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Overall view of the talk

Comment on Reinforcement Learning and Multi-Agent Reinforcement
Learning

Not a tutorial

e Our own contributions in the last times (mostly Borja's)

e improvements on RL avoiding traps
e a “new"’ coordination mechanism in MARL : D-RR-QL

A glimpse on a promising avenue of research in MARL
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Introduction

Motivation

e Goals of innovation in control systems:
e attain an acceptable control system

e when system's dynamics are not fully understood or precisely modeled
e when training feedback is sparse or minimal

e autonomous learning
e adaptability to changing environments

e distributed controllers robust to component failures
e large multicomponent systems

e Minimal human designer input
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Introduction

Example

e Multi-robot transportation of a hose

e non-linear dyamical strong interactions trough an elastic deformable
link
e hard constraints:
e robots could drive over the hose, overstretch it, collide, ...
® sources of uncertainty: hose position, hose weight and intrinsic forces
(elasticity)

Goul—'—
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Introduction

Reinforcement Learning for controller design

e Reinforcement Learning

e agent-environment interaction
e learning action policies from rewards

o time delayed rewards
e almost unsupervised learning

e Advantages:
e Designer does not specify (input, output) training samples
e rewards are positive upon reaching the task completion

o Model free
e Autonomous adaptation to slowly changing conditions

e exploitation vs. exploration dilemma
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Reinforcement Learning  Single-Agent RL
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Reinforcement Learning Single-Agent RL

Markov Decision Process (MDP)

e Single-agent environment interaction modeled as Markov Decision
Processes (S, A, P, R)

e S: the set of states the system can have

e A: the set of actions from which the agent can choose
e P: the transition function
e R: the reward function
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Reinforcement Learning  Single-Agent RL

Single-agent approach

e The simplest approach to the multirobot hose transportation:

e a unique central agent learning how to control all robots

Goal—l—
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Reinforcement Learning Single-Agent RL

The set of states: S

e Simple state model

e S is a set of discrete states
e State: discretized spatial position of the two robots. e.g.:

((2,2),(4,4)).

e In a 5 x4 grid, total amount of 202 states

A

\J

C/ Hose source

0 1 2 3 4 5
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Reinforcement Learning Single-Agent RL

Single-Agent MDP

Observation
Single-Agent MDP can deal with multicomponent systems

State space is the product space of component state spaces

Action space is the space of joint actions

Dynamics of all components are pull together

Reward is system global

Equivalent to a centralized monolithic controller
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Reinforcement Learning Single-Agent RL

The set of actions: A

e Discrete set of actions for each robot:

o Ay = {up1,downs, left;, right; }
o Ay = {upo,downy, lefty, right, }

e If we want the agent to move both robots at the same time, the set of
is A= Al X A2:

o A={upy/ups,upy/downs,, ... downy/up,,down;/downs, ...}

e 16 different joint-actions

&P
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Reinforcement Learning Single-Agent RL

The transition function: P

e Defines the state transitions induced by action execution
e Deterministic (state-action mapping): P: S,A— S;
e s'=P(s,a) s’ observed after a is executed in s.
e Stochastic (probability distribution): P: S, A;S — [0,1]

e p(s'|s,a) probability of observing s’ after a is executed in s.
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Reinforcement Learning Single-Agent RL

The reward function: R

e This function returns the of either

e the last agent's decision: i.e. action executed R: SxA— R
e state reached: R: S > R

e |t is the objective function to be maximized

e given by the system designer
e A reward function for our hose transportation task:

1 if s = Goal

0 otherwise

R(s)

&P
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Reinforcement Learning Single-Agent RL

Learning

e The goal of the agent is to learn a policy 7 (s) that maximizes the
accumulated expected rewards

e Each time-step:

e The agent observes the state s

o Applying policy 7, it chooses and executes action a

e A new state s’ is observed and reward r is received by the agent
e The agent "learns” by updating the estimation of the

&P
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Reinforcement Learning Single-Agent RL

