact actual position of the robots, their desired positions as a function of

the coordination variable and is, thus, able to compute the corresponding error

functions. The optimization problem is stated as the search for the optimal

position of the rear robot minimizing the joint position error of the robots,

subject to the constraint of constant distance between robots. Formally:

ξ = argmin

{
lim
t→∞

n−1∑
Jcf,i(ξ, xi)

i=0

}
,

subject to

lim
t→∞

Jcon (ξ,X) .

Because the central agent has complete uncertain knowledge of the system's

state, and the global cooperation objective function is linear function of the

local cooperation objective functions it is possible to decouple the minimization

cooperation objective function into the minimization of its constituent local

cooperation objective functions. De�ning the position error of the i-th virtual

robot along the path as a function of the coordination variable as follows:

erefi = ψH (ξ, L, i)− si,

a Proportional Integral controller can be de�ned to solve this optimization prob-

lem as

ui = v +Kpe
ref
i +Ki

ˆ t

0

erefi dt,

where ui is the velocity applied to the i-th virtual position reference and Kp

and Ki are the proportional and integral constants used for the controller to

minimize the local cooperation objective function given in equation (3.4).
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3.3.4 Coordination variable estimation through Consen-

sus

If we consider that the robots are autonomous agents, performing control de-

cisions on the basis of local available knowledge of the system's state, then we

need to provide some mechanism for asynchronous determination of the value of

the global state variables, namely the coordination variable, whose knowledge

allows the computation of the control decisions. The distributed asynchronous

algorithm to obtain estimations of the non-local variables is known as a Con-

sensus algorithm because it uses all available information from the other robots

to build a consensual estimation.

We denote ξi as the local estimation of ξ at the i-th robot unit. The Con-

sensus Algorithm is expressed as:

ξ̇ = −
n−1∑
i=0

aij(t) ∗ (ξi − ξj) + v, (3.5)

where aij (t) represent the weight applied by the i-th Consensus Algorithm to

the j-th local estimation communicated at instant t. These consensus coe�-

cients can be set in many ways representing weightings on the knowledge of

local estimations. They model the con�dence that we have in one source of

information and thus embody a model of the system communication reliability.

The lack of a priori knowledge is represented as equal weights to all information

sources, computing in fact the average of the local estimations.

The local control law implemented in each vehicle to achieve a cooperative

solution to the distributed control problem is a Proportional-Integral controller

whose terms are estimations of the error based on the estimation of the coordi-

nation variable value.

êrefi = ψH (ξi, L, i)− si,

Therefore, the local control Cooperation Algorithm is given by :

ui = v +Kpê
ref
i +Ki

ˆ t

0

êrefi dt. (3.6)

The Consensus Algorithm depends on the quality of the communication

between the robots. There are two sources of trouble, the noise in the commu-

nication channel and the delays in communication introduced by the communi-

cation protocols and the noise. To assess the Consensus Algorithm robustness,

the communications between �ve robots moving along a line were simulated
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Figure 3.2: Convergence of the di�erent local estimations of the Coordination
Variable to a common estimation in the event of 95% error in communication
between robots.

with a random error rate of 95% and di�erent values for all the instances of the

coordination variable, this is, only 5% percent of the messages sent were cor-

rectly received. Even under this hard error rate, all the local estimations of the

coordination variable converged rather fast as shown in �g.3.2. In this �gure,

each line corresponds to a local estimation of the coordination variable ξ. The

lack of initial knowledge makes initial estimations widely di�erent, however as

times evolves the distributed consensus approaches a uni�ed estimation. Fig.3.3

shows the succesfully sent message count over time. It can be appreciated that

in many time instants the number of successful communications is zero, however

the system is robust enough to achieve convergence.

3.3.5 Distributed Control Scheme

The local control of one of the robots following this distributed asynchronous

control scheme is shown in �gure 3.4. The i-th Consensus Module receives all

the local estimations of ξ available to the i-th vehicle and updates its local

estimation according to the Consensus Algorithm (equation 3.5). This updated

estimation ξi is fed back to the Communication Network, so the remaining

robot units can update their own estimations, and fed it as the input to the
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Figure 3.3: Successful messages transmitted between robots at each time instant
in the event of 95% error in communications.

i-th Cooperation Module, which runs a PI controller, previously presented in

equation 3.6). This controller's output is the velocity over s which is the input to

the i-th Path Tracking Module, which updates the i-th virtual robot's position

along the path according to that velocity, and feeds back this new position to the

i-th Cooperation Module. In the last step, the i-th Reference Tracker calculates

the error in x and y axis and runs a PI controller which tries to minimize the

error. The force output of the controller is used to calculate the next position

for the i-th physical robot using the dynamic model described previously.

3.4 Simulation Experiments

The following simulation experiments are designed to demonstrate the dynami-

cal e�ect introduced by the physical link modeled by a nominal clamped spring

force (Ks = 40Nm). The absence of the hose is modeled by removing the spring

(Ks = 0Nm). The traction of each simulated physical robot is bounded by a

maximum force output Fmaxi and its output force vector was then clamped so

that the individual performance could be individually a�ected. Formally:
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Figure 3.4: Local control in a distributed asynchoronous control scheme.
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Figure 3.5: Path followed by robot units in experiments A and B

F
′

i =
Fi

max {1, ‖Fi‖ /Fmaxi }
,

where Fi is derived from equation (3.3) in order to minimize the distance to the

reference virtual position.

Two experiments were conducted simulating 5 robots traveling along the

path represented in �gure 3.5 keeping a �xed separation of L = 0.2m between

every consecutive robot pairs. In both experiments, the system was simulated

including the hose dynamic model (Ks = 40Nm) and without it (Ks = 0Nm),

so the performance impact due to the physical link could be observed and quan-

ti�ed.

3.4.1 Experiment A

The last robot was set to be the weakest: Fmax0 = 2.5N and Fmax1 = Fmax2 =

Fmax3 = Fmax4 = 5N . Results are shown in table ?? and �gures 3.6 to 3.9. Table

?? rows contain the performance measures for the individual robots. Las rows

correspond to the global performance. The existence of the hose is indicated

by the value of Ks, when it is zero the hose is absent. Table ?? shows that

the poor individual performance of the last robot (i = 0) doesn't a�ect the
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individual performance of the remaining robot units when there is no hose in

the system, therefore no elastic forces are introduced in the sytem (Ks = 0). In

this case, the performance measures edisi and eposi remains constant edisi = 0.000

and eposi ' 0.002 for all remaining robots i = 1, ..., 4.

When the hose-related elastic forces are introduced in the system (Ks = 40),

the rear robot is pulled by the other robots by the e�ect of the hose elasticity,

then edis0 drops to zero as could be expected because the model avoids separa-

tions between robots bigger than L. However, the last robot moves slower than

the rest and the elastic forces trying to maintain the distance between robots

below L, force the other robot units to go slower, making them unable to follow

their own virtual robot references as accurately as in the uncoupled case. The

global system error epos grows from 0.0111 to 0.0216, which implies a 95% error

growth due to the hose dynamics. Therefore, the hose has a de�nite impact on

the systems's behavior.

For a qualitative assessment of the experiment results we refer to �gures

3.6 to 3.9. Figures 3.6 and 3.8 represent the time evolution of the Reference-

Position error (|Pi − Pi+1|) for Ks = 0 and Ks = 40 respectively. The traction

e�ect due to the inclusion of the hose can be clearly appreciated if both �gures

are compared. Figures 3.6 shows that the error of the last robot unit does not

in�uence the behavior of the remaining robot units, �gure 3.8 shows how the

error between the virtual robot references and the physical robots is propagated

across the system. The rear robot drags the other robots making their lags

relative to the virtual reference increase following the same pattern as the rear

robot. Notice also that this error propagation is damped through the system,

the front robot error is much less than the nearest robot to the rear. The

Reference-Position distance oscillates as the virtual robots go faster than the

physical robots at the curves to compensate the change in the growth of the

euclidean distance between robots, and oscillations get closer to zero as time goes

on, due to the Integrative component of the Proportional-Integrative controller

used. Observing �gure 3.7 the distance between robots is around nominal for

the healthy robots, increasing for the unhealthy robot, when there is no hose

in the system. Introducing the hose, in �gure 3.9 we observe that the distance

between robots reaches its nominal value for each pair, though at the beginning

the lead robot is strongly dragged by the rear robots.
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Table 3.1: Performances obtained in Experiment A: last robot reduced force

Individual performance
Ks i 0 1 2 3 4
0 edisi (∗103) 10.2 0.0 0.0 0.0

eposi (∗103) 10.3 0.2 0.2 0.1 0.2
40 edisi (∗103) 0.0 0.0 0.0 0.0

eposi (∗103) 10.0 6.9 2.5 1.5 0.7

Ks System performance
0 edis 0.0104 epos 0.0111
40 edis 0.0000 epos 0.0216

Figure 3.6: Reference-Position error with no physical link.
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Figure 3.7: Distance between robots with no physical link.

Figure 3.8: Reference-Position error with a physical link (K = 40N ∗m).
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Figure 3.9: Distance between robots with a physical link (K = 40N ∗m).

3.4.2 Experiment B

The 3rd robot was set to be the weakest: Fmax2 = 2.5N and Fmax0 = Fmax1 =

Fmax3 = Fmax4 = 5N . Results are presented in table ?? and �gures 3.10 to

3.13. We can see in Table ?? that, because the 3rd (i = 2) robot is expected to

be the slowest, the distance errors edis1 and edis2 show a greater error than the

rest. Fig. 3.11 gives further insight: the 3rd can't go fast enough to follow his

virtual robot reference so the distance from the robot ahead (edis2 ) grows and,

for that same reason, the distance from the 2nd
(
edis1

)
gets smaller. This same

error edis1 suggests that collisions between 2nd and 3rd robot could occur in real

world when it gets close to zero.

The dynamic model inclusion spreads the error among neighbors, and makes

edis0 , edis1 , edis3 and edis4 grow from an average 0.0002 error to 0.0010, 0.0011,

0.0054 and 0.0018 respectively, which means an average growth of nearly 103%

on the individual distance error. System performance error epos grows from

0.0090 to 0.0177, which represents a 96.7% growth, similar to the growth ob-

served in Experiment A. Con�rming the statistics presented on Table ??, Fig.

