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Abstract. Pursuing an analogy to the Independent Component Analysis (ICA)
we propose a Lattice Independent Component Analysis (LICA), where ICA sig-
nal sources correspond to the so-called endmembers and the mixing matrix cor-
responds to the abundance images. We introduce an approach to fMRI analysis
based on a Lattice Computing based algorithm that induces endmembers from the
data. The endmembers obtained this way are used to compute the linear unmix-
ing of each voxel’s time series independently. The resulting mixing coefficients
roughly correspond to the General Linear Model (GLM) estimated regression pa-
rameters, while the set of endmembers corresponds to the GLM design matrix.
The proposed approach is model free in the sense that the design matrix is not
fixed a priori but induced from the data. Our approach does not impose any as-
sumption on the probability distribution of the data. We show on a well known
case study that this unsupervised approach discovered activation patterns are sim-
ilar to the ones detected by an Independent Component Analysis (ICA).

1 Introduction

Human brain mapping is a rapidly expanding discipline, and in recent years the in-
terest in novel methods for imaging human brain functionality has grown. Noninvasive
techniques can measure cerebral physiologic responses during neural activation. One of
the relevant techniques is functional Magnetic Resonance Imaging (fMRI) [13], which
uses the blood oxygenation level dependent (BOLD) contrast to detect physiological
alterations, such as neuronal activation resulting in changes of blood flow and blood
oxygenation. Since these methods are completely noninvasive, using no contrast agent
or ionizing radiation, repeated single-subject studies are becoming feasible [12].

The fMRI experiment consists of a functional template or protocol (e.g., alternat-
ing activation and rest for a certain time) that induces a functional response in the
brain.The aim of an fMRI experiment is to detect the response to this time varying
stimulus, through the examination of the signal resulting from the BOLD effect, in a
defined volume element (voxel). The functional information of a voxel has to be ex-
tracted from its time series. One fMRI volume is recorded at each sampling time instant
during the experiment. The frequency of the time sampling being determined by the
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resolution of the fMRI imaging pulse sequence. The complete four-dimensional dataset
(three spatial dimensions plus one time dimension) consists of subsequently recorded
three-dimensional (3-D) volumes. The acquisition of the complete series of functional
volumes runs over periods lasting up to several minutes.

The most extended analysis approach for fMRI signals is the Statistical Parametric
Maps (SPM) [5,6] which has evolved into a free open source software package. This
method consists in the separate voxel estimation of the regression parameters of Gen-
eral Linear Model (GLM), whose design matrix has been built corresponding to the
experimental design. A contrast is then defined on the estimated regression parameters,
which can take the form of a t-test or an F-test. The theory of Random Fields is then
applied to correct the test thresholds, taking into account the spatial correlation of the
independent test results.

Approaches to fMRI analysis based on the Independent Component Analysis (ICA)
[4] assume that the time series observations are linear mixtures of independent sources
which can not be observed. ICA assumes that the source signals are non-Gaussian and
that the linear mixing process is unknown. The solutions to the ICA problem obtain
both the independent sources and the linear unmixing matrix. These approaches are
unsupervised because no a priori information about the sources or the mixing process
is included, hence the alternative name of Blind Deconvolution.

In the present work we propose the use of an heuristic algorithm, called Endmember
Induction Heuristic Algorithm (EIHA) described in detail in [7] to attack the fMRI
analysis problem. The basic assumption in this approach is that the data is generated
by a hidden process as a convex combination of a set of endmembers which are the
vertices of a convex polytope covering the data observations. This assumption is similar
to the linear mixture assumed by the ICA approach, however EIHA does not impose
any probabilistic assumption on the data. This EIHA algorithm falls more properly
in the field of Lattice Computing algorithms [8]. The endmembers discovered by the
EIHA are equivalent to the GLM design matrix columns, and the unmixing process is
identical to the conventional least squares estimator. Therefore, our approach is a kind
of unsupervised GLM whose regressor functions are discovered in the data. When we
establish an analogy with the ICA, the endmembers correspond to the unknown ICA
sources and the mixing is solved by least squares estimation.

