
Pattern Classi�cation

Chapter 9.6 Estimating and Comparing Classi�ers
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Introduction I

Two reasons to know the generalization rate of a classi�er:

I the classi�er performs well enough to be useful.
I to compare its performance with that of a competing design
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Parametric model I

One approach: To estimate the generalization rate from the assumed

parametric model.

3 problems:

I error estimate is often optimistic.
I suspect the validity of an assumed parametric model.
I it is very di�cult to compute the error rate exactly, even if the

probabilistic structure is known completely.
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Cross validation I

Randomly split the set of labeled training samples D into two parts:

I Training set: for adjusting de parameters.
I Validation set: estimate the generalization error.

We train the classi�er until set we reach a minimum of this validation

error:
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Cross validation II
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Cross validation I

Cross validation is heuristic and need not give improved classi�ers in

every case.

There are several heuristics for choosing the portion γ of D to be used

as a validation set (0 < γ< 1).

I small portion of the data: validation set (γ < 0.5)
I A traditional default is to split the data with γ = 0.1.
I m-fold cross validation: the cross validation training set is randomly

divided into m disjoint sets of equal size n/m. (m=n , leave-one-out)
I anti-cross validation: stop training when the validation error is the

�rst local maximum.
I If the true but unknown error rate of the classi�er is p, and if k of the n

independent, randomly drawn test samples are misclassi�ed, then k has
the binomial distribution
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Cross validation II

the fraction of test samples misclassi�ed is exactly the maximum

likelihood estimate for p.
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Cross validation I

The 95% con�dence intervals for a given estimated error probability p̂

can be derived from a binomial distribution of equation P(k).
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Jackknife and bootstrap estimation of classi�cation accuracy

I

Jackknife: we estimate the accuracy of a given algorithm by training

the classi�er n separate times, each time using the training set D from

which a di�erent single training point has been deleted. Each resulting

classi�er is tested on the single deleted point and the jackknife

estimate of the accuracy is then simply the mean of these

leave-one-out accuracies.

There are several ways to generalize the bootstrap method to the

problem of estimating the accuracy of a classi�er. One of the simplest

approaches is to train B classi�ers, each with a di�erent bootstrap

data set, and test on other bootstrap data sets.

The bootstrap estimate of the classi�er accuracy is simply the mean of

these bootstrap accuracies.
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Maximum-likelihood model comparison I

Maximum-likelihood model comparison (ML-II): Given a model with

unknown parameter vector θ, we �nd the value θ̂ which maximizes the

probability of the training data. The goal here is to choose the model

that best explains the training data

The posterior probability of any given model:

The data-dependent term, P(D|hi ), is the evidence for hi ; the second

term, P(hi ), is our subjective prior over the space of hypotheses.
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Maximum-likelihood model comparison II
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Bayesian model comparison I

Uses the full information over priors when computing posterior

probabilities.

The evidence for a particular hypothesis is an integral,

(41)

where as before θ describes the parameters in the candidate model.
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Bayesian model comparison I

is the ratio of two volumes in parameter space:

1 the volume that can account for data D and

2 the prior volume, accessible to the model without regard to D.
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Bayesian model comparison I
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Bayesian model comparison I
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