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Introduction

Predator-prey scenario:
A mobile robot (hunter) needs to catch another mobile robot 
(prey)

Bio-inspired control: the problem has been solved in nature
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Introduction

Hunter robot should learn to predict the 
consequences of its actions (forward model).
The actions are the different gaits applied for one time-step.

Choosing an action to achieve a goal (inverse 
model)
Prey model: hunter needs to learn how the prey 
moves to predict future prey positions.
All models:
 Robot-centered coordinates

 No assumptions on the action space

 Probabilistic
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Egocentric reference system

Robot pose = location + 
bearing
Location in polar coords 
centred at the robot's centre 
of mass
Angles measured 
clockwise from robot's PA 
vector
Bearing at t+Δt  = angle 
that the robot's PA vector 
subtends with respect to the 
robot's PA vector at time t
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Forward model

To predict the 
consequences (new 
relative pose) of actions 
(gaits).
Naïve bayes classifier
BN: powerful 
probabilistic framework to 
express the causal nature 
of a robot's control 
system.

GAIT

Distance Angle Heading

BN parameters learned offline from motor-babbling 
data.

To predict the 
consequences (new 
relative pose) of actions 
(gaits).
Naïve bayes classifier
BN: powerful 
probabilistic framework to 
express the causal nature 
of a robot's control 
system.

To predict the 
consequences (new 
relative pose) of actions 
(gaits).
Naïve bayes classifier
BN: powerful 
probabilistic framework to 
express the causal nature 
of a robot's control 
system.

To predict the 
consequences (new 
relative pose) of actions 
(gaits).
Naïve bayes classifier
BN: powerful 
probabilistic framework to 
express the causal nature 
of a robot's control 
system.
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Inverse model

Goal: catch prey i.e. get to (next) prey's position 
i.e. get to position (distance,angle).
Inverse model: 
select action (gait) to achieve a desired goal.

given a target position (distance,angle) decide which gait to 
use 

inference in the Bayesian network: 
•Obtain P( Gait | Dist=d, Angle=T ) from P(Dist=d|Gait) and P(Angle=T|
Gait)



 F
AT

R
O

N
IK

-T
ec

na
lí
a 

©
 2

01
0 

Prey model

Independent from the 
forward/inverse models of 
the hunter.
Hunter learns a 
probabilistic transition model 
for the prey online.
Transition = prey's pose at 
t+Δt  with respect to prey's 
pose at t. 
Hunter uses this transition 
model to predict the prey's 
future positions.

Distance

angle

Initial prey 
position

Next prey 
position

Hunter



 F
AT

R
O

N
IK

-T
ec

na
lí
a 

©
 2

01
0 

Models

Reactive model
 Hunter: forward, inverse models
 Prey's current pose

Prey prediction model
 Hunter: forward, inverse, prey models
 Predicted prey pose at t+Δt

Planning model
 Hunter: forward, inverse, prey models + planning
 Predicted prey pose several time-steps ahead
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Experiments
Walled-in and open environments
Seven initial states:

Prey at 5 bodies' distance

Angle: 0,1,2,3,4,5,6

Hunter and prey same heading

Hunter: no obstacle avoidance
Performance measure: simulated 
time elapsed until catch
End: catch or one simulated minute
100 simulations per experiment
Hunter: Khepera robot model with a 
set of 10 gaits.
Prey: Khepera model with 
Cyberbotics' Webots' Braitenberg 
controller

Hunter Theta 0

Theta 1
Theta 2

Theta 3

Theta 4

Theta 5 Theta 6
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Reactive model

Hunter: forward, 
inverse models

Prey's current pose
Hunter applies gait 
determined by inverse 
model.
Hunter catches the 
prey only in very 
concrete circumstances.
It appears to follow 
prey around
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Reactive model results
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Prey prediction model

Predicts prey's future 
position (sampling) 
feeds this to the 
inverse model and 
applies resulting gait
Lookahead for prey's 
prediction depends on 
distance between 
hunter and prey

Hunter t

Prey t

Prey t+∆t

Prey t+ 2∆t

Prey t+ 3∆t
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Results of prediction model

Closed environment Open environment
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Prey prediction results
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Planning model

Hunter: forward, inverse, prey models + 
planning
Predicts several future positions of the prey at 
different time-steps
Finds a sequence of gaits for the hunter so that 
it minimises the distance between hunter and prey
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Heuristic solution for planning

Builds a search tree of the different gait 
combinations for the hunter
For each possible sequence of gaits a hunter 
trajectory is sampled (instead of calculating the 
whole distribution)
Node value: distance between hunter and prey
Best-first search (expand the node with the best 
value first)
Pruning: Eliminate gait sequences with more 
than one gait transition
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(G2G1G1)

G1 G2 G3

(G1G2)(G1G1) (G1G3) (G2G2)(G2G1) (G2G3) (G3G2)(G3G1) (G3G3)

(G2G2G2) (G2G3G1)(G2G1G2)(G2G1G3)(G2G2G1) (G2G2G3) (G2G3G2)(G2G3G3)

Heuristic solution
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Planning model examples
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Planning model



 F
AT

R
O

N
IK

-T
ec

na
lí
a 

©
 2

01
0 

Planning results
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Conclusions

Bottom-up approach: only added cognitive 
capabilities as and when necessary
Architecture properties:
Egocentric coordinate system
Arbitrary action repertoire (discrete action space)
Models learned ab initio
Account for and plan with uncertainty

Further work:
Extend work to legged platform
Adding real sensing of the prey
Studying various cost functions for the planning (e.g. 
energy consumption, computational complexity...)
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Thank you!
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