Multi-agent reinforcement learning for new generation control systems

Manuel Graña^{1,2}; Borja Fernandez-Gauna²

¹ENGINE centre, Wroclaw Technological University; ²Computational Intelligence Group (www.ehu.eus/ccwintco) University of the Basque Country (UPV/EHU)

IDEAL, 2015

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

IDEAL 2015 1 / 92

Overall view of the talk

- Comment on Reinforcement Learning and Multi-Agent Reinforcement Learning
- Not a tutorial
- Our own contributions in the last times (mostly Borja's)
 - improvements on RL avoiding traps
 - a "new" coordination mechanism in MARL : D-RR-QL
- A glimpse on a promising avenue of research in MARL

Contents

Introduction

Reinforcement Learning

Single-Agent RL State-Action Vetoes Undesired State-Action Prediction Transfer Learning Continuous action and state spaces

MARL-based control

Multi-Agent RL (MARL) Distributed Value Functions Distributed Round-Robin Q-Learning (D-RR-QL)

Ideas for future research

Conclusions

Contents

Introduction

- Transfer Learning
 - Continuous action and state spaces

- MARL-based control Multi-Agent RL (MARL) Distributed Value Functions
- Distributed Round-Robin Q-Learning (D-RR-QL)

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

001100111

Motivation

- Goals of innovation in control systems:
 - attain an acceptable control system
 - when system's dynamics are not fully understood or precisely modeled
 - when training feedback is sparse or minimal
 - autonomous learning
 - adaptability to changing environments
 - distributed controllers robust to component failures
 - large multicomponent systems
 - Minimal human designer input

Example

- Multi-robot transportation of a hose
 - non-linear dyamical strong interactions trough an elastic deformable link
 - hard constraints:
 - robots could drive over the hose, overstretch it, collide, ...
 - sources of uncertainty: hose position, hose weight and intrinsic forces (elasticity)

Goal

Reinforcement Learning for controller design

Reinforcement Learning

- agent-environment interaction
- learning action policies from rewards
 - time delayed rewards
 - almost unsupervised learning
- Advantages:
 - Designer does not specify (input, output) training samples
 - rewards are positive upon reaching the task completion
 - Model free
 - Autonomous adaptation to slowly changing conditions
 - exploitation vs. exploration dilemma

Reinforcement Learning

Contents

Introduction

Reinforcement Learning

Single-Agent RL State-Action Vetoes Undesired State-Action Prediction Transfer Learning Continuous action and state spaces

MARL-based control

Multi-Agent RL (MARL) Distributed Value Functions Distributed Round-Robin Q-Learning (D-RR-QL

Ideas for future research

Conclusions

Contents

Reinforcement Learning

Single-Agent RL

Multi-Agent RL (MARL) Distributed Value Functions Distributed Round-Robin Q-Learning (D-RR

Markov Decision Process (MDP)

- Single-agent environment interaction modeled as Markov Decision Processes (S, A, P, R)
 - S: the set of states the system can have
 - A: the set of actions from which the agent can choose
 - P: the transition function
- *R*: the reward function

Single-agent approach

- The simplest approach to the multirobot hose transportation:
 - a unique central agent learning how to control all robots

E.) (c)

The set of states: S

- Simple state model
 - S is a set of discrete states
 - State: discretized spatial position of the two robots. e.g.: $\langle (2,2), (4,4) \rangle$.
 - In a 5×4 grid, total amount of 20^2 states

M Graña et al. (ENGINE-WrTU)

MARL for new generation control systems

Single-Agent MDP

Observation

Single-Agent MDP can deal with multicomponent systems

- State space is the product space of component state spaces
- Action space is the space of joint actions
- Dynamics of all components are pull together
- Reward is system global
- Equivalent to a centralized monolithic controller

The set of actions: A

- Discrete set of actions for each robot:
 - $A_1 = \{up_1, down_1, left_1, right_1\}$
 - $A_2 = \{up_2, down_2, left_2, right_2\}$
- If we want the agent to move both robots at the same time, the set of joint-actions is $A = A_1 \times A_2$:
 - $A = \{up_1/up_2, up_1/down_2, ..., down_1/up_2, down_1/down_2, ...\}$
- 16 different joint-actions

The transition function: P

- · Defines the state transitions induced by action execution
 - Deterministic (state-action mapping): $P: S, A \rightarrow S$;
 - s' = P(s, a) s' observed after a is executed in s.
 - Stochastic (probability distribution): $P: S, A, S \rightarrow [0, 1]$
- p(s'|s,a) probability of observing s' after a is executed in s.

