
Contributions to Unsupervised and Supervised Learning
with Applications in Digital Image Processing

Ana I. González Acuña

Department of Computer Science and Artificial Intelligence
The University of the Basque Country

PhD Advisor: D. Manuel Graña Romay

2012



Contents

1 Introduction and overview of Thesis contributions

2 Non-Stationary Clustering

3 Convergence of the SOM from the point of view of GNC

4 Relevance Dendritic Computing

5 Summary

2 / 99



Introduction and overview of Thesis contributions

Section Contents

1 Introduction and overview of Thesis contributions
Unsupervised learning
Supervised learning

3 / 99



Introduction and overview of Thesis contributions Unsupervised learning

1 Introduction and overview of Thesis contributions
Unsupervised learning
Supervised learning

4 / 99



Introduction and overview of Thesis contributions Unsupervised learning

Unsupervised learning

Non-Stationary Clustering
Generalized Learning Vector Quantization
Local Stochastic Learning Rule
Evolution Strategy
Occam filters to determine optimal codebook size
Convergence analysis of the SOM in the GNC theory context

5 / 99



Introduction and overview of Thesis contributions Unsupervised learning

Non-Stationary Clustering

State the problem of Non-Stationary Clustering and related Adaptive
Vector Quantization in the context of Color Quantization of image
sequences.
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Introduction and overview of Thesis contributions Unsupervised learning

Generalized Learning Vector Quantization

Detailed empirical and analytical study of the convergence properties of
an unsupervised learning rule, the Generalized Learning Vector
Quantization.

Proposed by Pal, Bezdek & Tsao as a generalization of the SCL
algorithm with superior insensitivity to the initial conditions.
GLVQ sensitivity to the number of clusters and the input space scale.
Conditions for inconsistent and undesired behaviour of GLVQ.
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Local Stochastic Learning rule

Formulation and demonstration of a Local Stochastic Learning Rule
(LSLR).

Variation of the SCL based on Local Stochastic Competition
(LSC) decision for the encoding phase of VQ.
Discussion of convergence of the LSC to the Nearest Neighbor
assignment.
A great potential for speeding up the codification process, with an
affordable loss of codification quality.
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Introduction and overview of Thesis contributions Unsupervised learning

Evolution Strategy I

Formulation of a Michigan-like Evolution Strategy for Clustering.

Specific representation of the problem, where all the population
represents a complete solution, each individual chromosome
represents a component of the solution.
Existence of a global fitness function for the entire population, on
top of the individual fitness functions.
Mutation is the only operator that introduces evolution-like
variability.
Greedy selection operators extract the next population from the
pool of parents and offspring
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Evolution Strategy II

Application of Evolution Strategies:

Design of vector quantizers applied to the Color Quantization of
image sequences.
Design of VQ Bayesian Filters applied to noise removal and region
segmentation of Magnetic Resonance Imaging data.
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Occam filters to determine optimal codebook size

Application of an Occam filter approach to determine de optimal number
of clusters in an application of the VQ Bayesian Filters.

Occam filters use the fact that signal noise can be cancelled out by
the signal loss produced by a lossy compression algorithm. Seeks the
balance between the noise cancelation and the signal loss.
In VQBF, the compression control parameter is the codebook
size. Tuning this parameter to obtain noise cancellation is
equivalent to determine the number of classes.
Optimal codebook size is the inflexion point of a rate-distortion
curve, computed using SOM.
Test in a unsupervised segmentation process on a 3D MRI data.
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Convergence analysis of the SOM in the GNC theory context

Discussion of the convergence of the Self Organizing Map and Neural
Gas from the point of view of Graduated Non-Convexity methods.
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Supervised SOM for color face localization
Vector Quantization Bayesian Filtering for MRI tissue segmentation
High Order Boltzmann Machines
Relevance Dendritic Computing
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Introduction and overview of Thesis contributions Supervised learning

Supervised SOM for color face localization

Development of a color based face localization system.

Algorithm for face localization in image sequences:
I First stage: Localize the head region based on the analysis of the
signatures of temporal difference images.

I Second stage: Provide confirmation of the head hypothesis through
the color analysis of the head subimage.

