Hybrid approach for the Public Transportation Time Dependent Orienteering Problem with Time Windows Ander Garcia, Olatz Arbelaitz, Pieter Vansteenwegen, Wouter Souffriau and Maria Teresa Linaza

vicomtech

visual interaction communication technologies

Ander Garcia Researcher

agarcia@vicomtech.org

INDEX

- 1. Introducción
- 2. Tourist route generation
- 3. Time Dependent Orienteering Problem with Time Windows
- 4. Validation
- 5. Conclusions

Vicomtech

- * Applied Research Technology Centre in Computer Graphics, Multimedia and Telecommunications (*non for profit Association*)
- *****+ 80 Researchers (17 PhD., engineers, informatics,)
- * Located in the San Sebastian Technology Park since 2001
- * Founded by

- 1. Tourists enter the Local Tourist Office (LTO) and talk about their profile and restriction
- 2. LTO's staff combine this information with their up-to-date knowledge about the local environment to create personalized routes

- *** Problems:**
 - * Not updatable
 - ***** Human resources
 - * Restricted by opening hours

Tourist route generation

INI-GraphicsNet

Tourist route generation

PUBLIC TRANSPORT

Time Dependent Orienteering Problem with Time Windows

Time Dependent Orienteering Problem with Time Windows

- ***** Includes public transportation
- * Hybrid approach to solve it in real time:
 - ***** Offline:
 - ***** Time Dependency:
 - * Precalculation of transportation time
 - * Real time
 - ***** Orienteering Problem with Time Windows

Time Dependent Orienteering Problem with Time Windows

* Offline * Time Dependent Dijkstra's Shortest Path

Time Dependent Orienteering Problem with Time Windows

- * Offline
- * We calculate the travel time between all the possible pairs of POIs with leave time steps of 1 minute
- * We calculate the average travel time for each pair of POIs
- We store the travel time
- * 90 minutes on a PC Intel Core 2 Quad with 2.40 GHz processors and 2 GB Ram

Time Dependent Orienteering Problem with Time Windows

- * Real Time
- * Based on Vansteenwegen et al. [3].
- * We use the average travel times

procedure Iterated Local Search

- ← GenerateInitialSolution
- ← LocalSearch

repeat

- ← Perturbation
- ← LocalSearch
- $\leftarrow AcceptanceCriterion \\ \textbf{until termination condition met}$

end

Time Dependent Orienteering Problem with Time Windows

- * Real Time
- * Repair procedure to include the real travel time between the POIs of the route

Algorithm 2: Diagram of the repair procedure

Validation

	startId	2 hours			4 hours		6 hours		8 hours	
		score	#	CPU(s)	score $\#$	CPU(s)	score #	CPU(s)	score $\#$	CPU(s)
	1	235	3	0.0	1035 14	0.1	1415 19	0.1	1745 23	0.2
	2	530	7	0.0	1070 14	0.1	1485 20	0.1	1795 24	0.2
	3	600	8	0.0	$1115 \ 15$	0.1	1485 20	0.1	$1715\ 23$	0.2
	4	605	8	0.0	$1145 \ 15$	0.1	1485 20	0.1	1800 24	0.2
	5	530	7	0.0	$1070 \ 14$	0.1	1470 20	0.1	1810 24	0.2
	6	750	10	0.0	$1195 \ 16$	0.1	1485 20	0.1	1790 24	0.2
	7	500	7	0.0	$1035 \ 14$	0.1	1455 20	0.1	1770 24	0.2
	8	650	9	0.0	$1115 \ 15$	0.1	1485 20	0.1	$1775\ 24$	0.2

Validation

Around 70 minutes of walking time, 20 minutes of bus time and 8 minutes of waiting time for the bus

INI-GraphicsNet

17

Validation

- ***** Planned within Summer 2010
- * Demo: video

Concussions

- * Hybrid approach for the TDOPTW
 - *** Offline:**
 - ***** Time Dependency:
 - * Precalculation of transportation time
 - * Real time
 - ***** Orienteering Problem with Time Windows
- Future steps:
 - * Test the approach in Time Dependent scenarios:
 - * Multimodal freight transportation
 - * Optimize offline algorithm

QUESTIONS

ESKERRIK ASKO

MUCHAS GRACIAS

www.vicomtech.org