The reward function: R

• This function returns the environment's evaluation of either

- the last agent's decision: i.e. action executed $R: S \times A \rightarrow \mathbb{R}$
- state reached: $R: S \rightarrow \mathbb{R}$
- It is the objective function to be maximized
 - given by the system designer
- A reward function for our hose transportation task:

 $R(s) egin{cases} 1 & \textit{if } s = \textit{Goal} \ 0 & \textit{otherwise} \end{cases}$

Learning

• The goal of the agent is to learn a policy $\pi(s)$ that maximizes the accumulated expected rewards

Each time-step:

- The agent observes the state s
- Applying policy π , it chooses and executes action a
- A new state s' is observed and reward r is received by the agent
- The agent "learns" by updating the estimation of the value of states and actions

Q-Learning

• State value function : expected rewards from state *s* following policy $\pi(s)$:

$$V^{\pi}(s) = E^{\pi}\left\{\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s = s_{t}\right\}$$

discount parameter γ

weight higher immediate rewards than future ones

• state-action value function Q(s, a):

$$Q^{\pi}(s,a) = E^{\pi} \left\{ \sum_{t=0}^{\infty} \gamma^{t} r_{t} | s = s_{t} \wedge a = a_{t} \right\}$$

Q-Learning

Q-Learning : iterative estimation of Q-values :

$$Q_{t}(s,a) = (1-\alpha) Q_{t-1}(s,a) + \alpha \cdot \left| r_{t} + \gamma \cdot \max_{a'} Q_{t-1}(s',a') \right|,$$

where α is the learning gain.

- Tabular representation : store value of each state-action pair $(|S| \cdot |A|)$
 - In our example, with 2 robots (20 states) and 4 actions per robot, the Q-table size : $20 \cdot 4^2$

Action-selection policy

- Convergence: Q-learning converges to the optimal Q-table
 - iff all possible state-action pairs are visited infinitely often
- Exploration: requires trying suboptimal actions to gather information (convergence)
 - ε greedy action selection policy:

 $\pi_{arepsilon}\left(s
ight)=egin{cases} ext{random action} & ext{with probability }arepsilon \ lpha ext{gmax} \ lpha \left(s, a
ight) & ext{with probability } 1-arepsilon \end{cases}$

• Exploitation: selects action $a^* = \max_{a} Q(s, a)$

Learning

Observation

- Learning often requires the repetition of experiments
- Repetitions often imply simulation is the only practical way
- Autonomous learning implies exploration
- non-stationarity asks for permanent exploration

Physical constraints

- Robotic control tasks ofter present physical constraints : undesirable termination state-actions (UTS)
 - experiment (simulation) terminated without learning anything positive
- Linked MCRS physical constraints:
 - Overstrechting the hose: elastic until breaking point
 - Driving over the hose
 - Colliding with each other
- Get outside the working space

Reward function

Teach the agent to avoid breaking physical constraints =>

introduce those constraints in the reward function

negative rewards

 $R(s) \begin{cases} 1 & \text{if } s = Goal \\ -1 & \text{if physical constraint broken} \\ 0 & \text{otherwise} \end{cases}$

د و ا

Reducing Learning complexity

- Learning time conditioned by
 - theoretical convergence conditions
 - time to perform/simulate each action/experiment
 - failed experiments in overconstrained systems
- Space requirements
 - state-action explosion in multicomponent systems

Y U

Our work: L-MCRS

- We use Geometrically Exact Dynamic Splines (GEDS) to simulate the hose dynamics
 - The simulation time for a single step with only two robots is about 45 seconds
- When a physical constraint is broken, the system must be reset

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

E.) (c)

Our work: L-MCRS

- We have presented several techniques to make learning L-MCRS control more efficient:
 - Modular Action-State Vetoes
 - Undesired State-Action Prediction
 - Transfer Learning using Partially Constrained Models
 - Functional approximations: Actor-Critic
- Distributed Round-Robin Q-Learning -> Multiagent Reinforcement Learning

E.) (c)

Contents

Reinforcement Learning

State-Action Vetoes

MARL-based control Multi-Agent RL (MARL) Distributed Value Functions Distributed Round-Robin Q-Learning (D-RR

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

t.) (c)

Modular State-Action Vetoes

- Undesired Terminal States (UTS) are vetoed¹
- Rationale:
 - UTS do not need to be revisited
 - Not all state variables drive to the UTS
 - Decomposable detection of UTS > modularity
- Achieving learning speed-up
 - Increased space exploration

¹B. Fernandez-Gauna; JM Lopez-Guede; I Etxeberria-Agiriano; I Ansoategi; M Graña Reinforcement Learning endowed with safe veto policies to learn the control of L-MCRS Information Sciences Volume 317, 1 October 2015, Pages 25–47 [8] DOI 10.1016/j.ins.2015.04.005

