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In this paper we consider the application of two
basic Competitive Neural Networks (CNN) to the
adaptive computation of colour representatives on
image sequences that show non-stationary distri-
butions of pixel colours. The tested algorithms are
the Simple Competitive Learning (SCL) algorithm
and the Frequency-Sensitive Competitive Learning
(FSCL) algorithm. Both, SCL and FCSL are the
simplest adaptive methods based, respectively, on
minimising the distortion and on the search for a
uniform quantisation. The aim of this paper is to
study several computational properties of these
methods when applied to non-stationary clustering
as adaptive vector quantisation algorithms. Non-
stationary colour quantisation is, therefore, rep-
resentative of the more general class of non-station-
ary clustering problems. We expect our results to
be meaningful for other algorithms that involve
either the minimisation of the distortion or the
search for uniform quantisers. We study experimen-
tally the effect of the size of the image sample
employed in the one-pass adaptation, their robust-
ness to initial conditions, and the effect of local
versus global scheduling of the learning rate.

Keywords: Colour quantisation; Frequency-sensitive
competitive learning; Non-stationary  clustering;
Simple competitive learning

1. Introduction

The process of colour quantisation is the codification
of a colour image into a finite and small set of
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colour representatives. Colour quantisation design is
the problem of searching for a set of optimal colour
representatives in a colour image. The optimality of
such a set can be measured perceptually by dis-
playing the inverse of the image codification. It can
also be measured quantitatively by computing the
distortion of the codification or the Signal-to-Noise
Ratio (SNR). In the present paper, we present as
experimental results both qualitative and numerical
results (distortion). From a numerical point of view,
the search for the optimal colour representatives can
be put into the general framework of clustering
based on representatives or vector quantisation
design [1-6]. Colour quantisation is then a vector
quantisation defined in the colour space, usually
based on the Euclidean distance in this space. One
relevant question is that of the colour space and the
colour distance employed. It is well known that the
Euclidean distance in the RGB space does not pre-
serve the perceptual distance between colours. There
are several abstract colour spaces [7], such as the
Yuv and the Lab spaces, defined by the CIE in
order to obtain better preservation of the perceptual
distance, and new colour spaces are being defined
to cope with the colour equivalencies needed to
support colour processing in complex distributed
environments (i.e. the Internet). It can be argued
that performing clustering based on minimising the
Euclidean Distortion in the RGB colour space is
doomed to give perceptually suboptimal results.
However, there is a growing body of evidence [7—
11] showing that this perceptual suboptimality is of
no consequence for most practical applications. We
assume this framework to support our experiments
in the RGB space.

When an image sequence is considered, the distri-
bution of the pixel colours in the colour space will
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be time variant in the general case. The underlying
stochastic process is, therefore, non-stationary, and
we can’t assume any model of the time depen-
dencies. The problem of colour quantisation on
image sequences becomes a non-stationary clustering
problem. In most of the formulations of the clus-
tering or vector quantisation problems found in the
literature, the assumption is that the underlying
stochastic process is stationary, and that a given set
of sample vectors properly characterises this process.
The main line of research that takes into account
non-stationary processes is that of Adaptive Vector
Quantisation (AVQ) [1], where the dominant
approach is that of codebooK replenishment [12,13].
We introduce in Section 4 a general formulation
of the non-stationary clustering problem, and the
application of Competitive Neural Networks as
adaptive vector quantisation methods to solve it.

Competitive Neural Networks [14—18] are math-
ematically derived as stochastic gradient minimis-
ation procedures. Sometimes the objective function
is known, as is the case of the Simple Competitive
Learning that minimises the Euclidean distortion.
Sometimes it is difficult to specify the objective
function, and to provide a formal derivation of the
learning rule. This is the case of Frequency-Sensitive
Competitive Learning, which combines the distortion
minimisation of the SCL with the search for a
uniform quantisation. Uniform quantisation implies
that the probability distribution of the codevectors
is uniform (not to be confused with a uniform
decomposition of the colour space). To obtain an
uniform quantisation, FSCL tries to ensure that the
sizes of the clusters found in the sample are equal.
However, it does that by penalising the Euclidean
distance while computing the nearest codevector to
a sample vector. This can’t be easily put into the
formal framework of stochastic gradient algorithms,
but it constitutes a minimal variation of SCL
intended to improve its robustness (to avoid empty
clusters associated with stuck codevectors). In this
paper, we consider both SCL. and FSCL as minimal
adaptive algorithms whose results can be extrapo-
lated to more sophisticated strategies.

Despite their original definition as stochastic
gradient minimisation methods, CNNs have rarely
been applied to adaptive vector quantisation, because
of their lengthy convergence times and numerical
sensitivities [1]. Most work in the literature reports
their application to stationary VQ problems, such as
the codification of still images. As we have said
before, the most successful adaptive vector quantis-
ation strategy is that of codebook replenishment [1,
12.15,19,20] whose optimality, however, has only
been proved for stationary sources [21]. Codebook
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replenishment algorithms also pose serious para-
meter tuning problems that have not been properly
addressed in the literature. In this paper, we try to
show the usefulness of the CNN as adaptive vector
quantisation algorithms for general non-stationary
sources. The case of non-stationary colour quantis-
ation is thus a representative of the general AVQ
problem. Our approach is to propose a fast adap-
tation schedule, based on a one-pass adaptation over
a small sample of each image in the sequence.
Under this scheme, the computational cost of the
adaptation is proportional to the size of the sample,
the size of the codebook and the dimension of the
search space, and can be calibrated for real time
processing. In Section 5, we explore the sensitivity
of the SCL and FSCL in this setting to the
local/global scheduling of the learning rate, the sam-
ple size, the codebook size and the global initial
conditions (the starting codebook for the whole
sequence). The results reported here will be also of
interest when trying to assess the applicability of
other CNN architectures to the non-stationary clus-
tering problem. We have found that the sensitivity
to the codebook size is shared by the self-organising
map of Kohonen, neural gas, soft competition, and
other CNNs [22-24].

