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ABSTRACT 

In order to build a model that could routinely estimate carbon sequestration for 
Portuguese forest ecosystems, we are designing a system based on FOREST-BGC, a well 
known ecophysiological model. The most critical model’s input variable is the Leaf Area 
Index (LAI). In this work we propose and validate LAI estimation from LANDSAT TM 
image data.  

Field data showed that the Portuguese forest ecosystems are heterogeneous and 
difficult for modelling, although previous results proved that it is possible to estimate LAI 
from vegetation indices computed from remote sensing data. A LANDSAT TM image from 
2006 was geometric and radiometric corrected and maps of vegetation indices images were 
created.  

Regression models over the vegetation indices and a Multilayer Perceptron (MLP) 
taking as input the six LANDSAT TM bands were compared for LAI estimation. The 
resulting final NPP maps obtained applying FOREST-BGC to the estimated LAI values can 
be a powerful tool for decision makers, allowing to evaluate the evolution of forested areas 
and the quantification of carbon stocks and, more important, the carbon dynamics.  
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METHODOLOGY 

Figure 1 describes a global view of the followed methodology. At this stage, the work 
was mainly focused on the remote sensing investigation line, but it is important to underline 
that fieldwork measurements were made, in order to acquire data for the model validation.  

A sample of 30 plots of Eucalyptus globulus was marked in the study area. Sampling 
plots were 500m2 circles and included dendrometric measurements, physiological and soil.  

A GPS file was collected in the centre of each sampling plot for its accurate 
localisation and was used afterwards to locate each sampling plots on maps, aerial and 
satellite images. Figure 2 presents false colour aerial photo with the sampling plots in the 
study area. 

 



 
Figure 1. Methodology followed in this research. 

 

 
Figure 2. Aerial photo showing the sampling plots for the Eucalyptus globulus. 

 
In terms of remote sensing, the available LANDSAT TM image from September 2006 

were radiometrically and geometrically corrected, following the same methodology as 
described by Pons and Sole-Sugrañes, (1994) and Pons (2002). This correction was made 
using the software MIRAMON, developed by a team of researchers in remote sensing of the 
Autonomous University of Barcelona (UAB), in Spain (Pons and Sole-Sugrañes, 1994).  

The images were classified in order to identify the Eucalyptus area. A Boolean final 
image was defined where 1 represented Eucalyptus stands and 0 represented non-Eucalyptus 
areas. 

Later, some vegetation indices with different degrees of complexity were tested. The 
vegetation indices analysed, described in Table 1, were calculated overlapping the GPS 
coordinates of each sampling plot for LANDSAT TM image from 2006. 

The following stages were related with the LAI estimation based on the vegetation 
indices. The scale used to estimate the LAI was LANDSAT pixel. In GIS software the 
average of pixels surrounding the centre of the sample was determined automatically. 

Different approaches were followed ranging from a linear regression adjustment till a 
neural network using as starting point the reflectance units from each band. In this last case, 
the Multi-layer Perceptron (MLP) procedure produces a predictive model for one or more 
dependent (target) variables based on the values of the predictor variables. The neural 
network was adjusted based on the matrix of data to fit the models, using the SPSS software. 



Table 1. Vegetation indices tested. 
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R is reflectance in the red wavelength; G is reflectance in the green wavelength; NIR is reflectance in the near infrared 
wavelength; MIR1 is reflectance in the mid infrared band 1; MIR 2 is reflectance in the mid infrared band 2. 

 
RESULTS AND DISCUSSION 

 

Lai estimation from remotely sensed data -empirical equation linking LAI to VI 
In a first stage and in order to identify the best independent variable for the LAI 

estimation, the correlation matrix between LAI and the vegetation indices was analysed. 
NDI(MIR2) is the better index (LAI X NDI(MIR2) = 0.718), followed by NDVI (LAI x 
NDVI = 0.697).  

As reported in the literature, the merging of remote sensing data (in this case to 
estimate LAI) with ecophysiological models (in this case the FOREST-BGC, which uses LAI 
as the main input variable) will allow the development of a practical methodology for 
monitoring NPP and thus the sequestered carbon over large areas. 
A linear equation was adjusted (equation 1), for future comparison with more sophisticated 
approaches (R2 = 0.539; R2adj. = 0.523; RMSE = 0.706). The model is statistically significant 
(sig < 0.05) which means the model fits to the data and the residual analysis showed required 
data normality. 

)2( 876.5139.1 MIRNDILAI +−= ,   (1) 

 

LAI estimation from remote sense data –neural network method 
After this, the feasibility to estimate LAI using a neural network was also tested. The 

results were obtained with a 10 units neural network (Figure 3) whose input are the 
reflectance values from all the available bands and has a hyperbolic activation function, where 
reflectance of Band 7 (DN_MIR2) was the strongest unit. The neural network has 1 hidden 
layer composed of 3 units and uses as input the reflectance values from all the LANDSAT 
TM bands. The results obtained from this study are in agreement with the ones obtained from 
Kavzoglu (2009). Lucas (1995) tried to estimate LAI by adopting vegetation indices as 
predicting variables. He concluded that it is possible to evaluate a forest stand parameter from 
these images and that NDVI was the best vegetation index (RMSE = 2.21). Using LANDSAT 



TM imagery Fassnacht et al. (1997) obtained correlation coefficient values of 0.96 and a 
RMSE of 0.315 when using red, near and mid infrared wavelengths simultaneously, in 
predictive models developed for conifers. The results obtained on the regression phase of this 
research are in good agreement with these published results. Despite the regression approach 
is more practical and easily applicable, the best results of this research were achieved with the 
neural networks. Although it is more complex than the linear regression, anyone with a basic 
background of programming can replicate the results. 

 
Figure 3. Neural network adjusted using as initial units the reflectance from the LANDSAT TM bands. 

 
Comparison of estimated LAI values 

Later LAI estimated by the regression approach was compared with the ones from the 
neural network (Figure 4). From the comparison of only graphical analysis can be concluded 
that neural networks describes better LAI mainly for LAI values under 2.5 m2.m-2. 

 

Figure 4. Comparison between LAI from the regression and from the neural network. 

 
The worst results are occurring only for LAI values upper than 2.5m2.m-2 (Table 2) 

which represents only 9 sampling plots. This means further studies should be implemented for 
higher LAI stands. In some cases, the spectral vegetation indices saturate at LAI values of 2-3 
due to multiple scattering effects (Chen, 2002; Heiskanen, 2006). That is, the canopies with a 
high LAI value have similar NDVI values. 



Table 2. Quantification of the average deviation on LAI estimation from the regression and the neural network 
approaches. 
 

 RMSE BIAS 

Global Data 
Regression 0,725932928 -0,02828858 

Neural Network 0,489663862 -0,16573262 

LAI < 2.5 
Regression 0,5135593 0,30519345 

Neural Network 0,2306704 0,07145425 

LAI > 2.5 
Regression 1,068267198 -0,80641332 

Neural Network 0,821633543 -0,71916865 
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