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

IDEAL 2015 28 / 92

Modular State-Action Vetoes

• Example:

• If the system executes action {*left*₁, *left*₂, *up*₃, *left*₄}, the hose is overstretched and possibly broken

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

5) (c)

Modular State-Action Vetoes

- Question: would it have been overstretched if the first two robots had another position?
 - Physical constraints are related with a subset of the state variables
 - The agent can then veto state-actions on the basis of information only from this subset of state variables

t.) (c)

Modular State-Action Vetoes

Observation Single-Agent internal logic may be modular

M Graña et al. (ENGINE-WrTU)

MARL for new generation control systems

IDEAL 2015 31 / 92

59 @

Modular State-Action Vetoes

• We decompose the reward signal into

$$R(s) = R^{G}(s) + \sum_{i=1}^{m} R_{i}^{U}(s),$$

- positive reward R^G(s) and
- *m* negative rewards R_i^U , each of them triggered when a certain class of physical constraint is broken
- We determine automatically the relevance of each state variable for each R^U_i
- Reward function partitions S into three disjoint subspaces: goal states
 G, transition states T, and UTS U,

$$\begin{array}{rcl} G & = & \{s \mid s \in S, R(s) > 0\}, \\ T & = & \{s \mid s \in S, R(s) = 0\}, \\ U & = & \{s \mid s \in U, R(s) < 0\}. \end{array}$$

M Graña et al. (ENGINE-WrTU)

MARL for new generation control systems

Modular State-Action Vetoes

M Graña et al. (ENGINE-WrTU)

MARL for new generation control systems

IDEAL 2015 33 / 92

5) (c)

Modular State-Action Vetoes

- Each time R_i^U is triggered, the last action executed is vetoed on the *i*-th module's state subspace (several states at the same time)
- Safe action repertoire A^e_i is defined in its own state subspace as:

$$A_{i}^{e}\left(s_{i}^{U}\right) = \left\{a \mid a \in A \land \left(\sum_{s' \in [U]_{s_{i}^{U}}} P_{i}\left(s_{i}^{U}, a, s'\right) > 0\right)\right\},\$$

• State safe action repertoire estimated as

$$ar{A^e}(s) = igcap_{i=1...m-1} ar{A^e_i}\left([s]_{S^U_i}
ight).$$

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

IDEAL 2015 34 / 92

Modular State-Action Vetoes

• Safe vetoed exploration policies

$$\hat{\pi}_{\varepsilon-greedy}(s,a,\varepsilon) = \begin{cases} 0 & Veto(s,a) \\ \frac{\varepsilon}{|\bar{A}^{e}(s)|} & \neg Veto(s,a) \land a \neq \operatorname*{arg\,max}_{a' \notin A^{e}(s)} \left\{ Q^{G}\left([s]_{S^{G}}, a'\right) \right\} \\ 1-\varepsilon & \neg Veto(s,a) \land a = \operatorname*{arg\,max}_{a' \notin A^{e}(s)} \left\{ Q^{G}\left([s]_{S^{G}}, a'\right) \right\} \end{cases}$$
(1)

ъr Ш

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

IDEAL 2015 35 / 92

Modular State-Action Vetoes

Theorem

Let $\langle S, A, P, R \rangle$ be a Monolithic MDP decomposed and trained as a Safe-MSAV Modular MDP $[\langle S, A, P, R^G \rangle, \{\langle S_i^U, A, P, R_i^U \rangle\}_{i=1}^{m-1}]$. Under the stochastic gradient convergence conditions and assuming infinite visits along infinite exploration time to all state-action pairs in $T \times A$, Q-Learning with Veto-based action selection algorithms will converge to the optimal Q-values for the restricted state space MDP $\langle T \cup G, A^e(s), P, R \rangle$.

Reinforcement Learning State-Action Vetoes

Modular State-Action Vetoes

- faster learning : focus on learning the Q-value of safe state-actions
- Some results from : single-agent Q-Learning with/without MSAV

M Graña et al. (ENGINE-WrTU)

MARL for new generation control systems

IDEAL 2015 37 / 92

Contents

Reinforcement Learning

Undesired State-Action Prediction

MARL-based control Multi-Agent RL (MARL) Distributed Value Functions Distributed Round-Robin Q-Learning (D-RR

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

Ę,) (c)

Undesired State-Action Prediction Reinforcement Learning

Undesired State-Action Prediction (USAP)