Q-Learning

e State value function : expected rewards from state s following policy

m(s):
Vﬂ:(S):Eﬂ: Z'}/trt|5:St
t=0

e discount parameter y

e weight higher immediate rewards than future ones

e state-action value function Q(s,a):

Q" (s,a)=E" Zytrt|s:st/\a: a;
=0
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Reinforcement Learning Single-Agent RL

Q-Learning

e Q-Learning : iterative estimation of Q-values :
Qe(s,a)=(1— ) Qr-1(s,a) + - [re +7-maxQe—1 (i)
a

where « is the learning gain.
e Tabular representation : store value of each state-action pair (|S|-|A|)

e In our example, with 2 robots (20 states) and 4 actions per robot, the
Q-table size : 20-42
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Reinforcement Learning Single-Agent RL

Action-selection policy

e Convergence: Q-learning converges to the optimal Q-table
o iff all possible state-action pairs are visited infinitely often

e Exploration: requires trying suboptimal actions to gather information
(convergence)

e & — greedy action selection policy:

random action  with probability €
e (s) = arg max Q(s,a) withprobability 1 — ¢
ac

e Exploitation: selects action a* = maxQ (s, a)
a
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Reinforcement Learning Single-Agent RL

Learning

Observation

e Learning often requires the repetition of experiments
e Repetitions often imply simulation is the only practical way
e Autonomous learning implies exploration

e non-stationarity asks for permanent exploration
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Reinforcement Learning Single-Agent RL

Physical constraints

e Robotic control tasks ofter present physical constraints : undesirable
termination state-actions (UTS)

e experiment (simulation) terminated without learning anything positive
e Linked MCRS physical constraints:

Overstrechting the hose: elastic until breaking point
Driving over the hose

Colliding with each other

Get outside the working space

&P
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Reinforcement Learning Single-Agent RL

Reward function

e Teach the agent to avoid breaking physical constraints =>
e introduce those constraints in the reward function
® negative rewards
1 if s = Goal
R(s){ —1 if physical constraint broken
0  otherwise

&P
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Reinforcement Learning Single-Agent RL

Reducing Learning complexity

e Learning time conditioned by

e theoretical convergence conditions
e time to perform/simulate each action/experiment
o failed experiments in overconstrained systems

e Space requirements

e state-action explosion in multicomponent systems
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Reinforcement Learning Single-Agent RL

Our work: L-MCRS

o We use Geometrically Exact Dynamic Splines (GEDS) to simulate the
hose dynamics

e The simulation time for a single step with only two robots is about 45
seconds

e When a physical constraint is broken, the system must be reset
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Reinforcement Learning  Single-Agent RL

Our work: L-MCRS

e We have presented several techniques to make learning L-MCRS
control more efficient:

e Modular Action-State Vetoes

Undesired State-Action Prediction

Transfer Learning using Partially Constrained Models

Functional approximations: Actor-Critic

Distributed Round-Robin Q-Learning —> Multiagent Reinforcement
Learning
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Reinforcement Learning  State-Action Vetoes
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Reinforcement Learning State-Action Vetoes

Modular State-Action Vetoes

e Undesired Terminal States (UTS) are vetoed®
e Rationale:

e UTS do not need to be revisited
e Not all state variables drive to the UTS

e Decomposable detection of UTS — > modularity
e Achieving learning speed-up

e Increased space exploration

IB. Fernandez-Gauna; JM Lopez-Guede; | Etxeberria-Agiriano; | Ansoategi; M Grafia
Reinforcement Learning endowed with safe veto policies to learn the control of L-MCRS
Information Sciences Volume 317, 1 October 2015, Pages 25-47 [8] DOI L2t T
10.1016/].ins.2015.04.005
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Reinforcement Learning  State-Action Vetoes

Modular State-Action Vetoes

e Example:

e If the system executes action {lefty, left,, ups, lefty }, the hose is
overstretched and possibly broken

== 35
=% 2

&
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Reinforcement Learning State-Action Vetoes

Modular State-Action Vetoes

e Question: would it have been overstretched if the first two robots had
another position?