We call Lattice Independent Component Analysis (LICA) the overall process of
applying EIHA and computing the unmixing process that gives the abundance matri-
ces (in remote sensing terminology). The EIHA relies on the conjecture that Strong
Lattice Independent sets of vectors are Affine Independent, and, therefore, the vertices
of the convex polytope that explains (contains) the data. The algorithm searches for
these Strong Lattice Independent vectors by using the properties of Lattice Autoas-
sociative Memories (LAM). The main advantages that LICA can produce respect to
ICA for data analysis are the lack of strong probabilistic assumptions (independence,
non-Gaussianity) that may fail in many realistic situations. Besides the EIHA is a com-
putationally light algorithm that works on one pass over the data and does not need
optimization steps.

The outline of the paper is as follows: Section 2 introduces the linear mixing model
so that the proposed approach can be understood. Section 3 presents an sketch of the



theoretical relation between Lattice Independence and Linear (Affine) Independence
through the LAM theory. Section 4 recalls the definition of our Endmember Induction
Heuristic Algorithm (EIHA). Section 5 gives a brief recall of ICA. Section 6 presents
results of the proposed approach on a case study. Section 7 provides some conclusions.

2 The linear mixing model

The linear mixing model can be expressed as follows: x =
∑M

i=1 aisi + w = Sa + w,
where x is the d-dimension pattern vector corresponding to the fMRI voxel time series
vector, S is the d×M matrix whose columns are the d-dimension vertices of the convex
region covering the data corresponding to the so called endmembers s i, i = 1, .., M, a
is the M -dimension fractional abundance vector, and w is the d-dimension additive
observation noise vector. The heuristic algorithm EIHA described in [7] provides the
estimation of the endmembers from the data. We can not review EIHA here due to the
lack of space. The linear mixing model is subjected to two constraints on the abundance
coefficients. First, to be physically meaningful, all abundance coefficients must be non-
negative ai ≥ 0, i = 1, .., M. Second, to account for the entire composition, they must
be fully additive

∑M
i=1 ai = 1. That means that we expect the vectors in S to be affinely

independent and that the convex region defined by them includes all the data points.
Once the convex region vertices have been determined the unmixing process is the

computation of the matrix inversion that gives the coordinates of the point relative to
the convex region vertices. The simplest approach is the unconstrained least squared
error (LSE) estimation given by: â =

(
ST S

)−1
ST x. The coefficients that result from

this equation do not necessarily fulfill the non-negativity and full additivity conditions.
Moreover, the EIHA [7] always produces convex regions that lie inside the data cloud,
so that enforcing the non-negative and additivity to one conditions would be impossible
for some data points. Negative values are considered as zero values and the additivity
to one condition is not important as long as we are looking for the maximum abun-
dances to assign meaning to the resulting spatial distribution of the coefficients. These
coefficients are interpreted as the regressor coefficients corresponding to the decompo-
sition of the fMRI voxel time series into the set of endmembers. That is, high positive
values are interpreted as high positive correlation with the time pattern of the corre-
sponding endmember. The interpretation of the endmember time series pattern is rather
straightforward in some cases (i.e. the background noise), but it is difficult in general.
Therefore, the unmixing process aims to to find regions of related behavior, as it done
in ICA-based studies [4].

3 Lattice Independence and Lattice Autoassociative Memories

The work on Lattice Associative Memories (LAM) stems from the consideration of
the algebraic lattice structure (R,∨,∧, +) as the alternative to the algebraic frame-
work given by the mathematical field (R, +, ·) for the definition of Neural Networks
computation. The operators ∨ and ∧ denote, respectively, the discrete max and min
operators (resp. sup and inf in a continuous setting). Given a set of input/output pairs



of pattern (X, Y ) =
{(

xξ,yξ
)
; ξ = 1, .., k

}
, a linear heteroassociative neural network

based on the pattern’s cross correlation is built up as W =
∑

ξ yξ · (
xξ

)′
. Mimick-

ing this constructive procedure [14,15] propose the following constructions of Lattice

Memories (LM): WXY =
∧k

ξ=1

[
yξ × (−xξ

)′]
and MXY =

∨k
ξ=1

[
yξ × (−xξ

)′]
,

where × is any of the ∨� or ∧� operators. Here ∨� and ∧� denote the max and min ma-
trix product [14,15]. respectively defined as follows: C = A ∨� B = [cij ] ⇔ cij =∨

k=1,...,n {aik + bkj} , and C = A ∧� B = [cij ] ⇔ cij =
∧

k=1,...,n {aik + bkj} .