Section 2 discusses the end applications for non-
stationary colour quantisation; Section 3 poses the
colour quantisation of general image sequences as
a non-stationary clustering problem and the appli-
cation of CNN to solve it. Section 4 reviews both
SCL and FSCL training algorithms and their specific
numerical settings. Section 5 presents experimental
results. Finally, in Section 6, we present our con-
clusions and intended lines of work.

2. End Applications of Colour
Quantisation

Colour quantisation has applications in visualisation
[8.9,25,26], colour image segmentation [I8], data
compression [19,27] and image retrieval [28]. Early
applications of colour quantisation were addressed
to visualisation tasks [8,25]. The problem was to
render colour images for display in low colour
resolution monitors. This can be interest for games
that require fast visualisation or that involve network
communication. Nowadays, monitors and visualisa-
tion devices do not require this reduction of the
colour space.

A recent application for CQ is the content-based
retrieval of information in multimedia databases that
include colour images [28-31]. Usually, the colour
space is partitioned at regular intervals and the
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colour histogram of the image is used as the feature
for the search. Colour representatives are sometimes
used to index the images in the database [28]. These
colour representatives are computed using clustering-
based techniques. There are also instances [32] that
use the codebooks obtained from adaptive vector
quantisation for the search in image databases, where
the input vectors are subimage blocks.

One of the recent applications of colour pro-
cessing is the segmentation of video sequences
[32.33]. The variations in the colour histograms are
used to identify the units (shots) in the decompo-
sition of the sequence. These units are then used
for fast access into the sequence, or to construct an
index for the organisation of video databases. The
non-stationary clustering approach could be of use
for this task, providing that colour representatives
are used instead of colour histograms. This is a
stationary application because past images can’t be
quantised at each database increment. However,
given a suitable initial sample of the images to be
stored in the database, the techniques discussed in
this paper can be applied.

The last class of applications of CQ address the
segmentation of images. This segmentation is of
interest for sensitive interfaces: the colour detection
of faces, hands and other human features can be
very effective [11,34]. The usual approach is the a
priori identification in the colour space of the region
that corresponds to face colours. This approach is
very restricted to the images taken to estimate the
face colour region. The adaptive techniques dis-
cussed in the paper can be of interest to allow
robust detection in the case of illumination changes
and other sources of noise. Sensitive interfaces are
of increasing interest for personal computers and for
control applications, such as enhancing the human
interface to robots. The optical flow is a very central
issue in many computer vision applications, includ-
ing robot navigation. The image segmentation
obtained applying non-stationary CQ to the prepro-
cessing of image sequences can be used for the
robust computation of the optical flow [35], and to
other vision tasks, such as stereo matching [36].

3. Non-Stationary Colour
Quantisation as a Non-Stationary
Clustering Problem

Given a data sample X = {x,,....x,}, with x, € R,
the clustering problem is that of finding a partition
of the sample P(X)={X,....X_} into ¢ disjoint clus-
ters, that is optimal in the sense specified by a
clustering criterion function C. This partition can be
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defined in several ways. One of the most widely
used definitions is that induced by the cluster rep-
resentatives: data samples are assigned to the cluster
of the nearest Euclidean representative, and the rep-
resentatives coincide with the cluster centroids. The
criterion function is defined over the scattering mea-
sures of the clusters. In this case, the clustering
problem is equivalent to the design of a vector
quantiser based on the sample: the search for a set
of representatives Y ={y,,....y.} that minimise an
error or distortion function £, that is the minimum
intracluster scattering. Both the clustering criterion
function and the quantisation distortion are based
on a given dissimilarity measure.

Colour quantisation is a mapping of a multispec-
tral image f(x,y) = [fx(x,3) /() (] € [0.1] into
an indexed image f'(x,y) € {I,....c}, where ¢ is the
number of colour representatives, which we will
denote Y ={y,,....y.} with y;, € [0,1]*. The visualisa-
tion of the colour quantised image is done through
the inversion of the quantisation f(x,y) =y & f(x.y)
=i. Visual comparison with the original image gives
the perceptual evaluation of the colour quantisation.
The numerical evaluation of the quality of the colour
quantisation can be done computing the distortion

E= > [[ftxy) = fxy)|P. From this description of the

o
colour quantisation process, it is obvious that it
belongs to the class of clustering and VQ problems,
the sample is given by all or some of the image
pixels, the vectors are defined in a 3D space, and
the criterion function corresponds to the quantis-
ation distortion.

