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Abstract: 
Color Quantization of still images can be easily stated as a Clustering problem. Color Quantization of 
sequences of images becomes a Non-stationary Clustering problem. In this paper we propose a very simple 
and effective Evolutive Strategy to perform the adaptive computation of the color representatives for each 
image in the sequence. Salient features of the Evolutive Strategy proposed here are: individuals correspond 
to individual cluster centers, to approach real-time response we impose one-generation adaptation for each 
image, mutation operators are guided by the actual covariance matrices of the clusters. Experimental results 
on a sequence of indoor images are presented. 

 

 

1 Introduction. 
 

Color Quantization (Heckbert 1980; Orchard, Bouman 1991; Lin, Chang 1995; Uchiyama, Arbib 1994), is an 

instance of the more general technique of Vector Quantization (VQ) (Gersho, Gray 1992)  in the space 

of colors. Color Quantization has application in visualization, color image segmentation, data 

compression and image retrieval (Kankanhalli, Mehtre, Wu 1996) . The number of color representatives 

searched is tightly related to the application. In visualization and compression applications the 

typical size of the color palette (codebook, color representatives) is 256, whereas for segmentation 

and retrieval tasks the size of the color palette is smaller. We have chosen 16 as a typical number of 

color representatives for these latter kind of applications. At the present stage of our works, we do 

not deal with the problem of finding the natural number of colors, which is a much more involved 

problem. We think that it does not make sense to try to find out adaptively the natural number of 

clusters, without having tested the ability of the Evolution approach to perform adaptively the 

clustering into a fixed number of clusters. Besides, the definition of a numerical measure for the 

natural clustering problem is highly dependent of the application, and the subject of strong 

discussion inside the Clustering community. 

 

Color Quantization of images within a sequence contains the essence of the paradigm of real time 

Non-stationary Clustering. Although sequences of images (video) lead naturally to the 

consideration of time varying Clustering/VQ problems, the usual approaches to the computation of 

codebooks for both Color Quantization and Vector Quantization of image sequences consider time 

invariant distributions of colors (Chen, Chien 1995) or image blocks (Chen, Chen 1995), and apply 

conventional Clustering methods.  Some heuristic efforts (Gong, Zen, Ohsawa, Sakauchi 1992,  Chen, 

Chen, Zhang 1994)  have been reported that try to cope with the time varying characteristics inherent 

to image sequences. Our approach is to assume the problem as a Non-stationary Clustering 

problem that may be solved by the application  of Adaptive VQ algorithms: the Color Quantization 

of the image sequences become the Adaptive Color Quantization problem. We propose an 

Evolution Strategy as an Adaptive Color Quantization algorithm. We demonstrate the effectiveness 

of our approach through the color quantization of a sequence of images that shows a smooth but 

clear variation over time of the distribution of colors. 
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Evolution Strategies (Back, Schwefel 1993,1996; Michalewicz 1996) have been developed mainly by 

Rechenberg and Schwefel since the sixties. They belong to the broad class of algorithms inspired 

by natural selection. The most widely accepted features of Evolution Strategies (ES) are the 

following: 

 

(1) The individuals are vector real-valued,  

(2) The main source of genetic variability is the mutation operator, although recombination 

operators are defined and applied by some authors. 

(3) The individuals contain local information for mutation so that adaptive strategies can be 

formulated to self-regulate the mutation operator. 

 

However, a lot of hybrid algorithms have been defined (Michalewicz 1996), so that it is generally 

difficult to assign a definitive "label" to a particular algorithm. The features that we identify as 

specific to the Evolution Strategy proposed in this paper are: 

 

(1) The Evolution Strategy is intended to deal with a time varying environment. Therefore 

the fitness function will be time dependent.  

(2) Individuals are defined as components of the solution instead of representing complete 

solutions. This implies the existence of a global fitness function for the entire population, 

on top of the individual fitness functions. The ES is expected to produce as a cooperative 

solution the best population to solve the problem. In this respect, our approach resembles 

largely the so-called Michigan approach to the design of Classifier Systems. 

(3) Due to the problem representation chosen, the selection looks for entire populations, so 

that there is a strong interaction between parents and children in the evaluation of the 

selection operator. 

(4) Mutation is the only operator that introduces evolution-like variability. The mutation 

guiding parameters, which in the ES literature are referred as self-adaptation parameters, 

are deduced from the interaction with the environment. In our final proposition mutation is 

performed deterministically to approach real time response. However, the Evolution 

Strategy that we will propose below remains an stochastic algorithm whose source of 

stochasticity is the input data. 