Unsafe actions by Supervised Prediction (USAP) by Machine Learning²

²Borja Fernandez-Gauna; Ion Marques; Manuel Graña Undesired State-Action Prediction in Multi-Agent Reinforcement Learning. Application to Multicomponent 😭 👔 Robotic System control Information Sciences (2013) 232:309-324 **IDEAL 2015** 39 / 92

Undesired State-Action Prediction (USAP)

- The USAP module training samples are of the form (s, a, c), where $c \in \{SAFE, UNSAFE\}$
- After training, the USAP predicts the probability of unsafeness

$$p(s,a) = \sum_{s' \in U} P(s,a,s')$$

$$A^{s}(s) = \{a \in A \mid p(s,a) < 0.5\}$$

$$\pi_{\varepsilon}^{USAP}(s,a) = \begin{cases} 0 & \text{if } a \notin A^{s}(s) \\ \frac{\varepsilon}{|A^{s}(s)|} & a \neq \arg\max_{a' \in A^{s}(s)} \{Q(s,a')\}, \\ 1 - \varepsilon & \text{otherwise} \end{cases}$$

Undesired State-Action Prediction

Sheet1

Figure : Hose transportation task with GEDS model: on-line predictive performance. Number of valid states visited. Action selection policies: PRE random selection, SAV state action vetoes, USAP undesired state-action prediction.

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

IDEAL 2015 41 / 92

t,) 💼

Contents

Reinforcement Learning

Transfer Learning

MARL-based control Multi-Agent RL (MARL) Distributed Value Functions Distributed Round-Robin Q-Learning (D-RR-

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems **IDEAL 2015** 42 / 92

Transfer Learning

- System complexitity > + time needed to learn
 - Hose GEDS model in Matlab : 45 seconds to simulate a single step with 2 robots
- Transfer Learning,³ transfers knowledge acquired in training on a simplified task to the full-fledged target task
- Simplified version of the hose transportation task that used line segments to represent the hose

³Borja Fernandez-Gauna, Jose Manuel Lopez-Guede, Manuel Graña; Transfer Learning with Partially Constrained Models: application to reinforcement learning of linked multicomponent robot system control; Robotic and Autonomous Systems, 6 (2013):694–703

Trasfer learning

Source taskTarget taskEnvironment
 $s_0 \downarrow r_0 \downarrow a_0$ TEnvironment
 $s_1 \downarrow r_1 \downarrow a_1$ AgentQQ $\mathcal{Q}_0: S_0 \times \mathcal{A}_0 \to \mathbb{R}$ $\mathcal{Q}_1: S_1 \times \mathcal{A}_1 \to \mathbb{R}$

M Graña et al. (ENGINE-WrTU)

MARL for new generation control systems

IDEAL 2015 44 / 92

L) (c)

Transfer Learning with Partially Constrained Models

- Partially Constrained Model (PCM) : removing (by aggregation) state variables related to constraints
 - hand made simplifications
 - Knowledge transfer: Q-table

M Graña et al. (ENGINE-WrTU)

MARL for new generation control systems

L) (c)

Transfer Learning

Definition

Source $M^s = \langle S_s, A, P_s, R_s \rangle$ and a target $M^t = \langle S_t, A, P_t, R_t \rangle$ MDPs, M^s is a PCM of M^t if

- 1. P1: $S_t = S_s \times S_Y$, where S_Y is state space of variables Y removed.
- 2. P2: Transition probability mass preservation: $\sum_{\substack{[t]_{S_s}=[s']_{S_s}}} P_t(s, a, t) = P_s\left([s]_{S_s}, a, [s']_{S_s}\right)$
- 3. P3: Positive reward function preservation $\forall s \in S; R_t(s) \ge 0 \Rightarrow R_t(s) = R_s([s]_{S_s})$.
- 4. P4: Negative rewards almost preservation $\forall s \in S; R_t(s) < 0 \Rightarrow ([R_t(s) = R_s([s]_{S_s})] \lor [R_s([s]_{S_s}) = 0]).$

Transfer learning

• Initialize the Q-Matrix of the target task $(Q_t(s, a))$ with the Q-values learnt from the source task $(Q_s(s, a))$:

$$Q_t(s,a) = Q_s\left([s]_{S_s},a\right),\tag{2}$$

• The effective action repertoires are likewise mapped:

$$A_t^e(s) = A_s^e([s]_{S_s}),$$

where A_s^e and A_t^e are source and target repertoires.