Color analysis as a Color Quantization process: color representatives
are computed through a supervised version of the SOM.
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Introduction and overview of Thesis contributions Supervised learning

VQBF for MRI tissue segmentation

Application of Vector Quantization Bayesian Filtering (VQBF) to the
supervised segmentation in 3D Magnetic Resonance Images (MRI) of a
region of interest (ROI).

Hybrid System:
I Filtering layer: VQBF performs an unsupervised preprocessing of

the image to reduce signal variability across individual data
volume. We use SOM to compute codebook required by VQBF.

I Supervised Classification layer: Multi-Layer Perceptron is applied to
VQBF-slices giving a prediction of the ROI. Ground truth is
stablished over some selected slices where ROI is manually drawn.
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Introduction and overview of Thesis contributions Supervised learning

High Order Boltzmann Machines

Generalization of the learning rule of the HOBM.

Use of categorical and continuous units to reduce network
complexity and speedup of the learning process.
Use of high order connection to model high order interactions
between variables instead of hidden units.
Without hidden units, the Kullback-Leibler divergence is a convex
function, therefore, learning is robust against bad initial conditions.
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Relevance Dendritic Computing

Application of the Sparse Bayesian Learning to the Dendritic Computing
to obtain Relevant Dendritic Computing parsimonious classifiers.
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Presentation organization

Selected contributions:

Non-Stationary Clustering
Convergence analysis of the SOM and NG in the GNC theory context
Relevance Dendritic Computing

Conclusions at the end of each sections
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Non-Stationary Clustering Introduction

Introduction

Definition of problem: Non-Stationary Clustering / Vector
Quantization
Solution: Competitive Neural Networks as Adaptive VQ algorithms
Application: Color Quantization of image sequences
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Non-Stationary Clustering Non-Stationary Clustering

Non-Stationary Clustering I

Given a sequence of sample datasets of the time varying population

X (τ) = {x1 (τ) , . . . , xN (τ)} ; τ = 0, 1, . . .

obtain a sequence of disjoint partitions of the input space with
corresponding induced sequence of sets of disjoint clusters on the sample
datasets

P (X (τ)) = {X1 (τ) , . . . ,XM (τ)}

minimizing a criterium function along time

ξ =
∑
τ≥0

ξ (τ)
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Non-Stationary Clustering II

A solution
Y (τ) = {y1 (τ) , . . . , yM (τ)}

where input space partitions are:

xj (τ) ∈ Xi (τ)⇔ i = arg min
k=1,...,M

{
‖xj (τ)− yk (τ)‖2

}
At each time step, the criterium function is the within-cluster distortion:

ξ (τ) =
N∑

j=1

M∑
i=1

‖xj (τ)− yi (τ)‖2 δi (xj (τ) ,Y (τ))

δi (xj (τ) ,Y (τ)) =

{
1 i = arg min

k=1,...,M

{
‖xj (τ)− yk (τ)‖2

}
0 otherwise
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Non-Stationary Clustering Non-Stationary Clustering

Non-Stationary Clustering III

Search for a sequence of codebooks

Y (τ) = {y1 (τ) , . . . , yM (τ)}

minimizing:

min
{Y(τ)}

∑
τ≥0

ξ (τ)
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Non-Stationary Clustering Non-Stationary Clustering

Frame-Based Adaptive Vector Quantization

To solve the previous stochastic minimization problem, we propose
adaptive algorithms based in two simplifying assumptions:

1 Time independence: The minimization of the sequence of time
dependent error function can be done independently at each time
step.

min
{Y(τ)}

∑
τ≥0

ξ (τ) =
∑
τ≥0

min
{Y(τ)}

ξ (τ)

2 Bounded variation of the optimal codebook between
successive time steps. Then the set of representatives obtained
after adaptation in a time step can be used as the initial conditions
for the next time step.

Y (τ, 0) = Y (τ − 1,N)
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FBAVQ procedure
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Non-Stationary Clustering Competitive Neural Networks

Competitive Neural Networks I

CNN algorithms are adaptive algorithms performing stochastic gradient
descent (SGD) on a distortion-like criterium function to solve
Clustering/VQ problems.