 

 

The assumption of a time varying environment must not be confused with the case of a noisy 

environment (Fitzpatrick, Grefenstette 1988; Aizawa, Wah 1994). From our point of view the latter is a 

particular case of the former. The uncertainty associated to the environment is perceived by the 

algorithm through the variability of the fitness function. In the case of noisy environment as 

formulated in (Fitzpatrick, Grefenstette 1988), each evaluation of the fitness function involves a 

sampling procedure. This sampling procedure assumes a stationary random process as the source of 

the fitness function values. On the other hand, our approach assumes that the fitness function value 

will vary due to the inherent Non-stationarity of the environment. The fitness is measured upon a 

sample of the process. This sample is considered as representative of the environment for a limited 

amount of time. While the data sample remains the same, the fitness is a deterministic function. As 

far as the environment remains stationary, succesive data samples will posses the same statistical 

characteristics and the fitness function will continue to be (almost) the same. Unpredictable 

changes in the environment produce significant changes on the statistics of the data sample and, 

therefore, changes in the landscape of the fitness function. The Evolution Strategy tries to adapt as 

fast and smoothly as possible to the environment changes in an unsupervised way. 
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We want to obtain fast and good responses that can be used in a real time framework. To approach 

as much as possible to real time responses, we have imposed to our Evolution Strategy two 

restrictions:  
 

(1) The adaptation must be performed in one generation  

(2) The computations must be based on subsamples of the data. 
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These computational conditions are in conflict with the conventional view of Evolution Strategies 

(and similar algorithms) as random strategies for global optimization. We look for fast algorithms 

that give good, although suboptimal, solutions. We realize that this point of view is well outside 

the orthodox thinking of the Evolutionary Computation community, but we stick to our labeling of 

the algorithm presented below as an Evolution Strategy because this is the closest category of 

stochastic algorithms from structural and behavioral point of views. 

 

The paper is organized as follows. Section 2 introduces the adaptive approach to Non-stationary 

Clustering and Adaptive Color Quantization. Section 3 presents the Evolution Strategy proposed. 

Section 4 presents the experimental results, and section 5 gives our conclusions and lines for 

further work. 

 

 

 

2 Non-stationary Clustering and Adaptive Color Quantization. 
 

Cluster Analysis and Vector Quantization are useful techniques in many engineering and scientific 

disciplines (Gersho, Gray 1992; Hartigan 1975; Diday, Simon 1980; Duda, Hart 1973; Jain, Dubes 1988; Fukunaga 

1990). In their most usual formulation it is assumed that the data is a sample of a Stationary 

Stochastic Process, whose statistical characteristics will not change in time. Non-stationary 

Clustering and Adaptive Vector Quantization assume a Non-stationary Stochastic Process that is 

sampled at diverse time instants. An important remark: no knowledge of the time dependencies is 

assumed. If a model is known (or assumed), a predictive approach (Gersho, Gray 1992) would reduce 

the problem to a stationary one. We have found in the literature references to dynamic approaches 

to Clustering (Chaudhuri 1994; Garcia et alt 1995). These approaches are incremental or progressive 

strategies for the search of the optimal clustering of stationary data, and therefore not related to our 

present work. 

 

Let us start with a working definition for the Clustering problem in the stationary case: 

 

Given a set of vectors ℵ= x1,.. ,xn{ }. Obtain a partition of them into a set of disjoint 

clusters ℵ1, ..,ℵc{ }  that minimizes a criterion function C. 

 

The definition of the criterion function involves the definition of a dissimilarity measure. The most 

used for practical purposes is the Euclidean distance, and the most common criterion function is 

the within-cluster scattering 

 

SW = p x( ) x −mi

2

x∈ℵi
∑

i=1

c

∑   where  mi = p x( )
x∈ℵi
∑
 

 
 

 

 
 

−1

p x( )x
x∈ℵi

∑
 

 
 

 

 
  (1) 

 

(usually p(x)=n-1 is assumed). The Vector Quantization design problem is tightly related to the 

Stationary Clustering problem, a working definition can read as follows 

 

Search for a set of representatives Y = y1,.. ,yc{ } that minimize the quantization error 

(distortion) function E that measures the error of the substitution of the vectors in the 

set ℵ= x1,.. ,xn{ } by their nearest neighbor representatives (codification) according to a 
similarity measure d . 
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E = d x j − yi( )δ ij
i=1

c

∑
j=1

n

∑ ;   δ ij =
1 i = argmin

k=1,..,c
d x j − yk( ){ }

0 otherwise

 
 
 

  
. (2) 

 

When the similarity measure is the Euclidean distance, the quantization error function is the 

Squared Error, then both the set of optimal representativesY = y1,.. ,yc{ } and the centroids of the 
optimal clustering partition coincide. Then, Clustering and Vector Quantization are the same 

problem. The optimal partition of the data sample is defined by the nearest representative: 

x j ∈ℵi ⇔ i = argmin
k=1,..,c

x j − yk
2{ } . (3)  

 

Note that the above definitions do not apply if the number of clusters (codebook size) is not known 

beforehand. As said in the introduction, the determination of the natural clustering is a much more 

involved problem.  