The design of colour quantizers can, therefore,
use any of the tools developed for clustering and
VQ, including Competitive Neural Networks. The
Heckbert algorithm [8] is a clustering algorithm that
performs a greedy search for the partition of the
image colours. In its original formulation, it per-
forms a recursive splitting of the RGB space based
on the histograms of the projections on the colour
axis. The axis and the splitting point are selected
according to the variance of the histogram and its
median. An improvement that ensures minimisation
of the distortion (although not globally optimal
because of its greedy nature) is to consider the
variances of the partitions [37] of the cube. This
version of the algorithm will be referred to from
now on as the minimum variance Heckbert algor-
ithm. It gives near optimal results, but its complexity
is proportional to the dimension of the space and
the discretisation of the space axes. Most practical
implementations reduce the number of values in
each colour axis from 2* to 2° by a direct truncation,
before applying the Heckbert algorithm.
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Non-stationary clustering assumes as the source
of the data a non-stationary stochastic process
{X,r=0,1,.} sampled at selected time instants.
Assuming that the stochastic process is a discrete
time process (which is appropriate for image
sequences), sampling is understood as extracting a
sample at each time instant. This gives a sequence
of samples, each of them a set of iid. random
vectors, at each ({X(1)={x,(1),....x, (0}, 1=0,1,...}.
The non-stationary clustering problem is to find a
corresponding sequence of partitions. Each partition
is a set of disjoint clusters P(X (1)) ={R (1),....R (1)}
defined over the sample at time 7. The sequence of
partitions must minimise an infinite time horizon

criterion function C= ZC(I). This  minimisation
=0

problem can’t be solved through techniques related

to dynamic programming, because of its infinite time

horizon and the lack of any recursive formulation of

the cost function.

Given an image sequence {f(x,y); 1=0,1,2,...},
the colour quantisation of this sequence is obviously
a non-stationary clustering problem, in which the
searched partitions are the colour quantisations of
the images in the sequence {f¢(x,y);#=0,1,2,...} and
the infinite horizon criterion function is the accumu-
lative colour quantisation distortion

E=YE®0= > 2y - fixy)

=0 =0 x,y

P 1)

The colour quantisation of the image sequence applies
a sequence of colour palettes Y(1) = {y,(?),...,y(0)}, and
it becomes non-stationary colour quantisation when
no predictive scheme can be applied in the compu-
tation of the colour palettes. The search for these
colour representatives varying in time becomes an
adaptive vector quantisation problem.

In a rather general statement, the non-stationary
clustering problem is thus an infinite time stochastic
dynamic programming problem

min

Ny 250 S

=0

which is very difficult to solve. To alleviate its
complexity, the adaptive assumption states that the
problem can be decomposed in time, so the global

minimisation can be achieved through instan-
taneous minimisation:
min EE(’) et Z min - s 3)

ot = Y0

The straightforward approach, under this assumption,
is to perform independent optimisations at each time
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instant. Independent optimisation would then give an
optimal result if the optimisation method is globally
optimal. We have applied this approach as the
benchmark optimal results in our experiments apply-
ing the minimum variance Heckbert algorithm to
each image independently. However, time inde-
pendent optimisation discards any use of time depen-
dencies that could improve the accuracy and lower
the computational burden. Truly adaptive algorithms
must profit from these unknown time dependencies,
without trying to uncover them. The adaptive
approach assumes that the cluster or colour represen-
tatives found at time #—1 can be used as good initial
conditions for the optimisation process at time f.
That implies the assumption of smooth variation of
the optimal cluster representatives. Summarising, the
application of competitive neural networks as adapt-
ive vector quantisation algorithms is done as follows:
At time ¢ the initial cluster (colour) representatives
are those computed from the sample of the process
at time t—1. The sample vectors at the present time
are presented sequentially as inputs to compute the
adaptation equations, and to obtain a new set of
cluster representatives. Obviously, for the non-
stationary colour quantisation case, the time axis is
the image number in the sequence, and the sample
data are the image pixel colours. To approach real
time performance, we impose a one-pass adaptation
at each time step, and small samples. This means
that the sample vectors will be presented only once,
and that the scheduling of the learning rate and
other learning control parameters are adjusted to
that time constraint.

4. Basic Competitive Neural Networks

In this section we review the definition of the
basic CNN, and discuss the setting of the numerical
parameters used when we apply them to the non-
stationary colour quantisation problem. In general,
CNN algorithms are derived as adaptive algorithms
that perform stochastic gradient descent on an
energy function [16,17] that corresponds to a clus-
tering criterion function or a vector quantisation
distortion function. They look for cluster representa-
tives or codevectors, under the assumption of fixed
codebook size. When the energy function is known,
the learning rule associated with it can be formally
derived. This the case of the Simple Competitive
Learning (SCL), in which the minimised function is
the Euclidean distortion of the quantisation of a
sample X ={x,,....x,} with a set of codevectors
Y ={yi,--y.h
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8, =1ifi= argmin [

k=1,....c
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The stochastic gradient is given by
JL|
ayi

Then, the Simple Competitive Learning (SCL) is

stated as

y{m+1) = y(D+a( S (X(T)[X(T)-y (D], i=1,....c

(6)
1 i=argmin { X(7) — yu(7) 3}
5,(x(1)) = k=1,...;c (7)
OXDI=10  otherwise
where x(7) is randomly chosen in X; 7 is the

adaptation time that counts the number of input
vectors presented to the learning rule; a(7) is the
learning rate which, to guarantee theoretical conver-
gence, must fulfil the conditions [16,24]

lim a(7) =0, za("r) = (8)
t— =0
and D, a¥(7) < ®
=0

However, these theoretical conditions imply very
slow adaptation processes, which in practice are
seldom respected. In fact, the sequence of learning
rate values proposed below to meet our ‘one pass’
adaptation constraint overlook the above conditions.