3.12 shows once again the Reference-Position spreading among neighbors.
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Table 3.2: Results of the Experiment B

Individual error
Ks i 0 1 2 3 4
0 edisi (∗103) 0.0 17.4 9.5 0.0

eposi (∗103) 0.2 0.2 8.0 0.2 0.3
40 edisi (∗103) 0.0 16.1 0.0 0.0

eposi (∗103) 1.0 1.1 8.4 5.4 1.8

Ks System performance
0 edis 0.0270 epos 0.0090
40 edis 0.0161 epos 0.0177

Figure 3.10: Reference-Position error with no physical link.
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Figure 3.11: Distance between robots with no physical link.

Figure 3.12: Reference-Position error with a physical link (K = 40N ∗m).
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Figure 3.13: Distance between robots with a physical link (K = 40N ∗m).

3.5 Conclusions

In this chapter we have explored a way to justify the assertion that the non-

rigid link between robot units in the L-MCRS introduces non-linear dynamic

behaviors, that can not easily be accounted for by conventional control schemes.

We have introduced a simpli�ed model of the hose, allowing only elastic forces

when the hose is stretched beyond its nominal length. We have de�ned a dis-

tributed asynchronous control system based on the consensus algorithm for the

estimation of the coordination variable given by the position of the rear robot.

Local control modules are Proportional Integral control algorithms relative to

the reference position along the path. In the experiments, we have shown that

the introduction of the hose has a de�nite e�ect on the resulting system dy-

namics. Slow robots that would be ignored by the control system if there is

no linking element, drag the other robots and the control algorithm is unable

to compensate for these deviations. The e�ect of the hose can be viewed in a

positive perspective as adding robustness to the system, because all the robots

are behaving in an homogeneous way despite the lack of performance of some

of them.



Chapter 4

Reinforcement Learning

This chapter is devoted to the de�nition of Reinforcement Learning (RL) algo-

rithms which we have applied to the autonomous learning of control strategies

for the hose transportation system. The main advantage of RL approaches is

that we do not need a precise knowledge of how a task must be performed in

order to teach the system to do it. We only need to know when the task has

been correctly performed, and the goal achieved. In this sense, the RL ap-

proach alleviates the burden from the teacher, which does not neet to propose

model solutions, but requires longer exploration times for the system has to

discover these solutions. In this chapter we review some fundamentals of RL,

with an emphasis in the notorious Q-Learning approach which will applied in

our experimental works.

The chapter is structured as follows: Section 4.1 provides an introduction.

Section (4.2) comments some of the issues of applying RL to multicomponent

robotic systems. Section 4.3 recalls basic de�ntinos of RL. Section 4.4 recalls the

de�nition of Q-learning. Section 4.5 gives the de�nition of the Dyna-Q learning

algorithm. Section 4.6 gives the de�nition of the TRQ-learning algorithm. Fi-

nally, Section 4.7gives a structural comparison of the algorithms on the basis of

their �ow diagram description.

4.1 Introduction

The paradigm of L-MCRS [9] exempli�ed by the task of carrying a hose from the

origin point to a prede�ned destination using a collection of autonomous robots

61
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attached to the hose has been introduced in Chapters 2 and 3. We have discussed

the inherent problems of the system dynamics and the di�culties of developing

control systems for them. A simpli�ed spring-like model of the hose has been

used in Chapter 3 to illustrate the problems that a control system designed for

disconnected teams of robots would face when applied to a linked system [13].

As part of the on-going work of our research group, some e�orts have been based

on analytical detailed models [15, 10]. Knowing an accurate system model and

the precise task goal, i.e. the exact path required of the hose, it is possible

to derive iteratively the control commands minimizing the positioning error.

However, real life implementation of this approach has strong demands: we need

to have good sensory systems able to provide system localization with required

accuracy, precise and accurate models of the system, and the planning problem

must be exhaustively solved. All these demands have driven us to search for

more �exible, adaptive ways to de�ne control susystems for these L-MCRS. As a

prototypical case we consider in the Chapter 5 the hose transportation problem

consisting of moving the tip of the hose to a desired position while the other

extreme of the hose is attached to a �xed point, a source. This is a simple

formulation of the problem, and the results can serve as a starting point for

further generalization.

Reinforcement Learning (RL) [38] is a category of computational learning

methods that enable an agent to learn optimal policies from experience without

being teach the desired response. Although there are many variants, there are

certain shared elements: a policy, a reward function, a value function and the

model of the environment. The policy describes the way an agent reacts to

the perceived states deciding the action to be taken from the available ones.

The reward function is the inmediate agent's perception of the response of the

environment to its actions. It inherently sets the goals for the agent activity,

which consists in obtaining the best environment's response. The value function

is the long-term version of the reward function (return), that is, the total amount

of rewards expected by the agent from a given perceived environment state.

The model predicts the next environment state as a result of the action taken

by agent. Model free methods, such as Q-learning, do not use an environment

model. Learning processes providing experience to the agent can be continuous

or episodic, that is, separate �nite episodes.

In general, the speci�cation of a RL to learn a given task requires the fol-

lowing concepts:
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� State: the state has to capture the reality of the scenario in which the

problem solution is being carried out. Its de�nition needs an equilibrium

between the �delity of the representation of the world and the quantity of

the information that we have to deal with. The de�nition of the learning

state may involve elements of the problem, as well as the dynamics of the

system (i.e. the working space). In control processes it may include the

control goal.

� Actions: they are the set of actions that the agent can perform in the

world. Actions produce e�ects in the environment, inducing state changes

that in return a�ect the agent.

� Reward system: it speci�es the immediate reward that the agent perceives

of the environment after doing any possible action. To completely specify

a reinforcement system we have to establish the immediate rewards for

di�erent scenarios:

� The goal is reached, the system state corresponds to the completion

of the required task, i.e. the extreme of the hose attached to the

mobile robot reaches the destination point. Usually, the reward value

is positive.

� A failure or forbidden situation occurs, the system state does not

allow further processing. The system is stuck in an undesired state

i.e. the mobile robot collides with the hose. Usually, the reward value

is negative.

� Other transitory states that are neither goal nor failures, usually the

reward is null in this case.

There are three main families of RL algorithms: Dynamic Programming (DP),

Monte-Carlo (MC) methods and Time Di�erence (TD) learning, each of them

having its own strengths and weaknesses. The DP algorithms are mathemati-

cally well founded, but they are computationally expensive and require an ac-

curate model of the environment, which is not always available. DP-based RL

algorithms require complete knowledge of probability distributions of all pos-

sible state transitions, therefore this requirement limits their applicability to

complex real environments. The MC methods and TD learning algorithms do

not require a model of the environment, furthermore both can learn from expe-

rience, even from simulation of a simple model that allows to generate a sample
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of the possible transitions among states. MC methods learn on an episode basis,

that is, they need to know the actual �nal return of a sequence of actions in

order to do some learning process. On the other hand, TD algorithms are able

to deal with on-line learning tasks, that is, they do not need to know the actual

�nal return of the episode, but only the estimated value one time step ahead,

so that the state value update is made based on the prediction made one step

ahead. Both MC and TD methods are known to converge to optimal control

policies.

Q-Learning [?, ?, ?, 38] is a model free TD learning algorithm able to learn

from on-line experience without requiring accurate knowledge of the environ-

ment. RL methods can be applied both in the real environment or in a simulated

environment. As RL requires a huge amount of attempts to teach the system,

whenever possible, it is better to use simulation to learn the system parameters.

Simulation avoids tearing down the physical system and it is faster.

RL has been succesfully applied to develop control policies for robotic sys-

tems in the recent past. Equating agents to robots, training of decentralized

control of MCRS can be viewed as an instance of Multi-Agent Reinforcement

Learning (MARL) systems. We will consider cooperative Multi-Agent systems

designed to maximize the collective utility of the system as a whole, ful�lling

the task of hose transport in our application of intrests. We are not interested in

competitive systems designed such that each agent only intends to maximize its

individual utility[?, ?]. We do not envisage any way in which a pure competitive

system may ful�ll the hose transport task.

A RL approach is applied in [16] to guide a single robot in an environment

with obstacles, using a model based on emotions to in�uence perception and

provide the reinforcement/reward function. In [30] RL and learning through

time techniques are used to achieve an obstacle-free path for a simple robot. A

RL learned solution to the problem of model-free intelligent attitude control of

aerospace launch vehicles is presented in [26]. They use RL due to the lack of a

precise physical model. In [20] authors are given a robotic map that represents

the world of the robot, where there are dynamical obstacles, to solve the path

planning problem using an evolutionary algorithm which improves through ex-

perience. However, they need an a priori given detailed world model. Finally, in

[21] authors deal with sophisticated tasks such as object manipulation, assembly

tasks, or cooperative tasks with human workers. However, although there is no

precise model, the objects mentioned in that paper are of �xed dimensions and

neither allow deformations, nor exercise in�uence on the manipulators.
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Further, [28] applies a RL method to the path-�nding problem, [5] applies

a quantum computation-inspired variant of Q-Learning to indoor robot naviga-

tion, [6] fuses a fuzzy inference system and a Q-Learning algorithm to derive

a fuzzy control system, which yields in e�ciency and adaptability. Q-Learning

has been even applied to cooperative navigation in [27], but has never been

applied in the presence of physical-links.

We have proposed Q-Learning [14] as the basic approach to learn L-MCRS

controllers from experience. We have tested several ways of computing this

reward, giving di�erent values to the �nal state when the system ends in a state

that can not be labeled as a failure or as having reached the goal. Results given in

Chapter 5 were computed on the accurate simulation of L-MCRS developed1by

our group [15, 10] based on the Geometrically Exact Dynamic Splines (GEDS)

[40] approach to build dynamical model of uni-dimensional objects.

4.2 Issues of Reinforcement Learning for MCRS

control

The main advantage of adopting the RL framework for the development of

MCRS control algorithms is that it provides a systematic way to deal with the

problem. It is sometimes easier to build the de�nition of the MDP modeling

the system than the ad-hoc design and development of a control algorithm

(even using supervised learning methods). However, applying RL algorithms

to MCRS becomes a Multi-Agent RL problem, raising several strong issues.