 

The formulation of the Non-Stationary Clustering problem must start with the explicit assumption 

of a time varying population described by an stochastic process Xt   t = 0,1, ..{ } (note that we have 

jumped into the discrete time case). A working definition of the Non-Stationary Clustering problem 

could read as follows:  

 

Given a sequence of samples ℵ t( ) = x1 t( ), ..,xn t( ){ };  t = 0,1,2,.. . Obtain a 

corresponding sequence of partitions, each over the sample data at each time instant, 

  
P ℵ t( )( ) = ℵ1 t( ),.. ,ℵc t( ){ }  t = 0,1,2, .. . This sequence of partitions minimizes an 

accumulative  criterion function C = C t( )
t≥0∑ . 

 

The similar Adaptive Vector Quantization design problem can be stated as  

 

Search for a sequence of sets of representatives Y t( ) = y1 t( ), ..,yc t( ){ }  t = 0,1,2, ..  that 

minimizes the accumulative quantization error (distortion) function E = E t( )
t≥0∑ . 

 

Again, we consider the squared Euclidean distance as the similarity/dissimilarity measure and, 

therefore, the within cluster variance and squared error as clustering criterion and quantization 

error function, respectively. Non-Stationary Clustering and Adaptive Vector Quantization are 

equivalent problems and the optimal sequence of partitions is given by the nearest (Euclidean) 

optimal cluster representative:  

x j t( ) ∈ℵi t( )⇔ i = argmin
k=1,..,c

x j t( )− yk t( ) 2{ } . (4)  

 

In (Gersho, Gray 1992) predictive approaches to Vector Quantization are discussed as 

multidimensional extensions of the scalar predictive approach, widely used in one dimensional 

signal processing and compression. These approaches are based in the formulation of a model of 

the time dependencies of the data. Several adaptive approaches have been also proposed (Gersho, 

Gray 1992, Fowler 1996) to deal with non stationary data. The most popular ones are the algorithms 

that perform the substitution of the cluster representatives (codevectors) based on some 

heuristically determined parameters (Chen et alt. 1994). There have been some suggestions that 

stochastic algorithms such as the LMS stochastic minimization, related to neural network learning 
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algorithms, could be of use for the adaptive computation of the time varying means. The Evolution 

Strategy proposed in this paper falls in the category of stochastic algorithms that compute 

adaptively the cluster means. As an illustration of the most general non-stationary case, we propose 

the Color Quantization of image sequences that show a smooth but unpredictable color variation. 

Figure 1 shows the distributions of pixels in the RGB unit cube for the images in the sequence used 

in the experiments reported below. It can be appreciated that the color distribution spreads and 

shrinks in unpredictable ways. This representation gives a straight illustration of the strong Non-

Stationary nature of the data we are handling. The data samples ℵ t( ) = x1 t( ), ..,xn t( ){ };  t = 0,1,2,..  

used in the experiments are randomly extracted from the data shown in figure 1.  
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 8 

Figure 1. Distribution of pixel color for the images in experimental 

sequence. 
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The Adaptive VQ problem under the Euclidean distance assumption can be stated as the following 

stochastic minimization problem: 

 

min
Y t( ){ }

x j t( )− yi t( ) 2
δ ij t( )

i=1

c

∑
j=1

n

∑
t≥0
∑ ;   δ ij t( ) =

1 i = argmin x j t( )− yk t( ) 2
k =1, .. ,c{ }

0 otherwise

 
 
 

  
.

 

(5)  

 

The proposition of adaptive algorithms to solve this stochastic minimization problem is based in 

the assumption of the following two conditions:  

 

(1) The independent minimization of the error function at each time step produces the 

minimization of the accumulative error function 

(2) The statistical characteristics of the underlying physical process have a smooth variation. 

 

The first condition implies that the problem can be decomposed into a sequence of isolated 

problems. Therefore, bad solutions in a given time instant do not degrade the overall response of 

the adaptive algorithm along time. Besides, if we can compute an optimal solution for the 

stationary case, we can obtain an optimal solution of the non-stationary case, through the 

computation of the optimal solutions at each time instant. To obtain the benchmark sequence of 

color quantizers over the experimental sequence shown in figure 1, we compute a near optimal 

color quantizer for each image applying the Minimum Variance Heckbert Algorithm over it. 

 

The second condition implies that adaptive algorithms can be formulated as local minization 

procedures. The solution computed for the previous time step can be assumed as a good initial 

condition for the next time step. Therefore, the local minimization performed by the adaptive 

algorithm can produce near optimal results. We will discuss at the end of the next section the 

adaptive application of the Evolution Strategy proposed in this paper. 