The SCL is therefore a local minimisation algor-
ithm, whose results will be highly dependent on the
initial conditions {y,(0),...,y.(0)}. One of the more
salient features of suboptimal solutions is the occur-
rence of stuck codevectors, i.e. codevectors whose
corresponding cluster is empty. These codevectors
never win the competition, and Eq. (6) never applies
to them. This situation must not be confused with
the search for the natural number of clusters; subop-
timal solutions found by SCL must not be taken as
indicative of the ‘true’ number of clusters. The
reasoning behind the proposition of frequency sensi-
tive competitive learning is that one sure strategy
to avoid bad local suboptimal solutions is to ensure
that no representative has an associated empty clus-
ter. This is done in an inverse way, by penalising
the bigger clusters. To achieve that, the FSCL [15]
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keeps a count of how frequently each codevector is
the winner, and uses this information to adjust dis-
tances from an input to all codevectors. The distance
used to determine the codevector to be updated is

d(x,y;) = T|x-y|P where T,:Eb‘f"‘”(x(k)) is the
k=1
number of times that a codevector has been the
winner, and
1 i=argmin {T,»I X(7)—¥(T) ’ }
k=1,...,c

FSCL, A
& Hx(m) = 0 otherwise

©)

This new distance penalises the codevector that
repeatedly wins, increasing its distance value and
giving other codevectors a chance to win the compe-
tition. FSCL employs the learning rule (6), like the
SCL, but applying (9) instead of (7) to determine
the neuron (codevector) to be updated.

The above discussion implies that FSCL cannot
be derived from Eq. (4), as its stochastic gradient
minimisation. In fact, we haven’t found a formal
definition of the true function minimised by FSCL.
This function may be intuitively seen as a minimis-
ation of the Euclidean distortion conditioned to the
uniform quantisation of the space. That is, FSCL
tries to ensure that in the limit after training

I ok et L
P[d(x)=1]=". Once near uniform quantisation is
c

achieved, FSCL will try to minimise the Euclidean
distortion. The expected side effect is that the mini-
misation of the Euclidean distortion will become
globally optimal. We consider FSCL as a basic
CNN because to-date it is the minimal variation of
SCL proposed.

In the experiments we have applied two kinds of
scheduling of the learning rate: local and global
scheduling. The local scheduling of the learning rate
follows the expression «a(7)=ay(1-7/n), where

T,:ES,(X(I\')) and n is the subsample size. This
k=1
expression implies that the learning rate decreases
linearly in the number of times that a codevector
‘wins’ the competition. It also implies that a local
learning rate only reaches the zero value if the
codevector ‘wins’ for all the sample vectors. This
local counter is identical to that maintained by the
FSCL. Note, however, that here the counter controls
the adaptation gain, whereas in FSCL it determines
the winning neuron. There is no interference
between the two applications of the Ilocal
counter. The global scheduling of the learning
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rate, when a(7)=a(7) Vi, follows the expression
a(T)=ay(1-7/n). This expression implies that the
learning rate decreases with every sample data item
which is presented to the neural network. Zero value
is reached when the last sample is presented. While
global scheduling conforms to the theoretical formu-
lation, local scheduling of the learning rate is similar
to perform as many independent and simultancous
local adaptation processes as units. Part of our work
tries to determine the benefits of local scheduling
experimentally. Obviously, the sequences of the
learning rate parameters given by both local and
global strategies do not comply with the conditions
(4) imposed by the convergence of the stochastic
gradient approach. However, it is the best approxi-
mation that works under a ‘one-pass’ adaptation con-
straint.

Up to this point, the CNNs are applied to
stationary data, represented by a sample X. In the
case of non-stationary data, we have, according
to Section 3, a sequence of data samples {X(1)=
{x,(0),...x,(O}1=0.1,...} over which adaptation rules
(6), (7) or (9) will be applied. In the non-stationary
case we have two time parameters: that of the reality
(f); and that of the internal adaptive computations
(7). At each real time instant, a complete adaptation
process will take place. The whole process is as fol-
lows:

1. Assume an initial codebook Y(0), =0.

2. Update the clock =r+1 and take the next sample
X(r) of size n.

3. Assume as the initial codebook the result of the
adaptation at  the previous time instant
Y(.0)=Y(t=1,n).

4. Compute the sequence of adaptations of the code-
book {Y(r,7);7=1,.n} applying either SCL or
FSCL, with x(7) being extracted from (7).