e Physical constraints are related with a subset of the state variables
e The agent can then veto state-actions on the basis of information only
from this subset of state variables
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M Grafia et al. (ENGINE-WrTU) MARL for new generation control systems IDEAL 2015 30 /92





Reinforcement Learning  State-Action Vetoes

Modular State-Action Vetoes

Observation
Single-Agent internal logic may be modular

Learning
Subsystem

Learning

Subsystem

Sensorial
Subsystem

Reach
passenger

Sensorial
Subsystem Minimize fuel
expenditure

[€@ assenger Move Move Move Move
L = East I West North South

. S

to goal
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Reinforcement Learning State-Action Vetoes

Modular State-Action Vetoes

e We decompose the reward signal into
R(s)=RC(s)+ Y R’ (s),
i=1

e positive reward R¢ (s) and
e m negative rewards RV, each of them triggered when a certain class of
physical constraint is broken

e We determine automatically the relevance of each state variable for
each RY

e Reward function partitions S into three disjoint subspaces: goal states
G, ,and UTS U,

G = {s|seS,R(s)>0},
T = {s|seS,R(s)=0},
U = {s|s€U,R(s)<0}. &
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Reinforcement Learning  State-Action Vetoes

Modular State-Action Vetoes

Environment
a€A’(s)
RL Modules
R(j
> -
Ei Goal-Module Q%s)
A%(sY) Module
»|  Veto-Module #1 — Mediator
VI'_ e J
A (S:n—l)

~
] Veto-Module #m-1
\\
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Reinforcement Learning State-Action Vetoes

Modular State-Action Vetoes

e Each time RV is triggered, the last action executed is vetoed on the
state subspace (several states at the same time)

e Safe action repertoire Af is defined in its own state subspace as:
A? (s,-U) =(qalace AN Z B <s,-U,a,s'> 40 5
S’E[U]Sy

e State safe action repertoire estimated as

Aes)= N A (Islse)-

i=1..m-1

&P
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Reinforcement Learning  State-Action Vetoes

Modular State-Action Vetoes

e Safe vetoed exploration policies

0 Veto (s, a)
A —£ _  Veto(s,a)Aa#argmax{QC° ([s]cc,a
ﬂs—greedy (5,3,8) = |Ac(s)| ( ) 7é 2 A(s) { ([ ]56 )} 7
1—¢ —|Veto(s,a)/\a:argmaX{QG([s]sma/)}

a'¢A(s)

(1)
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Reinforcement Learning  State-Action Vetoes

Modular State-Action Vetoes

Theorem

Let <S,A P,R > be a Monolithic MDP decomposed and trained as a
Safe-MSAV Modular MDP |(S.A,P.R®) . {(SV, A.P,RV)} | Under
the stochastic gradient convergence conditions and assuming infinite visits
along infinite exploration time to all state-action pairs in T x A, Q-Learning
with Veto-based action selection algorithms will converge to the optimal
Q-values for the restricted state space MDP (T U G,A%(s),P,R).
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Reinforcement Learning  State-Action Vetoes

Modular State-Action Vetoes

e faster learning : focus on learning the Q-value of safe state-actions

e Some results from : single-agent Q-Learning with/without MSAV

Episode

&P
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Reinforcement Learning Undesired State-Action Prediction
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Reinforcement Learning Undesired State-Action Prediction

Undesired State-Action Prediction (USAP)
e Unsafe actions by Supervised Prediction (USAP) by Machine Learning?

| Environment a8

' It
RL with USAP
Ris) |
Rerinforcement I
v a pls,a)
Ris)
Sensors Classifier
- -
L

2Borja Fernandez-Gauna; lon Marques; Manuel Grafia Undesired State-Action
Prediction in Multi-Agent Reinforcement Learning. Application to Multicomponentﬁ}? @E}
Robotic System control Information Sciences (2013) 232:309-324
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Reinforcement Learning Undesired State-Action Prediction