Coordination-related issues are speci�c to RL algorithms, others are inherited

from the basic single-agent RL methods, which only may get worse in multi-

agent con�gurations because of the added complexity of the system.

� Resource scalability: The intractable growth of memory requirements is

the most serious limitation of the tabular representation of Q-matrices.

In single-agent problems the size order of the table is O (| S ×A |) and
this gets even worse in most MARL algorithms, growing exponentially as

the number of agents increase: | S × An |. This problem is known as the

curse of dimensionality and is the most serious limit to scale up the single

agent Q-Learning. Besides, communication resources needed for RL also

scale up combinatorially with the number of robots/agents. Hierarchical

1available at http://www.ehu.es/ccwintco/index.php/GIC-source-code-free-libre
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solutions [?] can be considered to face this problem. Single-agent RL

requires chosen actions to be transmitted to all agents at each time-step

and multi-agent explicit-coordination mechanisms require even a bigger

communication bandwidth for the agents to agree on a joint action.

� Action Heterogeneity: In standard RL formulation all actions span the

same �xed amount of time. This is not a very realistic assumption in

MCRS. Action are abstractions of operations performed with di�erent

electronic devices which usually require di�erent amounts of time to per-

form equivalent actions. For example, if an action consists in the motion

across a length of space, heterogeneous robotic units could require di�er-

ent amounts of time to complete the action. Furthermore, di�erent actions

may require wide di�erences in time in the same robotic unit, i.e. moving

versus switching on/o� a LED. Dealing with this time dimension means

adding the complexity of synchronization on top of coordination.

� Decentralized control: A major issue towards achieving multi-agent co-

ordination through RL is that the environment becomes non-stationary

from the individual agent point of view because other agents' policies will

change during the learning process. This is likely to produce oscillations

and unexpected behaviors. This problem has been extensively studied as

an Stochastic Game, leading to the concept of Nash Equilibrium [?]. If

each agent follows an optimal policy relative to other agents' optimal poli-

cies, then the system is said to have reached Nash Equilibrium. However,

there may exist more than one optimal policy achieving Nash equilibrium.

� Control delay: All on-line RL algorithms follow the same iterative pat-

tern: observe the state, select an action and then issue the appropriate

command to the actuators. This is completely safe in an ideal scenario

where acquiring the state, executing the action selected and transmit-

ting the command introduces no time delay, but in real life observation,

communication and decision consume time and add complexity to the syn-

chronization issue. I.e. coordination algorithms [?, ?] introduce complex

communication protocols to agree on a joint action to be taken.

� Robustness to partial and noisy sensor data: Most approaches assume om-

niscient agents aware of all the sensed information, but this approach is

unrealistic in complex environments facing serious limitations , i.e. physi-

cally limited and error-prone communications, sensor physical limitations
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and/or obstacles. Furthermore, noisy measurements are likely to be per-

ceived as di�erent states in multi-agent environments. Therefore, algo-

rithms that maximize the success possibilities in the presence of incom-

plete and noisy data are desired.

� Convergence time: Before the MCRS can be e�ectively controlled, the RL

algorithm must explore the state-action space. The time required for this

learning process can be una�ordable in real applications with large state-

action spaces and thus, methods for a faster on-line learning are desirable.

MARL systems may require even greater learning time because of the

coordination requirements introduced.

4.3 Reinforcement Learning

Reinforcement Learning (RL) deals with the discovery of the optimal policy from

the interaction between the agent and its environment by means of the rewards

that the agent receives because of its actions. The RL approaches assume that

the environment-agent system can be modelled as a Markov Decision Process

(MDP) [2, 41] which is a discrete time stochastic process de�ned by the tuple

< S, A, T, R >.

� S. The state space is the set of states in which the system can be found.

Each s ∈ S represents a di�erent con�guration of the entire system as

perceived by the learning agent. The state space S is de�ned by the

cartesian of product of the range of values of the state variables X. State

variables model agent internal states (e.g. its position), the task (e.g. the

goal position), an environment condition, or the agent perception of the

environment. Nevertheless, we can not assume that the set S is completely

known.

� A. The action repertoire is the set of feasible actions. Each a ∈ A repre-

sents a di�erent action that the learning agent can execute. As represents

the actions that can be executed in state s ∈ S.

� T : S×As×S → R. The state transition function provides the probability
that action a ∈ As taken in a given state s ∈ S at time t will lead to state

s′ ∈ S in time t+ 1:

T (s, a, s′) = P (st+1 = s′ |st = s, at = a ) . (4.1)
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� R : S×As → R. The immediate reward function. The environment gives

immediate reward r to the learning agent upon execution of action a ∈ As
on a given a state s ∈ S.

The MDP complies with the Markov Property:

T (st+1 = s′, rt+1 = r |st, at ) = T (st+1 = s′, rt+1 = r |st, at, rt, st−1, at−1, ..., r1,s0, a0 ) ,

meaning that the next system state and corresponding reward are only depen-

dent on the last system state and on the last taken action.

A policy π : S → As is a function implementing the probabilistic decision of

executing action a ∈ As in state s ∈ S. Time-Di�erence RL algorithms estimate

the value of state s (alternatively it can be viewed as the value of taking action

a in state s), as the expected accumulated rewards obtained from that state

following a policy π. This value estimation, denoted V π (s), can be expressed

as

V π (s) = Eπ

{
∞∑

k=0

γkrt+k+1 | st = s

}
,

where γ ∈ [0, 1] is a damping parameter, rt and st are, respectively, the reward

and state observed at time t, and Eπ represents the expectation conditioned to

the agent following policy π. A policy π is better than policy π′ if V π (s) >

V π
′
(s) for all s ∈ S . There always exists [38] at least one optimal policy π∗

maximizing the state value V ∗ satisfying

V ∗ (s) = max
a∈As

{∑
s′

P (s, a, s′) [R (s′) + γV ∗ (s′)]

}
.

The goal of RL is to learn an optimal policy for a given MDP or FMDP from

experience in an autonomous process. Similarly, the value of taking an action

a in state s is usually estimated using the state-action value function Qπ (s, a),

which can be written as

Qπ (s, a) = Eπ

{
∞∑

k=0

γkrt+k+1 | st = s, at = a

}
,

where at represents the action taken at time-step t. The optimal state-action

pair is, therefore,
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Q∗ (s, a) =
∑
s′

P (s, a, s′)
[
R (s) + γmax

a′
Q∗ (s′, a′)

]
.

Regarding the policy, once we know the optimal policy π∗after learning, the

obvious optimal course of action is to apply it. However, during the learning pro-

cess we have only a guess about the optimal policy, embodied in the state-action

value table Q. The learning process needs to continue the exploration of the

state space. Applying the greedy policy consisting in selecting the action with

the highest Q-value does not allow state space exploration, because the system

is driven towards already known situations, found optimal in previous learning

steps. This is the dilemma between exploration and exploitation. Exploration

is needed to discover new optimal policies, exploitation re�nes the values of the

already visited state-action pairs. The compromise between exploration and

exploitation is solved using either a ε − greedy algorithm (a random action is

selected with probability ε while the best action is chosen with probability 1−ε)
or a Soft Max action selection based on a Boltzmann distribution:

π (s, a) =
eQ(s,a)/τ∑

a′∈A

eQ(s,a′)/τ
, (4.2)

where τ is a positive temperature parameter, low values of τ increase the prob-

ability of taking actions with high Q-values, high-temperatures yield random

action selections.

4.4 Q-Learning

In its simplest form, Q-Learning discovered by Watkins [38, 44, 45] is de�ned

by the following iteration:

Q(st, at)← Q(st, at) + α
[
rt+1 + γ ·max

a
Q (st+1, a)−Q (st, at)

]
, (4.3)

where at is the action taken at time t, st is the state assumed at time t, Q(st, at)

represents the learned action-value discrete map at time t and state st, α ∈
[0, 1] is a step-size parameter that determines how new and old information

are averaged, rt+1 is the reward at time t + 1, at is the action taken at time

t, and γ ∈ [0, 1] is a discount-rate parameter that indicates the importance of

future rewards. The arrow in equation (4.3) means that the entry of the Q-table
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Algorithm 4.1 Q-learning algorithm
Initialize Q(s, a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from Q
Take action a, observe reward r and new state s′

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q (st+1, a)−Q (st, at)

]
s← s′

until s is terminal

corresponding to state-action pair (st, at) is updated. Algorithm 4.1 represents

the basic form of the learning algorithm. The learning process is composed of a

succession of �episodes�, each episode is a complete realization of the behavior of

the system, that is, its evolution from an initial state until either the equilibrium

state is reached or a stopping condition is met. Time variable t denotes the time

during an episode. The whole learning process is an iteration over the whole

matrix Q which evolves along the episodes. We avoid indexing it for notational

simplicity.

Q-Learning requires setting speci�c parameters such as state space and ac-

tion discretization: as the relationship between state and action is a discrete

map, the resolution in the discretization of the state space and the actions is

critical to obtain e�cient and accurate realizations. Low resolution may al-

low fast realizations, losing accuracy. Conversely, high resolution state space

discretization may hinder the realization of practical experiments. In [45] con-

vergence of Q-learning in a stationary environment to an optimal policy with

probability 1 is proved, as long as all state-actions pairs keep being updated (all

actions are in�nitely executed in all states), and α smoothly decreases during

the learning process complying with the requirements of the stochastic gradi-

ent convergence. The main drawback of Q-Learning is that it has to execute

many times all available actions in all possible states. Either when learning

from real physical systems or from accurately simulated systems, this strategy

is very expensive in terms of time, energy and wear of materials. This is a theo-

retically sensible condition, but hard to meet in practice because an agent may

not be able to explore su�cient space to guarantee convergence. To relax this

condition, Greedy in the Limit with In�nite Exploration (GLIE) policies were

proposed [?].