5. Resume indefinitely the process from step 2.

5. Experimental Results of Non-
Stationary Colour Quantisation

In this section we report some experiments perfor-
med on image sequences extracted from video
sequences, aimed at evaluating the robustness of
SCL and FSCL as adaptive VQ algorithms for non-
stationary colour quantisation, and their sensitivity
to diverse numerical parameters. The sequence of
images used for the experiment is a panning of the
laboratory taken with an Apple CCD colour video-
camera designed for video-conferencing. Original
images have a spatial resolution of 240 x 320 pixels.
We have created two sequences. In one of them,
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each of two consecutive images overlaps roughly
50% of the scene (sequencel); in the other, the
overlap is of 33% (sequence2). Although it must be
obvious, we note that our use of finite experimental
image sequences does not imply that our approach
is only meant for small finite sequences. The main
feature of these image sequences is that the distri-
bution of the pixel colours in the RGB space is
non-stationary and unpredictable. This is illustrated
in Fig. 1, where we present the visualisation of the
colour pixels in the RGB unit cube, for some images
in sequence2. Along the sequence, the cloud of
points that correspond to the image when mapped
into the RGB unit cube shrinks and expands in
several, unpredictable, directions. As these variations
are due to the movement of the camera in an
unknown visual space, the formulation of any pre-
dictive model is not possible. The experiments refer
to the computation of sets of colour representatives
(colour palettes) of size ¢=16 and ¢ =256. These
sizes of colour palettes are representative of those
that can arise in segmentation and compression
tasks, respectively.

The benchmark algorithm used is the minimum
variance Heckbert [8] algorithm, as implemented in
MATLAB [37]. This algorithm has been applied to
all of the images in the sequences in two ways.
Figure 2 shows the distortion results of the colour
quantisation of the experimental sequences to 16
and 256 colours based on both applications of the
Heckbert algorithm. The results consist of the distor-
tion per image curves, and the total distortion over
the entire sequence shown in the figure legend.
The curves labelled Time Varying are produced by
applying the algorithm to each image independently;
they can be denoted mathematically £;(1). This
corresponds to the optimal strategy for non-station-
ary clustering discussed in Section 3. assuming the
optimality of the Heckbert algorithm. The curves
labelled Time Invariant (E;(t)) come from the
assumption of stationarity of the data: the colour
representatives obtained for the first images are used
for the colour quantisation of the remaining images
in the sequences. Obviously, the distortion is greater
in the Time Invariant application. The difference
between both curves increases as the time evolution
of the colour distribution departs from the initial
one found in image #1 of the sequence. The gap
between those curves gives an indication of the non-
stationarity of the data. From our point of view,
this gap defines the response space left for truly
adaptive algorithms. To accept an algorithm as an
adaptive solution its response could not be worse
than the Time Invariant curve. The Time Varying
curve defines the best response that we expect,
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Fig. 1. The visualisation of the pixels in the RGB unit cube of image #1. #2. #3. #7. #8. #9, #11, #12, #13, #19, #20 and #21]

of sequence2

although it is not the sequence of global optima. In
Fig. 2, it can also be appreciated that sequence2

curves change more smoothly than sequencel
curves. The changes in colour distribution are

smoother in sequence2, therefore it can be expected
that the results of adaptive algorithms will be better
for sequence2 than for sequencel. Also, it can be
appreciated that the Time Invariant curve seems to
approach the Time Varyving curve at the end of the
sequence in all cases. This behaviour is due to the
nature of the image sequences; they are extracted
from a closed panning of the scene, so that the final
images almost coincide with the initial ones, and
their colour distributions come close. This feature
is by no means general; it is obviously an artifact
of our experimental data. From a qualitative point
of view, the closeness serves also to test the ability

of the adaptive algorithms to come back to the
original optimum.

In the following, the results of the application of
the CNN will be given in the relative framework
of the Time Invariant and Time Varyving Heckbert
results. The relative distortion (Ex(f)) shown in the
figures is computed as Eg(f) = (]"f\"‘\m LM"))

- (Er(D-EnAD)
Ecxdt) is the per image distortion of the colour
quantisation with the colour palette computed by the
CNN (either SCL or FSCL). The relative distortion is
negative when the CNN improves over the optimal
Heckbert 7Time Varying, and it is greater than 1 when
the CNN does not behave adaptively (gives results
worse than the 7ime Invariant). We have appended to
the legend of the curves the accumulated value of
the relative distortion along the sequence.

, where
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Fig. 2. Reference distortion values obtained with the application of the Time Varying and Time Invariant Heckbert algorithm for (a)
16 colours, (b) 256 colours for sequencel. For sequence2 (¢) 16 colours, (d) 256 colours. The amounts in the legend display the

total distortion along all of the sequences.

From the description in Section 4, it is evident
that the computational cost of the CNN applied to
find the optimal colour quantisation of each image
is of the order O(d.n.c), with n being the size of
the sample, ¢ =3 the dimension of the space, and
¢ the number of colours. To evaluate the perform-
ance of the algorithm as real time restrictions are
imposed, we have employed image samples of size
n=1200 (Sample] <2% of image size) and
n=19.200 (Sample2 =25% of image size), respect-
ively. Whereas the distortion results in Fig.2 are
produced by the colour quantisation to a set of
colour representatives computed using all the image
pixels, both SCL and FSCL will be applied to a
subset of the image pixels, extracted randomly. The
sequence of image samples Sample! represents a
stronger real time constraint than Sample2, and the
application of both SCL and FSCL will be one
order of magnitude faster for Samplel. The distor-
tion results shown in the figures and tables are the

distortion of the entire images when colour quantised
with the colour representatives computed by the
CNN upon the specified image samples. Besides the
real time considerations, the use of image samples
also gives some hints about the robustness and
extrapolation abilities of both SCL and FSCL.