Undesired State-Action Prediction (USAP)

e The USAP module training samples are of the form (s, a, c), where
¢ € {SAFE, UNSAFE}

e After training, the USAP predicts the probability of unsafeness

a)= Z P(s,a,s’)

s'eU

A°(s)={acA|p(s,a) <05}

0 if a¢ A°(s)
7P (s,0) = (@ 27 e max {Qs, )},

1—¢& otherwise

&P

M Grafia et al. (ENGINE-WrTU) MARL for new generation control systems IDEAL 2015 40 / 92













Reinforcement Learning Undesired State-Action Prediction

Undesired State-Action Prediction

Sheet1
2000
1800 PRE
=-SAV
1600
== USAP
2
& 1400
5
8 noo
8
5 1000
?_ 800
]
=
§ 00
£ o
z

200

o
P P S «19"?’ g&p 2 g@q bo,f,\ @g—: «\@ q,°°\ qg,q »p"’(\
Simulation steps

Figure : Hose transportation task with GEDS model: on-line predictive
performance. Number of valid states visited. Action selection policies: PRE
random selection, SAV state action vetoes, USAP undesired state-action &2 o

prediction.
M Grafia et al. (ENGINE-WrTU) MARL for new generation control systems IDEAL 2015 41 / 92









Reinforcement Learning  Transfer Learning
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Reinforcement Learning Transfer Learning

Transfer Learning

e System complexitity — > + time needed to learn

e Hose GEDS model in Matlab : 45 seconds to simulate a single step
with 2 robots
e Transfer Learning,? transfers knowledge acquired in training on a
simplified task to the full-fledged target task

e Simplified version of the hose transportation task that used line
segments to represent the hose

3Borja Fernandez-Gauna, Jose Manuel Lopez-Guede, Manuel Grafia; Transfer
Learning with Partially Constrained Models: application to reinforcement learning of
linked multicomponent robot system control; Robotic and Autonomous Systems, 6% Jic)
(2013):694-703
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Reinforcement Learning  Transfer Learning

Trasfer learning

Source task Target task

0,:5,xA,—~R 0,:5,XA-R

& ©
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Reinforcement Learning  Transfer Learning

Transfer Learning with Partially Constrained Models

e Partially Constrained Model (PCM) : removing (by aggregation) state
variables related to constraints

e hand made simplifications
e Knowledge transfer: Q-table

X,=0 Xx,=1
1=o
| a,(0.7) | g
U
a,(0.3)
a,(0.3)
PCM target MDP
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Reinforcement Learning Transfer Learning

Transfer Learning

Definition
Source M* =< S, A, Ps, Rs > and a target Mt =< S;, A, P;, Ry > MDPs,
M? is a PCM of Mt if

1. P1: S; = S, x Sy, where Sy is state space of variables Y removed.

2. P2: Transition probability mass preservation:
Z 'Dt(saav t) = PS ([515573’ [S,]Ss)

[t]s,=[5"]s,
3. P3: Positive reward function preservation
VseS; Re(s) >0=R(s)=Rs ([5]55) :
4. P4: Negative rewards almost preservation
Vs€S; Re(s) <0= ([Re(s) = Rs ([sls,)] V [Rs ([sls,) =0]).

&P
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Reinforcement Learning Transfer Learning

Transfer learning

e Initialize the Q-Matrix of the target task (Q:(s,a)) with the Q-values
learnt from the source task (Qs(s,a)):

Q:(s,a) = Qs ([s]s, ,a), (2)
e The effective action repertoires are likewise mapped:
At (s) = A2 ([sls,) 3)

where AZ and A are source and target repertoires.

