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1. Introduction

» \Well known control schemas as PID
controllers could have problems to control
some systems.

» There are techniques that emulate the
human brain that could control these
systems: Model Predictive Control.

e These techniques have some drawbacks:
they are very computational expensive.




2. Objectives

 Use Predictive Controllers to control
complex systems that classics controllers
can’t.

« The main objective Is get a computational
Inexpensive implementation of Predictive
Controllers.

 Get a fast and cheap implementation.
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“Model Predictive Control (MPC)

* |Is it really necessary?

« \We tried to control a system using a discrete
version of PID:

Uppp () = K{e(t)qt%jot e(t)dt+T, de_()}

dt
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“Model Predictive Control (MPC)

 Parameter adjust: Ziegler-Nichols
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I\/Iodel Predictive Control (MPC)

« Example: H(z)=z_05 (stable)
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“Model Predictive Control (MPC)

e |t works like human brain:

— It doesn’t use past error between the output of
the system and the desired value.

— It predicts the value of the output in a short
time.

— It generates a signal to get that the output of the
system was as closer as possible of the desired
value.
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I\/Iodel Predictive Control (MPC)

A set of techniques that use:

— Plant model, to get a prediction of the system’s
output over a prediction horizon p,

— Objective function to minimize,

— Control law to minimize the objective function
over the prediction horizon p using actions in
the control horizon m, generally m<p.
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“Model Predictive Control (MPC)

« Advantages:
— It 1s an open methodology,
— It can include constraints,
— Generalization of MIMO systems.

» Drawbacks:
— It 1s computational expensive In its tuning phase,
— It I1s computational expensive in its working phase.
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Dynamlc Matrix Control (DMC)

 It’s a concrete MPC technique:

— Subsystem model: Step response.

— Objective function: measures the difference
between the reference signal and the predicted
output.

— Control law:

=(G'G+a) G (w-f)
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« Parameters: p=5, m=3

— 1=0.001
mce = 2.1e-007
Mp = 0.06 %

-4=1

mce = 0.005

Mp = 1.8 %

4, Dynamic Matrix Control (DMC)
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 But It has the MPC general drawbacks:

— It 1s computational expensive In its tuning
phase, but it is carried out only one time.

— It 1s computational expensive in its working
phase:
. Each sample: Au=(G'G+A1)'G'(w— f)
» |t obtains a set of m signals, but only the first of

them is used in this sample time, the rest are
ignored.

Dynamlc Matrix Control (DMC)
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5. Time Delayed N. N. (TDNN)

e Main characteristics:

— They are a kind of multi-layer perceptron neural
networks.

— They are dynamics.

— Delayed versions of the input signals are
Introduced to the input.

— They are ANNs (fast and generalizing responses).

 We use TDNN to model a tuned Predictive
Controller. .
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5. Time Delayed N. N. (TDNN)

o Structural parameters:
— Hidden layers: 1,
— Size of the time delay line,
— Number of neurons of the hidden layer.

nput — Hiaden Out

@ " 0
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6. Results

 Training experiments with multiple
structures, varying:
— Number of hidden layer neurons h.
— Number of delays of the time delay line d.

» The Levenberg-Marquardt method has been
used to carry out the training:
— Target vector: P=[w(k), y(k), Au(k—1)]
— QOutput: Au(k)
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6. Results

» The control of neuronal controller is right

even with noisy references that haven’t been
used In the training phase.

* The chosen structure:
— Number of hidden layer neurons h =5,
— Number of delays of the time delay line d =7,
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6. Results

« Example 1: the reference to follow has been used in
the training phase.
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6. Results

« Example 2: the noisy reference to follow hasn’t been

used in the training phase.
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6. Results

« Example 3: the noisy reference to follow hasn’t been
used in the training phase.
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6. Result
« Example 4: Presence of control and measurement
perturbations, white noise of mean zero and variance
o’ =107 . | | | | | |
Target y(k)
15 : z ! e ANNY(K) T
‘?i 05 L M PP \ . iy
O o et il hv ~ 05 4FO 60 80 150 120 140
05 60 80 100 120 140 mee=0.0015928
g mce=8.2101e-005 | ‘ — d;(k)
Target du(k) < e ANNduKk)
g 02 o ANNduK) [T B TN S N |
é 0 WLWAJ“#{!} Tkwhf &4‘.'._&“..{ W. % \M
O 0.2 M | | | | y |
04 60 80 100 120 140 0 20 40 60 80 100 120 ““ 140

mce=9.974e-005

mce=0.00028159



/. Conclusions

 Predictive Control iIs a technique that can
control systems that classic controllers can’t.

* Time Delayed Neural Networks are a kind
of ANN that can model Dynamic Matrix
Controllers.
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/. Conclusions

* |n this way, we can overcome the main
drawback of these kind of controllers,
Including:

— New situations that haven’t been used in the
training phase,

— The existence of perturbations in the control
and/or measurement signals.
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Thanks.

Questions?
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