 

 

 

3 An Evolution Strategy and its adaptive application to Adaptive 
Color Quantization of image sequences 
 

A representative sample of the works found in the literature dealing with clustering problems via 

Evolutionary Computation is (Alippi, Cucchiara 1992; Andrey, Tarroux 1994; Babu, Murty 1994; Bezdek, 

Hathaway 1994; Bezdek et alt 1994; Bhuyan et alt 1991; Blekas, Stafylopatis 1996; Buckles et alt. 1994; Jones, 

Beltrano 1990; Ketaff, Asselin 1994; Lucasius et alt 1993; Luchian et alt 1994; Moraczewski et alt 1995). The 

common approach of all these works is the mapping of complete clustering solutions to population 

individuals. The fitness function is the ad-hoc clustering criterion function. The authors propose a 

wide variety of representation of clustering solutions as population individuals, ranging from the 

set of cluster representatives to the membership (hard or fuzzy) matrices of the clusters. Evolution 

operators, recombination and mutation, are defined suitably to be closed operators on the 

representation chosen. 

 

Our conclusion from the literature review, is that most of the Evolutionary approaches suggested 

for clustering could not be applied to the non-stationary case in a stringent time frame. They can 

not guarantee a reasonable response in a reasonable time. Most of the approaches found in the 

literature have a big uncertainty about the proper setting of the algorithm parameters (population 
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size, mutation and crossover rate, the appropriate operators,...). Assuming that the previous 

criticisms could be properly answered, the computational complexity of each generation is usually 

very big , so that even in the case that the evolutionary approach is used with a computational limit 

imposed, this limit will be necessarily very high for practical applications of the kind we are 

interested in. We have honestly tried to address the problem in a way that is both computationally 

effective and gives good solutions, assuming its suboptimality. 

 
A widely accepted (Back, Schwefel 1996) pseudocode representation of the general structure of the 

algorithm of Evolution Strategies is given in figure 2. Note that the generation number in this 

figure is a time parameter t that we have typed in bold to distinguish it clearly from the time 

parameter t used in section 2. The adaptive application of the Evolution Strategy will impose the 

statement of a mapping between these two time parameters; which represent, respectively, the 

internal (computational) and external (environmental) times. The Evolution Strategy proposed is 

heavily influenced by the use of Euclidean distance, the consideration of other clustering measures 

will imply that some algorithm elements must be redefined. We will start describing in detail the 

elements of the Evolution Strategy, and then we will discuss its application as an Adaptive VQ 

algorithm. 

 

t:= 0 
initialize P(t) 
evaluate P(t) 
while not terminate do 

 P'(t):= recombine P(t) 
 P''(t):= mutate P'(t) 
 evaluate P''(t) 
 P(t+1):= select (P''(t) U Q) 
 t:= t+1 
end while 

 

Figure 2. General structure of an Evolution Strategy. 

 

 

 

3.1 Problem codification: The individuals and the population. Local and 
global fitness functions. 
 

We make each individual to correspond to a single cluster center. A single solution to the 

Clustering/VQ problem is mapped into the entire population. The population at generation t is 
given by 

 P t( )= y i t( );i = 1..c{ }.  (6)  

 

The population size c corresponds to the number of clusters searched in the data. We have not 

included mutation parameters in the definition of the individuals, because we will use for this role 

the covariance matrices computed over the sample data. 

 

The local fitness of each individual is its local quantization error relative to the sample considered 

in this generation. 
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Fi t( ) = x j t( )− yi t( ) 2
δ ij t( )

j=1
n

∑ . (7)  

 

The sample data ℵ t( ) = x1 t( ), ..,xn t( ){ } used to compute this fitness is determined by the 

correspondence between internal and external time parameters. This correspondence is specified 

when describing the adaptive application of the Evolution Strategy (see section 3.4). As the 

individuals do not specify clustering solutions, we must consider a fitness function for the 

population as a whole. This population fitness corresponds to the objective function to be 

minimized, because it is the population as a whole which specifies the clustering solution, and can 

be evaluated  as  

 

F t( ) = Fi t( )
i=1
c

∑ . (8)  

 

If the individual fitness could be considered as non interacting functions, their separate 

optimization would trivially produce the optimization of the population fitness. However, in our 

case we have a clear interaction between individual fitness functions. Our population fitness 

corresponds to the within cluster scatter Sw  of the clustering specified by the population. The well 

known equation relating the within cluster and between cluster scattering (Duda, Hart 1973) 

 

S = SW + SB  (9)  

 

can be written in the context of Non-stationary Clustering as: 

 

S t( ) = x j t( )− y t( ) 2

j=1

n

∑ = Fi t( )
i=1

c

∑ + yi t( )− y t( ) 2

i=1

c

∑  (10)  

 

where S t( )  remains constant as far as the same data sample is considered, and y t( )denotes the 
centroid of the entire data sample ℵ t( )  considered at time t. What we expect of the Evolution 

Strategy is that it will implicitly react through the above equation balancing the minimization of the 

population fitness, from the local optimization of individual cluster representatives, and the 

maximization of the between cluster scattering. 