&P
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Reinforcement Learning  Transfer Learning

Transfer learning

Theorem

For all states s € S;, the effective action repertoires in the target MDP will

be a subset of the effective action repertoires in the projected state in the
PCM:

Az (s) € A2 (Isls,) -

&P
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Reinforcement Learning  Transfer Learning

Transfer Learning

Theorem

(No state value degradation in transfer) Given PCM optimal Q; (s, a)

values and A% (s) sets. Greedy source action selection

¢ (s)=arg En)q?)(( )Q;‘ (Isls, ,a) in M* is an upper bound for the optimal
acAg(s

g
state values in the target task, i.e. V] (s) > Vi (s).
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Reinforcement Learning  Transfer Learning

Transfer Learning

A
Hose source Hose source
- > = - >
Start
Goal Goal broit
\/

(a) (b)

Figure : An example of the differences regarding constraints in the hose
transportation problem: (a) Simplified PCM and (b) GEDS simulation
environment.
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Reinforcement Learning Transfer Learning

Transfer Learning with Partially Constrained Models

e Succesful runs with 3 and 4 robots

80
60

0 = PCM-TL
== PCM-TL ==No PCM-TL
50 ==No PCM-TL 60
2 40 g 50
5 30 8
§ ;,sf 30
E 20 O 20
10 10

[
0 0 4P (P (P P 1P P P
2° 3 1°
O o @ o o P P o ST ST T A

Time (s) Time &)

&
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Reinforcement Learning Continuous action and state spaces
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Reinforcement Learning Continuous action and state spaces

Continuous Action and State spaces

e Most control systems present continuous actions and state variables

e Q-Learning need discrete sets from continuous-valued actions and
states

e this does not always suffice for an accurate control system
e the size of the table grows exponentially

e A better approach is to use approximate the value function (Q or V)
using a Value Function Approximation

&P
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Reinforcement Learning  Continuous action and state spaces

Continuous Action and State Spaces

Example application to control a ball screew feed drive*

table motor

support bearing unit guideways

couplin x able
servo motor
linear guideway
X N ™M ]
C oL o]
7 10|
= - 7
v nut ball-screw
bearing

rigid bearing

nut and screw-nut interface

ball-screw

4Borja Fernandez-Gauna; Igor Ansoategui; Ismael Etxeberria-Agiriano; Manuel Grafia
Reinforcement Learning of ball screw feed drive controllers Engineering Application@ @

Artificial Intelligence Volume 30, April 2014, Pages 107-117
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Reinforcement Learning Continuous action and state spaces

Value Function Approximation

e An example: a 2-input/1-output function approximated with a
network of Gaussian Radial Basis Functions

e On the left, the activation functions for each feature
e On the right, the approximated function ?(x,y) =YY0;0i;(x)
iJj

&P
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Reinforcement Learning Continuous action and state spaces

Actor-Critic

e The actor selects and executes a control action

e The critic receives a reward assessing how desirable the last action was
and gives a policy correction to the actor

S =re+7yxV(st)— V(se_1)

Environment
(2)ueU ‘P"(l)xeX 1(3)rer
Actor (j o Critic

&P

M Grafia et al. (ENGINE-WrTU) MARL for new generation control systems IDEAL 2015 56 / 92














Reinforcement Learning Continuous action and state spaces

Actor-Critic algorithms

e Q-AC: the actor implements Q-function with discrete action space, the
actor executes an action a in state s, receives the TD error from the
critic, and updates the Q(s,a) estimation:

: d Qt—l (St—17 at—l)

02 08, + a6, -
262,

) (4)

e Policy gradient Actor-Critic (PG-AC): actor implements a continuous
valued policy 7, (s):
a a I, (Stfl)
67 (s) < 67 (s) + - ;- Oiohe, . ™ (5)
967

e Continuous Action-Critic Learning Automaton (CACLA). The actor
only updates its policy if the critic is positive,:

a75&1 5t 1

89;7 1 ﬁg (03
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Reinforcement Learning Continuous action and state spaces

Actor-critic

x(t)

Double-loop PID

N R T N IV N S I O
t

Figure : Evaluation of the controllers in Experiment A: average discounted
rewards. PID controller has constant reward

&
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Reinforcement Learning Continuous action and state spaces

Actor-critic

06
04
g
02 — w(t)
— double-loop PID
0 = Q-Learning
o 02 ol 1 g (N0 (P (@B @ D T DD a0 @ a0 30 60 W Sarsa
. — Q-AC
15
1
5 M
0 o \/ NN

v(t)