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

(3)

Transfer learning

Theorem

For all states $s \in S_t$, the effective action repertoires in the target MDP will be a subset of the effective action repertoires in the projected state in the PCM:

$$A_t^e(s) \subseteq A_s^e([s]_{S_s}).$$

Ç) (c

Transfer Learning

Theorem

(No state value degradation in transfer) Given PCM optimal $Q_s^*(s, a)$ values and $A_s^e(s)$ sets. Greedy source action selection $\pi_t^g(s) = \arg \max_{a \in A_t^e(s)} Q_s^*([s]_{S_s}, a)$ in M^t is an upper bound for the optimal state values in the target task, i.e. $V_t^{\pi_t^g}(s) \ge V_t^*(s)$.

Transfer Learning

Figure : An example of the differences regarding constraints in the hose transportation problem: (a) Simplified PCM and (b) GEDS simulation environment.

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

IDEAL 2015 50 / 92

Transfer Learning with Partially Constrained Models

• Succesful runs with 3 and 4 robots

M Graña et al. (ENGINE-WrTU)

MARL for new generation control systems

E.) (c)

Contents

Introduction 1 01 01 01 0001

Reinforcement Learning

Continuous action and state spaces

Multi-Agent RL (MARL) Distributed Value Functions

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

t.) 💼

Continuous Action and State spaces

- Most control systems present continuous actions and state variables
- Q-Learning need discrete sets from continuous-valued actions and states
 - this does not always suffice for an accurate control system
 - the size of the table grows exponentially
- A better approach is to use approximate the value function (Q or V) using a Value Function Approximation

Continuous Action and State Spaces

Example application to control a ball screew feed drive⁴

⁴Borja Fernández-Gauna; Igor Ansoategui; Ismael Etxeberria-Agiriano; Manuel Graña Reinforcement Learning of ball screw feed drive controllers Engineering Application of the controllers Engineering Application Artificial Intelligence Volume 30, April 2014, Pages 107-117 **IDEAL 2015** 54 / 92

Value Function Approximation

• An example: a 2-input/1-output function approximated with a network of Gaussian Radial Basis Functions

• On the left, the activation functions for each feature

• On the right, the approximated function $\hat{f}(x, y) = \sum \theta_{i,j} \phi_{i,j}(x)$

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

IDEAL 2015 55 / 92

Actor-Critic

- The actor selects and executes a control action
- The critic receives a reward assessing how desirable the last action was and gives a policy correction to the actor

$$\delta_{t} = r_{t} + \gamma * \hat{V}(s_{t}) - \hat{V}(s_{t-1})$$

Actor-Critic algorithms

• Q-AC: the actor implements Q-function with discrete action space, the actor executes an action *a* in state *s*, receives the TD error from the critic, and updates the $\hat{Q}(s, a)$ estimation:

 $\theta_{t}^{Q} \leftarrow \theta_{t-1}^{Q} + \alpha_{t} \cdot \underline{\delta_{t}} \cdot (\min + (1 - \pi(s, a))) \cdot \frac{\partial \hat{Q}_{t-1}(s_{t-1}, a_{t-1})}{\partial \theta_{t-1}^{Q}}, \quad (4)$

Policy gradient Actor-Critic (PG-AC): actor implements a continuous valued policy π_a(s):

$$\theta_t^a(s) \leftarrow \theta_t^a(s) + \alpha_t \cdot \delta_t \cdot (a_t - \pi_a(s)) \cdot \frac{\partial \pi_a(s_{t-1})}{\partial \theta_{t-1}^a}, \qquad (5)$$

 Continuous Action-Critic Learning Automaton (CACLA). The actor only updates its policy if the critic is positive,:

if $\delta_t > 0$: $\theta_t^a(s) \leftarrow \theta_t^a(s) + \alpha_t \cdot (a_t - \pi_a(s)) \cdot \frac{\partial \pi_a(s_{t-1})}{\partial \theta_t^a}$. (6)

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

IDEAL 2015 57 / 92

Reinforcement Learning Continuous action and state spaces

Actor-critic

Figure : Evaluation of the controllers in Experiment A: average discounted rewards. PID controller has constant reward

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

IDEAL 2015 58 / 92

E.) 💼

Actor-critic

M Graña et al. (ENGINE-WrTU) MARL for

MARL for new generation control systems

Contents

Introduction Reinforcement Learning Single-Agent RL State-Action Vetoes Undesired State-Action Prediction Transfer Learning Continuous action and state spaces

MARL-based control

Multi-Agent RL (MARL) Distributed Value Functions Distributed Round-Robin Q-Learning (D-RR-QL)

Ideas for future research

Conclusions

MARL

Many real situations can not be modeled by a single agent

- Multicomponent Robotic Systems:
- Power distribution systems
- Intelligent trasportation systems
- MARL tries to make manageable the complexity of multi-agent system control
 - Decomposition into concurrent learning processes
 - Synchronous vs. asynchronous decision making processes