 

 

 

3.2 The mutation operator. 
 

The recombination operators found in the literature of Evolution Strategies do not look as 

appropriate sources for new cluster representatives, therefore we have not defined any 

recombination operator. Evolutive changes are introduced exclusively by the mutation operator. As 

is customary in Evolution Strategies, our mutation operator is a random perturbation that follows a 

zero-mean normal distribution. The design questions relevant to the definition of the mutation 

operator are :  

(1) Which individuals will be mutated? The set of mutation parents is composed of the 

individuals whose local fitness is greater than the mean of the local fitness in its generation. 

Formally, this set is given by: 
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 φ t( ) = i Fi t( ) ≥ F t( ){ }  where  F t( ) =
1

c
Fi t( )

i=1

c

∑ . (11)  

 

(2) How many mutations will be allowed? We have decided to approach as much as possible 

to a fixed number of mutations m, so that the number of mutations per individual mi(t) will 

depend on the size of φ(t),  

mi t( ) =
m

φ t( )
 

 
 

 

 
 . (12)  

 (3) What information will be used to compute mutations?. We can use the local covariance 

matrices of the sample partition associated with each individual, so that the mutation operator 

is naturally adapted to each individual. The expression of the local covariance matrices is 

ˆ Σ i t( )= n − 1( )−1
x j t( ) − yi t( )( )x j t( )− yi t( )( )tδ ij t( )

j=1

n

∑ . (13)  

 

(3 cont.) We have tested a deterministic approximation to the mutation operator in order to 

avoid the variability introduced by the random generation of perturbations. Mutations are 

computed along the axes defined by the eigenvectors of the estimated local covariance 

matrix. The number of mutations along each eigenaxis is proportional to the relative 

magnitude of its eigenvalue. Let Λi = diag λij, j =1..3( ) and Φ i = eij , j = 1..3[ ] denote, 
respectively, the eigenvalue and eigenvector matrices of ˆ Σ i t( ). Then the set of mutations 

generated along the axis defined by eigenvector eij is: 
 

′ ′ P ij t( ) = yi ± α kλijeij k = 1..mij t( ), i ∈φ t( ){ } (14)  

 mij t( ) = round
mi t( )λij
2 λill=1

3
∑

 

 
 
 

 

 
 
 , αk =

1.96k

mij t( )  . (15)  

The set of individuals generated by the mutation operator is  

 

  

′ ′ P t( )= ′ ′ P ij t( )
i, j

U . (16)  

 

 

3.3 The selection operator. 
 

The last operator to be defined is the selection operator, which determines the individuals of the 

population for the next generation. In the definition of this operator we have followed the so called 

(µ+λ)-strategy. We pool together parents and children, so that  Q = P t( ). Selection can not be 
based on the original individual fitness functions Fi t( ) because they do not have information about 

the interaction effects introduced by the mutation generated individuals. The optimal approach to 

the implementation of  the selector operator consists in computing the fitness of all the possible 



 13 

populations of size c extracted from P' ' t( )∪ P t( ) . That means to compute 

  

P' ' t( )∪ P t( )
c

 
 
  

 
  

population fitness functions. This computational burden largely questions the feasibility of 

applying this approach in any real time application. Therefore, we have tested two alternative 

selection operators of lesser complexity. We will describe then in the order of decreasing 

complexity and optimality. 

 

3.3.1 The Selection Operator 1. 
 
One way to reduce the combinatorial growing of the complexity of the selection operator is to try 

to explore the solutions in order, performing a greedy search. The selection procedure results in a 

complexity that grows quadratically with (c+λ). That means that it requires the computation of 

(c+λ)2 population fitness functions. The procedure tries to select the cluster representatives in order 
of decreasing distortion. Given a set of currently selected cluster centers 

y i1 ,.. ,yik{ }⊂ P' ' t( )∪ P t( ), with k<c, we select the next cluster center as the one that added to the 

previous selected ones produces the smaller distortion: the minimum of the (c+λ−k) distortions that 
can be computed based on the sub-populations that can be formed adding one cluster representative 

(individual) to the k already selected.  

 

More formally, this selection operator can be described as follows:  

 

P t +1( )= selectop1 ′ ′ P t( )∪ P t( )( ) = P* t( )⊂ ′ ′ P t( )∪ P t( ) (17)  

where the set P* t( ) = yik ;k =1..c{ } is constructed iteratively by selecting the indices applying the 
following recursive expression (note that we drop the time index for simplicity): 

 

ik = argmin
i=1,..,c+λ
i∉Ik−1

x j − yl
2
δ jl
Ik−1∪ i{}

j=1

n

∑
l∈Ik−1∪ i{}
∑

 
 
 

  

 
 
 

  
 (18)  

where Ik = Ik−1 ∪ ik{ } and I0 = ∅  are the sets of indices considered at each step of the iteration, 

and the membership function is dependent on this set: 