25
O 0¥ 0 o 05 a1 o 0P AP AT AR DO (BT N 920 I 1D 6 g8 P

t

&
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MARL-based control
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MARL-based control

MARL

e Many real situations can not be modeled by a single agent

e Multicomponent Robotic Systems:
o Power distribution systems
e Intelligent trasportation systems

e MARL tries to make manageable the complexity of multi-agent system
control

e Decomposition into concurrent learning processes
e Synchronous vs. asynchronous decision making processes
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MARL-based control

MARL

e Two basic views of RL in Multiagent Systems:
e Agents are unaware of the actions taken by other agents

e Agents don't know what actions other agents choose
e No communication required, but convergence can only be guaranteed
under strict conditions

e Agents aware of the actions taken by other agents

e Agents know what actions are choosen by other agents
e Communication required, stronger guarantees of convergence

&P

M Grafia et al. (ENGINE-WrTU) MARL for new generation control systems IDEAL 2015 62 / 92







MARL-based control

Challenges

Agents need to coordinate either explicitly or implicitly:

e Learning while other agents are also learning and changing their policies

State and action space decomposition

Joint action composition

Formal proofs of convergence are difficult and scarce

e Non-stationary MDP (agents are learning and changing policies)
e Problems are modeled as Stochastic Games
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MARL-based control ~ Multi-Agent RL (MARL)

Stochastic Games

e MDP become Stochastic Games in MAS
e Stochastic Games are defined by a tuple (S, A, P,R), where

e The set of joint-actions is A = U A;

e Each agent receives a possibly dlfferent reward
R(s)={Rui(s) Ra(s)... Ra(s)}

e In control tasks, Cooperative SG, where Ry (s) = Ra(s) =... = Ry (s)
e In competitive settings, optimal policies lead to Nash equilibria?
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MARL-based control ~ Multi-Agent RL (MARL)

Team Q-Learning

e Naive MARL algorithm: Team Q-Learning

e Multi-agent extension of single-agent Q-Learning

o Each i-th agent stores its local estimation of the global state-action
value function Q' (s,a), where a € A

e The size of this table becomes |S|-|A|

e Assuming that all agents have the same set of local actions A to
choose from: |S|-|A|"

Qi(s,a)=(1-a)Q;_;(s,a)+a- |r+y argmaxQ_; (s',a")
a/
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MARL-based control Distributed Value Functions

Distributed Value function

e One of the earliest MARL proposals® as distributed RL (DRL)
e A hierarchy of distributed information and learning processes

e Diverse degrees of communication between agents
e Diverse degrees of global information

e Variations of Bellman equation:

V(s)=max{ R(s,a)+7 Y. p(s']s,a) V()

acA Jes

V* (S Z 'y R St,at)

5J. Schneider, W.-K. Wong, A. Moore and M. Riedmiller "Distributed value B o
functions" Proc. Int. Conf. Mach. Learn. 1999, pp. 371-378,
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Global reward DRL
Vi(s) = R (s, V(s
(s) ;g‘f{ (s a)+YS§S (S)}
Local reward DRL (no communication)
\/,-(s):max{R,-(s,a)—i—yZ V(s’)}
acA; s'eS
Distributed reward DRL (communication of rewards with neighbors)
V(s)—max{Zf i,J)Ri (s,a; —H/Z \/,.(5/)}
acA; j s'eS

Distributed value function DRL (communication of value functions
with neighbors)

v,-(s)=m%{ SHZf WY V"(sl)}

ALY s'eS











MARL-based control Distributed Value Functions

Distributed Value Functions

e Distributed state and reward Q-learning for DVF

Qi(sa)=(1- ) Q_y(si,a)+a |Ri(si.a)+r Y f (i.j)maxQl_; (s],4))
j B
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MARL-based control Distributed Value Functions

Multirobot exploration

e Multirobot exploration®

e Minimize overlapping of sensor span
e Maximize joint coverage
e Robots need only to communicate when/with physically near

e Distributed state common reward (coverage)