5.1. Sensitivity to Codebook and Sample Size

The first set of experiments are performed assuming
as the initial codebook the colour palette obtained
by the Heckbert algorithm for the first image. This
is the best initial condition that we can think of to
start the adaptation of the remaining sequence (note
that all the curves start at zero). The results of this
set of experiments are shown in Figs 3 and 4. The
experiment includes the computation by SCL and
FSCL of the colour representatives under all combi-
nations of image sequence, sample size, colour pal-
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Fig. 3. Relative distortion results for sequencel with local learning rates applying SCL to (a) ¢ =

FSCL to (¢) ¢ = 16 and (d) ¢ = 256.

ette size, and local versus global scheduling of the
learning rate. In all cases, the codification into 256
colours gives worse relative results. This result is
quite important because it indicates the sensitivity
of the CNN performance to the size of the colour
palette. This result, that we have found very general,
implies that the proposition of adaptive algorithms,
CNN-like or other, that would search for the ‘natu-
ral’ number of clusters must be taken with great
care; moreover, if the distortion is a salient compo-
nent of the clustering criterion function. The inspec-
tion of the figures shows that the algorithms perform
adaptively in almost all cases: the relative distortion
is less than 1 most of the time. The exception
occurs usually at image #2 of the sequence. This
can be explained by the narrow gap between the
reference curves at this point of the image sequence;
however, the algorithms quickly recover.

Each of the plots show the result using both
sample sizes. In general, it can be appreciated that
the use of the bigger sample improves the results,

16 and (b) ¢ = 256, and applying

although the magnitude of this improvement is
related to the codebook size. The above-mentioned
sensitivity to the number of clusters searched can
be appreciated if we compare one-to-one the set of
Figs 3(a), (c), (e) and (g), Figs 4(a), (c), (e) and (2)
with Figs 3(b), (d), (f) and (h) with Figs 4(b), (d),
(f) and (h). This sensitivity is attributable to the
ratio between the size of the sample and the number
of representatives searched: the sample-to-codebook

X n ! 2
ratio. We have found that — = 100 is a good ratio
3

in many cases, samplel fits this ratio for 16 colours
and sample2 for 256 colours. The significance of
this ratio is confirmed by the following observations
over the Figs 3 and 4:

e When searching for 16 colours the use of sample2
does not give an improvement over the results
obtained from samplel, according to the increase
in computational complexity.

® When searching for 256 colours, the use of
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Fig. 3. (cont.) Relative distortion results for sequence2 with local learning rates applying SCL to (¢) ¢ = 16 and (f) ¢ = 256. and
applying FSCL to (g) ¢ = 16 and (h) ¢ = 256.

Table 1a. Accumulated relative distortion results of the colour quantisation of experimental sequences with the colour
representatives computed adaptively by the SCL and FSCL with local scheduling of the learing rates, for various initial
conditions, sample sizes (S1: samplel, S2: sample2) and number of colour representatives.

Sequencel Sequence?2
c=16 =256 c=16 c=256
S1 S2 S1 S2 Sl S2 S1 S2

Heckbert 2:5 29 6.6 2.9 4.7 238 9.5 4.7

SCL Threshold 9.1 34 15 8.1 11 32 23 13
Sample 3.6 32 15 7.2 3.6 3:2 23 10

RGB box 12 6.4 32 16 15 8.5 52 25

Heckbert 34 4.7 6.2 25 34 5.1 9 4.8

IFSCL Threshold 6.7 4.6 15 T2 8 5.7 23 12
Sample 33 4.6 15 53 4.7 5:1 23 9.6

RGB box 3.2 4.8 21 54 3.1 5.2 33 8.6
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Table 1b. Accumulated relative distortion results of the colour quantisation of experimental sequences with the colour
representatives computed adaptively by the SCL and FSCL with global scheduling of the learning rates. for various
initial conditions, sample sizes (S1: samplel. S2: sample2) and number of colour representatives.

Sequencel Sequence?2
c=16 ¢ =256 c=16 c=256
Sl S2 S1 S2 S1 S2 N S2
Heckbert 2.6 -0.43 755 3.1 3.8 -1 11 4.6
SCL Threshold 9.8 0.44 18 8.5 12 0.25 28 13
Sample 4.1 0.05 18 74 4.7 -0.39 28 11
RGB box 13 37 36 17 16 7 57 29
Heckbert 34 1.1 73 2.6 3 2.1 10 4
FSCL Threshold 9 10 19 7.3 9 2.6 29 13
Sample 3:5 0.95 19 6 44 24 29 9.6
RGB box 4.7 1.4 28 6.8 4.5 2.3 45 11
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Fig. 4. Relative distortion results for sequencel with global learning rate

FSCL 1o (¢) ¢ = 16 and (d) ¢ = 256,

applying SCL 1o (a) ¢ =

16 and (b) ¢ = 256, and applying
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Fig. 4. (cont.) Relative distortion results for sequence2 with global

applying FSCL 1o (g) ¢ = 16 and (h) ¢ = 256.

sample2 significantly improves the results over
those given obtained from samplel.

This ratio is of interest to bound the real time
applicability of our algorithms, or the suboptimal
results that can be expected from the use of small
samples imposed by real time constraints. In Table 1
we have gathered the global distortion results that
summarise all the experiments, including the sensi-
tivity to initial conditions, which will be discussed
later. From Table I, it can be seen that the impact
of the sample-to-codebook ratio also depends upon
other elements of the algorithms, such as the initial
conditions and the scheduling of the learning rate.