Simple Competitive Learning (SCL) is the basic competitive learning
rule derived from the minimization of the Euclidean distortion.
Self-Organizing Maps (SOM), Fuzzy Learning VQ (FLVQ), Neural
Gas (NG) and Soft Competition Scheme (SCS) are instances of a
general competitive learning rule.
These CNN are robust initialization procedures for the SCL when
the goal is the minimization of the Euclidean distortion
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Non-Stationary Clustering Competitive Neural Networks

Competitive Neural Networks II

General competitive learning rule for CNN :

yi (t + 1) = yi (t) + αi (t) Φi (x (t) ,Y (t) , t) (x (t)− yi (t))

where
x (t) ∈ X: set of sample vectors,
yi (t) ∈ Y: codebook,
αi (t): (local) learning rate,
Φ (.): neighboring function.
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Non-Stationary Clustering Competitive Neural Networks

Neighboring function

SCL: Φi (x,Y, t) = δi (x,Y) =

{
1 i = arg min

k=1,...,M

{
‖x− yk‖2

}
0 otherwise

SOM: Φi (x,Y, t) =

{
1 |w (x,Y)− i | ≤ v (t)
0 otherwise

NG: Φi (x,Y, t) = e(−ki (x,Y)/λ(t))

FLVQ: Φi (x,Y, t) = (ui (x,Y))m(t) =

(
M∑

k=1

(
‖x−yi‖2

‖x−yk‖2

) 1
m(t)−1

)−m(t)

SCS: Φi (x,Y, t) = e−
1
2‖x−yi‖2σ(t)−2

(∑M
k=1 e−

1
2‖x−yk‖2σ(t)−2

)−1
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Non-Stationary Clustering Competitive Neural Networks

Functional convergence I

The general learning rule perform a cascade of minimizations over a
sequence of objective functions

ξΦ (t) =
M∑
i=1

ˆ ˆ
−Φi (x,Y, t) (x− yi ) p (x) dyidx

The limit of this sequence of objective functions will be determined by
the limit of their respective neighboring functions:

lim
t→∞

Φi (x,Y,t) = Φ∗i (x,Y) =⇒ lim
t→∞

ξΦ (t) = ξΦ∗

The application of the general learning rule is, therefore, a minimization
procedure for the limit objective function ξΦ∗ .
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Non-Stationary Clustering Competitive Neural Networks

Functional convergence II

Functional convergence is controlled by the specific annealing control
parameter of the neighboring function

lim
t→∞

Φi (x,Y, t) = δi (x,Y)

Functional convergence to the Euclidean distortion:

lim
t→∞

ξΦ(·) (t) ≈ ξ2E
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Non-Stationary Clustering Competitive Neural Networks

Learning realizations

Online and batch realizations:
Input data set is presented several times
Control parameters are modified after each input data set
presentation

Adaptation of codebook:
Online realization: after each input data sample presentation
Batch realization: after presentation of the whole input data set
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Non-Stationary Clustering Competitive Neural Networks

One-pass learning realizations

To approach real time performance we impose a one-pass adaptation at
each time step, and small sample datasets.

One-pass online realization:
Each input data is presented at most once
Control parameters are modified after each input data sample
presentation
Adaptation of codebook after each input data sample presentation
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Non-Stationary Clustering Competitive Neural Networks

Scheduling of learning rate

The local learning rate schedule for each unit i = 1, ..,M

αi (t) = 0.1 (1− ti/N)

The global learning rate schedule has the same value for all units

α (t) = α0

(
αN

α0

) t
N
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Non-Stationary Clustering Competitive Neural Networks

Scheduling of neighborhood size

The rate of functional convergence to the null neighborhood is
denoted r .

Φi (x,Y, t) = δi (x,Y) t ≥ N
r

Scheduling of the neighborhood control parameter
(
t < N

r

)
:

SOM: v (t) =
⌈

(v0 + 1)(1− r
N t)
⌉
− 1

NG: λ (t) = λ0

(
0.01
λ0

) r
N t

FLVQ: m (t) = m0

(
1.1
m0

) r
N t

SCS: σ (t) = (σ0 + 1)(1− r
N t) − 1
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Non-Stationary Clustering Applications

Color Quantization

Vector Quantization in a color space (RGB)

Encoder:

C : f (x , y) ∈ [0, 1]3 → f M (x , y) ∈ {1, . . . ,M}

Decoder:
f̂ (x , y) = yi ⇔ f M (x , y) = i .