δ jl
I =

1 l = argmin
i∈I

x j − yi
2{ }

0 otherwise

 
 
 

  
. (19)  

 

3.3.2 The Selection Operator 2. 
 

Given the time constraints imposed by our intended application, we looked for a faster, although 

suboptimal, approach. We pool together the parents and the individuals generated by mutation. Let 

us denote as F
s
t( )  the fitness of the population P' ' t( )∪ P t( ). A way to measure the importance of 

a given cluster representative is to compute the effect of removing it from the set of cluster 
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representatives. That is, we compute Fi
s
t( )  as the fitness of the population P' ' t( )∪ P t( )− y i{ } for 

each y i ∈P'' t( )∪ P t( ). The significance of the individual would be measured by Fi
s
t( )− Fs t( ). 

As Fi
s
t( ) ≥ Fs t( )  for all the individuals, it suffices to compute Fi

s
t( )  to measure the significance 

of the individual. Notice that for empty cluster representatives, which can be the case of some 

mutation generated individuals, their significance is null Fi
s
t( ) = Fs t( ), so that they will be 

discarded automatically. It is trivial to verify that no empty cluster will be selected using this 

fitness function, unless there is someone in the original population and all the mutations generate 

empty cluster representatives. 

 

For notation simplicity, let λ = ′ ′ P t( )  be the number of individuals effectively generated by 

mutation. A formal definition of the individual fitness function used by the selection operator  is as 

follows: 

Fi
s
t( ) = x j t( )− yk t( ) 2

δkj
s
t( )

j=1
n

∑k=1;i≠k
c+λ

∑  (20)  

 δkj
s
t( )=

1 k = argmin
l=1,..,c+λ;l ≠i

x j t( )− y l t( ) 2{ }
0 otherwise

 
 
 

  
. (21)  

 

 

 

 

 

The selection operator selects the c best individuals according to this fitness function: 
 

P t +1( )= selectop2 ′ ′ P t( )∪Q( )= y i ∈P* t( );i = 1..c{ }

P* t( ) = yi1 ,. .,yic+λ
ij < ik ⇒ F j

s
t( )> Fk

s
t( ){ }

 . (22)  

 

The computation requirements of this selection operator are linear in the number of cluster 

representatives, and it can be easily speed up using the simple programming trick of precomputing 

the two nearest cluster representatives. However, this selection operator is clearly suboptimal. The 

experimental works try to asses the trade-off of its suboptimality versus its computational 

efficiency. 

 

 

 

3.4 The adaptive application of the Evolution Strategy. 
 

The adaptive application of Evolution Strategies involves the mapping of the two discrete time 

axes: the data time parameter t and the generation t of the Evolution Strategy. The most 

conventional approach would allow for several generations between data samples, so that : 

 

t =
t

τ
 
  
 
  +1  (23)  
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where τ is the number of evolution generations allowed between input data samples. In the context 

of Color Quantization of image sequences, τ is the number of generations computed between 

presentations of image samples. The initial condition corresponds to the initial color 

representatives provided for the first image, and the adaptation starts upon the sample from the 

second image. A distinctive feature of our experiments below is that we impose a one generation 

framework, that is τ=1.  
 

4 Experimental results. 
 

The experiments reported in this section were designed with two goals in mind: first to 

demonstrate that the proposed Evolution Strategy could be considered an adaptive algorithm, 

second to evaluate the sensitivity of the Evolution Strategy to some of its elements and parameters. 

The experiments have been performed over an image sequence that shows a smooth but 

unpredictable variation of the color distribution. The extent of the non-stationarity of the sequence 

can be appreciated in figure 1. The images come from a panning of the laboratory taken with an 

electronic camera. Original images have an spatial resolution of 480x640 pixels. Each image 

overlaps about 50% of the scene with the next image. This overlapping was intended to provide the 

required smooth (although unpredictable) variation of the color distributions. In a  video sequence 

(25 to 30 images per second), these images would come from a time sub-sampling. Depending on 

the camera motion, the time between the shots represented in figure 1 would range from 0.1 up to 1 

second. These are the time constraints that we have in mind in the  design and experimentation 

with our Evolution Strategy.  

 

As a benchmark non adaptive algorithm we have used a variation of the algorithm proposed by  

(Heckbert 1980) as implemented in MATLAB, we call this algorithm Minimum Variance Heckbert 

algorithm.  This algorithm recursively partitions the RGB unit cube along the axis of maximum 

variance. The partition is performed by a plane orthogonal to the color axis chosen so as to 

minimize the sum of the residual variances. A time efficient method to compute the residual 

variances was presented in (Wu 1991). This method is implemented in many standard libraries. 