5.2. The Effect of Learning Rate Scheduling

The effect of the scheduling of the learning rate
can be appreciated by a comparison of the plots in

0.20

2 4 6 8 10 12 14 16 18 20 22 24 26
Imagos

(h)

learning rate applying SCL to (¢) ¢ = 16 and (f) ¢ = 256, and

Fig. 3 with those in Fig. 4. Also in Table 1, we have
a separate subtable for each scheduling strategy. Our
conclusion is that the global scheduling of the learn-
ing rate gives better results than the local scheduling
when the amount of available information increases.
However, as the information becomes scarce, the
local scheduling is more robust and gives better
results. To support this conclusion, observe in
Table 1 that the results of the global scheduling
subtable improve over the corresponding ones of
the local scheduling subtable when sample2 is used
to search for 16 colours, and when applying the
algorithm to seqguence2 (which is smoother than
sequencel) starting from relatively good conditions.

5.3. The Effect of Time Subsampling

As we have said, sequencel was a more coarse
time sampling of the original video sequence. This
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Table 2. Mean per image relative distortion, computed
averaging the entries in Table | and taking into account
the different number of images in each sequence.

Sequencel (18 images) Sequence2 (27 images)

c=16 c=256 c=16 c =256

S17 §7525 A S e S2E IST SO S ST SD
SCL 0.14 0.07 039 0.17 0.16 0.03 0.37 0.17
FSCL 0.19 0.16 037 0.14 0.12 0.13 0.35 0.16

coarseness would lead to more abrupt changes in
distribution, that would make sequénce 1 less apt for
adaptive computation. In Table 2, the mean relative
distortion per image has been computed by averag-
ing the entries in Table I and taking into account
the number of images in each sequence. This table
allows to evaluate the impact of the supposed aug-
mented smoothness of sequence2. It can be seen
from it that other factors have more impact than
the increased smoothness produced by a fine time
sampling.

SCL, Sample1, 16 codevectors, local learning rate
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5.4. Robustness to Initial Conditions

If we, at this point, try to compare SCL results with
FSCL results, the main conclusions are:

1. SCL performs better than FSCL starting from
good initial conditions, and high sample-to-code-
book ratio is available.

2. FSCL is more robust than SCL, as intended, in
the sense that it improves SCL when the algor-
ithm starts from bad initial conditions and the
sample data is scarce.

These conclusions are consistent with the prop-
osition of SCL as a local optimisation procedure,
and of FSCL as a global optimisation procedure.
The global properties of FSCL ensure a good aver-
age result, but starting from good initial conditions,
the pure local algorithm performs better. These con-
clusions are made stronger when considering the
robustness to initial conditions, evaluated in the
second experiment. In Table 1, we present the sum
of relative distortion results of the colour quantis-

SCL, Sample2, 16 codevectors, global learning rate
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Fig. 5. Robustness: relative distortion results of the colour quantisation of experimental sequencel with the 16 colour representatives
computed adaptively by the SCL and FSCL with optimal learning rates for both sample sizes, and various initial conditions.
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Fig. 6. Results of the colour quantisation of image #2, #8, #12, and #20 of the cxperimental sequence? with the 16 colour
representatives (middle images) computed by Heckbert using [ull size images (Time Varying). On the left the quantised images, and

on the right the error images.

ation of entire sequences obtained by applying the
SCL and FSCL (with both global and local learning
rates), starting from various initial colour representa-
tives: the Heckbert colour representatives for image
#1 (Heckbert), a threshold-based selection of the

sample of image #1 (Threshold), random points in
the RGB cube (RGB box) and a random sclection
of samples of image #1 (Sample). The results given
arc the sum of relative distortion through the
sequence excluding image #1. The results are not
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Fig. 7. Results of the colour quanusation of image #2. #8, #12, and #20 of the cxperimental sequence? with the 16 colour
representatives (middle images) computed by Heckbert using #1 image (Time Invariant). On the left the quantised images. and on

the right the error images.

averaged or normalised anyhow regarding the
sequence duration, therefore entries for sequence2
are bigger than those for sequencel. Table 1 shows
that there is a remarkable increment of distortion

results due to initial conditions. The worst case is
the application of the SCL algorithms to search 256
representatives, starting from the RGB box initialis-
ation. Also, the table confirms that FSCL is more
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Fig. 8. Results of the colour quantisation of image #2, #8, #12, and #20 of the experimental sequence2 with the 16 colour
representatives (middle images) computed adaptively by the SCL with local learning rates, using samplel, and Heckbert initial
condition. On the left the quantised images, and on the right the error images.

robust than SCL to very bad initial conditions, but
that their performance is comparable for good and
reasonably good initial conditions. SCL. may even
improve FSCL in very good initial conditions and
numerical circumstances: a large sample and global
scheduling of the learning rate.

