Embodied moving-target seeking with prediction and planning

Noelia Oses (Fatronik-Tecnalia) Matej Hoffmann (Al Lab, UZH) Randal A. Koene (Fatronik-Tecnalia)

Outline

Introduction

Building blocks:

- Forward model
- Inverse model
- Prey model

Models and experiments:

- Reactive model
- Prey prediction model
- Planning model

Conclusions and discussion

Introduction

Predator-prey scenario:

A mobile robot (hunter) needs to catch another mobile robot (prey)

Bio-inspired control: the problem has been solved in nature

Introduction

Hunter robot should learn to predict the consequences of its actions (forward model).

The actions are the different gaits applied for one time-step.

Choosing an action to achieve a goal (inverse model)

Prey model: hunter needs to learn how the prey moves to predict future prey positions.

All models:

- Robot-centered coordinates
- No assumptions on the action space
- Probabilistic

Egocentric reference system

Robot pose = location + bearing

Location in polar coords centred at the robot's centre of mass

Angles measured clockwise from robot's PA vector

Bearing at $t+\Delta t =$ angle that the robot's PA vector subtends with respect to the robot's PA vector at time t

Fatron

Forward model

To predict the consequences (new relative pose) of actions (gaits).

Naïve bayes classifier
 BN: powerful probabilistic framework to express the causal nature of a robot's control system.

BN parameters learned offline from motor-babbling data.

Inverse model

Goal: catch prey i.e. get to (next) prey's position i.e. get to position (distance,angle).

Inverse model:

select action (gait) to achieve a desired goal.

given a target position (distance,angle) decide which gait to use

Inference in the Bayesian network:

 Obtain P(Gait | Dist=d, Angle=T) from P(Dist=d|Gait) and P(Angle=T| Gait)

Prey model

Independent from the forward/inverse models of Nex post the hunter.

Hunter learns a probabilistic transition model for the prey <u>online</u>.

Transition = prey's pose at t+Δt with respect to prey's pose at t.

Hunter uses this transition model to predict the prey's future positions.

Models

Reactive model

- Hunter: forward, inverse models
- Prey's current pose
- Prey prediction model
 - Hunter: forward, inverse, prey models
 - Predicted prey pose at t+∆t
- Planning model
 - Hunter: forward, inverse, prey models + planning
 - Predicted prey pose several time-steps ahead

Walled-in and open environments

Seven initial states:

Prey at 5 bodies' distance

- Angle: 0,1,2,3,4,5,6
- Hunter and prey same heading
- Hunter: no obstacle avoidance
- Performance measure: simulated time elapsed until catch
- End: catch or one simulated minute
- 100 simulations per experiment

Hunter: Khepera robot model with a set of 10 gaits.

Prey: Khepera model with Cyberbotics' Webots' Braitenberg controller Fatronik

Experiments

Reactive model

Hunter: forward, inverse models

Prey's current pose
Hunter applies gait determined by inverse model.

Hunter catches the prey only in very concrete circumstances.

It appears to follow prey around

Reactive model results

Prey prediction model

Predicts prey's future position (sampling) feeds this to the inverse model and applies resulting gait Lookahead for prey's prediction depends on distance between hunter and prey

Results of prediction model

Closed environment
Open environment

Prey prediction results

Planning model

Hunter: forward, inverse, prey models + planning

Predicts several future positions of the prey at different time-steps

Finds a sequence of gaits for the hunter so that it minimises the distance between hunter and prey

Heuristic solution for planning

Builds a search tree of the different gait combinations for the hunter

For each possible sequence of gaits a hunter trajectory is sampled (instead of calculating the whole distribution)

Node value: distance between hunter and prey

Best-first search (expand the node with the best value first)

Pruning: Eliminate gait sequences with more than one gait transition

Heuristic solution

Planning model examples

Planning model

Planning results

Histogram of catch times for the planning model in an open environment

Conclusions

Bottom-up approach: only added cognitive capabilities as and when necessary

- Architecture properties:
 - Egocentric coordinate system
 - Arbitrary action repertoire (discrete action space)
 - Models learned ab initio
 - Account for and plan with uncertainty
- Further work:
 - Extend work to legged platform
 - Adding real sensing of the prey

Studying various cost functions for the planning (e.g. energy consumption, computational complexity...)

Thank you!