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

IDEAL 2015 61 / 92

MARL

- Two basic views of RL in Multiagent Systems:
 - Agents are unaware of the actions taken by other agents
 - Agents don't know what actions other agents choose
 - No communication required, but convergence can only be guaranteed under strict conditions
 - Agents aware of the actions taken by other agents
 - Agents know what actions are choosen by other agents
- Communication required, stronger guarantees of convergence

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

IDEAL 2015 62 / 92

Challenges

- Agents need to coordinate either explicitly or implicitly:
 - · Learning while other agents are also learning and changing their policies
- State and action space decomposition
- Joint action composition
- Formal proofs of convergence are difficult and scarce
 - Non-stationary MDP (agents are learning and changing policies)
- Problems are modeled as Stochastic Games

Contents

MARL-based control

Multi-Agent RL (MARL)

Distributed Value Functions

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

E.) 💼

MARL-based control Multi-Agent RL (MARL)

Stochastic Games

- MDP become Stochastic Games in MAS
- Stochastic Games are defined by a tuple (S, A, P, R), where
 - The set of joint-actions is $\mathbf{A} = \bigcup_{i=1}^{n} A_i$
 - Each agent receives a possibly different reward $\mathbf{R}(s) = \{R_1(s) \ R_2(s) \dots R_n(s)\}$
 - In control tasks, Cooperative SG, where $R_1(s) = R_2(s) = ... = R_n(s)$
- In competitive settings, optimal policies lead to Nash equilibria?

MARL-based control Multi-Agent RL (MARL)

Team Q-Learning

Naive MARL algorithm: Team Q-Learning

- Multi-agent extension of single-agent Q-Learning
- Each *i*-th agent stores its local estimation of the global state-action value function $Q^i(s, \mathbf{a})$, where $\mathbf{a} \in \mathbf{A}$
- The size of this table becomes $|S| \cdot |\mathbf{A}|$

 Assuming that all agents have the same set of local actions A to choose from: |S| · |A|ⁿ

 $Q_{t}^{i}(s,\mathbf{a}) = (1-\alpha) Q_{t-1}^{i}(s,\mathbf{a}) + \alpha \cdot \left[r + \gamma \cdot \arg \max_{\mathbf{a}'} Q_{t-1}^{i}\left(s',\mathbf{a}'\right) \right]$

Contents

Continuous action and state spaces

MARL-based control

Multi-Agent RL (MARL) **Distributed Value Functions**

Distributed Value function

- One of the earliest MARL proposals⁵ as distributed RL (DRL)
- A hierarchy of distributed information and learning processes
 - Diverse degrees of communication between agents
 - Diverse degrees of global information
- Variations of Bellman equation:

$$V(s) = \max_{a \in A} \left\{ R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V(s') \right\}$$
$$V^*(s) = \left\langle \sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) \right\rangle$$

⁵J. Schneider, W.-K. Wong, A. Moore and M. Riedmiller "Distributed value functions" Proc. Int. Conf. Mach. Learn. 1999, pp. 371-378, M Graña et al. (ENGINE-WrTU) MARL for new generation control systems IDEAL 2015

• Global reward DRL

$$V_{i}(s) = \max_{a \in A_{i}} \left\{ R(s,a) + \gamma \sum_{s' \in S} p(s'|s,a) V(s') \right\}$$

Local reward DRL (no communication)

$$V_{i}(s) = \max_{a \in A_{i}} \left\{ R_{i}(s,a) + \gamma \sum_{s' \in S} p(s'|s,a) V(s') \right\}$$

Distributed reward DRL (communication of rewards with neighbors)

$$V_{i}(s) = \max_{a \in A_{i}} \left\{ \sum_{j} f(i,j) R_{j}(s,a_{j}) + \gamma \sum_{s' \in S} p(s'|s,a) V_{i}(s') \right\}$$

 Distributed value function DRL (communication of value functions with neighbors)

$$V_{i}(s) = \max_{a \in A_{i}} \left\{ R_{i}(s,a) + \sum_{j} f(i,j) \gamma \sum_{s' \in S} p(s'|s,a) V_{j}(s') \right\}$$

MARL-based control Distributed Value Functions

Distributed Value Functions

Distributed state and reward Q-learning for DVF

 $Q_{t}^{i}(s_{i},a_{i}) = (1-\alpha) Q_{t-1}^{i}(s_{i},a_{i}) + \alpha \cdot \left[R_{i}(s_{i},a_{i}) + \gamma \cdot \sum_{j} f(i,j) \max_{a_{j}'} Q_{t-1}^{j}(s_{j}',a_{j}') \right]$