In Fig.5 we show some of the responses to
diverse initial conditions in detail. The sequence
considered is sequencel; the number of colour rep-
resentatives is 16. The worst response is in Fig. 5(a)
for SCL using sample! and a local scheduling of
the learning rate. The algorithm tries to approach
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Fig. 9. Results of the colour quantisation of image #2. #8. #12, and #20 of the experimental sequence2 with the 16 colour
representatives (middle images) computed adaptively by the FSCL with local learning rates, using samplel. and Heckbert initial
condition. On the left the quantised images, and on the right the error images.

the response obtained from the Heckbert initial con-  Starting from a medium quality initial condition
dition, starting from the other initial conditions. (Threshold). the SCL recovers from the bad initialis-
Starting from a good initial condition (Sample), the  ation after some 14 images. Finally, the worst initial
SCL gives the same response after five images.  condition (RGB box) cannot be recovered in the
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Fig. 10. Results of the colour quantisation of image #2. #8. #12. and #20 of the experimental seguence2? with the 16 colour
representatives (middle images) computed adaptively by the SCL with local learning rates, using samplel, and RGBbox initial condition.
On the left the quantised images. and on the right the error images.

duration of the sequence. On the other hand, the  or three images in the one corresponding to the best
best case is that of Fig. 5(d); with sample2 and the  initial condition. FSCL will be more tobust than
global learning rate that recovers from the bad initial ~ SCL, in the sense that the effect of bad initial
conditions very fast, its response collapses after two  codebooks is recovered faster by FSCL than by
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Fig. 11. Results of the colour quantisation of image #2, #8. #12, and #20 of the experimental sequence2 with the 16 colour
representatives (middle images) computed adaptively by the FSCL with local learning rates. using samplel. and RGBbox initial
condition. On the left the quantised images, and on the right the error images.
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SCL, under the same numerical settings. This can
be appreciated comparing Figs 5(a), (b) with
Figs 5(c), (d).

5.5. Visual Results

To give a visual qualitative appreciation of the
colour quantisation results, Figs 6-11 show the
results of colour quantisation to 16 colour represen-
tatives on images #2, #8, #12 and #20 of sequence2,
under the application of some instances of the algor-
ithms discussed in the paper, These images were
selected because they show the sharper transition of
colour distribution. For each image we show the
colour quantised image (left), the colour representa-
tives found by the algorithm (colour bars in the
middle), and colour quantisation error (right) as a
colour image obtained from the error in each colour
axis. Figures 6 and 7 give the visual results of
the Time Varying and Time Invariant application,
respectively, of the Heckbert algorithm over the
entire image. The suboptimality of the latter is
appreciable from the inspection of the quantised
images (left). The inspection of the error images
(right) shows the increase in magnitude of the error
of the Time Invariant relative to the Time Varying
strategy, as time goes on.

Figures 8 and 9 show, respectively, the results of
the application of SCL and FSCL using the optimal
initial conditions (Heckbert) and the small sample
of each image. It can be appreciated that the visual
differences between the quantised images (left)
obtained from SCL and FSCL are almost negligible.
However, looking at the colour representatives
shown in the middle colour bars, it can be appreci-
ated that the yellow colour representative is not
changed by SCL (Fig. 8, middle), although it is not
used in the codification. This yellow colour does
correspond to a stuck codevector, that it is not
changed by SCL along the whole sequence. The
colour representatives of FSCL (Fig. 9, middle) fol-
low more closely those found by the Heckbert Time
Varying application.

To illustrate the relative increase of robustness to
initial conditions of FSCL over SCL, Figs 10 and
11 show, respectively, the results of their application
using the worst initial condition (RGB box) and the
small sample of each image. The existence of stuck
codevectors is conspicuous in Fig. 10, while the
colour representatives computed by FSCL in Fig. 11
behave similar to those shown in Fig. 9, and again
follow better the optimal colour representatives com-
puted by the Time Varying Heckbert shown in
Fig. 6. The error images in Fig. 11 produced by

A.lL Gonzalez et al.

FSCL are more smooth and of lesser magnitude
than those produced by SCL in Fig. 10. The visual
difference of the quantised images obtained from
SCL and FSCL is not so noticeable.

Regarding the visual evaluation of the results, we
can conclude that the adaptive neural algorithms
improve significatively over the stationary solution
given by the Time Invariant Heckbert algorithm.
Despite the existence of stuck codevectors, SCL
give visual results with a quality similar to the
visual results of FSCL.

2. Conclusions

Non-stationary colour quantisation is the problem
of finding optimal colour representatives in image
sequences. It has been put into the framework of
non-stationary clustering problems, and two basic
competitive neural network architectures have been
proposed as one-pass adaptive vector quantisation
methods to solve the problem. The solution provided
by the CNN is able for real time implementation,
given its O(d.n.c) computational cost, versus the
O(k?) cost of the Heckbert algorithm. Besides real
time considerations, these cost figures imply the
CNN methods can be applied to higher dimensional
instances of non-stationary clustering problems (i.e.
hyperspectral images). In this paper, we have con-
centrated on two basic CNN architectures: SCL
and FSCL, trying to assess their performance and
numerical sensitivities. This work will be of interest
in understanding and anticipating the response of
other CNN architectures on this problem.

We have found that both SCL and FSCL show
some sensitivity to the number of colour representa-
tives searched (the size of the codebook). This is
expected to be a general sensitivity, and has been
also found in other CNN architectures. We have
studied the response to changes in sample size, and
the implicit generalisation ability of SCL and FSCL.
A convenient ratio between sample size and code-
book size is 100:1. We have studied the effect of
local versus global scheduling of the learning rate,
finding that the latter is more efficient when there
is a surplus of training data, whereas the former
provides an additional robustness when the data is
scarce. Finally, we have tested the response of both
SCL and FSCL to suboptimal initial conditions,
finding that the FSCL strategy of looking for uni-
form quantisers provides greater robustness to bad
initial conditions. Our conclusion is that one-pass
application of CNN can be a successful family of
adaptive vector quantisation, qualified for real-time
and high dimensional applications.
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