Initial approaches considered learning in a MCRS with n units as a unique
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learning process (a single agent) that had access to all environment variables and

could control all robots applying simultaneous joint actions An ≡ {a1, . . . , an},
where ai ∈ A denotes the action applied by the ith robot. This kind of learn-

ing systems are known as team learning [?] and are not scalable to big robot

teams for obvious reasons: the size needed to store the Q-table grows exponen-

tially with the number of agents, even if we consider that the state space does

not grow, because the action-state space size order is O (| S ×An |). Besides,

centralized control is less fault-tolerant than distributed control. Concurrent

learning considers the presence of multiple agents implying that each of them

is entitled to select its own actions and learn for itself how to maximize its local

reward function. We have then an instance of Multi-Agent RL (MARL) [?]. In

the cooperative MARL, a shared global reward is used as a quality assessment

of the whole system behavior.

4.5 Dyna-Q algorithm

Dyna-Q is an unsupervised RL [38] algorithm, in fact, an enhanced Q-Learning

algorithm which, besides using the environment's response to improve the value

function and policy, builds and improves its own model of the world (model

learning). It improves its current estimation of the state-action value function

and the model of the environment in a speci�c bootstrapping phase, carried

out in an internal loop executed N times. The Dyna-Q process is described in

Algorithm 4.2, where πε (s,Q) denotes a ε-greedy policy. The algorithm builds

a model of the system response storing the reward and next state observed after

executing action a in state s, denoted Model (s, a) in the algorithm. After each

real life (or simulation) state change, the Dyna-Q algorithm performs a number

of repeating iterations of te Q-table updating based on the stored model values.

These bootstraping iterations are intended to enhance the accuracy of the state-

action value pairs without the burden of repeating actual real life episodes.

Random pairs of already seen states and actions are drawn, their corresponding

state transition and reward are obtained from the stored model and used to

update the Q-table.
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Algorithm 4.2 Dyna-Q algorithm
Initialize Q (s, a) and Model (s, a) for all s ∈ S and a ∈ A (s) arbitrarily
Do forever:
s←current (non terminal) state
a←πε (s, Q)
Execute action a, observe resultant state s′ and reward r

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q (s′, a′)−Q (s, a)

]
Model (s, a)← s′, r (assuming deterministic environment)
Repeat N times:
s←random previously observed state
a←random action previously taken in s
s′, r ←Model (s, a)

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q (s′, a′)−Q (s, a)

]

Algorithm 4.3 TRQ-Learning algorithm
Initialize Q(s, a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from Q
If T (s, a) 6= ∅
s′ ← T (s, a)
r ← R(s, a)

else
Take action a, observe reward r and new state s′

T (s, a)← s′

R(s, a)← r

Q(s, a)← Q(s, a) + α
[
r + γmax

a
Q (s′, a)−Q (s, a)

]
s← s′

until s is terminal
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4.6 TRQ-Learning algorithm

The TRQ-Learning algorithm enhances Q-Learning and Dyna-Q algorithms. Its

process is described in Algorithm 4.3. The main idea is to maintain separate

lookup tables for the state transitions and rewards obtained when executing

action a in each state s which are �lled as the learning proceeds. Assuming a

deterministic environment, these tables may be used to recall the reached state

and reward once the corresponding entry has been �lled, without repeating the

execution of the action in the real system or in accurate simulations, in the

subsequent times that the same action a is taken in the same state s.

There are three speci�c data structures in the TRQ-Learning algorithm:

� Q (s, a): the state-action value function.

� T (s, a): the state transition function of the FMDP, assuming a determin-

istic environment, stores the state s′ reached after executing the action a

in the state s.

� R (s, a): the reward function of the FMDP, assuming a deterministic en-

vironment, stores reward r obtained after executing the action a in the

state s. Often, we can bene�t from a direct functional dependency of

the state, such that R (s, a) = f (T (s, a)). In these circumstances we can

avoid direct storage of the lookup table.

We can rewrite the updating rule of equation (4.3) as follows:

Q(st, at)← Q(st, at) + α
[
R (st, at) + γ ·max

a
Q (T (st, a) , a)−Q (st, at)

]
.

(4.4)

The convergence conditions for TRQ-Learning are the same as for Q-Learning,

however, great time savings can be expected by the substitution of the action

execution by querying a lookup table. The computational memory space re-

quired is at worst three times the cost of Q-Learning, and equal to Dyna-Q.

Therefore, TRQ-Learning does not impose additional extreme conditions for its

implementation.

4.7 A structural comparison of algorithms

We make a structural comparison of the algorithms over their block diagram

representation of each state transition in an episode. Block diagrams must be
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Figure 4.1: TRQ-Learning block diagram

read from left to right. Figure 4.1 shows the block diagram of the TRQ-Learning

algorithm. The �action-value function learning� block representing the update

rule of matrix Q (s, a) activates a �switch� that either recalls the stored state

transition s′ and reward r through the �model� block or invokes the real system

(or its simulation), through the �actuators� and subsequent blocks, to obtain

s′, r, which, besides being returned to the �action-value function learning� block,

are also feed to the model building block. The real system is invoked only when

the actual response to the chosen action in the actual state is unknown. The

TRQ-learning assumes that the system is deterministic.

Figure 4.2 contains the block diagram of the Q-Learning algorithm. Here

the �action-value� block directly invokes the real system/simulation sequence of

blocks to obtain the state transition and reward. The block diagram highlights

the process of model building added to the TRQ-Learning algorithm. Time and

real/computational costs are expected to be much smaller in the �model� branch.

Moreover, it is expected that the process will go through the �model� branch

with increasing frequency as the learning process and more state-action pairs are

explored. Experience will increasingly reduce cost and time in TRQ-Learning

relative to Q-Learning.

Figure 4.3 contains the block diagram of the Dyna-Q algorithm. A direct

comparison with the TRQ-Learning block diagram in �gure 4.1 highlights their

di�erences. The Dyna-Q algorithm always invokes the real system/simulator

to estimate the state transition and reward, thus it does not reduce the com-

putational cost relative to Q-Learning. In fact, in some settings, the model

bootstrapping, represented by the loop at the right end of the diagram between

the model and the planner, can be an additional computational burden. For
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Figure 4.2: Q-Learning block diagram

Figure 4.3: Dyna-Q block diagram

instance, in the case of large state space systems many bootstrapping cycles

will be useless due to the sparsity of the model and the lack of information. In

this situation, TRQ-Learning will improve steadily since the beginning of the

learning process, while Dyna-Q wastes computational resources. Computational

experiments have demonstrated that some elementary operations such as table

updating require non-negligible time for large state spaces. For simulated sys-

tems, increased computational time devoted to simulation results in increased

knowledge incorporation into the model.
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Chapter 5

Experiments of hose

transportation control with

Reinforcement Learning

This chapter reports the experimental results of the application of Reinforce-

ment Learning (RL) approaches to learn the control of a hose transportation

system in the special case of moving the tip of the hose to a desired position

while the other end of the hose is attached to a source in a �xed position. We

describe the formulation of the Q-Learning system for the case of one and two

robots attached to the hose. RL is based on the accurate system simulation

based on the GEDS model described in Chapter 2.

The contents of the chapter are as follows: Section 5.1 gives an introduction.

Section 5.2 gives the algorithm for initial state generation. Section 5.3 gives the

�rst results on RL over a simple instance of the problem. Section 5.4 explores the

accuracy sensitivity due to the changes in the de�nition of the state variables,

the discretization resolution and the reward system. Section 5.5 studies the

improvement introduced by adding some variables that embody predictions on

action e�ects. Section 5.6 introduces the TRQ-learning in the single robot case.

Section 5.7 summarizes the results for single robot system experimentation.

Section 5.8 gives the speci�cation of the learning for the two robot system.

Section 5.9 gives the experimental results for two robot system. Finally, Section

5.10 gives some conclusions of the chapter.

77
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5.1 Introduction

As a �rst step towards the general application of RL techniques to L-MCRS

control we have chosen the hose transportation problem for a single robot: from

an arbitrary initial con�guration of the hose, a robot �xed to the hose tip is

expected to carry it to a given position. Simulations have been carried out to

provide the information for the the Q-Learning algorithm to avoid the main

drawback of the experience-based learning algorithms: the huge amount of time

required to realize the experiments in the real world. We have used an accu-

rate simulation of the hose dynamics based on a Geometrically Exact Dynamic

Splines (GEDS) model [10] as a substitute for the physical system realization.

Besides previous works reported by our research group [10, 13, 14], we have

not found references in the literature to autonomous learning of the control of

a system equivalent to the L-MCRS that we are dealing with in this chapter.

Di�erential features of the system are:

� The lack of a priori model of the world. The model described in Chapter

2 is not included in the learned control system, it is used as a surrogate

of the real physical system through simulation.

� The hose can be considered as a complex dynamical obstacle because it

changes its position, size and shape while the robot carrying it is moving.

� The hose is not a purely passive object because there are stretching and

bending forces on it due to its physical characteristics. So it exerts a force

on the robot and limits its movements, thus the robot and the hose are

interdependent subsystems.

We have also tested the TRQ-Learning algorithm introduced in Chapter 4. This

algorithm has boosted convergence to an optimal policy through learning em-

pirical models of both state probability transition and rewards. TRQ-Learning

improves the results reported in [14] with the introduction of new state variables

corresponding to feasible sensory information of the autonomous robot moving

the tip of the hose.

The results on RL applied to learn the control of a hose transportation sys-

tem reported in this chapter have been partially published previously. First, in

[14] only one state model and one reward function have been used. Later, in

[?] the same approximation is followed, but testing three di�erent state models,

and the reward function is modeled by nine di�erent reward systems, with the
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aim of studying the e�ect of these elements in the performance of the learning

algorithm. This chapter provides additional results obtained after the ones re-

ported in [14] and in [?], experimenting with a new state model that contributes

to improve the results that have been obtained in these works .

5.2 Generation of initial hose con�gurations

The generation of initial states is a basic element of all the experiments reported

in this chapter. It has been done trying to avoid extreme hose con�guration from

which evolution is unfeasible. Algorithm 5.1 contains a pseudo-code description

of the procedure applied to generate an arbitrarily large set of initial hose con-

�gurations. The parameters of the algorithm 5.1 are:

� #HosePoints: It is the number of corners of the hose. A typical value is

3.