However, the algorithm involves the pre-computation of all the potential variances. Its time and 

space complexity grows exponentially with the dimension of the space, and the number of values 

of the discretization of each space axis. Color representatives are computed as the center of mass of 

the resulting partition cubes. This algorithm has been applied to the entire images in the sequence 

in two ways. Figure 3 shows the distortion results of the Color Quantization of the experimental 

sequence to 16 based on both applications of the Heckbert algorithm. The curve denoted Time 

Varying Min Var is produced assuming the non-stationary nature of the data and applying the 

algorithm to each image independently. The curve denoted Time Invariant Min Var come from the 

assumption of stationarity of the data: the color representatives obtained for the first image are used 

for the Color Quantization of the remaining images in the sequence. The gap between those curves 

gives an indication of the non stationarity of the data. Also this gap defines the response space left 

for truly adaptive algorithms. To accept an algorithm as an adaptive solution its response could not 

be worse than the Time Invariant Min Var  curve. 

 

In the application of the Evolution Strategy described in the previous section to Adaptive Color 

Quantization, the data samples at each time instant were sets of pixels picked randomly from the 

image. This image sub-sampling was aimed to approach as much as possible the real time 

constraints. The algorithm was applied in the one-generation time schedule, starting on the sample 

of the second image, and using as initial population P(1) the Heckbert palette of the first image. 

The populations P(t) are the color palettes used to perform the Color Quantization. The results of 
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the Evolution Strategy are always shown together with the benchmark curves of figure 3, in order 

to show its adaptive behavior. The historical sequence of our experiments started with Selection 

Operator 2, so in the following it is the used selection operator unless stated otherwise. 
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Figure 3. Benchmark distortion values obtained with the application of the 

Matlab implementation of the Heckbert algorithm to compute the color 

quantizers of 16  colors of the images in the experimental sequence. 
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Figure 4. Results of the application of the Evolution Strategy with the 

deterministic mutation operator upon samples of n=1600 pixels  with c=16, 
m=16. 

 

 

The first experiment tried to evaluate the performance of the Evolution Strategy using the 

deterministic mutation operator. We have reported elsewhere (Gonzalez et alt. 1998) the results 

obtained with the Monte Carlo simulation of the random perturbations that realize the mutation 

operator. These experiments showed that the random nature introduced a high variance of the 

results when a one generation adaptation schedule was imposed. The deterministic mutation 

operator was proposed to avoid this variability, but the question was if the Evoltion Strategy 

remained an adaptive algorithm. Figure 4 shows the results of the application of the Evolution 

Strategy with the deterministic mutation operator to the color quantization of the experimental 

image sequence to 16 colors. In this figure the distortion results shown are those of the Color 

Quantization of the entire images, by the color quantizers computed using image samples of 1600 

pixels. The inspection of  figure 4 confirms that the deterministic mutation operator gives a good 

approximation to the mean behavior of the random mutations simulated via Monte Carlo Methods 

(Gonzalez et alt. 1998)  and that the algorithm remains adaptive in the sense of performing better than 

the Time Invariant Min Var curve. 
 

We have performed an exploration of the sensitivity  of the deterministic Evolution Strategy to the 

ratio of sample size to the number of colors. Obviously, sample size influences the computational 

requirements, so that small samples are preferred. The tradeoff is the degradation in the response 

obtained due to the loss of information. Figure 5 shows the distortion of the Color Quantization of 

the entire images  with palettes of 16 colors computed by the Evolution Strategy varying the size of 
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the sample from 400 to 25600 pixels, which means a variation of the ratio sample:codebook from 

6:1 up to 1600:1. 
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(c)       (d) 

Figure 5. Sensitivity of the Evolution Strategy with deterministic mutation 

operator to the size of the sample, c=16, m=16. (a) 400, (b) 1600, (c) 6400, 
(d) 25600 pixels. 

 

It can be appreciated in figure 5 that increasing the sample size improves the response of the 

Evolution Strategy, approaching that of the Time Varying Min Var algorithm. An optimal tradeoff 

between efficiency and computation requirements could be identified with a sample size of 1600 

pixels (a sample:codebook ratio of 100:1). There is, however, an strange effect for the biggest 

sample size. The Evolution Strategy gives an anomalous response for image #15 and recovers its 

adaptive behavior afterwards. We have hipothesized that this unexpected degradation of the 

response may be related to the suboptimal definition of the Selection Operator 2 applied up to now. 