Vs;e S;V(si)) = Rexp/o(s,)—i—}/max Z T(si,ai,s')
6AS/ES

qup |SJ VJ( )
JF#i

6Matignon, Laétitia; Jeanpierre, Laurent; Mouaddib, Abdel-llla, Distributed value
functions for multi-robot exploration, ICRA 2012, pp.1544 - 1550; doi B o
10.1109/|CRA.2012.6224937
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MARL-based control Distributed Value Functions

Multirobot exploration

Smoothed trajectory

real warld Layay

&
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MARL-based control Distributed Value Functions

Multirobot exploration

e

(a) 1 robot. (b) 2 robots.

DB

(c) 3 robots. (d) 4 robots. ﬁ)
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MARL-based control Distributed Value Functions

Smart Grid

¢ Renewable energy sources (wind, sun, ...) are random

e power flows reverse direction according to environmental conditions

e Smart Grid tries to falance their contributions to obtain stagy power
supply
e Modelling as Multiagent system (MAS)’
e Managed by a Plug and Play (PnP) algorithm

e interoperable model and information system
e orderly connection and disconnection
e minimize disturbances to the supply-and-demand balance

e The role of VDF: online adjustment of power
contribution/consumption per active node

7Shirzeh, H.; Naghdy, F.; Ciufo, P.; Ros, M., Balancing Energy in the Smart Grid
Using Distributed Value Function (DVF), Smart Grid, IEEE Transactions on, marclgy® )
2015, doi 10.1109/TSG.2014.2363844
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MARL-based control Distributed Value Functions

Smart Grid
e Operation of the MAS PnP when a new node is added

e Cluster formation by dialog with the central controller, maximizing an
index of normalized costs, distance, and capability

P

P

C

Unewp = ) NN, i+
k=1

P P
c Di A
NN25 « + Y NN s Ve
k=1 k=1

k=1

[R(Suat) ] clopt
[ Q(s:,a: ]
l
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MARL-based control Distributed Value Functions

Smart Grid

e Load balance with DVF
e Reward within cluster of source/drain nodes
q
Power deviation index = Z (Pie— P;,t,1)2
i=1
e Q-learning

Qnew(st; at) :(1 ¥ (X) Qnew(sta at)

+o Rnew(5t7at)+ Z f(new, I)V, (51/)
i€Neigh(new)

where, V; (s}) = mex Qi (si,a) -
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MARL-based control Distributed Value Functions

Smart Grid

Without and with PnP algorithm in example topology

on selected (846 and 848) --~-Demand excluding batteries — Power flow on selected bus test feeder (846 and 848)

Power Flow(kw)

s
=
H
2
H
3
&
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MARL-based control Distributed Round-Robin Q-Learning (D-RR-QL)

Distributed Round-Robin Q-Learning

e Distributed Round-Robin Q-Learning (D-RR-QL )8 is a two-phase
learning algorithm

e First, agents take actions sequentially following a round-robin execution
schedule

e Local actions can be vetoed using MSAV without interference of the
rest of agents

e Secondly, a message-passing scheme is used to coordinate the agents
and approximate the optimal joint-policy

e D-RR-QL allow veto state-action pairs (MSAV) efficiently in
distributed RL scenarios

8Borja Fernandez-Gauna; Ismael Etxeberria-Agiriano; Manuel Grafia Learning
Multirobot Hose Transportation and Deployment by Distributed Round-Robin B o
Q-Learning PlosOne, Volume 10(7): €0127129; DOI 10.1371/journal.pone.0127129
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MARL-based control Distributed Round-Robin Q-Learning (D-RR-QL)
Distributed Round-Robin Q-Learning

Definition
A Cooperative Round-Robin Stochastic Game (C-RR-SG) is a tuple
<S,A1...An,P,R,0 >, where

e N is the number of agents.
e S is the set of states, fully observable by all the agents.
e Ai,i=1,...,N local actions i-th agent.