� #Hoses: It is the number of hose shapes that will be generated.

� States per Hose : It is the number of di�erent states that will be generated

for each shape of hose.

All the #Hose hoses are attached to a �xed point which is the origin (0, 0) of

the working space. The total number of di�erent states that will be generated

is #Hoses × States per Hose. Some predicates that appear in the algorithm

need some explanation.

1. SmoothAngle is true if the angle between the Actual Segment and

Previous Segment is in a given interval, meaning that there is no sharp

bend of the hose.

2. IsCross is true if theActual Segment crosses any of the already generated

Hose Segments.

3. Collisionrisk (A,B) is true if some hose points fall in the rectangle whose

diagonal vertices are points A,B

Figure 5.1 illustrates an initial con�guration of the entire system, where Pri is

the initial position of the robot and P d is the desired or goal position of the

robot.
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Algorithm 5.1 Algorithm for the generation of learning initial states.

1. Radius← L
#HosePoints

2. repeat (until #Hoses hose patterns generated)

(a) PP ← (0, 0)

(b) HoseSegments ← {}
(c) HosePoints ← {(0, 0)}
(d) repeat (until #HosePoints points generated)

i. AP ← random point (x, y) on the circumference c(PP,Radius)
ii. AS ← PP,AP segment that links PP and AP
iii. if (PP 6= (0, 0)) compute SmoothAngle and IsCross
iv. if (PP = (0, 0) ∨ (SmoothAngle ∧ ¬IsCross))

A. HosePoints ← HosePoints ∪ {AP}
B. PP ← AP

C. HoseSegments ← HoseSegments ∪ {AS}
D. PS ← AS

(e) repeat (until States per Hose distinct states are recorded)

i. Pd ← random point (x, y) inside the c ((0, 0) , L)
ii. Compose the state as:

� Pr ←AP . The robot will be placed in the last Actual Point
� Pd: the desired destination point
� i← PrPd ∩ S 6= Ø;∀S ∈ HoseSegments
� c← Collision risk (Pd, Pr)

� v : a vector with a �ag for each available action, indicating
if collision happens in the case of the robot moving in that
direction

iii. if this state has not been recorded before (the same tuple
(P r, P d, i, c, v))

� Record the state (P r, P d, i, c, v)

� Record HosePoints
� Record HoseSegments



5.3. INITIAL EXPERIMENTAL DESIGN AND RESULTS (NNW) 81

Figure 5.1: An instance of initial system con�guration. Pri is the initial position
of the robot driving the tip of the hose. Pd is the goal position.

5.3 Initial Experimental design and results (NNW)

The system is composed of one hose segment attached to a �xed end (the source)

and whose other end (the tip) is transported by a mobile robot attached to it.

It is a single robot system. Figure 5.2 exempli�es several con�gurations of this

system. The source position lies in the middle of the con�guration space. The

task for the robot is to bring the tip of the hose to a destination position. The

working space where the tip-of-the-hose robot moves is a square of size 2×2m2.

The initial Q-learning experiment speci�c de�nitions are the following:

� State: we have de�ned the state varaiables as X = (Pr, Pd, i), where

� Pr = (xr, yr) is the actual position of the tip-of-the-hose robot,

� Pd = (xd, yd) is the desired position of the tip-of-the-hose robot,

� i is a binary variable that indicates if the line PrPd intersects the

hose. i = 1 means that there is such an intersection. This variable

summarizes the perception of the system's state computed by the

robot or some outside control system.

� S. The state space is partitioned into disjoint subsets S = SG ∪ SF ∪ SI ,
where:
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� SG is the subset of states where the goal has been reached, i.e., when

the mobile extreme of the hose has reached the desired position. They

are absorbing states and a training episode �nishes when any of these

states is reached.

� SF is the subset of the states that represent that a failure or a forbid-

den situation occurs, i.e., when any part of the unidimensional object

has left the working area, or the mobile robot collides with any part

of the hose. They are absorbing states ending training episodes.

� SI is the subset of the inconclusive states, and they represent any

other intermediate scenarios.

� Working space discretization: in order to follow with the simplest formula-

tion of the problem we have considered a discretization step of 0, 5m. This

discretization determines the cardinality of the universe of states that we

are working with, and it determines the precision of the coordinates of

the point Pr and Pd too. Our working space is, thus, partitioned into 16

boxes. These boxes are the minimum resolution for the placement of a

robot. As the robot point Pr can be in any of these 16 boxes, and the

destination point Pd can be in any of these 16 boxes too, there are 256

combinations. Also, the state has another boolean component called i, so

there could be a maximum cardinality of 512 possible states.

� Actions: In our problem we can only interact with the scenario using the

mobile robot to change the position of the tip-of-the-hose, so the actions

are the possible motion directions of the robot. We have chosen a small

set of only four actions: A = {North, South, East, West }, meaning that
the robot will move in this direction for a length equivalent to the size of

the resolution box.

� Reward system: We have used a simple reward system, that gives a pos-

itive value to the agent when it reaches goal, a negative when the agent

fails to reach the goal, and zero value when decision is postponed:

r ←


+1 if goal is reached

−1 if failure occurs

0 else

.

The condition reaching the goal is equivalent to �reaching the same box
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where the goal is located�. As the motion of the tip-of-the-hose robot is

of �xed step-size, it is in general impossible to meet a prede�ed goal point

with arbitrary precision.

� α: [0 < α ≤ 1], as we suppose that we are working in a deterministic

environment we can assume that the value of this parameter is 1, so the

Q-table update expression simpli�es to the following expression:

Q (st, at)← rt+1 + γ ·max
a

Q (st+1, a)

.

� γ: [0 < γ ≤ 1], we have set this value to 0.9.

� Action selection: we apply an ε-greedy policy. This policy is based on

the existence of a parameter ε that establishes the equilibrium between

the use of the known information (exploitation) and the discovery of new

information (exploration), and we have set this value as 0.2. This means

that in each step of each episode, with the system being in the state s, we

choose the action a with this criterion:

a←

max
a′
Q (s, a′) with probability (1− ε)

any a′ ∈ A with probability ε
.

� Generation of the initial state: it amounts to the problem of generating

a feasible con�guration of the hose. To that end, we generate the posi-

tions of the spline control points in order from the working space origin

(the source) outwards. We generate 10 control points, ensuring that the

resulting GEDS will not have excesive bending or streching. Each episode

starts from randomly generated con�guration of the hose.

This initial experiment consisted of 76e+6 episodes, and performance was mea-

sured applying the learned state-action value Q-table to fresh unseen 1.000

episodes. The test episodes are independent of the episodes used for training of

the system, avoiding circularity issues in the training-validation process. The

success rate, i.e. the percentage of episodes where the robot reaches the goal in

the test episodes, is 73%. The 0.7% of the test episodes concluded because the

maximum allowed step count was reached. Finally, 26.3% of the test episodes



84CHAPTER 5. EXPERIMENTS OF HOSE TRANSPORTATION CONTROLWITH REINFORCEMENT LEARNING

failed either because the robot collided with the hose or because the whole

system reached a non-feasible position.

In order to illustrate the behavior achieved by Q-learning in this initial ex-

periment, we have chosen a di�cult initial con�guration in which the hose is

placed between Pr and Pd . Figures 5.2 and 5.3 show two instances of success-

ful episodes, where the succesive Pr positions of the robot moving the tip-of-

the-hose after each of the actions taken during the episode. The initial hose

conguration corresponds to the continuous line. All the intermediate hose con-

�gurations, until the robot reached the desired cell Pd, are shown as dotted

lines. It can be easily appreciated how the robot avoids colliding with the hose

by taking an initially suboptimal strategy (i.e. going away from the goal posi-

tion). Figure 5.4 shows the plot of the evolution of the test episodes along the

RL process. Each 1000 training episodes, the learning was stopped and 100 test

episodes are executed. The plot shows the ratio of successful episodes (green),

failed episodes (red) and the inconcluside episodes (blue).

5.4 E�ect of the state and reward de�nition

In this section we report results on the sensitivity of the RL process to changes

in the de�nition of the MDP state and in the reward function. All remaining

components of the model are the same of previous section. The �gure 5.5

shows the order in which we have considered the experimental parameters to

perform the experimental design. More detailed design is presented in the tree

shown in �gure 5.6, following a path from the root to a leaf of the tree gives

an experiment parameter setting. The speci�c new de�nitions of the Q-learning

experiment realized are the following:

� State: we have de�ned the state using three alternative models: X =

(Pr, Pd, i), X = (Pr, Pd, i, c) and X = (Pr, Pd, i, P1, P2), where

� Pr = (xr, yr) is the actual position of the tip-of-the-hose robot.

� Pd = (xd, yd) is the desired position of the tip-of-the-hose robot, the

goal.

� i is a binary variable that indicates if the line PrPd intersects the

hose. i = 1 means that there is an intersection. This variable models

a perceptual process that allows to decide if the hose is an obstacle

to accomplish the task.
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Figure 5.2: Example of a successful test episode in the initial experimentation
with RL for the single robot hose deployment system.
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Figure 5.3: The evolution of the hose in a successful episode where the tip
reaches the goal. Arrows are used to indicate the motion of the hose.
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Figure 5.4: Evolution of the RL results for the basic experiment settings

Figure 5.5: Hierarchy of the experimental design. We select the state de�nition,
discretization step and type of reward function in order to obtain the experiment
parameter combination.
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reward system code: 10 reward system code: 60

r ←


+1 if s ∈ SG

−1 if s ∈ SF

0 if s ∈ SI

r ←


+100 if s ∈ SG

−100 if s ∈ SF

f60 (pr, pg) if s ∈ SI

reward system code: 20 reward system code: 70

r ←


+100 if s ∈ SG

−100 if s ∈ SF

0 if s ∈ SI

r ←


+100 if s ∈ SG

−1000 if s ∈ SF

f70 (pr, pg, i, c) if s ∈ SI

reward system code: 30 reward system code: 80

r ←


+100 if s ∈ SG

−1000 if s ∈ SF

f30 (pr, pg, i, c) if s ∈ SI

r ←


+100 if s ∈ SG

−100 if s ∈ SF

f80 (pr, pg, i, c) if s ∈ SI

reward system code: 40 reward system code: 90

r ←


+100 if s ∈ SG

−100 if s ∈ SF

f40 (pr, pg, i, c) if s ∈ SI

r ←


−1000 if s ∈ SG

+1000 if s ∈ SF

f90 (pr, pg, i) if s ∈ SI

reward system code: 50

r ←


+1 if s ∈ SG

0 if s ∈ SF

0 if s ∈ SI

f30 (pr, pg, i, c) = −
(
d(pr,pg)

10 + 10i+ 10c
)

f40 (pr, pg, i, c) =
(
100− d(pr,pg)

2

)
− 10i− 10c

f60 (pr, pg) =
(
100− d(pr,pg)

2

)
f70 (pr, pg, i, c) =

(
100− d(pr,pg)

2

)
− 10i− 10c

f80 (pr, pg, i, c) = −
(
d(pr,pg)

10 + 10i+ 10c
)

f90 (pr, pg, i) = d (pr, pg) + 100i

Table 5.1: Reward systems for single robot systems for hose transportation.
Bottom rows have the de�nition of speci�c distance functions.
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Figure 5.6: The tree of the experimental parameter value combinations tested

� c is a binary variable that indicates if the box with corners Pr and

Pd intersects the hose. c = 1 means that there is an intersection.

