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1. Introduction

• Well known control schemas as PID 

controllers could have problems to control 

some systems.

• There are techniques that emulate the 

human brain that could control these 

systems: Model Predictive Control.

• These techniques have some drawbacks: 

they are very computational expensive.
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2. Objectives

• Use Predictive Controllers to control 

complex systems that classics controllers 

can’t.

• The main objective is get a computational  

inexpensive implementation of Predictive 

Controllers.

• Get a fast and cheap implementation.
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3. Model Predictive Control (MPC)

• Is it really necessary?

• We tried to control a system using a discrete 

version of PID:
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3. Model Predictive Control (MPC)

• Parameter adjust: Ziegler-Nichols
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3. Model Predictive Control (MPC)

• Example:                      (stable)
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3. Model Predictive Control (MPC)

• It works like human brain:

– It doesn’t use past error between the output of 

the system and the desired value.

– It predicts the value of the output in a short 

time.

– It generates a signal to get that the output of the 

system was as closer as possible of the desired 

value.
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3. Model Predictive Control (MPC)

• A set of techniques that use:

– Plant model, to get a prediction of the system’s 

output over a prediction horizon p,

– Objective function to minimize,

– Control law to minimize the objective function 

over the prediction horizon p using actions in 

the control horizon m, generally m<p.
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3. Model Predictive Control (MPC)

• Advantages: 

– It is an open methodology,

– It can include constraints,

– Generalization of MIMO systems.

• Drawbacks:

– It is computational expensive in its tuning phase,

– It is computational expensive in its working phase.
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4. Dynamic Matrix Control (DMC)

• It’s a concrete MPC technique:

– Subsystem model: Step response.

– Objective function: measures the difference 

between the reference signal and the predicted 

output.

– Control law: 
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4. Dynamic Matrix Control (DMC)

• Working point:
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4. Dynamic Matrix Control (DMC)

• Parameters: p=5, m=3
– =0.001 - =1

mce = 2.1e-007 mce = 0.005

Mp = 0.06 %                                  Mp = 1.8 %
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4. Dynamic Matrix Control (DMC)

• But it has the MPC general drawbacks:

– It is computational expensive in its tuning 

phase, but it is carried out only one time.

– It is computational expensive in its working 

phase:

• Each sample:

• It obtains a set of m signals, but only the first of 

them is used in this sample time, the rest are 

ignored.
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5. Time Delayed N. N. (TDNN)

• Main characteristics:

– They are a kind of multi-layer perceptron neural 

networks.

– They are dynamics.

– Delayed versions of the input signals are 

introduced to the input.

– They are ANNs (fast and generalizing responses).

• We use TDNN to model a tuned Predictive 

Controller.
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5. Time Delayed N. N. (TDNN)

• Structural parameters:

– Hidden layers: 1,

– Size of the time delay line,

– Number of neurons of the hidden layer.
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6. Results

• Training experiments with multiple 

structures, varying:

– Number of hidden layer neurons    .

– Number of delays of the time delay line    .

• The Levenberg-Marquardt method has been 

used to carry out the training:

– Target vector:

– Output:

d

h
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6. Results

• The control of neuronal controller is right 

even with noisy references that haven’t been 

used in the training phase.

• The chosen structure:

– Number of hidden layer neurons         .

– Number of delays of the time delay line         .7d

5h
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6. Results

• Example 1: the reference to follow has been used in 

the training phase.
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6. Results

• Example 2: the noisy reference to follow hasn’t been 

used in the training phase.
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6. Results

• Example 3: the noisy reference to follow hasn’t been 

used in the training phase.
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6. Results

• Example 4: Presence of control and measurement 

perturbations, white noise of mean zero and variance
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7. Conclusions

• Predictive Control is a technique that can 

control systems that classic controllers can’t.

• Time Delayed Neural Networks are a kind 

of ANN that can model Dynamic Matrix 

Controllers.
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7. Conclusions

• In this way, we can overcome the main 

drawback of these kind of controllers, 

including:

– New situations that haven’t been used in the 

training phase,

– The existence of perturbations in the control 

and/or measurement signals. 
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Thanks.

Questions?


