SCALABILITY OF A METHODOLOGY FOR GENERATING TECHNICAL TRADING RULES WITH GAPS BASED ON RISK-RETURN ADJUSTMENT AND INCREMENTAL TRAINING

> Syllabus Introduction
> Motivation and goals
> Proposal
> Experiments and results
> Conclusions

HAIS 2010 San Sebastián Enrique de la Cal¹, Manuel Enrique Fernández¹, Raquel Quiroga¹, José R. Villar¹ and Javier Sedano² ¹University of Oviedo ²Intituto Tecnológico de Castilla y León

Introduction

Market Investor/trader

- Long term
 - Lower risk limits due to the lower expectations
 - Fundamental analysis (of the balance, the sector, among others)
- Short term
 - The higher the risk the higher the expectations
 - Technical analysis (charts and reports, technical indexes, etc.)
- Trading
 - Buying/Selling stocks (assets, indexes, derivates) according to the market evolution
 - Trading Systems
 - Speculation tool
 - Set of rules to Buy and/or to Sell
 - Automatic Trading Systems
 - Risk is measure using the Sharpe Ratio

Motivations and goals

- Fernandez2008 proposed a GAP-based methodology for trading rule learning
 - The results showed this methodology outperforms the rest of approaches in the literature for the Standard & Poors 500 (S&P500)
- This work extends the previous work, validating its results in different markets, as the Madrid Market IBEX35.

Methodology

4

- Three remarkable aspects
 - Multi-Objective schema

- Risk bounding and Returns optimization
- Train-Test experimentation
 - 10 + 1 years period
- Grammar based
 - Knowledge and validity
 - Condensed operators

- Previous work analyses S&P500.
- In this work, the Madrid IBEX35 assests from Telefónica (IT company), BBVA and BSCH (Financial companies) are analysed.
 - Training and Test period:1998-2005
- □ Also, MP₃ versus Buy&Hold

Method	Schema	Grammar	Fitness
MC_1	Return+whole period	complete	Return
MC ₂	Risk+whole period	complete	Risk
MP_1	Risk+incremental training	complete	Risk
MP ₂	Risk+incremental training	condensed	Risk
MP ₃	Return-Risk+incre. training	condensed	Return-Risk

S&P500, 1998-2005

Meth	Train			Test			OF	
	r+	SR	RMA	r+	SR	RMA	SE	$SE = \frac{RMA_{TRAIN}}{RMA}$
MC_1	100	0.55	27.68	60.00	-6.09	-6.09	1.22	KIVIA _{TEST}
MC ₂	100	2.34	7.54	40.00	-14.46	-14.46	2.91	
MP_1	100	1.62	10.33	58.80	3.12	26.87	0.69	
MP ₂	100	1.86	9.43	70.00	4.92	46.21	0.47	
MP ₃	100	1.92	11.33	68.75	7.30	72.30	0.36	

 $R = \frac{FinalFunds - InitialFunds}{InitialFunds} * 100$ Annual mean return
Sharpe Ratio $SR = \frac{E[R - R_0]}{\sigma[R - R_0]} = \frac{E[R]}{\sigma[R]} = \frac{RMA}{\sigma_{RMA}}$ Percentage of profitable rules

		Meth	Train			Test			OF
ത			r+	SR	RMA	r+	SR	RMA	SE
<u>.</u>		MC_1	100	0.47	88.48	40.00	-0.65	-0.65	1.01
Ú Ú	Ω Υ	MC ₂	100	1.52	7.59	10.00	-4.14	-4.14	1.54
	0	MP_1	100	1.44	27.39	50.00	5.60	40.14	0.79
		MP ₂	100	1.36	29.47	47.14	6.30	42.70	0.78
F	S	MP ₃	100	1.24	36.52	52.86	7.21	53.54	0.80

		Meth	Train			Test			OF
			r+	SR	RMA	r+	SR	RMA	SE
		MC_1	100	0.48	140.25	0.00	-5.55	-5.55	1.03
	2	MC ₂	100	1.26	24.75	80.00	2.15	2.15	0.91
A	0	MP_1	100	1.37	21.84	51.43	3.19	22.06	0.85
$\mathbf{\overline{D}}$	(°) 	MP ₂	100	1.35	20.25	50.00	3.73	26.47	0.81
Ω	Ű	MP ₃	100	1.31	22.40	50.00	6.04	45.22	0.73

		Meth	Train			Test		OF	
0 M			r+	SR	RMA	r+	SR	RMA	SE
	MC_1	100	0.57	136.40	0.00	-6.07	-6.07	1.04	
	MC ₂	100	1.09	18.16	90.00	4.61	4.61	0.74	
H o	MP_1	100	1.22	28.87	50.00	3.70	19.91	0.87	
С О		MP ₂	100	1.45	19.11	58.57	4.63	34.93	0.75
Ω	С	MP ₃	100	1.47	28.53	62.50	6.76	64.14	0.76

Buy & Hold comparative

Asset	B&H	MP ₃
S&P500	27.10%	72.30%
TEF	100.41%	53.54%
BBVA	23.45%	45.22%
BSCH	53.28%	64.14%

Conclusions & Future Works

- The increase in the performance is mainly due to the condensed grammar.
- Some problems could arise choosing the number of iterations in the schema risk-return.
- Application to assets from the derivative market (futures in IBEX35).
 - Derivates have several advantages which make them ideal for trading:
 - Iower operational costs
 - possibility of obtaining return in bear markets
 - less leverage
- Adapt the methodology to a GFRBS using MOGUL.

SCALABILITY OF A METHODOLOGY FOR GENERATING TECHNICAL TRADING RULES WITH GAPS BASED ON RISK-RETURN ADJUSTMENT AND INCREMENTAL TRAINING

Thank you

HAIS 2010 San Sebastián *Enrique de la Cal¹, Manuel Enrique Fernández¹, Raquel Quiroga¹, José R. Villar¹ and Javier Sedano²* ¹University of Oviedo ²Intituto Tecnológico de Castilla y León