Multirobot exploration

- Multirobot exploration⁶
 - Minimize overlapping of sensor span
 - Maximize joint coverage
 - Robots need only to communicate when/with physically near
- Distributed state common reward (coverage)

$$\forall s_i \in S; V(s_i) = R_{explo}(s_i) + \gamma \max_{a_i \in A} \sum_{s' \in S} T(s_i, a_i, s')$$
$$\left[V_i(s') - \sum_{j \neq i} f_{ij} P_r(s'|s_j) \widehat{V_j(s')} \right]$$

⁶Matignon, Laëtitia; Jeanpierre, Laurent; Mouaddib, Abdel-Illa, Distributed value functions for multi-robot exploration, ICRA 2012, pp.1544 - 1550; doi 10.1109/ICRA.2012.6224937

IDEAL 2015

71 / 92

MARL-based control Distributed Value Functions

Multirobot exploration

M Graña et al. (ENGINE-WrTU)

MARL for new generation control systems

IDEAL 2015 72 / 92

5) (c)
MARL-based control Distributed Value Functions

Multirobot exploration

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

IDEAL 2015 73 / 92

L) (c)

Smart Grid

- Renewable energy sources (wind, sun, ...) are random
 - power flows reverse direction according to environmental conditions
- Smart Grid tries to falance their contributions to obtain stagy power supply
- Modelling as Multiagent system (MAS)⁷
 - Managed by a Plug and Play (PnP) algorithm
 - interoperable model and information system
 - orderly connection and disconnection
 - minimize disturbances to the supply-and-demand balance
 - The role of VDF: online adjustment of power contribution/consumption per active node

⁷Shirzeh, H.; Naghdy, F.; Ciufo, P.; Ros, M., Balancing Energy in the Smart Grid Using Distributed Value Function (DVF), Smart Grid, IEEE Transactions on, marcless 2015, doi 10.1109/TSG.2014.2363844

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

IDEAL 2015 74 / 92

Smart Grid

• Operation of the MAS PnP when a new node is added

• Cluster formation by dialog with the central controller, maximizing an index of normalized costs, distance, and capability

Smart Grid

- Load balance with DVF
 - Reward within cluster of source/drain nodes

Power deviation index =
$$\sum_{i=1}^{q} (P_{i,t} - P_{i,t-1})^2$$

• Q-learning

$$Q_{\text{new}}(s_t, a_t) = (1 - \alpha)Q_{\text{new}}(s_t, a_t) + \alpha \left[R_{\text{new}}(s_t, a_t) + \sum_{i \in \text{Neigh(new)}} f(\text{new}, i)V_i(s'_i) \right] \text{where, } V_i(s'_i) = \max_{a \in A_i} Q_i(s'_i, a).$$

MARL-based control Distributed Value Functions

Smart Grid

Without and with PnP algorithm in example topology

M Graña et al. (ENGINE-WrTU)

MARL for new generation control systems

IDEAL 2015 77 / 92

Contents

MARL-based control

Multi-Agent RL (MARL) Distributed Value Functions Distributed Round-Robin Q-Learning (D-RR-QL)

- Distributed Round-Robin Q-Learning (D-RR-QL)⁸ is a two-phase learning algorithm
 - First, agents take actions sequentially following a round-robin execution schedule
 - Local actions can be vetoed using MSAV without interference of the rest of agents
 - Secondly, a message-passing scheme is used to coordinate the agents and approximate the optimal joint-policy
- D-RR-QL allow veto state-action pairs (MSAV) efficiently in distributed RL scenarios

⁸Borja Fernandez-Gauna; Ismael Etxeberria-Agiriano; Manuel Graña Learning Multirobot Hose Transportation and Deployment by Distributed Round-Robin Q-Learning PlosOne, Volume 10(7): e0127129; DOI 10.1371/journal.pone.0127129 M Graña et al. (ENGINE-WrTU) MARL for new generation control systems IDEAL 2015 79 / 92

Definition

A Cooperative Round-Robin Stochastic Game (C-RR-SG) is a tuple $< S, A_1 \dots A_N, P, R, \delta >$, where

- N is the number of agents.
- S is the set of states, fully observable by all the agents.
- A_i , i = 1, ..., N local actions *i*-th agent.
- $P: S \times \bigcup A_i \times S \rightarrow [0,1], i = 1, ..., N$ is the state transition function $P_t(s, a, s')$ that defines the probability of observing s' after agent $\delta(t)$ executes, at time t, action a from its local action repertoire $A_{\delta(t)}$.
- R: S×∪A_i×S → ℝ is the shared scalar reward signal R_t(s, a, s') received by all agents after executing a local a action from A_{δ(t)}.
- $\delta : \mathbb{R} \to \{1, \dots, N\}$ is the cyclic turn function implementing the Round-Robin cycle of agent calling for action execution.