Quality measure:

E =
∑
x ,y

∥∥∥f̂ (x , y)− f (x , y)
∥∥∥2
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Non-Stationary Clustering Applications

Non-Stationary Color Quantization I

Given an image sequence

{fτ (x , y) ; τ = 1, 2, . . .}

the searched partitions are the CQs of the images in the sequence{
f M
τ (x , y) ; τ = 1, 2, . . .

}
and the infinite time horizon criterion function is the accumulative CQ
distortion

E =
∑
τ≥0

E (τ) =
∑
τ≥0

∑
x ,y

∥∥∥f̂τ (x , y)− fτ (x , y)
∥∥∥2
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Non-Stationary Clustering Applications

Non-Stationary Color Quantization II

Non-Stationary CQ looks for the optimal sequence of color palettes

Y (τ) = {y1 (τ) , . . . , yM (τ)}

minimizing the accumulated CQ distortion using AVQ algorithms

min
{Y(τ)}

∑
τ≥0

E (τ)
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Non-Stationary Clustering Experimental Results

Dataset example
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Non-Stationary Clustering Experimental Results

Benchmark results I

Benchmark non adaptive algorithm: Minimum Variance Heckbert’s
algorithm

Application to the entire images in the sequence in two ways:
I Stationary assumption: the color representatives obtained for the

first image are used for the CQ of the remaining images in the
sequence (Time Invariant Min Var )

I Non-stationary assumption: applying it to each image
independently (Time Varying Min Var )
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Non-Stationary Clustering Experimental Results

Benchmark results II

16 256
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Non-Stationary Clustering Experimental Results

Experiments

Experimental results report a sensitivity analysis to:
Neighboring function control parameters
Convergence ratio to SCL
Initial conditions
Codebook size
Time subsampling
Sample size
Learning rate scheduling
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Non-Stationary Clustering Experimental Results

Sensitivity to neighboring function control parameters

Accumulated distortion results
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Non-Stationary Clustering Experimental Results

Robustness to initial conditions

Per image distortion results
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Non-Stationary Clustering Experimental Results

Sensitivity to codebook size

Per image distortion results (samples of 1600 pixels)
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Non-Stationary Clustering Experimental Results

Sensitivity to sample size

Per image distortion results using sequences of samples of diverse size
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Non-Stationary Clustering Conclusions

Conclusions

Proposition of Non-Stationary Clustering, with a paradigm
demonstration, the CQ of image sequences.
Proposal of a general approach to their solution, the Frame-Based
Adaptive VQ.
Formulation of the most important CNN in a common framework as
instances of a general competitive learning rule
Implementation of one-pass realizations of learning schedules for
CNN
Exhaustive test of the CNN on the CQ of image sequences, proving
the robustness of the FBAVQ performed by the CNN.
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Convergence of the SOM from the point of view of GNC Introduction

Introduction I

Convergence of the SOM and NG is usually contemplated from the
point of view of stochastic gradient descent (SGD) algorithms of an
energy function.

SGD algorithms have slow convergence rate, they are local
minimization algorithms and thus very dependent on the initial
conditions.
However SOM and NG can be very insensitive to the initial
conditions.

The empirical evidence leads us to propose the theory of Graduated
Non-Convexity (GNC) methods as framework of the convergence
analysis of the SOM and NG.
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Convergence of the SOM from the point of view of GNC Introduction

Introduction II

GNC algorithms try to solve the minimization of a non-convex objective
function by the sequential search of the minima of a one-parameter
family of functionals, which are morphed from a convex function up to
the non-convex original function.