P:SxUA xS —[0,1],i=1,...,N is the state transition function
P:(s,a,s’) that defines the probability of observing s” after agent & (t)
executes, at time t, action a from its local action repertoire As ).

R: S xUA; xS — R is the shared scalar reward signal R;(s,a,s’)
received by all agents after executing a local a action from Agy).

6: R —{1,...,N} is the cyclic turn function implementing the
Round-Robin cycle of agent calling for action execution. —
&? ©
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MARL-based control Distributed Round-Robin Q-Learning (D-RR-QL)

Distributed Round-Robin Q-Learning

The Bellman equation for a joint policy @ in a C-RR-SG is

Vn(svi) = En{zykrt+k+1|5t:5}

k=

= . Z ﬂ;(s,a)ZP (s,a,s’) [R (s,a,s’) A (s/,i+1)] :

acA;

The state-action value function for agent i following joint policy @ can be
expressed as

A ES ZP (s,a,8') [R(s,a,s") +yV™(s',i+1)] (7)

S/
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MARL-based control Distributed Round-Robin Q-Learning (D-RR-QL)

Distributed Round-Robin Q-Learning

Communication free D-RR-QL:
e each agent has a local Q-table updated at the end of an RR cycle

e using the information of the rewards along the cycle broadcasted to all
agents:

Qi(s,a) = (1—0x)Qf n(s,a)
+ O i?’krt-s-k‘i‘YijXQi (5t+N,3/)

applied when s; =s,a; =a,8(t)=06(t—N)=1.

e no the need to know the Q-tables of other agents.
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MARL-based control Distributed Round-Robin Q-Learning (D-RR-QL)

Distributed Round-Robin Q-Learning

Theorem

Convergence of the D-RR-QL to the optimal policy,
Qi(s,a) = Q*(s,a,i) as t — oo, for a given a C-RR-SG

(S,A1...An, P,R, 8) is guaranteed when each agent fulfills the conditions
of convergence of in a MDP.

Joint action constructed by a message passing algorithm and greedy
selection at each agent.
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MARL-based control Distributed Round-Robin Q-Learning (D-RR-QL)

Distributed Round-Robin Q-Learning

e D-RR-QL with MSAV vs. Coordinated-RL, Distributed-QL and
Team-QL

Rewards
Rewards

N

4o

Al

\ A‘/\\ - )
il iR

R
Episode
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Ideas for future research

Future research

e Most of the cooperative MARL literature is:
e based on Q-Learning approaches
e cannot deal with continuous state-action spaces
e challenges addressed so far

e solving coordination issues
e dealing with the uncertainty of the other agents’ changing policies
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Ideas for future research

Future research

e if we assume

e Homogeneous agent systems
e That the learning parameters are shared and communicated to all the

agents?

o this is easier than communicating rewards, actions or states
e communication requirements can be reduced using consensus-based
mechanisms

o A central observer in charge of learning the value of the joint policy?

e this might be more assumable than a centralized agent
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Ideas for future research

Future research

e We propose a multi-agent implementation of Actor-Critic methods

e each agent implements a policy (actors)
e a centralized observer learns the joint policy’s value V*(s) (the critic)

e This would allow

e continuous states and actions
e VFAs to represent the policies and the value function

e Actors can improve their policies locally according to global critic’s
feedback that evaluates the joint performance
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Ideas for future research

Multi-agent Actor-Critic
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Conclusions

Conclusions (Pro)

e RL methods offer a promising alternative to traditional control
strategies

Little input from the designer

No need of a precise dynamic model
Autonomous learning

Inherently adaptive methods

e MARL is the natural extension of RL to multi-component control

e Problem complexity reduction by decomposition
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Conclusions

Conclusions (Challenges)

e MARL realtime operation
o True decentralized/distributed learning

e Convergence is not assured in very general settings
e Convergence is very slow

e Toy problems: simulations
o Generalization to multi-agent actor-critic
e Exploration vs. exploitation <=>

e distributed concept drift detection
® non-stationary regime detection
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