This is a more sophisticated perceptual process, that implies a more

detailed perception of the hose deployment than the one needed to

compute i.

� P1 = (x1, y1) and P2 = (x2, y2) are two points of the hose that are

uniformly distributed from one end to the other end.

� Reward system: We have used several reward systems. In table 5.1 we

present the formalization of all the reward systems that we have used. In

�gure 5.7 we presente the graphical representation of these rewards as a

function of the distance to the goal position.

� Reward systems 10 and 20: both give a positive reward when reach-

ing the goal, negative when failing and nothing if the end state is

inconclusive.

� Reward system 50: only gives positive reward when reaching the goal.

� The remaining reward systems give positive reward when reaching the

goal, negative when failing and for the inconclusive states, a function

of the actual distance between the hose tip and the goal. In some
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(a) Reward function 30 (b) Reward function 40

(c) Reward function 60 (d) Reward function 70

(e) Reward function 80 (f) Reward function 90

Figure 5.7: Plots of the reward response of reward systems as a function of
distance to the goal position.
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cases the reward function is also function of the binary variables c

and i.

5.4.1 Experimental results

The computational results give a systematic exploration of the combinations

of state de�nition, reward system and discretization step. Besides, we have

obtained numerical values of the results with di�erent training time (expressed

in terms of training episodes) in order to compare the learning of the same

systems varying this parameter. The number of total episodes that we have

carried out with each combination in the training phase is in table 5.2. In this

way we have obtained the results that are shown in �gure 5.8 and �gure 5.9.

In these �gures we show, for each combination of reward system and state

model (with each di�erent discretization step), the percentage of episodes where

the robot reaches the goal in �gure 5.8, and the percentage of episodes concluded

because the maximum allowed step count was reached in �gure 5.9. For each

combination we show the results obtained in the test phase with 100 di�erent

initial con�gurations.

The best results correspond to the reward system code 20 with the state

de�ned as X = (Pr, Pd, i, P1, P2), the success rate, i.e. the percentage of

episodes where the robot reaches the goal, is 77% of the test episodes. The

2% of the test episodes concluded because the maximum allowed step count was

reached. Finally, 21% of the test episodes failed either because the robot collided

with the hose or because the whole system reached a non-feasible position.

The worst results come from the reward strategies 40, 60, 70 and 90 that give

some combination of the distance to the goal and the binary variables as the

reward function in the inconclusive state. They have the worst accuracy results

and the higher number of simulations ended because they reached the step

limit. The reward systems that gave a null reward or pure negative reward in

terms of distance to the goal in the inconclusive �nal states were the ones with

better results, regardless of the de�nition of the state, which is indicative of the

robustness of the approach.

In general, we can see that increasing the training episodes the result in the

test phase improve slightly in two ways: �rstly, the number of episodes that

�nish with success have experienced a slight increase. On the other hand, the

number of episodes that fail decrease to increase the number of those that �nish

because the maximum allowed step count was reached.
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state variables
X = (Py, Pd, i) X = (Py, Pd, i, c) X = (P r, P d, i, P 1, P 2)

reward 4s 4s 4s 4s 4s
system 0′5m. 0′2m. 0′5m. 0′2m. 0′5m.
10 6.410 1.740 5.920 1.410 9.830
20 6.410 460 6.490 370 10.260
30 6.070 1.900 6.700 1.510 12.360
40 4.530 780 4.440 650 12.480
50 7.330 2.260 7.540 1.660 22.620
60 22.650 1.010 20.470 750
70 23.290 1.090 20.450 620
80 34.490 2.350 31.270 1.940
90 37.970 2.810 36.430 1.980

Table 5.2: Total episodes of the training phase (thousands of episodes)

Figure 5.10 shows the plot of the test episodes during the system train-

ing (training stopped each 1000 episodes for a 100 test episodes). The system

reaches good results after 104 episodes, after that the learning oscillates around

the average values. Inconclusive �nal states are almost null. However the num-

ber of failed �nal states does not go to zero.

� Another question arises about whether the discretization step is relevant or

not for the learning process of the agent. We have carried out experiments

with the two discretization steps of 4s = 0′5m. and 4s = 0′2m. with the

two state models of X ={pr, pg, i} and X ={pr, pg, i, c}. These results
can be seen in �gure 5.11 and �gure 5.12, and we have realized that using

the same state model, the same reward system and a learning process of

similar duration, these conclusions can be extracted:

� For the X ={pr, pg, i} and the reward system r3, the discretization step

4s = 0′2m. obtains the best results in terms of % goals.

� For the X ={pr, pg, i, c} and the reward systems r3 and r5, the

discretization step 4s = 0′2m. obtains the best results in terms of

% goals.

� For the remaining cases, the the discretization step 4s = 0′5m.

obtains the best results in terms of % goals.
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Figure 5.8: Percentage of successful runs (reaching goal) obtained in test phase
with each reward system and state de�nition over a hundred simulations per
combination of parameters.

Figure 5.9: Percentage of runs terminated because they reached the limit num-
ber of steps obtained in test phase with each reward system and state de�nition
over a hundred simulations per combination of parameters.
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Figure 5.10: Evolution of the test episodes for the best combination of rewards
and state de�nitions

Figure 5.11: % goals obtained with the same state model X = {pr, pg, i} using
as discretization step 4s = 0′5m. and 4s = 0′2m., using the nine distinct
reward systems r1 to r9. Except in one case, a certain superiority of the dis-
cretization step 4s = 0′5m. can be appreciated.
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Figure 5.12: % goals obtained with the same state model X = {pr, pg, i, c}
using as discretization step4s = 0′5m. and4s = 0′2m., using the nine distinct
reward systems r1 to r9. Except in two cases, a certain superiority of the
discretization step 4s = 0′5m. can be appreciated.

5.5 The value of prediction

In this section we consider an speci�c de�nition of the system variables which

include some predictions of the e�ects of the actions. The new de�nition of

the state variables is X = (Pr, Pg, i, V ), where V : it is a collection of logical

variables, one for each feasible action, that are true if there will be collision of

the mobile extreme of the hose with itself after performing the corresponding

action. This variable involves some limited predictive ability of the robot, which

allows it to detect the danger one step ahead.

The results obtained with the combination of the state modelX ={pr, pg, i, Vr}
and the reward system r1, improve the results that were reported in the previous

section. In this case, the success rate, i.e. the percentage of episodes where the

robot reaches the goal, is 79% of the test episodes. The 2% of the test episodes

concluded because the maximum allowed step count was reached. Finally, 19%

of the test episodes failed either because the robot collided with the hose or

because the whole system reached a non-feasible position.

The question of the in�uence of the reward systems in the learning process is

always present. In �gure 5.13, we show the success rate measured in percentage

of goals reached with four di�erent state models, nine di�erent reward systems

and the discretization step 4s = 0′5m. All the combinations have been not

simulated due to the high computational burden involved. In general, the more

complete is the de�nition of the state model, the better are the results. However,
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Figure 5.13: Percentage of succesful test episodes (%goal) obtained with four
di�erent state models, nine di�erent reward systems and the discretization step
4s = 0′5m. No all the combinations have been simulated. In general, the more
complete is the de�nition of the state model, the better are the results.

we can see that there are some cases where although the model is more complete,

the result are no as goods as we could have expected. This happens in reward

systems r3, r4 and r8. Likely, the reason for this is that the more complete the

state model de�nition is, the wider is the search space. This is an open issue

that needs more research.

5.6 Experimental results of TRQ-Learning

The system consists of an unidimensional object (a hose) that has one end at-

tached to a �xed point (which is set as the middle point of the ground working

space), and the other end (the tip) is transported by a mobile robot. The learn-

ing task for the learning agent (the robot) is to bring the tip of the unidimen-

sional object to an arbitrarily designated destination point. The working space

is a square of 2×2m2. We have used the procedure speci�ed in the Section 5.2 to

generate a number of di�erent initial system con�gurations to be used as initial

states in the TRQ-Learning algorithm. Besides, states found during the learn-

ing process are incorporated to this pool of initial states. The TRQ-Learning

is applied to two de�nitions of the state variables X(1) = {Pr, Pd, i, V } and
X(2) = {Pr, Pd, i, c, V }. The working space has been discretized into squares

of size 0.5×0.5 m2, therefore all spatial variables are given in the corresponding

discrete coordinates.
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For this speci�c experiment we have de�ned the immediate reward function

according to the state that has been reached in each moment:

R (s, a)←


rg argmax

s′
{T (s, a, s′)} ∈ SG

rf argmax
s′

{T (s, a, s′)} ∈ SF

ri argmax
s′

{T (s, a, s′)} ∈ SI

, (5.1)

where rg = 1, rf = −1 and ri = 0. The control system resulting from the TRQ-

Learning process will be adaptative in the following sense. If there is an error

performing any action (problems with the movement of the robot, steering, etc.)

and the system reaches any state di�erent from the predicted by the learned

model T (s, a), this new state will be already considered in the Q-table and

the control algorithm will act consequently from that accidentally reached state

applying an optimal policy. Speci�c parameters of TRQ-Learning algorithm are

adjusted as follows:

� The action selection policy is an ε-greedy policy, with ε = 0.2.