The significance measure computed decreases its variability as the number of colors and the 

sample size increase. That means that the Selection Operator 2 ability to discriminate good 

individuals decreases accordingly. This sensitivity could explain the anomaly in figure 5d. To test 

this hipothesis we have formulated the Selection Operator 1. We propose it as a complexity 

intermediate solution between the linear but suboptimal Selection Operator 2 and the infeasible 

optimal selection operator. The idea behind the next experiment is that if the Evolution Strategy 

with Selection Operator 1 recovers the anomalies, the responsability for them would no lie in the 

deterministic mutation operator, but in the suboptimal choice performed by the Selection Operator 

2. This would allow the safe proposition of the Evolution Strategy with the deterministic mutation 

operator as a reduced complexity and variance Adaptive Color Quantization algorithm. 
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Figure 6. Comparative results of the application of the deterministic Evolution 

Strategy with Selection Operator 1 and 2. c=16, m=16. Samples of size 400 (a) 
, 1600(b)  and  25600 (c) 
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Figure 6 shows the results of the final experiment that compare the response that both selection 

operators give in the application of the Evolution Strategy (with the deterministic mutation 

operator) in the case of 16 colors. There is a general improvement of the response in all sample 

sizes tested. The Selection Operator 1 improves in the case of bad sample size selection, the 

strange effect detected for sample size 25600 disappears, and it performs better in the case of very 

small (400) samples.  

 

These results have two meanings. The first one is the expected conclussion that Selection Operator 

2 improves the convergence of the Evolution Strategy, a natural  result. The second, is the 

confirmation that the deterministic mutation operator can be applied without introducing serious 

degradations of the algorithm response. The anomalous effects are due to the selection operator 

used. 

 

However, the quadratic growth of his complexity is a serious impediment for its practical 

application. Selection Operator 1 is more sensitive to the size of the sample and the number of 

mutations, due to his inherent suboptimality. However, it is very efficient computationally, and can 

be of practical use for real time applications, if properly tuned. On top of that, we remind the reader 

that Color Quantization is an instance of the general Clustering problem, where much bigger 

problems can be posed. 
 
 
5 Conclusions and further work. 
 

Most of the works done on Clustering deal with stationary data, assumed to come from a time  

invariant population. In this paper we deal with non-stationary data that comes from a population 

whose characteristics change with time. We have given  working definitions of Non-stationary 

Clustering and Adaptive Vector Quantization. We have found that the problem of Color 

Quantization of image sequences is an instance of Adaptive Vector Quantization, that we have 

termed Adaptive Color Quantization. We have designed a Color Quantization experiment that 

shows the characteristics that are specific of Non-stationary Clustering problems: a sequence of 

population distributions that show an unpredictable smooth (bounded) change. 

 

We propose an Evolution Strategy for the adaptive computation of the cluster representatives at 

each  time, and we have applied it to the computation of the color representatives for the Color 

Quantization of the experimental image sequence. The design of this Evolution Strategy has a main 

computational constraint: it must approach real time performance as much as possible, with the 

lowest variance induced by the algorithm itself. This lead us to formulate a deterministic version of 

the mutation operator, something very unusual in the Evolution Computation literature. However, 

the algorithm remains an stochastic algorithm whose source of randomness lies in the data points 

themselves. We also enforce a one-pass adaptation schedule of the application of the Evolution 

Strategy, that means that only one generation is computed from each real world time instant. Each 

time instant a sample of the data was considered. For Adaptive Color Quantization, we take a small 

sample of the image pixels, compute one generation of the Evolution Strategy and use the resulting 

population to color quantize the entire image. The optimal selection strategy is infeasible, due to its 

large computational cost. This has forced us to propose a greedy and a suboptimal selection 

operators. We tested first the suboptimal selection operator because of its linear complexity. The 

Evolution Strategy with the suboptimal selection operator and the deterministic mutation operator 
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performed adaptively for almost all the cases. An anomaly appear for a large sample case. We 

tested the greedy selection operator combined with the deterministic mutation operator. The 

Evolution Strategy improved its response. Therefore, the suboptimality of the selection operator 

does influence more than we expected the response of the algorithm. Also, the deterministic 

mutation operator does not introduce biases that could produce degradations of the algorithm.  

 

 

The focus for the future work will be on the search for alternative definitions of the selection 

operator with two goals in mind: (1) it must be computationally efficient, and (2) it must be as 

close as possible to the optimal selection. Although we are interested in formal convergence 

results, we will pursue the experimental work. The formal study of the convergence of this 

algorithm, as that of any stochastic algorithm, is far from trivial. Actual convergence studies 

consider always that the input is a sequence of independent and identically distributed random 

variables, which is the simplest case of a stationary process. Although these convergence analysis 

methods could be applied to the Evolution Strategy proposed in this paper, we believe that the 

proper analysis of the issues presented here must involve the analysis of the convergence of the 

stochastic algorithms whose input is a non-stationary process. 

 

Our work shows also the general feasibility of the so called Michigan approach, which can be 

applied to a wide variety of problems, besides the original classifier systems. There is, however an 

unavoidable tradeoff of complexity. The Michigan approach simplifies the individuals, the global 

population fitness functions introduces complexity in the definition of the selection operator. The 

Pittsburg approach maps the whole problem into each individual, but the independence of fitness 

functions makes the definition of the selection operator trivial. Further work must be addressed to 

explore this tradeoff in a diversity of problems. 
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