In the SOM and NG the neighborhood control parameters may
be understood as performing the role of graduating the
non-convexity of the energy function minimized by the algorithm.
The training of both the SOM and the NG can be seen as a
continuation process of the minimum of a sequence of energy
functions starting from a convex one and ending with the highly
non-convex quantization distortion function.
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Convergence of the SOM from the point of view of GNC SOM and NG as GNC algorithms

Graduated Non-Convexity definitions

Let a sampled surface corrupted by additive noise,

M (x) = D (x) + N (x)

GNC approach seeks the MAP estimate of

p (R = D |M )

obtained minimizing the energy:

E [R] = − log p (M |D = R )− log p (D = R) = Ed[R]+Es[R]

GNC function general formulation:

E [R] =
∑
x

(M (x)− R (x))2 + fσ (R)
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Convergence of the SOM from the point of view of GNC SOM and NG as GNC algorithms

GNC definitions

GNC method:
Define a one-parameter family of functionals Eσ [R], σ ∈ [0, 1]

I Initial functional Eσ=1 [R] is convex
I Eσ [R] varies continuously as σ decreases from 1 to 0
I Final functional Eσ=0 [R] = E [R] is the original function to be

minimized

Minimization of the whole sequence of functionals, using de optimal
vector result of one minimization as the initial condition for the next.
No bifurcations in the continuation process to track the global
minimum of the initial functional to a global minimum of the target
functional.
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Convergence of the SOM from the point of view of GNC SOM and NG as GNC algorithms

SOM functional

Original functional:

ESOM (X,Y, v) =
M∑
i=1

N∑
j=1

Φi (xj ,Y, v) ‖xj − yi‖2

Φi (x,Y, v) =

{
1 |w (x,Y)− i | ≤ v
0 otherwise

Reorganized:

ESOM (X,Y, v) =
N∑

j=1

∥∥∥xj − yw(xj)

∥∥∥2
+

N∑
j=1

M∑
i = 1

i 6= w (xj)

Φi (xj ,Y, v) ‖xj − yi‖2
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Convergence of the SOM from the point of view of GNC SOM and NG as GNC algorithms

NG functional

Discretized functional:

Eng (X,Y, λ) =
1

2C (λ)

M∑
i=1

N∑
j=1

Φi (x,Y, λ) ‖xj − yi‖2 ,

Reorganized:

Eng (X,Y, λ) =
N∑

j=1

∥∥∥xj − yw(xj)

∥∥∥2
+

N∑
j=1

M∑
i = 1

i 6= w (xj)
,

Φi (xj ,Y, λ) ‖xj − yi‖2
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Convergence of the SOM from the point of view of GNC SOM and NG as GNC algorithms

Convexity of SOM and NG initial functionals

Conditions for convexity, regarding the neighborhood parameters

∇2
i ESOM (X,Y, v) =

1
2

N∑
j=1

Φi (xj ,Y, v)

∀X;∀i ;∇2
i ESOM (x,Y, v) > 0.

For SOM, setting the neighborhood radius to encompass the whole
network ensures that condition.
NG neighborhood function is always positive, thus any non zero
temperature will ensure theoretical convexity.
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Convergence of the SOM from the point of view of GNC SOM and NG as GNC algorithms

Continuation process of SOM and NG functionals

Absence of bifurcations in the continuation process:

NG, successive functionals minimized are convex up to the limit of
neighbouring control parameter.
SOM, this is not demonstrated.
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Convergence of the SOM from the point of view of GNC Experimental results

Experimental results

Experimental results to stress the idea that SOM and NG must be
considered as a kind of GNC algorithms.

Comparison of conventional online and batch realizations versus one-pass
realization.
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Convergence of the SOM from the point of view of GNC Experimental results

Evolution of the distortion

67 / 99



Convergence of the SOM from the point of view of GNC Experimental results

Distortion and computation efficiency

SOM: Online SOM NG: Online NG

BSOM: Batch SOM BNG: Batch NG

SOMOP: One-pass SOM NGOP: One-pass NG
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Convergence of the SOM from the point of view of GNC Conclusions

Conclusions

One-pass realization can obtain competitive performance in terms
of distortion, and much better in terms of computational efficiency.
Training of the SOM and the NG can be seen as a continuation of
the minimization process over a sequence of functionals tuned by
the neighborhood control parameter.
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Relevance Dendritic Computing Introduction

Introduction

Motivation: Improve generalization of Dendritic Computing (DC)
Framework: Sparse Bayesian Learning –> Relevance Vector
Machines (RVM)
Proposition: Relevance Dendritic Computing (RDC) embedding
DC in SBL
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Relevance Dendritic Computing Dendritic Computing