Definition 1. Given a set of vectors
{
x1, ...,xk

} ⊂ R
n a linear minimax combination

of vectors from this set is any vector x ∈R
n
±∞ which is a linear minimax sum of these

vectors: x = L (
x1, ...,xk

)
=

∨
j∈J

∧k
ξ=1

(
aξj + xξ

)
, where J is a finite set of indices

and aξj ∈ R±∞ ∀j ∈ J and ∀ξ = 1, ..., k.

Definition 2. The linear minimax span of vectors
{
x1, ...,xk

}
= X ⊂ R

n is the set of
all linear minimax sums of subsets of X, denoted LMS

(
x1, ...,xk

)
.

Definition 3. Given a set of vectors X =
{
x1, ...,xk

} ⊂ R
n, a vector x ∈R

n
±∞ is

lattice dependent if and only if x ∈ LMS
(
x1, ...,xk

)
. The vector x is lattice inde-

pendent if and only if it is not lattice dependent on X. The set X is said to be lattice
independent if and only if ∀λ ∈ {1, ..., k} , xλ is lattice independent of X\ {

xλ
}

={
xξ ∈ X : ξ �= λ

}
.

Definition 4. A set of vectors X =
{
x1, ...,xk

} ⊂ R
n is said to be max dominant if

and only if for every λ ∈ {1, ..., k} there exists and index jλ ∈ {1, ..., n} such that

xλ
jλ

− xλ
i =

k∨
ξ=1

(
xξ

jλ
− xξ

i

)
∀i ∈ {1, ..., n} .

Similarly, X is said to be min dominant if and only if for every λ ∈ {1, ..., k} there
exists and index jλ ∈ {1, ..., n} such that

xλ
jλ

− xλ
i =

k∧
ξ=1

(
xξ

jλ
− xξ

i

)
∀i ∈ {1, ..., n} .

Definition 5. A set of lattice independent vectors
{
x1, ...,xk

} ⊂ R
n is said to be

strongly lattice independent (SLI) if and only if X is max dominant or min dominant or
both.

Conjecture 1. [17] If X =
{
x1, ...,xk

} ⊂ R
n is strongly lattice independent then X

is affinely independent.

4 Endmember Induction Heuristic Algorithm (EIHA)

Let us denote
{
f (i) ∈ R

d; i = 1, .., n
}

the time series in fMRI voxels, −→µ and −→σ are,
respectively, the mean vector and the vector of standard deviations computed compo-
nentwise over the voxels, α the noise correction factor and E the set of already discov-
ered vertices. The gain parameter α controls the amount of flexibility in the discovering



1. Shift the data sample to zero mean
{fc (i) = f (i) −−→µ ; i = 1, .., n}.

2. Initialize the set of vertices E = {e1} with a randomly picked sample. Initialize the set of
lattice independent binary signatures X = {x1} =

˘`
e1

k > 0; k = 1, .., d
´¯

3. Construct the LAM’s based on the lattice independent binary signatures: MXX and WXX .
4. For each pixel fc (i)

(a) compute the noise corrections sign vectorsf+ (i) = (fc (i) + α−→σ > 0) and f− (i) =
(fc (i) − α−→σ > 0)

(b) compute y+ = MXX ∧� f+ (i)
(c) compute y− = WXX ∨� f− (i)
(d) if y+ /∈ X or y− /∈ X then fc (i) is a new vertex to be added to E, execute once 3 with

the new E and resume the exploration of the data sample.
(e) if y+ ∈ X and fc (i) > ey+ the pixel spectral signature is more extreme than the stored

vertex, then substitute ey+ with fc (i) .
(f) if y− ∈ X and fc (i) < ey− the new data point is more extreme than the stored vertex,

then substitute ey− with fc (i) .

