A Survey of Active Learning Algorithms for Supervised Remote Sensing Image Classification

Devis Tuia, *Member, IEEE*, Michele Volpi, *Student Member, IEEE*, Loris Copa, Mikhail Kanevski, and Jordi Muñoz-Marí

Overview

- Defining an efficient **training set** → Fundamental phase for classification
- Active learning aims at building efficient training sets by iteratively improving the model performance through sampling.
- A user-defined heuristic ranks the unlabeled pixels according to a function of the uncertainty
- This paper reviews and tests the main families of active learning algorithms:
 - 1. committee,
 - 2. large margin,
 - 3. posterior probability-based

1. CONCEPTS AND DEFINITIONS

Algorithm 1: General active learning algorithm

Inputs

- Initial training set $X^{\epsilon} = \{\mathbf{x}_i, y_i\}_{i=1}^l \ (X \in \mathcal{X}, \epsilon = 1).$ Pool of candidates $U^{\epsilon} = \{\mathbf{x}_i\}_{i=l+1}^{l+u} \ (U \in \mathcal{X}, \epsilon = 1).$
- Number of pixels q to add at each iteration (defining the batch of selected pixels S).
- 1: repeat
- 2: Train a model with current training set X^{ϵ} .
- 3: for each candidate in U^{ϵ} do
- Evaluate a user-defined *heuristic*
- 5: end for
- Rank the candidates in U^{ϵ} according to the score of the heuristic
- Select the q most interesting pixels. S^ε = {x_k}^q_{k=1}
- The user assigns a label to the selected pixels. $S^{\epsilon} = \{\mathbf{x}_k, y_k\}_{k=1}^{T}$
- 9: Add the batch to the training set $X^{\epsilon+1} = X^{\epsilon} \cup S^{\epsilon}$.
- Remove the batch from the pool of candidates $U^{\epsilon+1} = U^{\epsilon} \backslash S^{\epsilon}$
- 11: $\epsilon = \epsilon + 1$
- until a stopping criterion is met.

2. COMMITTEE-BASED ACTIVE LEARNING

☐ The first family of active learning methods quantifies the uncertainty of a pixel by considering a committee of learners

3. LARGE-MARGIN-BASED ACTIVE LEARNING

- ☐ The second family of methods is specific to margin-based classifiers (SVM)
 - the points more likely to become support vectors are the ones lying within the margin of the current model

3. POSTERIOR PROBABILITY BASED ACTIVE LEARNING

The third class of methods uses the estimation of posterior probabilities of class membership (i.e., $p(y \mathbf{x})$) to rank the candidates.

4. DATASETS

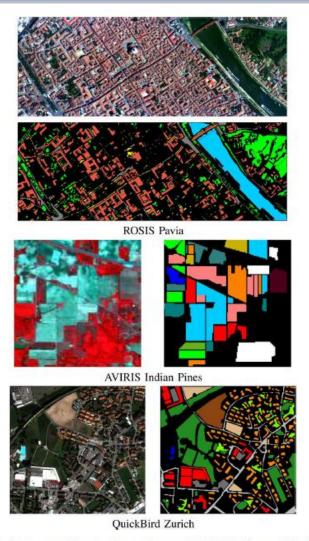
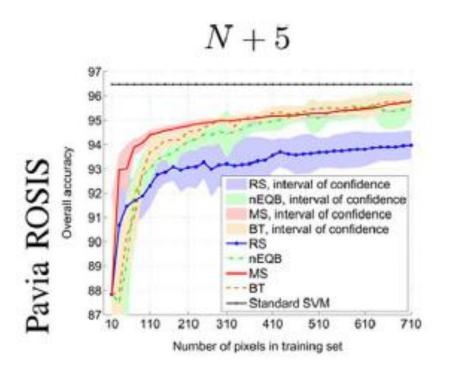


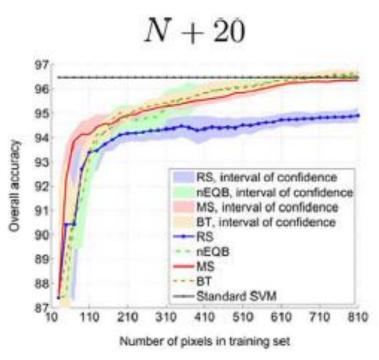
Fig. 2. Images considered in the experiments: (top) ROSIS image of the city of Pavia, Italy (bands [56-31-6] and corresponding ground survey); (middle) AVIRIS Indian Pines hyperspectral data (bands [40-30-20] and corresponding ground survey); (bottom) QuickBird multispectral image of a suburb of the city of Zurich, Switzerland (bands [3-2-1] and corresponding ground survey).

5. EXPERIMENTAL SETUP

- ☐ In the experiments, **SVM classifiers with RBF kernel** and LDA classifiers have been considered for the experiments.
- ☐ When using SVM, free parameters have been optimized by **five-fold cross validation** optimizing an accuracy criterion.
- ☐ The active learning algorithms have been run in two settings, adding N+5 and N+20 pixels per iteration.

6. NUMERICAL RESULTS





5. CONCLUSION

☐ A series of heuristics have been classified by their characteristics into three families.

- ☐ Active learning has a strong potential for remote sensing data processing.
- ☐ Some recent examples can be found in the active selection of unlabeled pixels for semi-supervised classification.