Dendritic Computing

Dendritic Computing ⊂ Lattice Computing

Single Neuron Lattice model with DC :
computes a perfect approximation to any data distribution
suffers from over-fitting problems
lack of regularization
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Relevance Dendritic Computing Dendritic Computing

Single Neuron Lattice model with DC

Given (
xξ, cξ

)
, xξ ∈ Rd , cξ ∈ {0, 1} , ξ = 1, ...,m

Response of the j-th dendrite:

τj

(
xξ
)

= pj
∧
i∈Ij

∧
l∈Lij

(−1)1−l
(
xξi + w l

ij

)
Complete neuron activation:

τ
(
xξ
)

=

j∧
k=1

τk

(
xξ
)

Output classification prediction:

ĉξ = f
(
τ
(
xξ
))
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Relevance Dendritic Computing Dendritic Computing

Algorithm learning

The neuron activation function τj
(
xξ
)
has not derivatives defined.

To develop learning algorithms is not possible to apply gradient based
approaches.

An alternative is use constructive learning algorithms.
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Relevance Dendritic Computing Dendritic Computing

Algorithm learning
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Relevance Dendritic Computing Sparse Bayesian Learning

Sparse Bayesian Learning

Sparse Bayesian Learning is a general Bayesian framework for obtaining
sparse solutions to regression and classification tasks.

A popular instance of this approach is the Relevance Vector Machine
(RVM).
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Relevance Dendritic Computing Sparse Bayesian Learning

Model specification I

Given a binary classification problem, where {xn, tn}Nn=1 are the training
input-target class pairs, tn ∈ {0, 1}.

The linear model function is:

y (x;w) =
N∑

i=1

wiK (x, xi ) + w0

To obtain a prediction of the a posteriori probability of class 1

p(t = 1|x) = σ (y (x;w)) , σ (y) = 1
1+e−y
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Relevance Dendritic Computing Sparse Bayesian Learning

Model specification II

Dataset likelihood:
P (t |w )

A priori distribution probability of the parameters w :

p (w |α)

A priori non-informative distribution probability of hyperparameters α:

p (α)
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Relevance Dendritic Computing Sparse Bayesian Learning

Bayesian inference

Estimation of the model parameters and hyperparameters corresponds to
the computation of the posterior distribution:

p (w,α |t) = p (w |t,α) p (α |t)

where
p (w |t,α) ∝ p (t |w ) p (w |α)

p (α |t) ∝ p (t |α) p (α)
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Relevance Dendritic Computing Relevance Dendritic Computing

Relevance Dendritic Computing I

Rewrite the dendritic neuron activation similar to a linear model
function

τ (x) =
N∧

n=1

λn (x, xn)

where λk (x, xn) assumes the role of a lattice-based kernel function

λn (x, xn) =
d∧

i=1

(xi − xn,i )πn,i

The factor πn,i ∈ {−1, 1,∞} models the contribution of the i-th
component of the n-th sample training vector to the neural activation
function
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Relevance Dendritic Computing II

Gaussian prior distributions of the weights must be formulated over the
inverses of the weights:

w ≡
{
π−1n,i

}
= 1/π

p (w |α) =
N∏

n=1

d∏
i=1

N
(
π−1n,i

∣∣∣0, α−1n,i

)
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RDC algorithm
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Experimental results I

accuracy sensitivity specificity #rel. par.
RDC 0.89 0.86 0.92 2
RVM 0.90 0.87 0.92 6

Test results on the Ripley dataset (provided by Tipping)
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Experimental results II

RVM (6) RDC (2)
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Conclusions

Application of Sparse Bayesian Learning to a new kind of
classification systems based on Dendritic Computing.
Lattice kernel classification model.
RDC finds comparable results with much more parsimonious
models than RVM.
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Summary

Summary

Several contributions to unsupervised and supervised learning:

Proposition of a paradigm of Clustering problems, the
Non-Stationary Clustering
Presentation of a framework for the analysis of the convergence
of SOM and NG.
Application of the Sparse Bayesian Learning to the Dendritic
Computing to obtain Relevant Dendritic Computing classifiers.

Further work: Improve RDC, trying different lattice-based kernel
functions and other optimization techniques
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