5. The final set of endmembers is the set of original data vectors f (i) corresponding to the sign
vectors selected as members of E.

Algorithm 1: Endmember Induction Heuristic Algorithm (EIHA)

of new endmembers. The detailed description of the steps in the heuristic algorithm is
presented as Algorithm 1. The starting endmember set consists of a randomly picked
pixel. However, this selection is not definitive, because the algorithm may later change
this endmember for another, more extreme, one. The noise correction parameter α has
a great impact on the number of endmembers found. Low values imply large number
of endmembers. It determines if a vector is interpreted as a random perturbation of an
already selected endmember. This algorithm does not need a priori information about
the nature of the data points that we want to detect. It runs once over the image and
finds the most salient data samples on the fly. For this reason we say that it is an on-line
algorithm.

5 Independent Component Analysis (ICA)

The Independent Component Analysis (ICA) [11] assumes that the data is a linear com-
bination of non Gaussian, mutually independent latent variables with an unknown mix-
ing matrix. The ICA reveals the hidden independent sources and the mixing matrix. That
is, given a set of observations represented by a d dimensional vector x, ICA assumes a
generative model x = As, where s is the M dimensional vector of independent sources
and A is the d × M unknown basis matrix. The ICA searches for the linear transfor-
mation of the data W, such that the projected variables Wx = s are as independent as
possible. It has been shown that the model is completely identifiable if the sources are
statistically independent and at least M − 1 of them are non Gaussian. If the sources
are gaussian the ICA transformation could be estimated up to an orthogonal transfor-
mation. Estimation of mixing and unmixing matrices can be done maximizing diverse



objective functions, among them the non gaussianity of the sources and the likelihood
of the sample. We have used the FastICA [10] algorithm available at http://www.cis.hut.
/projects/ica/fastica.

Application of ICA to fMRI has been reviewed by [4]. Reports on the research ap-
plication of ICA to fMRI signals include the identification of signal types (task related
and physiology related) and the analysis of multisubject fMRI data. The most common
approach is the spatial ICA that looks for spatial disjoint regions corresponding to the
identified signal types. It has been claimed that ICA has identified several physiological
noise sources as well as other noise sources (motion, thermodynamics) identifying task
related signals. Diverse ICA algorithms have been tested in the literature with incon-
clusive results. Among them, fastICA, the one that we will apply in the case study, did
identify the task related signals consistently. Among the clinical applications, ICA has
been used to study the brain activation due to pain in healthy individuals versus those
with chronic pain [1], the discrimination of Alzheimer’s patients from healthy controls
[9], the classification of schizophrenia [2] and studies about the patterns of brain acti-
vation under alcohol intoxication [3].

6 A case study

The experimental data corresponds to auditory stimulation test data of single person 1.
These data are the result of the preprocessing pipeline that removes many noise sources.
These whole brain BOLD/EPI images were acquired on a modified 2T Siemens MAG-
NETOM Vision system. Each acquisition consisted of 64 contiguous slices. Each slice
being a 2D image of one head volume cut. There are 64x64x64 voxels of size 3mm x
3mm x 3mm. The data acquisition took 6.05s, with the scan-to-scan repeat time (RT)
set arbitrarily to 7s., 96 acquisitions were made (RT=7s) in blocks of 6, i.e., 16 blocks of
42s duration. The condition for successive blocks alternated between rest and auditory
stimulation, starting with rest. Auditory stimulation was bi-syllabic words presented
binaurally at a rate of 60 per minute. Due to T1 effects it is advisable to discard the first
few scans (there were no ”dummy” lead-in scans). We have discarded the first 10 scans.

Voxel time series are normalized susbtracting the mean value of each voxel time
series independently, so that the plots are collapsed around the origin. This mean sub-
straction corresponds to an scale normalization in the Lattice Computing sense. It re-
moves scale effects that hinder the detection of meaningful lattice independent vectors.
In the context of the GLM this normalization corresponds to the estimation of the voxel
linear model offset.