π (s, a)←

max
a′
Q (s, a′) with probability (1− ε)

any a′ ∈ A with probability ε
. (5.2)

� Episodes. The maximum length of an episode is set to 10 steps.

In table 5.3 we show the validation results. Validation has been performed as

follows: after the TRQ-Learning process, the obtained state-action Q-table was

used to solve the problem for 1000 test episodes starting from random initial

con�gurations, applying the optimal action selection policy derived from the

learned Q. In table 5.3 success corresponds to the percentage of successful val-

idation episodes achieving the goal position, fail corresponds to the percentage

of validation episodes ending in a fail state, and inconclusive corresponds to the

percentage of test episodes that ended because the validation episode reached

the limit number of steps. The second row gives the number of training episodes

for each case, in thousands of episodes. The third row gives a measurement of

the computational time in thousands of seconds. We denote X(0) the set of

state variables considered in [14].

From table 5.3 it can be appreciated that the new state variables de�nition

improves the results of [14] with much less computation needed (in terms of
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X(0) X(1) X(2)

#training episodes (103) 76.000 17.390 14.260
comp. time (103s) 623 21 18

% success 73 % 79 % 92 %
% fail 26.3 % 19 % 8 %

% inconclusive 0.7 % 2 % 0 %

Table 5.3: Performance evaluation of the state variable sets: previous
works X(0) = {Pr, Pd, i} with Q-Learning, new state variable sets X(1) =
{Pr, Pd, i, V } and X(2) = {Pr, Pd, i, c, V } with TRQ-Learning.

episodes) for the training of the system. We obtain up to a 92% success if

we use information about the e�ect of the actions in the state. Therefore,

incorporating an elementary prediction of the potential for failure allowing to

avoid action sequences leading to failing states is a major improvement of the

control system. Besides, this prediction ability is learned by the agent while

performing the TRQ-Learning process. This improvement is obtained with little

increase of the computational requirements as the state space size is mostly

dependent on the spatial discretization resolution, and the number of episodes

needed to reach peak convergence are in fact reduced for the innovative state

variable con�guration. In addition, besides the fact that fewer episodes are

necessary to reach better results, each episode needs less computational time

because on average the result of every action is calculated in less time, by the

use of the on-the-�y learned model.

5.7 Summarizing results for single robot

In this section we give summary results for the single robot case. Figure 5.14

contains the plots of the success rates (the percentage of goals reached in the test

episodes) for the di�erent reward systems, each curve corresponding to a state

variable de�nition and working space discretization resolution. Regarding the

reward systems, rewards #50 and #80 are consistently good at all the combina-

tions of policies and discretization, while system #40 and #90 are a consistent

disaster. Reward systems #10 and #20 have wide variability depending on

the discretization resolution. The inclusion of the predictive variables V gives

the best results. Figure 5.15 gives the rate of failure (percentage of failing �-

nal states reached in the test episodes). Suprisingly, this failure rate is rather

homogenous across reward systems, but for the #90 system which really bad.
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Figure 5.14: Summary success rate for all state variable de�nitions and dis-
cretization step relative to the reward system

Figure 5.16 contains the plots corresponding to the rate of inconclusive states

reached at the end of the test episodes. It can be appreciated that most of

the lack of success of reward systems #40, #60 and #70 is due to the lackof

convergence, maning that the system does not arrive to any �nal state. On the

other hand, sysem #90 is simply bad without excuse.

Trying to ascertain the e�ect of the state de�nition we plot the success rate

of the state de�nition combined with the discretization step for the diverse

rewards in �gure 5.17. It can be appreciated that the reward system is the most

in�uential factor of success. Some reward systems give the top curves in the

plot. Figure 5.18 contain the failure rates, which again are highly consistent for

the reward system. Finally, the same conclusion can be drawn from the plot of

the rate of inconclusive states in �gure 5.19.

5.8 Speci�cation of learning on the two robot sys-

tem

The system consists of an unidimensional object (a hose) that has one end

attached to a �xed point (which is set as the middle point of the ground working

space), and two robots, one attached to the central point of the hose, and the

other robot attached to the other end (the tip of the hose). In this way, the

hose is transported using the two mobile robots. The learning task for the

learning agents (both robots) is to bring the tip of the unidimensional object to

an arbitrarily designated destination point. Most de�nitions for the Q-learning
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Figure 5.15: Summary failure rate for all state variable de�nitions and dis-
cretization step relative to the reward system

Figure 5.16: Summary inconclusive state rate for all state variable de�nitions
and discretization step relative to the reward system
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Figure 5.17: Summary success rate for all reward systems relative to the state
variable de�nitions and discretization step.

Figure 5.18: Summary failure rate for all reward systems relative to the state
variable de�nitions and discretization step.
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Figure 5.19: Summary inconclusive state rate for all reward systems relative to
the state variable de�nitions and discretization step.

approach given in section 5.3 are the same in this setting, we will only specify

the new elements of the de�nition.

� For the two robot system the state variables areX ={pr1 , i, c, Vr1 , pr2 , Vr2 , pg}.
The meaning of these variables is as follows:

� pr1 : it is the position (xr1 , yr1) of the robot attached to the tip of

the hose.

� i: it is a boolean variable that is true if the line pr1pg intersects the

hose. This variable models a perceptual process that allows to decide

if the hose is an obstacle to accomplish the task.

� c: it is a boolean variable that is true if the box with diagonal cor-

ners pr1 and pg intersects the hose. This is a more sophisticated

perceptual process, that implies a more detailed perception of the

hose deployment than the one needed to compute i.

� Vr1 : it is a collection of boolean variables, one for each feasible

action, that are true if there will be collision of the hose with itself

after the robot r1 performs the corresponding action. This variable

involves some limited predictive ability of the robot r1, which allows

it to detect the danger one step ahead.
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� pr2 : it is the position (xr2 , yr2) of the robot attached to the tip of

the hose.

� Vr2 : it is a collection of boolean variables, one for each feasible

action, that are true if there will be collision of the hose with itself

after the robot r2 performs the corresponding action. This variable

involves some limited predictive ability of the robot r2, which allows

it to detect the danger one step ahead.

� pg: it is the goal position (xg, yg) of the tip of the hose. It speci�es

the task to be accomplished. The distance between pr1 and pg is a

measure of the degree of task accomplishment, but it is not explicitly

used as a state variable.

� The available actions are the directions of motion of each robot carry-

ing the hose plus the possibility of not making any movement, A =

{North, South, East, West, None}. Each action of the overall system

is taken as one action of one robot, because they take actions using a

round robin algorithm. When a robot moves, it moves always one spatial

unit corresponding to one discretization step thas has been taken in that

experiment. The execution of an action involves the simulation of the hose

dynamical model to evaluate the resulting hose spatial con�guration.

� R. We have used several reward systems, taking into consideration only

one robot and taking the two robots too. We have de�ned the immediate

reward function according to the state that has been reached in each mo-

ment. So, rewards have three possible values as is explained in equation

5.3: rg when the system reaches the goal, rf when it fails to reach the

goal, and ri when decision is postponed because the state is inconclusive.

The condition �reaching the goal� is equivalent to �reaching the same box

where the goal is located�. As the motion of the robots that transport the

hose is of �xed step-size, it is not possible to reach an speci�c goal point

with arbitrary precision. In the table 5.1 we present all the reward sys-

tems that we have used taking into account only the robot that trasports

the tip of the hose, while in the tables 5.4 and 5.5 we present the reward
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systems that consider both robots.

R (s, a)←


rg argmax

s′
{T (s, a, s′)} ∈ SG

rf argmax
s′

{T (s, a, s′)} ∈ SF

ri argmax
s′

{T (s, a, s′)} ∈ SI

, (5.3)

� The maximum length of an episode is set to 30 steps when the discretiza-

tion set is set to 0.5× 0.5 m2 and to 100 steps when the discretization set

is set to 0.2× 0.2 m2.

5.9 Results for the two robot system

The reward systems already de�ned for the single robot case are applied here

only to the robot carrying the tip of the hose. The other robot has no reward

system, this equates to the idea that the lead robot is �responsible� for the task

ful�lment. Reward systems described in the tables 5.4 and 5.5 are speci�c of the

two robot system, giving speci�c rewards to the lead and middle robot. Figure

5.20 shows the plots of the success ratio (the % goals reached in the test episodes)

for the di�erent rewards changing the learning algorithm and the discretization

step. The speci�c two robot reward system #210 gives the best results, though

in some cases the single-robot reward system #30 is also very e�ective. The

reward system #220 is rather catastrophic. . If we compare the Q-learning

and TRQ-learning algorithms we TRQ-learning improves greatly on Q-learning

for the lower discretization resolution. For the higher discretization resolution,

Q-learning gives better results in some cases, but it is not consistently better.