tj (ip)

The Bellman equation for a joint policy π in a C-RR-SG is

$$V^{\pi}(s,i) = E^{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t} = s\right\}$$
$$= \sum_{a \in A_{i}} \pi_{i}(s,a) \sum_{s'} P(s,a,s') \left[R(s,a,s') + \gamma V^{\pi}(s',i+1)\right],$$

The state-action value function for agent ${\bf i}$ following joint policy π can be expressed as

$$Q^{\pi}(s, a, i) = \sum_{s'} P(s, a, s') \left[R(s, a, s') + \gamma V^{\pi}(s', i+1) \right]$$
(7)

Communication free D-RR-QL:

- each agent has a local Q-table updated at the end of an RR cycle
- using the information of the rewards along the cycle broadcasted to all agents:

$$\begin{aligned} Q_t^i(s,a) &= (1-\alpha_t) Q_{t-N}^i(s,a) \\ &+ \alpha_t \left[\sum_{k=0}^{N-1} \gamma^k r_{t+k} + \gamma^N \max_{a'} Q_t^i\left(s_{t+N},a'\right) \right] \end{aligned}$$

applied when $s_t = s, a_t = a, \delta(t) = \delta(t - N) = i$.

no the need to know the Q-tables of other agents.

Theorem

Convergence of the communication-free D-RR-QL to the optimal policy, $Q_t^i(s,a) \rightarrow Q^*(s,a,i)$ as $t \rightarrow \infty$, for a given a C-RR-SG $\langle S, A_1 \dots A_N, P, R, \delta \rangle$ is guaranteed when each agent fulfills the conditions of convergence of single-agent Q-Learning in a MDP. Joint action constructed by a message passing algorithm and greedy

selection at each agent.

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

L.) (c)

 D-RR-QL with MSAV vs. Coordinated-RL, Distributed-QL and Team-QL

57 🖻

M Graña et al. (ENGINE-WrTU)

MARL for new generation control systems

Contents

Introduction 1 01 01 01 0001

- Transfer Learning
 - Continuous action and state spaces

MARL-based control Multi-Agent RL (MARL) Distributed Value Functions

Ideas for future research

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

t.) (c)

001100111

Future research

- Most of the cooperative MARL literature is:
 - based on Q-Learning approaches
 - cannot deal with continuous state-action spaces
 - challenges addressed so far
 - solving coordination issues
 - dealing with the uncertainty of the other agents' changing policies

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

t.) (c)

Future research

if we assume

- Homogeneous agent systems
- That the learning parameters are shared and communicated to all the agents?
 - this is easier than communicating rewards, actions or states
 - communication requirements can be reduced using consensus-based mechanisms

IDEAL 2015

87 / 92

- A central observer in charge of learning the value of the joint policy?
 - this might be more assumable than a centralized agent

Future research

We propose a multi-agent implementation of Actor-Critic methods

- each agent implements a policy (actors)
- a centralized observer learns the joint policy's value $V^{\pi}(s)$ (the critic)
- This would allow
 - continuous states and actions
 - VFAs to represent the policies and the value function
- Actors can improve their policies locally according to global critic's feedback that evaluates the joint performance

IDEAL 2015

88 / 92

Multi-agent Actor-Critic

M Graña et al. (ENGINE-WrTU) M

MARL for new generation control systems

IDEAL 2015 89 / 92

L) (c)

Conclusions

Contents

- Transfer Learning
 - Continuous action and state spaces

- MARL-based control Multi-Agent RL (MARL) Distributed Value Functions
- Distributed Round-Robin Q-Learning (D-RR-QL)

Conclusions

M Graña et al. (ENGINE-WrTU) MARL for new generation control systems

001100111

Conclusions

Conclusions (Pro)

- RL methods offer a promising alternative to traditional control strategies
 - Little input from the designer
 - No need of a precise dynamic model
 - Autonomous learning
 - Inherently adaptive methods
- MARL is the natural extension of RL to multi-component control
 - Problem complexity reduction by decomposition

Conclusions

Conclusions (Challenges)

- MARL realtime operation
 - True decentralized/distributed learning
 - Convergence is not assured in very general settings
 - Convergence is very slow
 - Toy problems: simulations
 - Generalization to multi-agent actor-critic
 - Exploration vs. exploitation <=>
 - distributed concept drift detection
 - non-stationary regime detection

M Graña et al. (ENGINE-WrTU) MARL

MARL for new generation control systems

IDEAL 2015 92 / 92