The application of the EIHA algorithm with α = 20 to the lattice normalized time
series of the whole 3D volume produces the collection of eleven endmembers shown
in figure 1. Attending to the intensity scale it can be assumed that the first endmem-
ber (top left plot) corresponds to the background (thermodynamical) noise, while the
remaining endmembers correspond to some kind of hemodynamic response pattern or
noise source. To identify the endmember which is closer to modeling the task, we com-
pute the correlation of the endmembers with the square wave represent the task. We

1 The dataset is freely available from ftp://ftp.fil.ion.ucI.ac.uk/spm/data, the file name is
snrfM00223.zip. The functional data starts at acquisition 4, image snrfMOO223-004.



find that endmember #9 (counting row-wise in figure 1) has the maximum such correla-
tion. We present in figure 2 the activations corresponding to it, where the slices shown
roughly try to show the region of the auditory cortex were the task-related activations
are expected. Top row is the axial and coronal cut, and the bottom row shows two sagi-
tal cuts at both sides of the brain. White voxels in this figure correspond to voxels with
abundance value above the 99% percentile of the distribution of this endmember abun-
dance over the whole volume. It can be appreciated that most of the activations fall in
the auditory cortex region.

Fig. 1. Eleven endmbers detected by EIHA over the lattice normalized time series of the whole
3D volume.

The application of the fastICA algorithm with the number of sources set to 11, to
match the number of endmembers found by the EIHA, to the lattice normalized time
series of the whole 3D volume produces the collection of eleven endmembers shown
in figure 3. Counting row-wise, source #8 may correspond to the background noise,
while source #6 is the one most correlated with the task. Figure 4 shows the axial,
coronal and sagital cuts corresponding to the auditory cortex, organized like in figure
2, with activation clusters, computed as the 99% percentile of the distribution of the
spatial mixing values for source #6 over all the volume, superimposed. The task-related
activations are localized in the auditory cortex, but they are less coherent than the EIHA
found ones.

7 Conclusions and discussion

We have proposed and applied the endmember induction algorithm EIHA discussed in
[7] to the model-free (unsupervised) analysis of fMRI. We have discussed the similari-
ties of our approach to the ICA application to fMRI activation detection [4,18]. In our



Fig. 2. Detected task related activations for endmember #9 from figure 1. White voxels corre-
spond to abundance values above the 99% percentile of the distribution of the abundances for this
endmember on the whole volume.

Fig. 3. Eleven time series sources detected by fastICA over the lattice normalized time series of
the whole 3D volume.



Fig. 4. Detected task related activations for source #6 from figure 3. White voxels correspond
to mixing values above the 99% percentile of the distribution of the mixing coefficients for this
source on the whole volume.

approach the temporal sources correspond to endmembers detected by the EIHA algo-
rithm and the spatial mixing coefficients correpond to the abundance volumes obtained
by unmixing the voxel time series on the basis of the found endmembers.

The first obstacle that we find in this endeavor is that the distribution of the fMIR
voxel time series is not well aspected for the detection of Lattice Independence as a
meaningful characteristic. In fact the voxel’s fMRI time series show a dense distribu-
tion of intensity displacements from the origin, so almost all of them are lattice depen-
dent and our proposed algorithm only identifies two endmembers on the raw data. To
overcome this problem we apply a Lattice Normalization which corresponds to a scale
normalization in the sense of Lattice Computing. We substract the mean of its time se-
ries to each voxel time series. The resulting lattice normalized data set shows a much
more rich structure in terms of Lattice Independence. Our computational experiment
with a well known fMRI data set, provided with the distribution of the SPM software,
show some promising results in the sense that we can at least identify a task related
endmember, and that other effects, such as thermodynamical noise, are also clearly
identified. We have found also a strong agreement of the spatial localizations of a task
related source found by the fastICA on the same dataset, with the ones provided by our
approach. Future works must address works on clinical research, and the extension of
the approach to groups and multiple groups.
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