Overall the best performance is obtained with low resolution discretization, the

TRQ-learning and the #210 reward system, reaching almost 90% successful

episodes. Attending to the rate of failures in �gure 5.21 we �nd that the reason

for the poor performance of TRQ-learning on the high resolution discretization

is that it reaches quite frequently an undesired blocking state. Q-learning su�ers

from a similar problem, but less pronunciated. Looking at the ratio of episode

termination in inconclusive states inf �gure 5.22 we �nd that TRQ-learnign falls

below Q-learning, meaning that the TRQ-learning obtains policies that reach

faster the terminal states, either positive or negative, while Q-learning seeem

sto be procrastinating more. The relative improvement of Q-learning in some



5.9. RESULTS FOR THE TWO ROBOT SYSTEM 105

reward system code: 200

r ←


+100 if s ∈ SG

−100 if s ∈ SF

f (pr1 , pr2 , pg, i, c) if s ∈ SI

f (pr1 , pr2 , pg, i, c) = −
(
d(pr1

,pg)
10 + 10i+ 10c

)
+ 20

g(pr1
,pr2)

g (pr1 , pr2) = max (abs (r1 (pr1 , pr2)) , abs (r2 (pr1 , pr2)))

r1 (pr1 , pr2) =

{
d(pr1

,pr2)
d(pr2

, (0, 0))
if d (pr2 , (0, 0)) 6= 0

∞ else

r2 (pr1 , pr2) =

{
d(pr2

, (0, 0))
d(pr1

,pr2)
if d (pr1 , pr2) 6= 0

∞ else
reward system code: 210

r ←


+100 if s ∈ SG

−100 if s ∈ SF

f (pr1 , pr2 , pg, i, c, Vr1 , Vr2) if s ∈ SI

f (pr1 , pr2 , pg, i, c, Vr1 , Vr2) = −
(
d(pr1

,pg)
10 + 10i+ 10c

)
+ 20

g(pr1
,pr2)

+ o (Vr1 , Vr2)

g (pr1 , pr2) = max (abs (r1 (pr1 , pr2)) , abs (r2 (pr1 , pr2)))

r1 (pr1 , pr2) =

{
d(pr1

,pr2)
d(pr2

, (0, 0))
if d (pr2 , (0, 0)) 6= 0

∞ else

r2 (pr1 , pr2) =

{
d(pr2

, (0, 0))
d(pr1 ,pr2)

if d (pr1 , pr2) 6= 0

∞ else

o (Vr1 , Vr2) = 5
∑
i

Vr1, i + 5
∑
i

Vr2, i

Table 5.4: Reward systems taking into account two robots
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reward system code: 220

r ←


+100 if s ∈ SG

−100 if s ∈ SF

f (pr1 , pr2 , pg, i, c, Vr1 , Vr2) if s ∈ SI

f (pr1 , pr2 , pg, i, c, Vr1 , Vr2) = −
(
d(pr1 ,pg)

10 + 10i+ 10c

)
+ 70

g(pr1 ,pr2)
+ o (Vr1 , Vr2)

g (pr1 , pr2) = max (abs (r1 (pr1 , pr2)) , abs (r2 (pr1 , pr2)))

r1 (pr1 , pr2) =

{
d(pr1

,pr2)
d(pr2

, (0, 0))
if d (pr2 , (0, 0)) 6= 0

∞ else

r2 (pr1 , pr2) =

{
d(pr2

, (0, 0))
d(pr1

,pr2)
if d (pr1 , pr2) 6= 0

∞ else

o (Vr1 , Vr2) = 5
∑
i

Vr1, i + 5
∑
i

Vr2, i

Table 5.5: Reward systems taking into account two robots

instances is due to the higher rate of inconclusive terminations, biasing the

success statistics towards Q-learning.

5.10 Conclusions

We have approached the hose transportation problem in a L-MCRS using Re-

inforcement Learning methods, more speci�cally, Q-learning and TRQ-learning

de�ned in Chapter 4. We have worked on a single robot and a two robot

con�gurations, performing extensive learning experiments using the accurate

simulation of the model described in Chapter 2. Simulations are quite expen-

sive in computation time, the e�ective time required for the training process is

in order of hours or days. However, this simulation process allows reproducibil-

ity and increased accuracy of validation. We have tested several combinations

of con�guration space resolution, reward systems and de�nitions of the state

variables modeling the process. Each state variable de�nition embodies some

assumptions on the system and the knowledge available to the learning agent.

We have found that some simple reward systems provide the best results. Also,
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Figure 5.20: Success of the training methods on the two robot system relative
to the reward system

Figure 5.21: Failure of the training methods on the two robot system relative
to the reward system
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Figure 5.22: Rate of inconclusive states reached by the training methods on the
two robot system relative to the reward system

the ability to perform �rst order predictions enhances the system performance.

In the two robot system, we have found that applying the reward system only

to the lead robot can provide good resuls in some cases.



Chapter 6

Conclusions and further work

This chapter is devoted to summarize the conclusions of the dissertation o�ering

some ideas for future work.

The thesis is focused in a speci�c kind of system, the Linked Multi-component

Robotic System (L-MCRS) consisting in a collection of automous robots at-

tached to a one dimensional object which a passive, �exible and/or elastic

element constraining the dynamics of the autonomous robots in a non-linear

fashion. Therefore, modeling and prediction of the system dynamics needs to

take into account the linking element as well as the mobile autonomous robots.

In fact, the kind of practical tasks best suited for this kinds of systems is re-

lated to the manipulation and transport of the one dimensional object. The

paradigmatic example is the transportation or deplyment of a hose for �uid

disposal. The present dissertation follows a line of research of the group that

has laid some background supporting the present work. First, some proof of

concept physical systems have been built and tested where the expected e�ect

of the linking element is demonstrated. The hose sometimes hiders the motion

of the robots, sometimes introduces drifts, and sometimes drags lagging robots.

Some of these systems have been commented in Chapter 2 of this dissertation.

Second, a theoretical framework for the accurate modeling and simulation of

these kind of systems was provided. The Geometrically Exact Dynamic Splines

(GEDS) allow modeling the hose and the forces playing inside it as a response of

the external forces exerted by the robots and the environment. In this disserta-

tion, the GEDS model has been adapted to be embedded in the computational

experimentation required by the Reinforcement Learning (RL) approach.

Although the physical model demonstrations provide some evidence of the

109
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linking element e�ect, simulation does provide a repeatable and fully controlled

experimental setting to provide additional evidence supporting the intuition that

the L-MCRS belongs to a category of systems di�erent from the disconnected

collection of robots (D-MCRS). The reasoning is that a control scheme derived

with a D-MCRS in mind would not be able to deal with a L-MCRS identical

in every respect except for the existence of the linking element, that is, the dis-

tinction between system categories lies in their controlability. The experimental

setup in Chapter 3 was the formulation of a minimalistic L-MCRS model where

the linking element is a compressible spring that exerts some force only when the

segment between two robots extends beyond a limit size. A distributed control

system was de�ned for a path following task with a �xed formation, where each

robot unit control was designed to follow a reference position by a Proportional-

Integral controller. Keeping the formation was the role of a distributed control

process, where the rear robot position corresponds to the coordination variable.

The robots performed a consensus-based asynchronous distributed estimation

of the coordination variable allowing for the successful completion of the task

when no linking element was present. The introduction of the linking element

produced easily observable interactions between units, rendering the controller

system ine�ective to solve the path following task. The experiment demostrates

that the L-MCRS are speci�c category of systems from the point of view of

controllability.

Reinforcement Learning (RL) allow autonomous learning of control systems.

The main aim of the Thesis is to show that RL can provide a solution to the

autonomous control design problem for L-MCRS. First we have identi�ed a

suitable problem as prototypic instance of the L-MCRS control problem. Such

problem is the deployment of a hose to make the tip reach a desired position.

The state variables of the Markov Decision Problem (MDP) and the reward

system are they sensitive elements of the de�nition of the Q-learning system.

The de�nition of the state variables includes the decision about the discretization

resolution of the con�guration space where the hose is moving. We have found

that the discretization resolution can have a strong e�ect in the computational

cost of the process and in its success rate. Low resolution imply smaller state

spaces and higher success because rough approximations to the solution are

better tolerated. High resolutions imply greater computational complexity and

lower success, because the exploration time grows exponentially with system

size. Nevertheless we reach very high sucess rates in some instances of the

learning experiments.
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The state variables are determined by the abilities of the agent. The basic

ability is to sense its current position, which allowed in all systems. Next is the

ability to perceive the hose and determine if it has become an obstacle. This

ability is the minimal perception required and it may correspond to very simple

sensors in real life experiences. The system is able to provide good results with

this minimal perception ability, under speci�c reward systems. The ability to

determine if the hose is inside a some speci�c region of the con�guration is a

further sophistication of the perception ability of the system. An additional

degree of perception is the ability to sense the position of two speci�c points of

the the hose, allowing to have an implicit model of the hose to reason about.

Finally, the ability to predict the danger of undesired termination state one step

ahead is the last perception stage reached in our modeling, providing the best

results as expected.

In all the cases, the reward policy has a bigger impact on the learning per-

formance. Basically they give positive reward for reaching the goal position,

negative reward for reaching a failed state and diverse ways to value the incon-

clusive states. When there is only positive reward for reaching the goal state

the results are good, meaning that negative reinforcement is not so in�uential

as expected from an intuitive point of view. Simplistic ways to give value to

inconclusive states, such as zero value or a value proportional to the distance of

the tip to the desired position, give good learning performance.

We have tested a single-robot and a two-robots con�gurations with similar

results, the two robot system improving someplaces the single-robot con�gura-

tion. For the two robot con�guration we have tested single robot reward policies

applied to the robot at the tip of the hose, the other robot remaining rewardless,

with not-so-bad learning results, suggesting that teaching the �guiding robot�

may be enough for the task. Besides, we have tested two-robot speci�c reward

systems improving the single robot reward systems.

Finally, learning time is highly dependent on the simulation time employed

to reproduce the experiences on the real system. We have tested the improve-

ment introduced by storing the visited state transitions and their corresponding

observed rewards in a variation of Q-learning call TRQ-learning. We �nd im-

proved results with TRQ-learning due to reduced need for exporation and faster

computation.

As lines of future work we �nd highly interesting the research on method-

ological improvements in the de�nition of the RL algorithms allowing faster

and more successfull learning processes. The hierarchical decomposition of the
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system into di�erent layers of abstraction can allow the progressive re�nement

of learning results until reaching the �nal stage of the most realistic modeling

and simulation. Learning in the simple models can be fast and the re�nement

learning can be much faster than the brute force approach on the whole model.

Such approaches would need innovative ways to de�ne the equivalence between

models and how the transition between levels of abstraction could be made.

We are also interested in bringing into real life systems the results of the

learning on the simulated model and exploring more realistic systems closer

to the industrial applications, such as the hose deployment from a compact

interleaved state. The physical system design problems are challeging and have

been only scratched by research groups interested in similar problems, such

as the GII from the Universidad de A Coruña. Innovative hose graspers and

minimal mobile robot con�gurations, that may even be folded with the hose in

the resting state, or power transmision systems are extremely appealing lines of

research.
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